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SUBSETS OF SUPERSTABLE STRUCTURES ARE WEAKLY BENIGN

BEKTUR BAIZHANOV, JOHN T. BALDWIN, AND SAHARON SHELAH

Baizhanov and Baldwin [1] introduce the notions of benign and weakly benign
sets to investigate the preservationof stability by naming arbitrary subsets of a stable
structure. They connect the notion with work of Baldwin, Benedikt, Bouscaren,
Casanovas, Poizat, and Ziegler. Stimulated by [1], we investigate here the existence
of benign or weakly benign sets.

Definition 0.1. (1) The set A is benign in M if for every α, â ∈ M if p =
tp(α/A) = tp(â/A) then tp∗(α/A) = tp∗(â/A) where the ∗-type is the type in
the language L∗ with a new predicate P denoting A.

(2) The set A is weakly benign in M if for every α, â ∈ M if p = stp(α/A) =
stp(â/A) then tp∗(α/A) = tp∗(â/A) where the ∗-type is the type in language
with a new predicate P denoting A.

Conjecture 0.2 (too optimistic). IfM is a model of stable theory T and A ⊆M
then A is benign.

Shelah observed, after learning of the Baizhanov-Baldwin reductions of the prob-
lem to equivalence relations, the following counterexample.

Lemma 0.3. There is an ù-stable rank 2 theory T with ndop which has a modelM
and set A such that A is not benign inM .

Proof. The universe of M is partitioned into two sets denoted by Q and R.
Let Q denote ù × ù and R denote {0, 1}. Define E(x, y, 0) to hold if the first
coordinates of x and y are the same andE(x, y, 1) to hold if the second coordinates
of x and y are the same. Let A consist of one element from each E(x, y, 0)-class
and one element of all but one E(x, y, 1)-class such that no two members of A are
equivalent for either equivalence relation. It is easy to check that letting α and â
denote the two elements of R, we have a counterexample. In this case, the type p is
algebraic. Algebraicity is a completely artificial restriction. Replace each α and â
by an infinite set of points which behave exactly as α, â respectively. We still have a
counterexample. In either case, α and â have different strong types. This leads to
the following weakening of the conjecture. a
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Conjecture 0.4 (Revised). IfM is amodel of stable theoryT andA is an arbitrary
subset ofM then A is weakly benign.

We give here a proof of Conjecture 0.4 in the superstable case. There are two
steps. In the first we show that if (M,A) is not (weakly) benign then there is a
certain configuration withinM . (This uses only T stable.) The second shows that
this configuration is contradicted for superstable T . Note that if (M,A) is not
weakly benign, neither is anyL∗-elementary extension of (M,A) so we may assume
any counterexample is sufficiently saturated.

§1. Refining a counterexample. In this section we choose a specific way in which
a sufficiently saturated pair (M,A) where Th(M ) is stable, fails to be weakly benign.
FixM , a κ+-saturated model of a stable theory T where κ = κ|T | is regular.
We introduce some notation. Recall thatA is relatively κ-saturated inM if every
type over (a subset of A) whose domain has cardinality less than κ and which is
realized in M , is also realized in A. First note that for any c ∈ M − A, there is a
pair (M1, A1) such that A1 is relatively κ-saturated in A; A1 ∪ c ⊆ M1 and M1 is
independent from A over A1; A1 andM1 have cardinality κ andM1 is κ-saturated.
For this, choose A0 ⊂ A with c independent from A over A0 and |A0| < κ (which
follows sinceκ ≥ |T |+ ≥ κ(T )). Then extendA0 to a subsetA1 ofAwith cardinality
at most κ which is relatively κ-saturated in A. Finally, letM1 ≺M be κ-prime over
A1 ∪ c. We have shown the following class Kc is not empty.

Notation 1.1. (1) For any c ∈ M , let Kc be the class of pairs (M1, A1) with
c ∈ M1 ≺ M such that A1 is relatively κ-saturated in A; A1 ∪ c ⊆ M1 and
M1 is independent from A over A1; A1 and M1 have cardinality κ and M1 is
κ-saturated with |M1| ≤ κ.

(2) For any a, b inM which realize the same type overA, let K 1a,b be the set of tuples

〈A1,Ma ,Mb , Na , g〉 such that (Ma , A1) and (Mb , A1) are inKa ,Kb respectively,
g is an isomorphism betweenMa andMb (subsets ofM ) over A1 (taking a to
b), Na containsMa and is saturated with cardinality κ, and Na is independent
from A over A1.

(3) Let K 2a,b be the set of tuples 〈A1,Ma ,Mb , Na , g〉 ∈ K 1a,b such that g is an

isomorphism between M eqa andM
eq
b over A

eq
1 (taking a to b). a and b realize

the same type over Aeq1 , so they realize the same strong type over A1.
(4) We will write K i to denote either K 1 or K2. Note the only difference between
them is that K2 has a more restrictive requirement on the isomorphism g.

Note that the last clause of item 2 implies that Na is independent from A over
Na ∩A and thatNa ∩A = A1 =Ma ∩A. Moreover, if 〈A1,Ma ,Mb , Na , g〉 ∈ Ka,b
andB ⊆ A with |B | ≤ κ then there is an 〈A′

1,M
′
a ,M

′
b , N

′
a , g

′〉 ∈ Ka,b withA1∪B ⊆
A′
1. (Just include B when making the construction from the first paragraph of this
section to show Ka,b is nonempty). We need a couple of other properties of Ka,b .
Note that Ka,b is naturally partially ordered by coordinate by coordinate inclusion.

Lemma 1.2. Every increasing chain from K ia,b of length ä a limit ordinal less than

κ+ has an upper bound in K ia,b .

Proof. If the cofinality of the chain is at least κ, just take the union (in each
coordinate). We check thatN äa , A are independent overA

ä : By induction, for every
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α < â < ä, tp(Nαa /A) does not fork over A
â
1 (by monotonicity of nonforking).

Hence if ä is a limit ordinal, tp(N äa /A) does not fork over A
ä
1.

But if the cofinality is smaller the union may not preserve κ-saturation. In this
case, let 〈A′

1,M
′
a ,M

′
b , N

′
a , g

′〉 denote the union of the respective chains; each has
cardinality κ. Choose A1 ⊆ A with |A1| = κ and such that A1 is relatively κ-
saturated in A and A1 contains A′

1. Then let the bound be 〈A1,Ma ,Mb , Na , g〉
whereMa is κ-prime overM ′

a ∪ A1,Mb is κ-prime overM
′
b ∪ A1, g is the induced

isomorphism extending g ′ andNa is any κ-saturated elementary extension ofMa ∪
N ′
a inM with Na independent from A over A1. a

Lemma 1.3. If t = 〈A1,Ma ,Mb , Na , g〉 ∈ K
i
a,b and p ∈ S(Ma ) is non-algebraic,

orthogonal to A and p 6⊥ tp(Na/Ma), then there is t ′ = 〈A′
1,M

′
a ,M

′
b , N

′
a , g

′〉 ∈ K ia,b
with t′ extending t and tp(Na/M ′

a) forking overMa .

Proof. Since M is κ+-saturated, we can find d ∈ M realizing p such that
tp(d/Na) forks over Ma and d ′ ∈ M realizing g(p). Now, construct t ′ by letting
A′
1 = A1,M

′
a be κ-prime overMa ∪ {d},M ′

b be κ-prime overMb ∪ {d ′}, g ′ be an
extension of g taking d to d ′, and N ′

a ≺M any κ-saturated extension ofM
′
a ∪Na .

We need to show thatM ′
a andM

′
b are independent from A over A

′
1. For this, note

that sincep ∈ S(Ma ) is orthogonal toA (a fortiori toA1) andA is independent from
Ma overA1, d is independent fromA overMa . SinceM ′

a is κ-prime overMa ∪{d},
it follows thatM ′

a is independent from A over A
′
1. An analogous argument shows

M ′
b is independent from A over A

′
1. Since d ∈M ′

a , we have fulfilled the lemma. a

For any ordinalì and any sequence 〈 ai : i < ì 〉 and any finitew ⊆ ì, aw denotes
〈 ai : i ∈ w 〉. We require one further technical notion.

Definition 1.4. We say Ma is A-full in M if for any N κ-prime over MaA and
for any C0 ⊆ Ma , |C0| ≤ |T |, C1 ⊆ A with |C1| ≤ |T |, and C2 with C0 ⊆ C2,
C1 ⊆ C2 ⊆ N , and |C2| ≤ |T |, there is an elementary map f taking C1C2 into
Ma over C0 with f(C1) ⊆ A and if C2 is independent from A over C1 then f(C2) is
independent from A over f(C1).

We prove a characterization of a weakly benign pair; a similar result for benign
(using K 1 instead of K 2) also holds. In view of the counterexample in given in the
introduction, weakly benign is the interesting case.

Lemma 1.5. Use the notation of 1.1. Suppose (M,A) is κ+-saturated where κ =
κ|T | is regular and T = Th(M ) is stable. The following are equivalent.

(1) (M,A) is not weakly benign.
(2) There existA∗,Ma ,Na ,Mb , g contained inM with a ∈Ma , b ∈Mb such that:
(a) 〈A∗,Ma ,Mb , Na , g〉 ∈ K

2
a,b andMa 6= Na .

(b) Ma is A-full inM .
(c) tp(Na/Ma) is orthogonal to every nonalgebraic type in S(Ma) which is
orthogonal to A.

(d) If d ∈ Na −Ma , there is no d′ ∈ M which realizes g(tp(d/Ma)) and such
that d′ is independent from A overMb .

We can easily deduce from condition a) that Na is independent from A over A∗

and also that Ma and Mb are isomorphic over A∗ by a map g taking a to b and
preserving strong types over A, i.e., g�(A∗)eq is the identity. By general properties
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of orthogonality, we could rephrase item c) as: tp(Na/Ma) is orthogonal to every
nonalgebraic type in S(Ma ) which is orthogonal to A∗.

Proof of Lemma 1.5. First we show that condition (2) implies condition (1).
By condition (2a), there is an a ′ in Na −Ma . Note that since A∗ is relatively κ+-
saturated inA andMa (Mb) is independent fromA overA

∗,Ma∩A =Mb∩A = A
∗.

It follows that g ∪ (id� acl(Aeq)) is an elementary map in Leq. Let a = 〈ai : i < κ〉
enumerateMa − A with a0 = a; denote g(ai ) by bi so b = 〈bi : i < κ〉 enumerates
Mb . For anyfinite set ofL-formulas ∆ andfinite subsetw ofκ, let φ∆,w(x; a

′, aw , bw)
be the L∗-formula which asserts that xbw and a′aw realize the same ∆-type over A.
For any finite w, aw and bw realize the same L-type over A.
Now, let q = {φ∆,w(x; a

′, aw , bw) : 0 ∈ w ⊂ù κ,∆ ⊂ù L }. Putting 0 ∈ w
guarantees a, b are in any relevant aw , bw . So q is a set of κ L∗-formulas with free
variable x and parameters fromMa ∪Mb ∪ {a′}. If q is finitely satisfied in (M,A),
then q is realized inM by some b′, sinceM is κ+-saturated as an L∗-structure. But
since a′ is independent fromA overMa , b′ realizes the unique nonforking extension
of g(tp(a′/Ma)) toMb ∪A contradicting condition d). If q is not finitely satisfiable,
there is a formula φ∆,w which demonstrates the L

∗ type of aw and bw over A are
different.
We will use the following basic fact (compare Lemma I.1.12 of [2]):

Fact 1.6. (1) If A1 is relatively κ-saturated in A and C is independent from A
over A1, then CA1 is relatively κ-saturated in CA.

(2) If A1 is relatively κ-saturated in A andD is κ-atomic over A1, D is independent
from A over A1.

To show (1) implies (2) of Lemma 1.5, we suppose that a and b realize the same
(strong)-type over A but that there is an a ′ such that there is no b′ ∈ M with
aa′ ≡A,L bb

′. We fix 〈a, b〉 as the a, b and analyze K 2a,b below.

Lemma 1.7. There is a t = 〈A∗,Ma ,Mb , Na , g〉 ∈ K
2
a,b such that

(A) Na 6=Ma ,
(B) tp(Na/Ma) is orthogonal to every nonalgebraic type in S(Ma), which is orthog-
onal to A.

(C) If d ∈ Na −Ma , there is no d
′ ∈ M which realizes g(tp(d/Ma)) and such that

d′ is independent from A overMb .
(D) Ma is A-full.

Proof. Try to construct by induction a sequence 〈 tα : α < κ+ 〉 where tα =
〈Aα∗ ,M

α
a ,M

α
b , N

α
a , g

α〉 of elements ofK 2a,b which are increasing in the natural partial

order, continuous at limit ordinals of cofinality greater than κr(T ); t0 is any element
of K 2a,b with a

′ ∈ N 0a .

(1) If α is an even ordinal there are several cases.
(a) Suppose condition (B) fails, i.e. for some d ∈ Na , p = tp(d/Ma) is
nonorthogonal to some stationary type q ∈ S(Ma ) which is orthogonal
to A. Then by Lemma 1.3, there is t ′ = 〈A′

∗,M
′
a ,M

′
b , N

′
a , g

′〉 ∈ K 2a,b with

t′ extending t and tp(Na/M
′
a) forks overMa .

(b) Suppose condition (B) holds.
(i) If α is a limit ordinal of cofinality κ, stop.
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(ii) If α is a limit ordinal of cofinality< κ or α is a successor ordinal, let
tα+1 = tα .

(2) α is an odd successor ordinal. Choose an auxiliary M̂αa κ-prime overM
α
a A.

Choose Aα+1∗ ,Mα+1a ,Mα+1b such that Aα∗ ⊆ Aα+1∗ ⊆ A, |Aα+1∗ | = κ and so
that

(Mα+1a , Aα+1∗ ) ≺L(|T |+ ,|T |+) (M̂
α
a , A)

and Mα+1a is κ-prime over Mαa A
α+1
∗ . This is possible since κ = κ|T |. In

particular, Mα+1a is independent from A over Aα+1∗ . The κ-primeness allows
us to easily constructMα+1b and gα+1. Now choose N

α+1
a to be a κ-saturated

extension ofMα+1a that is independent from A over Aα+1∗

(3) If α is a limit ordinal choose tα by Lemma 1.2.

We cannot carry out this construction for κ+ steps. If we did, by clause (1) of the
construction at each limit α with cf(α) = κ, clause (B) fails. Thus,M α+1

a depends
on Nαa overM

α
a for all such α, which contradicts stability. (If we were dealing with

finite sequences, the bound would be κ(T ); since we deal with sets of cardinality κ,
the bound is κ+.)
Fixα where the construction stops. We have constructed tα = 〈Aα∗ ,M

α
a ,M

α
b , N

α
a ,

gα〉 but for any choice of tα+1 ∈ K
2
a,b ,M

α+1
a is independent fromNαa overM

α
a . Note

that each member of tα = 〈Aα∗ ,M
α
a ,M

α
b , N

α
a , g

α〉 is the union of the respective
member of tâ over â < α. We claim this tα is a t satisfying the conditions of the
lemma.
For clause (A) note Nαa 6=Mαa since a

′ ∈ Nαa and a
′ cannot be in the domain of

gα by the original choice of a ′. Since the construction stopped clause (B), holds.
For clause (C), we must show that if d ∈ Na −Ma , there is no d′ ∈ M which
realizes g(tp(d/Ma)) and such that d′ is independent from A over Mb . Fix d ∈
Na −Ma ; if such a d

′ exists, chooseMα+1a ,Mα+1b contained inM prime overMαa d

and Mαb d
′ respectively. We easily extend gα to gα+1 mapping Mα+1a to Mα+1b .

By the construction, Aα∗ is relatively κ-saturated in A. So, M
α
a ∪ {d} and A are

independent over Aα∗ by monotonicity, asN
α
a is independent from A over A

α
∗ . Now

by Fact 1.6 (1),Mαa ∪ {d} is relatively κ-saturated insideM α
a ∪ {d} ∪ A. Whence,

by Fact 1.6 (2) Mα+1a and A are independent over Mαa ∪ {d}. By transitivity of
nonforking,Mα+1a andA are independent overAα∗ . Similarly, since d

′ is independent
from A overMb ,M

α+1
b is independent from A over Aα∗ . But now, N

α
a depends on

Mα+1a overMαa because d ∈ (Mα+1a ∩Nαa ) −M
α
a and we have violated the choice

of α.
Finally we verify clause (D):Ma isA-full. ChooseN , which is κ-prime overAMa .
Then N can be embedded over AMa into M̂αa = ∪i<αM̂

i
a . By the Tarski union of

chains theorem (using clause (2) of the construction), (M α
a , A ∩Mαa ) ≺L|T |+ ,|T |+

(M̂αa , A). Let C0, C1, C2 ⊆ N satisfy the hypotheses of the definition of A-
full. The elementary submodel condition easily allows us to define the required
function f. a

And thus, we have proved Lemma 1.5. a

§2. The superstable case. The aim of this section is to prove that ifM is a model
of a superstable theory and A ⊂ M , then (M,A) is weakly benign. This is a
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generalization of a result of Bouscaren [3], who showed, in our terminology that
every submodel of a superstable structure is benign.

Theorem 2.1. IfM is a model of a superstable theory and A ⊂M , then (M,A) is
weakly benign.

Proof. We work in M eq. Without loss of generality, assume (M,A) is κ+-
saturated for a regular κ satisfying κ|T | = κ. By Lemma 1.5 if (M,A) is not weakly
benign, there exist A∗,Ma , Na ,Mb , g contained inM satisfying the conditions of
Lemma 1.5 and with 〈A∗,Ma ,Mb , Na , g〉 ∈ K

2
a,b .

SinceMa is properly contained in Na , we can choose c ∈Ma and φ(x, c) to have
minimal D-rank among all formulas with φ(Na , c) 6= φ(Ma , c). Then for any d ∗ ∈
φ(Na , c)\φ(Ma , c), p

∗ = tp(d∗/Ma) is regular. Without loss of generality again, we
can fix d ∗, which does not fork over c and so that p∗ has the sameD-rank as φ(x, c)
and tp(d∗/c) is stationary. By clause (c) of Lemma 1.5, p∗ is not orthogonal toA∗.
So, there is a q′ ∈ S(Ma ) which does not fork overA∗ and is nonorthogonal and so
non-weakly orthogonal top∗. FixC ⊆ A∗with |C | ≤ |T | and c is independent from
A∗ over C . Without loss of generality tp(d∗/A∗c) 6⊥w q�(A∗c) and tp(d∗/C c) 6⊥w

q�(C c). Let P = {p : p is regular, stationary, and nonorthogonal to p∗ }. P is
based on B = acleq(C ), i.e. every automorphism ofM fixing B mapsP to itself.
If c′′ ∈ M realizes tp(c/Aeq) and d ′′c′′ realizes r = tp(d ∗c/B), then tp(d ′′/c′′)
is regular and nonorthogonal to p∗. We can find 〈ci : i < ù〉 in Ma with c0 = c
which are indiscernible over B and which are based on B . The r(x, ci) are regular,
pairwise nonorthogonal, and all nonorthogonal toP and each r(x, ci ) is notweakly
orthogonal to q′�(Bci ). Note r(x, ci ) ⊂ p∗. Let ri ∈ S(M ) denote the nonforking
extension of r(x, ci ) to S(M ). By Section V.4 of [4], there is a q ∈ S(B), which
is P -simple and k < ù such that wP (q) > 0 and q(M ) ⊆ acl(B ∪

⋃
i<k ci ∪⋃

i<k r(M , ci ). (This q is actually q
′/E for an appropriate definable (over B)

equivalence relation; compare V.4.17 (8) of [4].)
Let q+ denote the unique nonforking extension of q to S(M ), p+a denote the
unique nonforking extension of p∗ to S(M ), and p+b denote the unique nonforking
extension of g(p∗) to S(M ). Clearly, p+a �(Ma ∪A) is a nonforking extension of the
stationary type p∗ and is realized by d∗; so it is equivalent to p+a � acl(Ma ∪A).

Remark 2.2. Note (g ∪ idA)(p+a �(Ma ∪ A) = p
+
b �(Mb ∪ A) ∼ p

+
b � acl(Mb ∪ A)

is omitted inM .

We use the next lemma several times.

Lemma 2.3. If Aeq ⊆ N1 ⊆ N2 ⊆M andN1, N2 are |T |+-saturated then

wP (q(N2), N1) = wP (q(N2), q(N1)A
eq).

Proof. Fix b ∈ N1 and choose D ⊆ q(N1)Aeq with |D| ≤ |T | such that
tp(b/q(N1)Aeq) does not fork over D. If tp(b/q(N2)Aeq) forks over D, there
are finite d1 ⊆ q(N2) and d2 ⊆ Aeq such that tp(b/BDd1d2) forks overD. But there
is a d′ ∈ q(N1) realizing stp(d1/Dbd2), which contradicts tp(b/q(N1)Aeq) does not
fork over D.
So tp(b/q(N2)A

eq) does not fork over q(N1)A
eq. Since b was arbitrary in

N1, tp(N1/q(N2)Aeq) does not fork over q(N1)Aeq. By symmetry of forking,
tp(q(N2)/N1Aeq) does not fork over q(N1)Aeq. Since Aeq ⊆ N1 we finish. a
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The proof now proceeds by a series of claims. The key idea is thatwP (q(M ), Aeq)
can be calculated either aswP (q(M ), q(Mb)∪A

eq)+wP (q(Mb), A
eq) orwP (q(M ),

q(Ma) ∪ Aeq) + wP (q(Ma), Aeq). We will calculate both ways to obtain a contra-
diction. We begin with theMa side.

Claim 2.4. If dim(r0�A∗c0,Ma) is finite, then wP (q(Ma), A∗ ∪
⋃
i<k ci ) is finite.

Proof. If u is a finite subset of ù, since the ri are regular, it is easy to show that
for each i , dim(ri�(A∗ci ),Ma) is finite iff dim(ri �(A∗ ∪ ci ∪j∈u cj),Ma) is finite.
Since the ri�(A∗cicj) are regular and pairwise not weakly orthogonal

dim(ri �A∗cicj ,Ma) = dim(rj�A∗cicj ,Ma).

The previous two sentences imply: dim(ri�A∗ci ,Ma) is finite iff dim(rj�A∗cj ,Ma)
is finite. So if dim(r0�A∗c0,Ma) is finite then wP (

⋃
i<k ri (Ma , ci ), A∗ ∪

⋃
i<k ci ) is

finite; whence wP (q(Ma), A∗ ∪
⋃
i<k ci ) is finite. a

Now we drop the
⋃
i<k ci in the conclusion.

Claim 2.5. dim(r0�A∗c0,Ma) is finite implies wP (q(Ma), A∗) is finite.

Proof. Find d ⊆ q(M ) such that
⋃
i<k ci is independent fromA∗∪q(M ) overA∗∪

d. Now, as tp(d/A∗) isP -simple,wP (q(Ma), A∗) = wP (q(Ma), A∗d)+wP (d, A∗).
The second term is finite and wP (q(Ma), A∗d) = wP (q(Ma), A∗d ∪

⋃
i<k ci ) by

the independence. But, wP (q(Ma), A∗d ∪
⋃
i<k ci ) = wP (q(Ma), A∗ ∪

⋃
i<k ci ) −

wP (d, A∗ ∪
⋃
i<k ci ). Now the first of the last two terms is finite by Claim 2.4 (since

dim(r0�A∗c0,Ma) is finite) and the second by the finiteness of d so wP (q(Ma), A∗)
is finite. a

Claim 2.6. dim(r0,Ma) is finite.

Proof. Note that p+a �(Bc0) = r0�(Bc0). Choose by induction aα ∈ Ma so that
aα realizes p+a �Aeq∗ ∪ g(c0) ∪ {aâ : â < α} for as long as possible to construct:
I = 〈 aα : α < α

∗ 〉. Clearly α∗ < |Ma |
+, but in fact α∗ is finite. As, since

Ma is independent from A over A∗, I is a set of indiscernibles over A. Since M
is κ+-saturated, if I is infinite 〈 g(aα) : α < α∗ 〉 can be extended to a set J of
indiscernibles over A contained inMb with cardinality κ

+. Then all but at most κ
members of J realize p+b �(Mb ∪ A) contradicting Remark 2.2 that p

+
b �(Mb ∪ A) is

omitted inM . a

Now, easily we have

Claim 2.7. wP (q(Ma), A∗) = wP (q(Ma), Aeq) is finite.

Proof. The equality holds by the independence of Ma and A over A∗. The
finiteness follows from Claim 2.6 and Claim 2.5. a

The next claim involves bothMa andMb .

Claim 2.8. Suppose wP (q(Ma), A∗) is finite andN ≺M is κ-prime overMbA.
Then wP (q(N ), q(Mb)A) = 0.

Proof. SincewP (q(Ma), A∗) is finite, andA,Ma are independent overA∗,we can
choose finite D ⊆ q(Ma) with wP (q(Ma), A∗) = wP (q(Ma), A) = wP (D,A∗) =
wP (D,A).
Now assume for contradiction that wP (q(N ), q(Mb)A) > 0. Let N

′ ≺ M be
κ-prime over Ma ∪ A, so there is g

+ ⊇ g ∪ idA which is an isomorphism from
N ′ onto N . Then there is a finite D2 ⊆ q(N ′) with wP (D2,MaA) > 0. Choose
C0 ⊆ Ma , |C0| ≤ |T | with DB ⊆ C0 and C1 ⊆ A with |C1| ≤ |T | so that D2
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is independent from MaA over C0C1 and is the unique nonforking extension of
tp(D2/C0C1) to S(MaA) which is realized in M . Recall that Ma is A-full and
apply the Definition 1.4 of A-full with C0C1D2 playing the role of C2 to obtain an
embedding f. Then, f(D2) ⊆ q(Ma) and f(D2) is independent from C0A over
C0f(C1). Thus,

wP (f(D2), AD) = wP (D2, AD) ≥ wP (D2, q(Ma)A) > 0.

This implies wP (q(Ma), A) ≥ wP (Df(D2), A) = wP (D,A) + wP (f(D2), AD) >
wP (D,A), which contradicts our original choice of D. a

Claim 2.9. wP (q(M ), q(Mb)A) = 0.

Proof. Let N ≺ M be κ-prime over Mb ∪ A, so p
+
b �(Mb ∪ A) has a unique

extension in S(N ). If wP (q(M ), N ) > 0 then for some b ∈ q(M ), wP (b, N ) > 0
so tp(b/N ) 6⊥ p+b ; recall p

+
b is parallel to p

+
b �N . So p+b �N is realized inMb contra-

dicting Remark 2.2. Now 0 = wP (q(M ), N ) which equalswP (q(M ), q(N )Aeq) by
Lemma 2.3. Since Aeq ⊆ Nb ⊆ N ⊆M ,

wP (q(M ), q(Mb)A
eq) = wP (q(M ), q(N )A

eq) +wP (q(N ), q(Mb)A
eq)

= 0 + 0 = 0.

The first 0 was noted in the previous sentence and the second is Claim 2.8. a

Now calculating with respect toMb , we have:

Claim 2.10. wP (q(M ), Aeq) = wP (q(Mb), A
eq) is finite.

Proof.

wP (q(M ), A
eq) = wP (q(M ), q(Mb)A

eq) +wP (q(Mb), A
eq)

= 0 +wP (q(Mb), A
eq) < ù.

The first equality holds by additivity [4] and Lemma 2.3, the second by Claim 2.9,
and the third by the last observation. a

Now we analyze usingMa .

Claim 2.11. wP ((q(M ), q(Ma) ∪ A) ≥ 1.

Proof. wP (d∗,Ma ∪ A) ≥ 1 since d∗ is independent from A over Ma . Let N
be κ-prime overMaAeq. As tp(d∗/MaAeq) has all its restrictions to set of size less
than κ realized in MaAeq, tp(d∗/N ) does not fork over MaAeq. Thus, d∗ realizes
p+a �N . Since p+a �N is not orthogonal to q+�N , there is b ∈ q+(M ) which depends
on b over N . So wP (b, N ) > 0 whence wP (q(M ), N ) > 0. By monotonicity,
wP ((q(M ), q(Ma) ∪ A∗) ≥ wP (q(M ), q(N )Aeq). But, by Lemma 2.3, wP (q(M ),
q(N )Aeq) = wP (q(M ), N ) > 0. a

Now we have

wP (q(M ), A
eq) = wP (q(M ), q(Ma)A

eq) +wP (q(Ma), A
eq)(1)

≥ 1 +wP (q(Ma), A
eq) < ù.(2)

Here, the first equality is by [4] and Lemma 2.3 and the second by Claim 2.11.
The finiteness comes from Claim 2.7. Since g ∪ idAeq is an elementary map,
wP (q(Ma), A

eq) = wP (q(Mb), A∗). We substitute in Equation 1, using Claim 2.10:

wP (q(Ma), A
eq) = wP (q(M ), A

eq) = wP (q(Ma), A
eq) + 1,

or subtracting, 0 = 1 so we finish. a
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