THE JOURNAL OF SYMBOLIC LOGIC Volume 70, Number 1, March 2005

SUBSETS OF SUPERSTABLE STRUCTURES ARE WEAKLY BENIGN

BEKTUR BAIZHANOV, JOHN T. BALDWIN, AND SAHARON SHELAH

Baizhanov and Baldwin [1] introduce the notions of benign and weakly benign sets to investigate the preservation of stability by naming arbitrary subsets of a stable structure. They connect the notion with work of Baldwin, Benedikt, Bouscaren, Casanovas, Poizat, and Ziegler. Stimulated by [1], we investigate here the existence of benign or weakly benign sets.

- DEFINITION 0.1. (1) The set A is benign in M if for every α , $\beta \in M$ if $p = \operatorname{tp}(\alpha/A) = \operatorname{tp}(\beta/A)$ then $\operatorname{tp}_*(\alpha/A) = \operatorname{tp}_*(\beta/A)$ where the *-type is the type in the language L* with a new predicate P denoting A.
- (2) The set A is weakly benign in M if for every $\alpha, \beta \in M$ if $p = \operatorname{stp}(\alpha/A) = \operatorname{stp}(\beta/A)$ then $\operatorname{tp}_*(\alpha/A) = \operatorname{tp}_*(\beta/A)$ where the *-type is the type in language with a new predicate P denoting A.

CONJECTURE 0.2 (too optimistic). If *M* is a model of stable theory *T* and $A \subseteq M$ then *A* is benign.

Shelah observed, after learning of the Baizhanov-Baldwin reductions of the problem to equivalence relations, the following counterexample.

LEMMA 0.3. There is an ω -stable rank 2 theory T with ndop which has a model M and set A such that A is not benign in M.

PROOF. The universe of M is partitioned into two sets denoted by Q and R. Let Q denote $\omega \times \omega$ and R denote $\{0,1\}$. Define E(x, y, 0) to hold if the first coordinates of x and y are the same and E(x, y, 1) to hold if the second coordinates of x and y are the same. Let A consist of one element from each E(x, y, 0)-class and one element of all but one E(x, y, 1)-class such that no two members of A are equivalent for either equivalence relation. It is easy to check that letting α and β denote the two elements of R, we have a counterexample. In this case, the type p is algebraic. Algebraicity is a completely artificial restriction. Replace each α and β by an infinite set of points which behave exactly as α , β respectively. We still have a counterexample. In either case, α and β have different strong types. This leads to the following weakening of the conjecture. \dashv

© 2005, Association for Symbolic Logic 0022-4812/05/7001-0007/\$1.90

Received February 19, 2003; revised August 17, 2004.

Baizhanov partially supported by CDRF grant KM2-2246.

Baldwin partially supported by NSF grant DMS-0100594 and CDRF grant KM2-2246.

This is Publication 815 in Shelah's bibliography. This research was partially supported by The Israel Science Foundation.

CONJECTURE 0.4 (Revised). If M is a model of stable theory T and A is an arbitrary subset of M then A is weakly benign.

We give here a proof of Conjecture 0.4 in the superstable case. There are two steps. In the first we show that if (M, A) is not (weakly) benign then there is a certain configuration within M. (This uses only T stable.) The second shows that this configuration is contradicted for superstable T. Note that if (M, A) is not weakly benign, neither is any L^* -elementary extension of (M, A) so we may assume any counterexample is sufficiently saturated.

§1. Refining a counterexample. In this section we choose a specific way in which a sufficiently saturated pair (M, A) where Th(M) is stable, fails to be weakly benign. Fix M, a κ^+ -saturated model of a stable theory T where $\kappa = \kappa^{|T|}$ is regular.

We introduce some notation. Recall that A is relatively κ -saturated in M if every type over (a subset of A) whose domain has cardinality less than κ and which is realized in M, is also realized in A. First note that for any $c \in M - A$, there is a pair (M_1, A_1) such that A_1 is relatively κ -saturated in A; $A_1 \cup c \subseteq M_1$ and M_1 is independent from A over A_1 ; A_1 and M_1 have cardinality κ and M_1 is κ -saturated. For this, choose $A_0 \subset A$ with c independent from A over A_0 and $|A_0| < \kappa$ (which follows since $\kappa \ge |T|^+ \ge \kappa(T)$. Then extend A_0 to a subset A_1 of A with cardinality at most κ which is relatively κ -saturated in A. Finally, let $M_1 \prec M$ be κ -prime over $A_1 \cup c$. We have shown the following class K_c is not empty.

- NOTATION 1.1. (1) For any $c \in M$, let K_c be the class of pairs (M_1, A_1) with $c \in M_1 \prec M$ such that A_1 is relatively κ -saturated in A; $A_1 \cup c \subseteq M_1$ and M_1 is independent from A over A_1 ; A_1 and M_1 have cardinality κ and M_1 is κ -saturated with $|M_1| \leq \kappa$.
- (2) For any a, b in M which realize the same type over A, let $\mathbf{K}_{a,b}^1$ be the set of tuples $\langle A_1, M_a, M_b, N_a, g \rangle$ such that (M_a, A_1) and (M_b, A_1) are in $\mathbf{K}_a, \mathbf{K}_b$ respectively, g is an isomorphism between M_a and M_b (subsets of M) over A_1 (taking a to b), N_a contains M_a and is saturated with cardinality κ , and N_a is independent from A over A_1 .
- (3) Let $K_{a,b}^2$ be the set of tuples $\langle A_1, M_a, M_b, N_a, g \rangle \in K_{a,b}^1$ such that g is an (c) Let \$\mathcal{P}_{a,b}\$ be the every input (eq. (a, b, a, b), a, a, b), and b isomorphism between \$M_a^{eq}\$ and \$M_b^{eq}\$ over \$A_1^{eq}\$ (taking a to b). a and b realize the same type over \$A_1^{eq}\$, so they realize the same strong type over \$A_1\$.
 (4) We will write \$K^i\$ to denote either \$K^1\$ or \$K^2\$. Note the only difference between
- them is that K^2 has a more restrictive requirement on the isomorphism g.

Note that the last clause of item 2 implies that N_a is independent from A over $N_a \cap A$ and that $N_a \cap A = A_1 = M_a \cap A$. Moreover, if $\langle A_1, M_a, M_b, N_a, g \rangle \in \mathbf{K}_{a,b}$ and $B \subseteq A$ with $|B| \leq \kappa$ then there is an $\langle A'_1, M'_a, M'_b, N'_a, g' \rangle \in \mathbf{K}_{a,b}$ with $A_1 \cup B \subseteq \mathbf{K}_{a,b}$ A'_{1} . (Just include B when making the construction from the first paragraph of this section to show $K_{a,b}$ is nonempty). We need a couple of other properties of $K_{a,b}$. Note that $K_{a,b}$ is naturally partially ordered by coordinate by coordinate inclusion.

LEMMA 1.2. Every increasing chain from \mathbf{K}_{ab}^{i} of length δ a limit ordinal less than κ^+ has an upper bound in $K_{a,b}^i$.

PROOF. If the cofinality of the chain is at least κ , just take the union (in each coordinate). We check that N_a^{δ} , A are independent over A^{δ} : By induction, for every

 $\alpha < \beta < \delta$, $tp(N_a^{\alpha}/A)$ does not fork over A_1^{β} (by monotonicity of nonforking). Hence if δ is a limit ordinal, $tp(N_a^{\delta}/A)$ does not fork over A_1^{δ} .

But if the cofinality is smaller the union may not preserve κ -saturation. In this case, let $\langle A'_1, M'_a, M'_b, N'_a, g' \rangle$ denote the union of the respective chains; each has cardinality κ . Choose $A_1 \subseteq A$ with $|A_1| = \kappa$ and such that A_1 is relatively κ -saturated in A and A_1 contains A'_1 . Then let the bound be $\langle A_1, M_a, M_b, N_a, g \rangle$ where M_a is κ -prime over $M'_a \cup A_1$, M_b is κ -prime over $M'_b \cup A_1$, g is the induced isomorphism extending g' and N_a is any κ -saturated elementary extension of $M_a \cup N'_a$ in M with N_a independent from A over A_1 .

LEMMA 1.3. If $t = \langle A_1, M_a, M_b, N_a, g \rangle \in \mathbf{K}_{a,b}^i$ and $p \in S(M_a)$ is non-algebraic, orthogonal to A and $p \not\perp \operatorname{tp}(N_a/M_a)$, then there is $t' = \langle A'_1, M'_a, M'_b, N'_a, g' \rangle \in \mathbf{K}_{a,b}^i$ with t' extending t and $\operatorname{tp}(N_a/M'_a)$ forking over M_a .

PROOF. Since M is κ^+ -saturated, we can find $d \in M$ realizing p such that $\operatorname{tp}(d/N_a)$ forks over M_a and $d' \in M$ realizing g(p). Now, construct t' by letting $A'_1 = A_1$, M'_a be κ -prime over $M_a \cup \{d\}$, M'_b be κ -prime over $M_b \cup \{d'\}$, g' be an extension of g taking d to d', and $N'_a \prec M$ any κ -saturated extension of $M'_a \cup N_a$. We need to show that M'_a and M'_b are independent from A over A'_1 . For this, note that since $p \in S(M_a)$ is orthogonal to A (a fortiori to A_1) and A is independent from $M_a \cup \{d\}$, it follows that M'_a is independent from A over M'_a . Since M'_a is κ -prime over $M_a \cup \{d\}$, it follows that M'_a is independent from A over A'_1 . An analogous argument shows M'_b is independent from A over A'_1 . Since $d \in M'_a$, we have fulfilled the lemma. \dashv

For any ordinal μ and any sequence $\langle \mathbf{a}_i : i < \mu \rangle$ and any finite $w \subseteq \mu$, \mathbf{a}_w denotes $\langle \mathbf{a}_i : i \in w \rangle$. We require one further technical notion.

DEFINITION 1.4. We say M_a is A-full in M if for any $N \ltimes$ -prime over M_aA and for any $C_0 \subseteq M_a$, $|C_0| \leq |T|$, $C_1 \subseteq A$ with $|C_1| \leq |T|$, and C_2 with $C_0 \subseteq C_2$, $C_1 \subseteq C_2 \subseteq N$, and $|C_2| \leq |T|$, there is an elementary map f taking C_1C_2 into M_a over C_0 with $f(C_1) \subseteq A$ and if C_2 is independent from A over C_1 then $f(C_2)$ is independent from A over $f(C_1)$.

We prove a characterization of a weakly benign pair; a similar result for benign (using K^1 instead of K^2) also holds. In view of the counterexample in given in the introduction, weakly benign is the interesting case.

LEMMA 1.5. Use the notation of 1.1. Suppose (M, A) is κ^+ -saturated where $\kappa = \kappa^{|T|}$ is regular and T = Th(M) is stable. The following are equivalent.

- (1) (M, A) is not weakly benign.
- (2) There exist A_*, M_a, N_a, M_b, g contained in M with $a \in M_a, b \in M_b$ such that: (a) $\langle A_*, M_a, M_b, N_a, g \rangle \in \mathbf{K}^2_{a,b}$ and $M_a \neq N_a$.
 - (b) M_a is A-full in M.
 - (c) $tp(N_a/M_a)$ is orthogonal to every nonalgebraic type in $S(M_a)$ which is orthogonal to A.
 - (d) If $\mathbf{d} \in N_a M_a$, there is no $\mathbf{d}' \in M$ which realizes $g(\operatorname{tp}(\mathbf{d}/M_a))$ and such that \mathbf{d}' is independent from A over M_b .

We can easily deduce from condition a) that N_a is independent from A over A_* and also that M_a and M_b are isomorphic over A_* by a map g taking a to b and preserving strong types over A, i.e., $g \upharpoonright (A^*)^{eq}$ is the identity. By general properties of orthogonality, we could rephrase item c) as: $tp(N_a/M_a)$ is orthogonal to every nonalgebraic type in $S(M_a)$ which is orthogonal to A_* .

PROOF OF LEMMA 1.5. First we show that condition (2) implies condition (1). By condition (2a), there is an a' in $N_a - M_a$. Note that since A^* is relatively κ^+ -saturated in A and $M_a(M_b)$ is independent from A over A^* , $M_a \cap A = M_b \cap A = A^*$. It follows that $g \cup (id \upharpoonright acl(A^{eq}))$ is an elementary map in L^{eq} . Let $\mathbf{a} = \langle a_i : i < \kappa \rangle$ enumerate $M_a - A$ with $a_0 = a$; denote $g(a_i)$ by b_i so $\mathbf{b} = \langle b_i : i < \kappa \rangle$ enumerates M_b . For any finite set of L-formulas Δ and finite subset w of κ , let $\phi_{\Delta,w}(\mathbf{x}; a', \mathbf{a}_w, \mathbf{b}_w)$ be the L^* -formula which asserts that $x\mathbf{b}_w$ and $a'\mathbf{a}_w$ realize the same Δ -type over A. For any finite w, \mathbf{a}_w and \mathbf{b}_w realize the same L-type over A.

Now, let $q = \{ \phi_{\Delta,w}(\mathbf{x}; a', \mathbf{a}_w, \mathbf{b}_w) : 0 \in w \subset_{\omega} \kappa, \Delta \subset_{\omega} L \}$. Putting $0 \in w$ guarantees a, b are in any relevant $\mathbf{a}_w, \mathbf{b}_w$. So q is a set of κ L^* -formulas with free variable x and parameters from $M_a \cup M_b \cup \{a'\}$. If q is finitely satisfied in (M, A), then q is realized in M by some b', since M is κ^+ -saturated as an L^* -structure. But since a' is independent from A over M_a, b' realizes the unique nonforking extension of $g(\operatorname{tp}(a'/M_a))$ to $M_b \cup A$ contradicting condition d). If q is not finitely satisfiable, there is a formula $\phi_{\Delta,w}$ which demonstrates the L^* type of \mathbf{a}_w and \mathbf{b}_w over A are different.

We will use the following basic fact (compare Lemma I.1.12 of [2]):

- FACT 1.6. (1) If A_1 is relatively κ -saturated in A and C is independent from A over A_1 , then CA_1 is relatively κ -saturated in CA.
- (2) If A_1 is relatively κ -saturated in A and D is κ -atomic over A_1 , D is independent from A over A_1 .

To show (1) implies (2) of Lemma 1.5, we suppose that **a** and **b** realize the same (strong)-type over A but that there is an a' such that there is no $b' \in M$ with $\mathbf{a}a' \equiv_{A,L} \mathbf{b}b'$. We fix $\langle a, b \rangle$ as the **a**, **b** and analyze $K_{a,b}^2$ below.

LEMMA 1.7. There is a $t = \langle A_*, M_a, M_b, N_a, g \rangle \in \mathbf{K}^2_{a,b}$ such that

- (A) $N_a \neq M_a$,
- (B) $\operatorname{tp}(N_a/M_a)$ is orthogonal to every nonalgebraic type in $S(M_a)$, which is orthogonal to A.
- (C) If $\mathbf{d} \in N_a M_a$, there is no $\mathbf{d}' \in M$ which realizes $g(\operatorname{tp}(\mathbf{d}/M_a))$ and such that \mathbf{d}' is independent from A over M_b .
- (D) M_a is A-full.

PROOF. Try to construct by induction a sequence $\langle t_{\alpha} : \alpha < \kappa^+ \rangle$ where $t_{\alpha} = \langle A^{\alpha}_*, M^{\alpha}_a, M^{\alpha}_b, N^{\alpha}_a, g^{\alpha} \rangle$ of elements of $K^2_{a,b}$ which are increasing in the natural partial order, continuous at limit ordinals of cofinality greater than $\kappa_r(T)$; t_0 is any element of $K^2_{a,b}$ with $a' \in N^{\alpha}_a$.

- (1) If α is an even ordinal there are several cases.
 - (a) Suppose condition (B) fails, i.e. for some $d \in N_a$, $p = \operatorname{tp}(d/M_a)$ is nonorthogonal to some stationary type $q \in S(M_a)$ which is orthogonal to A. Then by Lemma 1.3, there is $t' = \langle A'_*, M'_a, M'_b, N'_a, g' \rangle \in \mathbf{K}^2_{a,b}$ with t' extending t and $\operatorname{tp}(N_a/M'_a)$ forks over M_a .
 - (b) Suppose condition (B) holds.
 - (i) If α is a limit ordinal of cofinality κ , stop.

BEKTUR BAIZHANOV, JOHN T. BALDWIN, AND SAHARON SHELAH

- (ii) If α is a limit ordinal of cofinality $< \kappa$ or α is a successor ordinal, let $t_{\alpha+1} = t_{\alpha}$.
- (2) α is an odd successor ordinal. Choose an auxiliary $\hat{M}_a^{\alpha} \kappa$ -prime over $M_a^{\alpha} A$. Choose $A_*^{\alpha+1}, M_a^{\alpha+1}, M_b^{\alpha+1}$ such that $A_*^{\alpha} \subseteq A_*^{\alpha+1} \subseteq A, |A_*^{\alpha+1}| = \kappa$ and so that

$$(M_a^{\alpha+1}, A_*^{\alpha+1}) \prec_{L_{(|T|^+ |T|^+)}} (\hat{M}_a^{\alpha}, A)$$

and $M_a^{\alpha+1}$ is κ -prime over $M_a^{\alpha} A_*^{\alpha+1}$. This is possible since $\kappa = \kappa^{|T|}$. In particular, $M_a^{\alpha+1}$ is independent from A over $A_*^{\alpha+1}$. The κ -primeness allows us to easily construct $M_b^{\alpha+1}$ and $g_{\alpha+1}$. Now choose $N_a^{\alpha+1}$ to be a κ -saturated extension of $M_a^{\alpha+1}$ that is independent from A over $A_*^{\alpha+1}$

(3) If α is a limit ordinal choose t_{α} by Lemma 1.2.

We cannot carry out this construction for κ^+ steps. If we did, by clause (1) of the construction at each limit α with $cf(\alpha) = \kappa$, clause (B) fails. Thus, $M_a^{\alpha+1}$ depends on N_a^{α} over M_a^{α} for all such α , which contradicts stability. (If we were dealing with finite sequences, the bound would be $\kappa(T)$; since we deal with sets of cardinality κ , the bound is κ^+ .)

Fix α where the construction stops. We have constructed $t_{\alpha} = \langle A_{\alpha}^{\alpha}, M_{\alpha}^{\alpha}, M_{\alpha}^{\beta}, N_{\alpha}^{\alpha}, g^{\alpha} \rangle$ but for any choice of $t_{\alpha+1} \in \mathbf{K}_{a,b}^2$, $M_a^{\alpha+1}$ is independent from N_a^{α} over M_a^{α} . Note that each member of $t_{\alpha} = \langle A_{\alpha}^{\alpha}, M_{\alpha}^{\alpha}, M_{b}^{\alpha}, N_{\alpha}^{\alpha}, g^{\alpha} \rangle$ is the union of the respective member of t_{β} over $\beta < \alpha$. We claim this t_{α} is a *t* satisfying the conditions of the lemma.

For clause (A) note $N_a^{\alpha} \neq M_a^{\alpha}$ since $a' \in N_a^{\alpha}$ and a' cannot be in the domain of g^{α} by the original choice of a'. Since the construction stopped clause (B), holds.

For clause (C), we must show that if $\mathbf{d} \in N_a - M_a$, there is no $\mathbf{d}' \in M$ which realizes $g(\operatorname{tp}(\mathbf{d}/M_a))$ and such that \mathbf{d}' is independent from A over M_b . Fix $\mathbf{d} \in N_a - M_a$; if such a \mathbf{d}' exists, choose $M_a^{\alpha+1}, M_b^{\alpha+1}$ contained in M prime over $M_a^{\alpha}\mathbf{d}$ and $M_b^{\alpha}\mathbf{d}'$ respectively. We easily extend g^{α} to $g^{\alpha+1}$ mapping $M_a^{\alpha+1}$ to $M_b^{\alpha+1}$. By the construction, A_*^{α} is relatively κ -saturated in A. So, $M_a^{\alpha} \cup \{\mathbf{d}\}$ and A are independent over A_*^{α} by monotonicity, as N_a^{α} is independent from A over A_*^{α} . Now by Fact 1.6 (1), $M_a^{\alpha} \cup \{\mathbf{d}\}$ is relatively κ -saturated inside $M_a^{\alpha} \cup \{\mathbf{d}\} \cup A$. Whence, by Fact 1.6 (2) $M_a^{\alpha+1}$ and A are independent over M_a^{α} . Similarly, since \mathbf{d}' is independent from A over $M_b, M_b^{\alpha+1}$ is independent from A over A_*^{α} . But now, N_a^{α} depends on $M_a^{\alpha+1}$ over M_a^{α} because $d \in (M_a^{\alpha+1} \cap N_a^{\alpha}) - M_a^{\alpha}$ and we have violated the choice of α .

Finally we verify clause (D): M_a is A-full. Choose N, which is κ -prime over AM_a . Then N can be embedded over AM_a into $\hat{M}_a^{\alpha} = \bigcup_{i < \alpha} \hat{M}_a^i$. By the Tarski union of chains theorem (using clause (2) of the construction), $(M_a^{\alpha}, A \cap M_a^{\alpha}) \prec_{L_{|T|^+, |T|^+}} (\hat{M}_a^{\alpha}, A)$. Let C_0 , C_1 , $C_2 \subseteq N$ satisfy the hypotheses of the definition of A-full. The elementary submodel condition easily allows us to define the required function f.

And thus, we have proved Lemma 1.5.

 \dashv

§2. The superstable case. The aim of this section is to prove that if M is a model of a superstable theory and $A \subset M$, then (M, A) is weakly benign. This is a

146

generalization of a result of Bouscaren [3], who showed, in our terminology that every *submodel* of a superstable structure is benign.

THEOREM 2.1. If M is a model of a superstable theory and $A \subset M$, then (M, A) is weakly benign.

PROOF. We work in \mathscr{M}^{eq} . Without loss of generality, assume (M, A) is κ^+ -saturated for a regular κ satisfying $\kappa^{|T|} = \kappa$. By Lemma 1.5 if (M, A) is not weakly benign, there exist A_* , M_a , N_a , M_b , g contained in M satisfying the conditions of Lemma 1.5 and with $\langle A_*, M_a, M_b, N_a, g \rangle \in \mathbf{K}^2_{a,b}$.

Since M_a is properly contained in N_a , we can choose $\mathbf{c} \in M_a$ and $\phi(x, \mathbf{c})$ to have minimal *D*-rank among all formulas with $\phi(N_a, \mathbf{c}) \neq \phi(M_a, \mathbf{c})$. Then for any $d^* \in \phi(N_a, \mathbf{c}) \setminus \phi(M_a, \mathbf{c})$, $p^* = \operatorname{tp}(d^*/M_a)$ is regular. Without loss of generality again, we can fix d^* , which does not fork over \mathbf{c} and so that p^* has the same *D*-rank as $\phi(x, \mathbf{c})$ and $\operatorname{tp}(d^*/\mathbf{c})$ is stationary. By clause (c) of Lemma 1.5, p^* is not orthogonal to A_* . So, there is a $q' \in S(M_a)$ which does not fork over A_* and is nonorthogonal and so non-weakly orthogonal to p^* . Fix $C \subseteq A_*$ with $|C| \leq |T|$ and \mathbf{c} is independent from A_* over *C*. Without loss of generality $\operatorname{tp}(\mathbf{d}^*/A_*\mathbf{c}) \not\perp^w q \upharpoonright (A_*\mathbf{c})$ and $\operatorname{tp}(\mathbf{d}^*/C\mathbf{c}) \not\perp^w$ $q \upharpoonright (C\mathbf{c})$. Let $\mathscr{P} = \{p : p \text{ is regular, stationary, and nonorthogonal to } p^*\}$. \mathscr{P} is based on $B = \operatorname{acl}^{\operatorname{eq}}(C)$, i.e. every automorphism of \mathscr{M} fixing B maps \mathscr{P} to itself.

If $\mathbf{c}'' \in M$ realizes $\operatorname{tp}(\mathbf{c}/A^{\operatorname{eq}})$ and $d''\mathbf{c}''$ realizes $r = \operatorname{tp}(d^*\mathbf{c}/B)$, then $\operatorname{tp}(d''/\mathbf{c}'')$ is regular and nonorthogonal to p^* . We can find $\langle \mathbf{c}_i : i < \omega \rangle$ in M_a with $\mathbf{c}_0 = \mathbf{c}$ which are indiscernible over B and which are based on B. The $r(\mathbf{x}, \mathbf{c}_i)$ are regular, pairwise nonorthogonal, and all nonorthogonal to \mathcal{P} and each $r(\mathbf{x}, \mathbf{c}_i)$ is not weakly orthogonal to $q' | (B\mathbf{c}_i)$. Note $r(\mathbf{x}, \mathbf{c}_i) \subset p^*$. Let $r_i \in S(M)$ denote the nonforking extension of $r(\mathbf{x}, \mathbf{c}_i)$ to S(M). By Section V.4 of [4], there is a $q \in S(B)$, which is \mathcal{P} -simple and $k < \omega$ such that $w_{\mathcal{P}}(q) > 0$ and $q(\mathcal{M}) \subseteq \operatorname{acl}(B \cup \bigcup_{i < k} \mathbf{c}_i \cup$ $\bigcup_{i < k} r(\mathcal{M}, \mathbf{c}_i)$. (This q is actually q'/E for an appropriate definable (over B) equivalence relation; compare V.4.17 (8) of [4].)

Let q^+ denote the unique nonforking extension of q to S(M), p_a^+ denote the unique nonforking extension of p^* to S(M), and p_b^+ denote the unique nonforking extension of $g(p^*)$ to S(M). Clearly, $p_a^+ \upharpoonright (M_a \cup A)$ is a nonforking extension of the stationary type p^* and is realized by \mathbf{d}^* ; so it is equivalent to $p_a^+ \upharpoonright \operatorname{acl}(M_a \cup A)$.

REMARK 2.2. Note $(g \cup \mathrm{id}_A)(p_a^+ \upharpoonright (M_a \cup A) = p_b^+ \upharpoonright (M_b \cup A) \sim p_b^+ \upharpoonright \mathrm{acl}(M_b \cup A)$ is omitted in M.

We use the next lemma several times.

LEMMA 2.3. If $A^{eq} \subseteq N_1 \subseteq N_2 \subseteq M$ and N_1, N_2 are $|T|^+$ -saturated then

$$w_{\mathscr{P}}(q(N_2), N_1) = w_{\mathscr{P}}(q(N_2), q(N_1)A^{\mathrm{eq}}).$$

PROOF. Fix $\mathbf{b} \in N_1$ and choose $D \subseteq q(N_1)A^{\text{eq}}$ with $|D| \leq |T|$ such that $\operatorname{tp}(\mathbf{b}/q(N_1)A^{\text{eq}})$ does not fork over D. If $\operatorname{tp}(\mathbf{b}/q(N_2)A^{\text{eq}})$ forks over D, there are finite $\mathbf{d}_1 \subseteq q(N_2)$ and $\mathbf{d}_2 \subseteq A^{\text{eq}}$ such that $\operatorname{tp}(\mathbf{b}/BD\mathbf{d}_1\mathbf{d}_2)$ forks over D. But there is a $\mathbf{d}' \in q(N_1)$ realizing $\operatorname{stp}(\mathbf{d}_1/D\mathbf{b}\mathbf{d}_2)$, which contradicts $\operatorname{tp}(\mathbf{b}/q(N_1)A^{\text{eq}})$ does not fork over D.

So $\operatorname{tp}(\mathbf{b}/q(N_2)A^{\operatorname{eq}})$ does not fork over $q(N_1)A^{\operatorname{eq}}$. Since **b** was arbitrary in N_1 , $\operatorname{tp}(N_1/q(N_2)A^{\operatorname{eq}})$ does not fork over $q(N_1)A^{\operatorname{eq}}$. By symmetry of forking, $\operatorname{tp}(q(N_2)/N_1A^{\operatorname{eq}})$ does not fork over $q(N_1)A^{\operatorname{eq}}$. Since $A^{\operatorname{eq}} \subseteq N_1$ we finish. \dashv

The proof now proceeds by a series of claims. The key idea is that $w_{\mathscr{P}}(q(M), A^{eq})$ can be calculated either as $w_{\mathscr{P}}(q(M), q(M_b) \cup A^{eq}) + w_{\mathscr{P}}(q(M_b), A^{eq})$ or $w_{\mathscr{P}}(q(M), q(M_a) \cup A^{eq}) + w_{\mathscr{P}}(q(M_a), A^{eq})$. We will calculate both ways to obtain a contradiction. We begin with the M_a side.

CLAIM 2.4. If dim $(r_0 \upharpoonright A_* \mathbf{c}_0, M_a)$ is finite, then $w_{\mathscr{P}}(q(M_a), A_* \cup \bigcup_{i \le k} \mathbf{c}_i)$ is finite.

PROOF. If *u* is a finite subset of ω , since the r_i are regular, it is easy to show that for each *i*, dim $(r_i \upharpoonright (A_* \mathbf{c}_i), M_a)$ is finite iff dim $(r_i \upharpoonright (A_* \cup \mathbf{c}_i \cup_{j \in u} \mathbf{c}_j), M_a)$ is finite. Since the $r_i \upharpoonright (A_* \mathbf{c}_i \mathbf{c}_j)$ are regular and pairwise not weakly orthogonal

 $\dim(r_i \upharpoonright A_* \mathbf{c}_i \mathbf{c}_j, M_a) = \dim(r_j \upharpoonright A_* \mathbf{c}_i \mathbf{c}_j, M_a).$

The previous two sentences imply: $\dim(r_i \upharpoonright A_* \mathbf{c}_i, M_a)$ is finite iff $\dim(r_j \upharpoonright A_* \mathbf{c}_j, M_a)$ is finite. So if $\dim(r_0 \upharpoonright A_* \mathbf{c}_0, M_a)$ is finite then $w_{\mathscr{P}}(\bigcup_{i < k} r_i(M_a, \mathbf{c}_i), A_* \cup \bigcup_{i < k} \mathbf{c}_i)$ is finite; whence $w_{\mathscr{P}}(q(M_a), A_* \cup \bigcup_{i < k} \mathbf{c}_i)$ is finite. \dashv

Now we drop the $\bigcup_{i < k} \mathbf{c}_i$ in the conclusion.

CLAIM 2.5. dim $(r_0 \upharpoonright A_* \mathbf{c}_0, M_a)$ is finite implies $w_{\mathscr{P}}(q(M_a), A_*)$ is finite.

PROOF. Find $\mathbf{d} \subseteq q(M)$ such that $\bigcup_{i < k} \mathbf{c}_i$ is independent from $A_* \cup q(M)$ over $A_* \cup \mathbf{d}$. Now, as $\operatorname{tp}(\mathbf{d}/A_*)$ is \mathscr{P} -simple, $w_{\mathscr{P}}(q(M_a), A_*) = w_{\mathscr{P}}(q(M_a), A_*\mathbf{d}) + w_{\mathscr{P}}(\mathbf{d}, A_*)$. The second term is finite and $w_{\mathscr{P}}(q(M_a), A_*\mathbf{d}) = w_{\mathscr{P}}(q(M_a), A_*\mathbf{d} \cup \bigcup_{i < k} \mathbf{c}_i)$ by the independence. But, $w_{\mathscr{P}}(q(M_a), A_*\mathbf{d} \cup \bigcup_{i < k} \mathbf{c}_i) = w_{\mathscr{P}}(q(M_a), A_* \cup \bigcup_{i < k} \mathbf{c}_i) - w_{\mathscr{P}}(\mathbf{d}, A_* \cup \bigcup_{i < k} \mathbf{c}_i)$. Now the first of the last two terms is finite by Claim 2.4 (since $\dim(r_0 \upharpoonright A_* \mathbf{c}_0, M_a)$ is finite) and the second by the finiteness of \mathbf{d} so $w_{\mathscr{P}}(q(M_a), A_*)$ is finite.

CLAIM 2.6. $\dim(r_0, M_a)$ is finite.

PROOF. Note that $p_a^+ \upharpoonright (B\mathbf{c}_0) = r_0 \upharpoonright (B\mathbf{c}_0)$. Choose by induction $\mathbf{a}_\alpha \in M_a$ so that \mathbf{a}_α realizes $p_a^+ \upharpoonright A_*^{eq} \cup g(\mathbf{c}_0) \cup \{\mathbf{a}_\beta : \beta < \alpha\}$ for as long as possible to construct: $\mathbf{I} = \langle \mathbf{a}_\alpha : \alpha < \alpha^* \rangle$. Clearly $\alpha^* < |M_a|^+$, but in fact α^* is finite. As, since M_a is independent from A over A_* , \mathbf{I} is a set of indiscernibles over A. Since M is κ^+ -saturated, if \mathbf{I} is infinite $\langle g(\mathbf{a}_\alpha) : \alpha < \alpha^* \rangle$ can be extended to a set \mathbf{J} of indiscernibles over A contained in M_b with cardinality κ^+ . Then all but at most κ members of \mathbf{J} realize $p_b^+ \upharpoonright (M_b \cup A)$ contradicting Remark 2.2 that $p_b^+ \upharpoonright (M_b \cup A)$ is omitted in M.

Now, easily we have

148

CLAIM 2.7. $w_{\mathscr{P}}(q(M_a), A_*) = w_{\mathscr{P}}(q(M_a), A^{eq})$ is finite.

PROOF. The equality holds by the independence of M_a and A over A_* . The finiteness follows from Claim 2.6 and Claim 2.5.

The next claim involves both M_a and M_b .

CLAIM 2.8. Suppose $w_{\mathscr{P}}(q(M_a), A_*)$ is finite and $N \prec M$ is κ -prime over M_bA . Then $w_{\mathscr{P}}(q(N), q(M_b)A) = 0$.

PROOF. Since $w_{\mathscr{P}}(q(M_a), A_*)$ is finite, and A, M_a are independent over A_* , we can choose finite $D \subseteq q(M_a)$ with $w_{\mathscr{P}}(q(M_a), A_*) = w_{\mathscr{P}}(q(M_a), A) = w_{\mathscr{P}}(D, A_*) = w_{\mathscr{P}}(D, A)$.

Now assume for contradiction that $w_{\mathscr{P}}(q(N), q(M_b)A) > 0$. Let $N' \prec M$ be κ -prime over $M_a \cup A$, so there is $g^+ \supseteq g \cup \mathrm{id}_A$ which is an isomorphism from N' onto N. Then there is a finite $D_2 \subseteq q(N')$ with $w_{\mathscr{P}}(D_2, M_aA) > 0$. Choose $C_0 \subseteq M_a, |C_0| \leq |T|$ with $DB \subseteq C_0$ and $C_1 \subseteq A$ with $|C_1| \leq |T|$ so that D_2

is independent from $M_a A$ over $C_0 C_1$ and is the unique nonforking extension of $\operatorname{tp}(D_2/C_0 C_1)$ to $S(M_a A)$ which is realized in M. Recall that M_a is A-full and apply the Definition 1.4 of A-full with $C_0 C_1 D_2$ playing the role of C_2 to obtain an embedding f. Then, $f(D_2) \subseteq q(M_a)$ and $f(D_2)$ is independent from $C_0 A$ over $C_0 f(C_1)$. Thus,

$$w_{\mathscr{P}}(f(D_2), AD) = w_{\mathscr{P}}(D_2, AD) \ge w_{\mathscr{P}}(D_2, q(M_a)A) > 0.$$

This implies $w_{\mathscr{P}}(q(M_a), A) \ge w_{\mathscr{P}}(Df(D_2), A) = w_{\mathscr{P}}(D, A) + w_{\mathscr{P}}(f(D_2), AD) > w_{\mathscr{P}}(D, A)$, which contradicts our original choice of D. \dashv

Claim 2.9. $w_{\mathscr{P}}(q(M), q(M_b)A) = 0.$

PROOF. Let $N \prec M$ be κ -prime over $M_b \cup A$, so $p_b^+ \upharpoonright (M_b \cup A)$ has a unique extension in S(N). If $w_{\mathscr{P}}(q(M), N) > 0$ then for some $\mathbf{b} \in q(M)$, $w_{\mathscr{P}}(\mathbf{b}, N) > 0$ so $\operatorname{tp}(\mathbf{b}/N) \not\perp p_b^+$; recall p_b^+ is parallel to $p_b^+ \upharpoonright N$. So $p_b^+ \upharpoonright N$ is realized in M_b contradicting Remark 2.2. Now $0 = w_{\mathscr{P}}(q(M), N)$ which equals $w_{\mathscr{P}}(q(M), q(N)A^{eq})$ by Lemma 2.3. Since $A^{eq} \subseteq N_b \subseteq N \subseteq M$,

$$w_{\mathscr{P}}(q(M), q(M_b)A^{\mathrm{eq}}) = w_{\mathscr{P}}(q(M), q(N)A^{\mathrm{eq}}) + w_{\mathscr{P}}(q(N), q(M_b)A^{\mathrm{eq}})$$
$$= 0 + 0 = 0.$$

The first 0 was noted in the previous sentence and the second is Claim 2.8. \dashv

Now calculating with respect to M_b , we have:

CLAIM 2.10. $w_{\mathscr{P}}(q(M), A^{eq}) = w_{\mathscr{P}}(q(M_b), A^{eq})$ is finite. Proof.

$$\begin{split} w_{\mathscr{P}}(q(M), A^{\mathrm{eq}}) &= w_{\mathscr{P}}(q(M), q(M_b)A^{\mathrm{eq}}) + w_{\mathscr{P}}(q(M_b), A^{\mathrm{eq}}) \\ &= 0 + w_{\mathscr{P}}(q(M_b), A^{\mathrm{eq}}) < \omega. \end{split}$$

The first equality holds by additivity [4] and Lemma 2.3, the second by Claim 2.9, and the third by the last observation. \dashv

Now we analyze using M_a .

Claim 2.11. $w_{\mathscr{P}}((q(M), q(M_a) \cup A) \ge 1.$

PROOF. $w_{\mathscr{P}}(\mathbf{d}^*, M_a \cup A) \geq 1$ since \mathbf{d}^* is independent from A over M_a . Let N be κ -prime over $M_a A^{\text{eq}}$. As $\operatorname{tp}(\mathbf{d}^*/M_a A^{\text{eq}})$ has all its restrictions to set of size less than κ realized in $M_a A^{\text{eq}}$, $\operatorname{tp}(\mathbf{d}^*/N)$ does not fork over $M_a A^{\text{eq}}$. Thus, \mathbf{d}^* realizes $p_a^+ \upharpoonright N$. Since $p_a^+ \upharpoonright N$ is not orthogonal to $q^+ \upharpoonright N$, there is $\mathbf{b} \in q^+(M)$ which depends on \mathbf{b} over N. So $w_{\mathscr{P}}(\mathbf{b}, N) > 0$ whence $w_{\mathscr{P}}(q(M), N) > 0$. By monotonicity, $w_{\mathscr{P}}((q(M), q(M_a) \cup A_*) \geq w_{\mathscr{P}}(q(M), q(N)A^{\text{eq}})$. But, by Lemma 2.3, $w_{\mathscr{P}}(q(M), q(N)A^{\text{eq}}) = w_{\mathscr{P}}(q(M), N) > 0$.

Now we have

1)
$$w_{\mathscr{P}}(q(M), A^{\mathrm{eq}}) = w_{\mathscr{P}}(q(M), q(M_a)A^{\mathrm{eq}}) + w_{\mathscr{P}}(q(M_a), A^{\mathrm{eq}})$$

$$\geq 1 + w_{\mathscr{P}}(q(M_a), A^{\mathrm{eq}}) < \alpha$$

Here, the first equality is by [4] and Lemma 2.3 and the second by Claim 2.11. The finiteness comes from Claim 2.7. Since $g \cup id_{A^{eq}}$ is an elementary map, $w_{\mathscr{P}}(q(M_a), A^{eq}) = w_{\mathscr{P}}(q(M_b), A_*)$. We substitute in Equation 1, using Claim 2.10:

$$w_{\mathscr{P}}(q(M_a), A^{\mathrm{eq}}) = w_{\mathscr{P}}(q(M), A^{\mathrm{eq}}) = w_{\mathscr{P}}(q(M_a), A^{\mathrm{eq}}) + 1,$$

or subtracting, 0 = 1 so we finish.

149

REFERENCES

[1] B. BAIZHANOV and J. T. BALDWIN, *Local homogeneity*, this JOURNAL, vol. 69 (2004), pp. 1243–1260.

[2] J. T. BALDWIN, Fundamentals of stability theory, Springer-Verlag, 1988.

[3] E. BOUSCAREN, Dimensional order property and pairs of models, Annals of Pure and Applied Logic, vol. 41 (1989), pp. 205–231.

[4] S. SHELAH, Classification theory and the number of nonisomorphic models, second ed., North-Holland, 1991.

INSTITUTE FOR PROBLEMS OF INFORMATICS AND CONTROL PUSHKIN STR. 125 ALMATY 480100, KAZAKHSTAN *E-mail*: baizhanov@ipic.kz

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT CHICAGO 851 S. MORGAN STREET CHICAGO, IL 60607, USA *E-mail*: jbaldwin@math.uic.edu

```
INSTITUTE OF MATHEMATICS
THE HEBREW UNIVERSITY
JERUSALEM, ISRAEL
```

and

RUTGERS UNIVERSITY MATHEMATICS DEPARTMENT NEW BRUNSWICK, NJ, USA *E-mail*: shelah@math.huji.ac.il

150