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Abstract. Matchbox manifolds are foliated spaces with totally disconnected transversals. Two

matchbox manifolds which are homeomorphic have return equivalent dynamics, so that invariants
of return equivalence can be applied to distinguish non-homeomorphic matchbox manifolds. In this

work we study the problem of showing the converse implication: when does return equivalence

imply homeomorphism? For the class of weak solenoidal matchbox manifolds, we show that if
the base manifolds satisfy a strong form of the Borel Conjecture, then return equivalence for the

dynamics of their foliations implies the total spaces are homeomorphic. In particular, we show

that two equicontinuous Tn–like matchbox manifolds of the same dimension are homeomorphic if
and only if their corresponding restricted pseudogroups are return equivalent. At the same time,

we show that these results cannot be extended to include the “adic-surfaces”, which are a class of

weak solenoids fibering over a closed surface of genus 2.

1. Introduction

A matchbox manifold is a compact, connected metrizable space M, equipped with a decomposition
into leaves of constant dimension, so that the pair (M,F) is a foliated space as defined in [9, 36],
for which the local transversals to the foliation are totally disconnected. In particular, the leaves
of F are the path connected components of M. A matchbox manifold with 2-dimensional leaves is
a lamination by surfaces in the sense of Ghys [25] and Lyubich and Minsky [34]. The “solenoidal
spaces” of Sullivan in [45, 47] are examples of matchbox manifolds. The dynamical and topological
properties of matchbox manifolds have been studied in a series of works by the authors [11, 13, 14].

Matchbox manifolds arise naturally as exceptional minimal sets for foliations of compact manifolds,
for example see [29, 30]; as the tiling spaces associated to repetitive, aperiodic tilings of Euclidean
space Rn which have finite local complexity, for example see [3, 41, 42]; and they appear naturally
in the study of group representation theory and index theory for leafwise elliptic operators for
foliations, as discussed in the books [9, 36]. The classification problem for matchbox manifolds asks
for invariants which distinguish their homeomorphism types. For example, in the study of aperiodic
tilings and their invariants, the cohomology and K-Theory groups of their associated tiling spaces
have been calculated in many instances, as for example in [3, 4, 5, 15, 24].

A matchbox manifold (M,F) is also a type of dynamical system, as discussed in [30] for example. A
homeomorphism between matchbox manifolds preserves the leaves, as they are the path connected
components of M, and thus many dynamical properties of F are invariants of the homeomorphism
class of M. For example, the foliation F is said to be minimal if each leaf L ⊂M is dense, and this
property is clearly a homeomorphism invariant. For a clopen transversal W of F , the dynamical
properties of a minimal foliation F are determined by the pseudogroup GW of local holonomy maps
acting on the transversal W . Return equivalence of pseudogroup actions on Cantor spaces is the
analog of the notion of Morita equivalence for groupoids associated to smooth foliations of compact
manifolds, as discussed for example by Haefliger in [27, 28]. One then has the following result, whose
proof follows along the same method as for the case of smooth foliations:

THEOREM 1.1. Let M1 and M2 be minimal matchbox manifolds. Suppose that there exists a
homeomorphism h : M1 → M2, then the holonomy pseudogroup actions associated to M1 and M2

are return equivalent.
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Now consider M1 and M2 which are minimal matchbox manifolds whose holonomy pseudogroups
are return equivalent. That is, assume there exists clopen transversals W1 to M1 and W2 to M2,
and a homeomorphism h : W1 →W2 which conjugates the restricted holonomy actions. It is natural
to ask for assumptions on M1 and M2 which are sufficient to guarantee that the transverse map
h extends to a homeomorphism H : M1 → M2. In the case of 1-dimensional flows, there is the
following result of Aarts and Oversteegen [2, Theorem 17]:

THEOREM 1.2. Two orientable, minimal, 1–dimensional matchbox manifolds are homeomorphic
if and only if they are return equivalent.

Since any non–orientable, minimal, matchbox manifold admits an orientable double cover, this
implies that the local dynamics determines the global topology in dimension one. For a matchbox
manifold with leaves of dimension greater than one, the question whether there exists a converse to
Theorem 1.1 is much more subtle. Julien and Sadun studied in [32] the homeomorphism classification
for the tiling spaces associated to aperiodic tilings of the Euclidean space Rn, and the relation to
return equivalence for the associated pseudogroups.

In this work, we consider the converse to Theorem 1.1 when M is homeomorphic to a weak solenoid.
A weak solenoid is defined as the inverse limit of an infinite sequence of proper finite covering maps
of a closed compact manifold, called the base of the solenoid. The properties of weak solenoids are
recalled in Section 2. In particular, a weak solenoid is homeomorphic to the suspension of a minimal
equicontinuous action of a finitely generated group on a Cantor set, called the global monodromy
for the solenoid. In Section 3, the problem of showing that a pair of weak solenoids which are
return equivalent are also homeomorphic, is reduced to showing that they have presentations with
homeomorphic base manifolds and conjugate global holonomy actions.

There is a special class of solenoidal spaces where the converse to Theorem 1.1 can be proved without
further assumptions. We say that SP is a toroidal solenoid if it is defined by a presentation P as
in (1), where each of the manifolds M` is homeomorphic to the n-torus Tn. The toroidal solenoids
arise as the minimal sets for smooth foliations, as shown in [10]. For n ≥ 2, we have the following
generalization of Theorem 1.1.

THEOREM 1.3. Suppose that M1 and M2 are homeomorphic to toroidal solenoids of the same
dimension n. Then M1 and M2 are homeomorphic if and only if the holonomy pseudogroup actions
associated to M1 and M2 are return equivalent.

For the toroidal solenoids with base dimension n = 1, the homeomorphism type of SP is determined
by the asymptotic class of a sequence of integers {m` | ` > 0}, the covering indices, as shown by
Bing [6] and McCord [35, Section 2], and see also Block and Keesling [7, Corollary 2.6]. Moreover,
Aarts and Fokkink showed in [1, Section 3] that the the asymptotic class of the sequence of covering
indices {m` | ` > 0} is determined by the return equivalence class of the flow. This result will be
discussed further in Section 5 below.

For the toroidal solenoids with base dimension n ≥ 2, the results of Giordano, Putnam and Skau
in [26], and Cortez and Medynets in [17], provide complete invariants of the return equivalence
class of minimal equicontinuous free Zn actions on Cantor sets. Their invariants combined with the
conclusion of Theorem 1.3 yields a classification of toroidal solenoids up to homeomorphism.

In Section 5 below, we introduce the adic-surfaces, which are 2-dimensional weak solenoids, and give
examples of return equivalent adic-surfaces which are non-homeomorphic. For non-toroidal weak
solenoids of dimension greater than one, it is necessary to impose geometric conditions which rule
out the examples such as given in Section 5, in order to obtain a converse to Theorem 1.1.

The first condition we impose is that there exists a leaf for the foliation which is simply connected.
Secondly, we impose topological restrictions on the base manifolds, in order that their homeomor-
phism type of their proper coverings are determined by their fundamental groups.

Recall that a finite CW -complex Y is aspherical if it is connected and its universal covering space
is contractible. Let A denote the collection of CW -complexes which are aspherical. Also recall that
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the Borel Conjecture is that if Y1 and Y2 are homotopy equivalent, aspherical closed manifolds, then
a homotopy equivalence between Y1 and Y2 is homotopic to a homeomorphism between Y1 and Y2.
The Borel Conjecture has been proven for many classes of aspherical manifolds:

• the torus Tn for all n ≥ 1,
• all infra-nilmanifolds,
• closed Riemannian manifolds Y with negative sectional curvatures,
• closed Riemannian manifolds Y of dimension n 6= 3, 4 with non-positive sectional curvatures.

A compact connected manifold Y is an infra-nilmanifold if its universal cover Ỹ is contractible, and
the fundamental group of M has a nilpotent subgroup with finite index.

The above list is not exhaustive. The history and current status of the Borel Conjecture is discussed
in the surveys of Davis [18] and Lück [33]. We introduce the notion of a strongly Borel manifold.

DEFINITION 1.4. A collection AB of closed manifolds is called Borel if it satisfies the conditions

1) Each Y ∈ AB is aspherical,
2) Any closed manifold X homotopy equivalent to some Y ∈ AB is homeomorphic to Y , and
3) If Y ∈ AB , then any finite covering space of Y is also in AB .

We say that a closed manifold Y is strongly Borel if the collection AY ≡ 〈Y 〉 of all finite covers of
Y forms a Borel collection.

Each class of manifolds in the above list is strongly Borel. Here is our second main result:

THEOREM 1.5. Let SP and SQ be weak solenoids, for which the base manifolds M0 of the
presentation P and N0 of the presentation Q are both strongly Borel closed manifolds of the same
dimension. Assume that the foliations on SP and SQ each contain a leaf which is simply connected.
Then SP and SQ are homeomorphic if and only if the holonomy pseudogroup actions associated to
SP and SQ are return equivalent.

The requirement that there exists a simply connected leaf implies that the global holonomy maps
associated to each of these foliations are injective maps. This conclusion yields a connection between
return equivalence for the foliations of SP and SQ and the homotopy types of the approximating
manifolds in the presentations P and Q. This requirement need not be imposed for the case of
Y = Tn in Theorem 1.3, due to the algebraic properties of Zn. We also note that the injectivity
of the global holonomy maps implies that the fundamental groups π1(M0, x0) and π1(N0, y0) are
residually finite.

A key aspect of the hypotheses in Theorems 1.3 and 1.5, is that the domains of the return equivalence
can be taken to have arbitrarily small diameter. Consequently, invariants of return equivalence
developed to distinguish actions should have an asymptotic nature, in that they are defined for
arbitrarily small transversals.

A homeomorphism between matchbox manifolds induces a quasi-isometry between the leaves of the
respective foliations, equipped with the induced metrics. It is a classical result of Plante [37] that the
quasi-isometry class of a leaf is determined by its intersection with any transversal, and thus provides
a general invariant of asymptotic return equivalence. For example, bounds on the growth rates of
the leaves are return equivalence invariants. This observation was used in the work [20] to give
growth restrictions on the leaves which imply that the weak solenoid is a homogeneous continuum.

The asymptotic discriminant for an equicontinuous minimal Cantor action was defined in [31], and is
an invariant of the return equivalence class of the action, essentially by its definition. It thus provides
an invariant of the homeomorphism class of the weak solenoid. Using this asymptotic invariant, the
constructions of examples of wild solenoids in [31, Section 9] were shown to yield uncountable
collections of non-homeomorphic weak solenoids, all with the same compact base manifold whose
fundamental group is a higher rank lattice, and in particular is highly non-abelian.
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2. Standard forms for weak solenoids

Weak solenoids were first introduced by McCord [35], and we recall here the definitions and some
of their properties as developed by Schori [43], Rogers and Tollefson [39, 40] and Fokkink and
Oversteegen [23]. We then recall the “odometer representation” of a weak solenoid as the suspension
of a (non-abelian) group odometer (or subodometer) action.

A presentation (for a weak solenoid) is a collection

(1) P = {p`+1 : M`+1 →M` | ` ≥ 0} ,
where each M` is a connected compact manifold of dimension n, and each bonding map p`+1 is a
proper covering map of finite index. The weak solenoid SP is the inverse limit associated to the
presentation P:

(2) SP ≡ lim
←−
{p`+1 : M`+1 →M`} ⊂

∏
`≥0

M` .

By definition, for a sequence {x` ∈M` | ` ≥ 0}, we have

x = (x`) ≡ (x0, x1, . . .) ∈ SP ⇐⇒ p`(x`) = x`−1 for all ` ≥ 1 .

The set SP is given the relative (or Tychonoff) topology induced from the product topology. Then SP
is compact and connected. McCord showed in [35] that the space SP has a local product structure,
and moreover we have:

PROPOSITION 2.1. Let P be a presentation with base space M0 of dimension n ≥ 0, and let SP
be the associated weak solenoid. Then SP is a matchbox manifold of dimension n, and the leaves of
the foliation FS are the path-connected components of SP .

Associated to a presentation P is a sequence of proper surjective maps

(3) q` = p1 ◦ · · · ◦ p`−1 ◦ p` : M` →M0 .

For each ` > 1, projection onto the `-th factor in the product
∏
`≥0

M` in (2) yields a fibration map

denoted by Π` : SP →M`, for which Π0 = q` ◦Π` : SP →M0.

Fix a choice of a basepoint x0 ∈M0 and let X0 = Π−1
0 (x0) be the fiber over x0. Then X0 is a Cantor

set by the assumption that the fibers of each map p` have cardinality at least 2.

Choose a basepoint x ∈ X0, and for ` ≥ 1, define basepoints x` = Π`(x) ∈M`. Then let

(4) Gx` = image {(q`)# : π1(M`, x`) −→ G0}
denote the image of the induced map (q`)# on fundamental groups. Associated to the presentation
P and basepoint x ∈ X0 we thus obtain a descending chain of subgroups of finite index

(5) Gx ≡ {Gx` }`≥0 = {G0 = Gx0 ⊃ Gx1 ⊃ Gx2 ⊃ · · · ⊃ Gx` ⊃ · · · } .
Each quotient Xx

` = G0/G
x
` is a finite set equipped with a left G0-action, and the natural surjections

Xx
`+1 → Xx

` commute with the action of G0. Thus, the inverse limit

(6) Xx
∞ = lim

←−
{p`+1 : Xx

`+1 → Xx
` } ⊂

∏
`≥0

Xx
`

is a G0-space. Give Xx
∞ the relative topology induced from the product (Tychonoff) topology on

the space
∏
`≥0

Xx
` , so that Xx

∞ is a totally disconnected perfect compact set, so is a Cantor space.

Note that the subgroups Gx` in (4) Xx
∞ are not assumed be normal in G0, and thus Xx

∞ is not
a profinite group in general, without some form of “normality” assumptions on the subgroups in
the chain Gx. The question of what assumptions are necessary for the limit Xx

∞ to be a profinite
group was first raised in the work [39] by Rogers and Tollefson, and further analyzed by Fokkink
and Oversteegen in [23]. The subsequent work by Dyer, Hurder and Lukina in [19] characterized
the necessary normality condition in terms of the discriminant invariant of the chain Gx` .
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A sequence (g`) ⊂ G0 such that g`G
x
` = g`+1G

x
` for all ` ≥ 0 determines a point (g`G

x
` ) ∈ Xx

∞. Let
e ∈ G0 denote the identity element, then the sequence e0 = (eGx` ) is the standard basepoint of Xx

∞.
The action Φx : G0×Xx

∞ → Xx
∞ is given by coordinate-wise multiplication, Φx(g)(g`G

x
` ) = (gg`G

x
` ).

We then have the standard observation:

LEMMA 2.2. Φx : G0×Xx
∞ → Xx

∞ defines an equicontinuous Cantor minimal system (Xx
∞, G0,Φx).

When Xx
∞ has the structure of a profinite group, the action Φx : G0 × Xx

∞ → Xx
∞ is called an

odometer by Cortez and Petite in [16], and when Xx
∞ is simply a Cantor space they call the action

a subodometer. If the group G0 is abelian, then Xx
∞ is a profinite abelian group, and more generally

if the chain (5) consists of normal subgroups of G0, then Xx
∞ is a profinite group. For simplicity, we

will call all of these equicontinuous minimal actions by the nomenclature “odometers”.

Recall that Π` : SP → M` is a fibration for each ` ≥ 0, and so the set Xx` = Π−1
` (x`) is a clopen

subset of X0. From the relation q`+1 ◦ Π`+1 = Π` we have that Xx`+1 ⊂ Xx` so we obtain a nested
chain of clopen subsets {Xx`+1 ⊂ Xx` | ` ≥ 0}. Moreover, by the definition of the topology on the
inverse limit SP , the intersection of these sets is the chosen basepoint x ∈ X0.

The global monodromy action ΦF : G0 ×X0 → X0 is then defined as follows. Given a point y ∈ Xx,
let Ly ⊂ SP be the leaf containing y. The restriction Π0 : Ly → M0 is a covering map, so given a
closed path σ : [0, 1] → M0 with basepoint x0, there is a unique leafwise path σy in Ly with initial
point y and terminal point σy(1) ∈ SP . The terminal point σy(1) depends only on the basepoint-
preserving homotopy class of the path σ. Given g ∈ G0 and y ∈ X0 choose a closed path σg in
M0 representing g, choose a lift σgy as above, then set ΦF (g)(y) = σgy(1). This yields a well-defined
group action of G0 on the Cantor space X0.

The subgroup Gx` ⊂ G0 = π1(M0, x0) is represented by closed paths in M0 with basepoint x0 and
which admit a lift for the covering q` : M` →M0 to a closed path with endpoint x`. It follows that
for the leaf Lx ⊂ SP containing x ∈ X0, we can also characterize Gx` as the subgroup represented by
those closed paths which admit a lift to Lx which start at x, and terminate at a point in Lx ∩ Xx` .
Thus we have

(7) Gx` = {g ∈ G0 | ΦF (g)(Xx` ) = Xx` } .

That is, the action ΦF of g fixes the set Xx` , possibly permuting points within this subset.

Let g ∈ G0 represent the coset [g]` ∈ G0/G`. It follows from (7) that the image Xx,g` = ΦF (g)(Xx` )
of Xx` under the action of g either coincides with Xx` or it is disjoint from Xx` . Thus the collection
{Xx,g` }g∈G is a finite collection of disjoint clopen sets which cover X0. Moreover, for all `′ > ` > 0,
the collection of clopen sets {Xx,g`′ | [g]`′ = gGx`′ ∈ Gx` /Gx`′} is a finite partition of Xx

` .

Given y ∈ X0 there exists a unique (g`G`) ∈ Xx
∞ so that y =

⋂
`≥0

Xx,g`` . Define σx : X0 → Xx
∞

by σx(y) = (g`G`). The map σx is surjective, bijective and continuous, hence a homeomorphism.
Define τx = σ−1

x : Xx
∞ → X0 so that τx(e0) = x. The map τx can be viewed as “coordinates” on X0

centered at the chosen basepoint x ∈ X0. It follows from the construction of τx that it commutes
with the left G0-actions ΦF on X0 and Φx on Xx

∞.

The group chain (5) and the homeomorphism τx depend on the choice of a point x ∈ X0. For
a different basepoint y ∈ X0 in the fibre over x0, for each ` > 0 there exists g` ∈ G0 such that

y ∈ Xy` ≡ ΦF (g`)(X
x
` ), and hence y =

⋂
`≥0

Xy` . Then for each ` > 0, define Gy` = g`G
x
` g
−1
`

which consists of elements of G0 that leave the set Xy` invariant. Let Gy = {Gy` | ` ≥ 0} be the
resulting group chain, with corresponding inverse limit space Xy

∞. Then the map τy : Xy
∞ → X0

gives coordinates on X0 centered at the chosen basepoint y ∈ X0.

The composition τy ◦ τ−1
x : Xx

∞ → Xy
∞ gives a topological conjugacy between the minimal Cantor

actions (Xx
∞, G0,Φx) and (Xy

∞, G0,Φy), and the composition τy ◦ τ−1
x can be viewed as a “change of
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coordinates”. Properties of the minimal Cantor action (Xx
∞, G0,Φx) which are independent of the

choice of these coordinates are thus properties of the topological type of SP .

The group chains Gy and Gx are said to be conjugate chains. This notion forms an equivalence
relation on group chains which was introduced by Fokkink and Oversteegen [23]. The properties of
this equivalence relation were studied in depth in [19, 21].

The map τx : Xx
∞ → X0 is used to give the “odometer model” for the solenoid SP . Let M̃0 denote

the universal covering of the compact manifold M0, and let (Xx
∞, G0,Φx) be the minimal Cantor

system associated to the presentation P and the choice of a basepoint x ∈ X0. Associated to the
left action Φx of G0 on Xx

∞ is a suspension space

(8) MΦ = M̃0 ×Xx
∞/(z · g−1, y) ∼ (z,Φx(g)(y)) for z ∈ M̃0, g ∈ G0, y ∈ Xx

∞

which is a minimal matchbox manifold. This construction is a generalization of a standard technique
for constructing smooth foliations, as discussed in [8, 9] for example.

Moreover, the suspension space MΦ of a minimal equicontinuous action ϕ has an inverse limit
presentation, where all of the bonding maps between the coverings M` → M0 are derived from

the universal covering map π̃ : M̃0 → M0. The following result is given in [11], and its proof is a
consequence of the lifting property for maps between coverings:

THEOREM 2.3. Let SP be a weak solenoid with base space M0. Then the suspension of the map
τx yields a foliated homeomorphism τ∗x : MΦ → SP .

COROLLARY 2.4. The homeomorphism type of a weak solenoid SP is completely determined by
the base manifold M0 and the associated minimal Cantor system (Xx

∞, G0,Φx).

We conclude this discussion of some basic geometry of weak solenoids, by recalling some properties
of the holonomy groups of the foliations of weak solenoids. First, recall a basic result of Epstein,
Millet and Tischler [22].

THEOREM 2.5. Let (X, G,Φ) be a given action, and suppose that X is a Baire space. Then the
union of all x ∈ X such that the germinal holonomy group Germ(Φ, x) at x is trivial forms a Gδ
subset of X.

The main result in [22] is stated in terms of the germinal holonomy groups of leaves of a foliation,
but an inspection of the proof shows that it applies directly to a general action (X, G,Φ).

We conclude by introducing the following important notion:

DEFINITION 2.6. The kernel of the group chain Gx = {Gx` }`≥0 is the subgroup K(Gx) =
⋂
`≥0

Gx` .

For a weak solenoid SP with choice of a basepoint x0 ∈ M0 and fiber X0 = Π−1
0 (x0), the kernel

subgroup K(Gx) ⊂ G0 may depend on the choice of the basepoint x ∈ X0. The dependence of K(Gx)
on x is a natural aspect of the dynamics of the foliation FS on SP , when K(Gx) is interpreted in
terms of the topology of the leaves of FS as follows.

The map τ∗x : MΦ → SP of Theorem 2.3 sends the quotient space M̃/K(Gx) to the leaf Lx ⊂ SP
through x ∈ X0 in SP , and so K(Gx) is naturally identified with the fundamental group π1(Lx, x).
The global holonomy homomorphism ΦF,x : π1(Lx, x) → Homeo(X0, x) of the leaf Lx in the sus-
pension foliation FS of SP is then conjugate to the left action, Φ0 : K(Gx)→ Homeo(Xx

∞, e0).

From the point of view of foliation theory, the leaves of FS with holonomy are a “small” set by the
proof of Theorem 2.5. There always exists leaves without holonomy, while there may exist leaves
with holonomy, and so the fundamental groups of the leaves may vary accordingly. This aspect of
the foliation dynamics of weak solenoids is discussed further in [21, Section 4.2].
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3. Return equivalence

The conclusion of Theorem 2.3 is that a weak solenoid is homeomorphic to a suspension space (8)
of an equicontinuous action on a Cantor space. In this section, we consider the notion of return
equivalence between such suspension spaces.

Let ϕ : G × X → X be a minimal action on a Cantor space X. In order to give a precise definition
of return equivalence, we introduce the pseudo?group associated to the action ϕ. A more general
discussion of pseudo?groups can be found in the works [30] and [31, Section 2.4].

For each g ∈ G and open subset U ⊂ X, let ϕU (g) : U → V = ϕ(g)(U) denote the restricted
homeomorphism. Then the pseudo?group associated to ϕ is the collection of maps

(9) Ψ∗(ϕ,X) ≡
{
ϕU (g) | U ⊂ X open , g ∈ G

}
.

The collection Ψ∗(ϕ,X) is not a pseudogroup, as it does not satisfy the “gluing” condition on maps,
but Ψ∗(ϕ,X) does generate the usual pseudogroup Ψ(ϕ,X) associated to the action ϕ on X.

Given an open subset W ⊂ X, define the restriction of Ψ∗(ϕ,X) to W ,

Ψ∗(ϕ,W ) =
{
ϕU (g) | U ⊂W open , g ∈ G , ϕ(g)(U) ⊂W

}
.

DEFINITION 3.1. Let ϕi : Gi × Xi → Xi be minimal actions on Cantor spaces Xi for i = 1, 2.
Then ϕ1 and ϕ2 are return equivalent if there exists non-empty open sets W1 ⊂ X1 and W2 ⊂ X2,
and a homeomorphism h : W1 →W2 which conjugates the restricted pseudo?group Ψ∗(ϕ1,W1) with
the restricted pseudo?group Ψ∗(ϕ2,W2).

It is an exercise to show that minimal suspension spaces Mϕ1 and Mϕ2 are return equivalent as
foliated spaces, if and only if their associated global monodromy actions satisfy Definition 3.1.

We next introduce a notion which especially pertains to equicontinuous Cantor actions.

DEFINITION 3.2. Let ϕ : G × X → X be an action on a Cantor space X. A non-empty clopen
subset U ⊂ X is adapted to the action ϕ if for any g ∈ G, ϕ(g)(U)∩U 6= ∅ implies that ϕ(g)(U) = U .
It follows that

(10) GU = {g ∈ G | ϕ(g)(U) ∩ U 6= ∅}
is a subgroup of G.

REMARK 3.3. For the action Φx : G0×Xx
∞ → Xx

∞ of Lemma 2.2, for each ` ≥ 0, the set U = Xx`
is adapted with GU = Gx` as defined in (7). Note that if V ⊂ U ⊂ X are both adapted to an action
ϕ : G×X→ X, with associated groups GV and GU , then we have GV = {g ∈ GU | ϕ(g)(V ) = (V )}.
Moreover, if there exists a descending chain of clopen adapted sets {U` ⊂ X | ` ≥ 0} whose
intersection is a point, then it is an exercise to show that the minimal action ϕ is equicontinuous.
On the other hand, it is also easy to construct examples of actions which are not equicontinuous but
admit a proper adapted clopen subset U ⊂ X. For example, consider any minimal Cantor action
ϕU : GU × U → U , chose a non-trivial finite group H and set G = H ×GU , then extend the action
ϕU on U to ϕ : G× X→ X acting factor-wise on the product space X = H × U .

We next establish two technical lemmas which are key for the proofs of Theorems 1.3 and 1.5.

LEMMA 3.4. Let ϕi : Gi × Xi → Xi be minimal actions on Cantor spaces Xi, for i = 1, 2,
and suppose there exists non-empty open sets Wi ⊂ Xi and a homeomorphism h : W1 → W2 which
conjugates the restricted pseudo?groups Ψ∗(ϕ1,W1) and Ψ∗(ϕ2,W2). Then a clopen subset U1 ⊂W1

is adapted to the action ϕ1 if and only if U2 = h(U1) ⊂W2 is adapted to the action ϕ2.

Proof. We show that U2 is adapted to the action of ϕ2. The reverse implication follows similarly.

First note that U1 is an open subset of W1 and h is a homeomorphism, hence U2 is an open subset
of W2 in the relative topology on X2 hence is an open subset of X2. Also, U2 is compact as U1 is
compact and all spaces are Hausdorff, thus U2 is a clopen subset of X2.
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Let g2 ∈ G2 satisfy ϕ2(g2)(U2)∩U2 6= ∅. Let h∗ : Ψ∗(ϕ2,W2)→ Ψ∗(ϕ1,W1) be the map induced by
h : W1 → W2 on the restricted pseudo?groups. By assumption, this map is an isomorphism, and in
particular h∗(ϕU2

2 (g2)) ∈ Ψ∗(ϕ1,W1). Hence, there exists g1 ∈ G1 such that ϕU1
1 (g1) = h∗(ϕU2

2 (g2)).
Thus, ϕ1(g1)(U1)∩U1 6= ∅. As U1 is adapted to the action of ϕ1 this implies that ϕ1(g1)(U1) = U1,
which implies that ϕ2(g2)(U2) ∩ U2 = U2 as was to be shown. �

LEMMA 3.5. Let ϕ : G× X→ X be a minimal action on a Cantor space X, and U ⊂ X a clopen
subset adapted to the action. Then the collection SU ≡ {ϕ(g)(U) | g ∈ G} forms a finite disjoint
clopen partition of X.

Proof. We first show that the images form a disjoint partition. Suppose that for g1, g2 ∈ G we have
ϕ(g1)(U) ∩ ϕ(g2)(U) 6= ∅. Then ϕ(g−1

2 g1)(U) ∩ U 6= ∅ hence ϕ(g−1
2 g1)(U) = U . It follows that

ϕ(g1)(U) = ϕ(g2)(U). Each image ϕ(g1)(U) is a clopen subset, and X is compact, so there are only
a finite number of disjoint images, which completes the proof. �

Assume that ϕ : G × X → X is a minimal action on a Cantor space X, and U ⊂ X a clopen subset
adapted to the action. Let pU : X → SU be the natural map to the elements of the partition of X,
which exists by Lemma 3.5. Identify the collection SU with the quotient set G/GU via the map
qU (ϕ(g)(U)) = gGU ∈ G/GU , then the composition πU = qU ◦ pU : X→ G/GU is G-equivariant.

Given an action ϕ : G × X → X, we next construct the suspension foliated space for the action.
Let M be a compact manifold without boundary, with a basepoint x0 ∈ M and let G = π1(M,x0)

denote its fundamental group based at x0. Let π̃ : M̃ → M denote the universal covering space of
M , defined by endpoint-fixed homotopy classes of paths in M with initial point x0. Then G acts on

M̃ on the right by deck transformations. Define the quotient foliated space

(11) Mϕ = (M̃ × X)/{(x · γ,w) ∼ (z, ϕ(γ) · w} , z ∈ M̃ , w ∈ X , γ ∈ G .

Let π : Mϕ →M be the map induced by the projection π̃ : M̃ × X→ M̃ onto the first factor.

Now assume that the action ϕ admits a proper adapted clopen subset U ⊂ X. Then we define

(12) MU = (M̃ ×G/GU )/{(x · g, w) ∼ (z, g · w} , z ∈ M̃ , w ∈ G/GU , g ∈ G .

Note that MU is naturally identified with the finite covering space M̃/GU of M associated to the
subgroup GU ⊂ G. Let xU ∈MU be the basepoint associated with the identity coset of G/GU .

The quotient map πU : X → G/GU induces a quotient map ΠU : Mϕ → MU of suspension spaces,

with U = Π−1
U (xU ) ⊂ X, and there is a commutative diagram:

(13) Mϕ

π

��

ΠU

""D
DD

DD
DD

D

M MUπGU

oo

Note that the above construction applies to any minimal action with a proper adapted clopen subset.
In the case where U = Xx` for an odometer action ϕ = Φx : G0×Xx

∞ → Xx
∞ and ` > 0, then GU = Gx`

as in (7) and the map fibration ΠU is the same as the fibration Π` defined following (3).

We can now give a result which is a key observation for the proofs of Theorems 1.3 and 1.5. For
i = 1, 2, let ϕi : Gi × Xi → Xi be a minimal action on the Cantor space Xi. Let Mi be a compact
manifold without boundary, with basepoint xi ∈ Mi and Gi = π1(Mi, xi) its fundamental group
based at xi. Assume that the actions ϕ1 and ϕ2 return equivalent, so there exists open sets Wi ⊂ Xi
and a homeomorphism h : W1 →W2 which conjugates the restricted pseudo?group Ψ∗(ϕ1,W1) with
the restricted pseudo?group Ψ∗(ϕ2,W2).

Let U1 ⊂ W1 be a clopen subset which is adapted to the action ϕ1 then by Lemma 3.4 the image
U2 = h(U1) is a clopen subset adapted to the action ϕ2. For i = 1, 2, let

GUi = {g ∈ Gi | ϕi(g)(Ui) = Ui} ⊂ Gi
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be the stabilizer group of Ui for the action ϕi.

The action ϕi induces a homomorphism ϕUi
: GUi

→ Λi ⊂ Homeo(Ui) onto a subgroup Λi. Then
the inverse of the restriction hU1 : U1 → U2 induces an isomorphism λh : Λ1 → Λ2.

Let πGUi
: MUi

→Mi be the finite covering associated to GUi
with basepoint xUi

∈MUi
over xi. A

homeomorphism f : MU1
→MU2

is said to realize λh if the following diagram commutes:

π1(MU1 , xU1) = GU1

ϕU1

��

f# // GU2

ϕU2

��

= π1(MU2 , xU2)

Λ1
λh // Λ2

(14)

By (13) we can represent Mi as a suspension space over MUi
with basepoint fiber Ui and monodromy

action ϕUi
: GUi

→ Homeo(Ui). Let f̃ : M̃U1
→ M̃U2

denote the lift of f to the universal covering
spaces. Then the product map

(15) f̃ × h : M̃1 × U1 → M̃U2 × U2

is a homeomorphism, and intertwines the diagonal actions of G1 and G2, so descends to a homeo-
morphism between Mϕ1

and Mϕ2
. We have thus shown:

PROPOSITION 3.6. Suppose there exists a homeomorphism f : MU1
→ MU2

which realizes the
isomorphism λh : Λ1 → Λ2 between the groups of fiber automorphisms induced by return equivalence.
Then the suspension spaces Mϕ1 and Mϕ2 are homeomorphic.

4. Proofs of main theorems

In this section, we use Proposition 3.6 to obtain proofs of Theorems 1.3 and 1.5. For i = 1, 2, let
Mi be a matchbox manifold homeomorphic to a weak solenoid SPi

defined by a presentation

(16) Pi = {pi,`+1 : Mi,`+1 →Mi,` | ` ≥ 0} ,

where the base manifolds M1,0 and M2,0 both have dimension n ≥ 1. Let ΠPi
: SPi

→ Mi,0 denote
the projection onto the base manifold.

Let xi,0 ∈Mi,0 be a basepoint, let Gi,0 = π1(Mi,0, xi,0) and set XPi
= Π−1

Pi
(xi,0).

The assumption that the holonomy pseudogroups defined by the foliations on M1 and M2 are return
equivalent implies that the foliations of SP1

and SP2
are return equivalent. This in turn implies that

the global monodromy actions

ΦP1
: G1,0 × X1 → X1 , ΦP2

: G2,0 × X2 → X2

are return equivalent in the sense of Definition 3.1. That is, there exists open sets W1 ⊂ X1

and W2 ⊂ X2 and a homeomorphism h : W1 → W2 which conjugates the restricted pseudo?group
Ψ∗(ΦP1 ,W1) with the restricted pseudo?group Ψ∗(ΦP2 ,W2).

4.1. Odometer models. Assume we are given weak solenoids SP1
and SP2

. Then as shown in
Theorem 2.3, we can assume that the weak solenoids SPi

are homeomorphic to the suspension of
odometer actions as in (8). To fix notation, recall the construction of the odometer actions. Choose
a basepoint x ∈W1 ⊂ X1, and set y = h(x) ∈W2 ⊂ X2. Then form the group chains corresponding
to the presentations P1 at x, and P2 at y:

GxP1
≡ {Gx1,`}`≥0 =

{
G1,0 ⊃ Gx1,1 ⊃ Gx1,2 ⊃ · · · ⊃ Gx1,` ⊃ · · ·

}
(17)

GyP2
≡ {Gy2,`}`≥0 =

{
G2,0 ⊃ Gy2,1 ⊃ G

y
2,2 ⊃ · · · ⊃ G

y
2,` ⊃ · · ·

}
.(18)

Let Φ1 : G1,0×X1,∞ → X1,∞ be the odometer formed from the chain GxP1
and let τ1,x : X1,∞ → XP1

be the G1,0-equivariant homeomorphism constructed in Section 2. Then we have τ1,x(e1,0) = x
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where e1,0 = (eGx1,`) is the basepoint of X1,∞. Moreover, recall from (7) that for ` > 0, we have

Gx1,` = {g ∈ G1,0 | ΦP1(g)(Xi,`) = Xi,`} .

Similarly, let Φ2 : G2,0 × X2,∞ → X2,∞ be the odometer formed from the chain GyP2
and let

τ2,y : X2,∞ → XP2
be the corresponding G2,0-equivariant homeomorphism with τ2,y(e2,0) = y.

The preimage τ−1
1,x(Xx1,`) is identified with the clopen set

(19) U1,` = {(gkGx1,k) | k ≥ 0, g0 = g1 = · · · = g` ∈ Gx1,`} ⊂ X1,∞ .

The collection {Xx1,` | ` > 0} is a neighborhood basis around the basepoint x ∈ W1, so there exists

`1 > 0 such that U1,` ⊂ τ−1
1,x(W1) for ` ≥ `1. Set U1 = U1,`1 then the clopen subset U1 is adapted to

the action of Φ1 with stabilizer subgroup GU1
= Gx`1 by Remark 3.3. Thus, the action Φ1 induces

an epimorphism ΦU1
: GU1

→ Λ1 ⊂ Homeo(U1).

The image h ◦ τ1(U1) ⊂ X2 is a clopen subset adapted to the action of ΦP2
by Lemma 3.4. Set

U2 = τ−1
2 ◦h◦τ1(U1) ⊂ X2,∞, which is a clopen set adapted to the action Φ2. Let GU2

⊂ G2,0 be the
stabilizer group of U2. Then the action Φ2 induces an epimorphism ΦU2

: GU2
→ Λ2 ⊂ Homeo(U2).

Moreover, the homeomorphism τ−1
2 ◦ h ◦ τ1 : U1 → U2 induces an isomorphism λh : Λ1 → Λ2.

REMARK 4.1. Before continuing with the proofs of the main theorems, we recall an aspect of
the equivalence of weak solenoids from [23] and which is discussed in detail in [19]. The basepoint
e2,0 ∈ V so there exists `2 > 0 such that V2,` ⊂ V for ` ≥ `2, where V2,` is defined as in (19). For
the action Φ2 the group G2,` stabilizes the clopen set V2,` and hence also stabilizes V . However, it
need not be the case that GV is equal to one of the subgroups G2,`. It is only possible to conclude
that there exists some ` ≥ `2 for which G2,` ⊂ GV . This corresponds to the fact that homeomorphic
weak solenoids are defined by group chains which are equivalent in the sense of [19, 23], which is to
say that their group chains are interlaced up to isomorphism.

By Lemma 3.5, the collection S2 ≡ {Φ2(g)(U2) | g ∈ G2,0} is a clopen partition of X2,∞. We will
apply Proposition 3.6 to show that the suspension spaces MΦ1

and MΦ2
are homeomorphic. First,

we must construct a map of fundamental groups f∗ : GU1
→ GU2

so that the diagram (14) is satisfied,
and then construct a homeomorphism f : MU1

→MU2
which induces the map f∗.

4.2. Proof of Theorem 1.3. For i = 1, 2, we are given that SPi is a toroidal solenoid whose base
has dimension n, so Mi,0 = Tn and hence Gi,0 ∼= Zn. The manifold MUi

is a covering of Mi,0 hence
is also a torus, with fundamental group which we identify with Zn. Introduce the subgroups

(20) Ki = ker{ΦUi
: GUi

→ Λi ⊂ Homeo(Ui)} ⊂ Zn .
Each Ki is a free abelian subgroup with rank 0 ≤ ri < n, and there is a commutative diagram:

K1
� � // GU1

ΦU1 // //

f∗

��

Λ1

λh
∼=
��

K2
� � // GU2

ΦU2 // // Λ2

(21)

LEMMA 4.2. There exists a map f∗ : GU1 → GU2 such that the diagram (21) commutes.

Proof. This follows because GU1
∼= GU2

∼= Zn are free abelian groups, hence projective Z-modules.
We give the details of the construction of the map f∗. Let {a1, . . . , ad} ⊂ Λ1 be a minimal set of
generators for Λ1, then {λh(a1), . . . , λh(ad)} ⊂ Λ2 is a minimal set of generators for Λ2.

Choose {g1, . . . , gd} ⊂ GU1
so that ai = ΦU1

(gi) for 1 ≤ i ≤ d. The kernel K1 is free abelian, so we
can extend this set to a basis {g1, . . . , gn} for GU1 where ΦU1(gi) is the identity for d < i ≤ n.

Choose elements {g′1, . . . , g′d} ⊂ GU2
so that λh(ai) = ΦU2

(g′i) for 1 ≤ i ≤ d. Note that both K1 and
K2 are free abelian of rank n − d, so we can extend this set to a basis {g′1, . . . , g′n} for GU2 where
ΦU2(g′i) is the identity for d < i ≤ n.
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Define the group isomorphism f∗ : GU1 → GU2 by specifying f∗(gi) = g′i for 1 ≤ i ≤ n. Then the
diagram (21) commutes by our choices of these bases. �

Finally, to complete the proof of Theorem 1.3, observe that f∗ extends to a linear map f̂∗ : Rn → Rn,
and so induces a diffeomorphism of the quotient spaces f : Tn → Tn. Then the hypotheses of
Proposition 3.6 are satisfied.

4.3. Proof of Theorem 1.5. The proof of Theorem 1.5 uses the geometric hypotheses on the
foliations of the weak solenoids SPi

to show the existence of the map f∗ such that the diagram (21)
commutes, in place of the group extension arguments in the proof of Lemma 4.2. In particular,
we assume that the foliations on SP1 and SP2 each contain a dense leaf which is simply connected.
By the results of Section 4.1, we can assume that SP1

and SP2
are represented as suspensions of

odometer actions, and thus it suffices to show that the hypotheses of Proposition 3.6 are satisfied.

We assume that the odometer actions Φi : Gi,0 × Xi,∞ → X∞ are return equivalent, for i = 1, 2,
and that open subsets Wi ⊂ Xi,0 are chosen so that the restricted pseudo?group Ψ∗(Φ1,W1) is
conjugate to the restricted pseudo?group Ψ∗(Φ2,W2). Then let Ui ⊂ Wi be chosen as above, with
a homeomorphism h : U1 → U2 conjugating the restricted actions ΦUi

: GUi
→ Λi ⊂ Homeo(Ui).

Let Ki ⊂ GUi
denote the kernel of the map ΦUi

, and for z ∈ Ui define:

(22) Ki(z) = {g ∈ GUi | ΦUi(g)(z) = z} .

Observe that Ki ⊂ Ki(z) for all z ∈ Ui.

By the definition (11) of the suspension space MΦUi
the leaf Lz ⊂ MΦUi

defined by the point z is

homeomorphic to the covering M̃i/Ki(z)→Mi. By assumption, for each i = 1, 2 there exists z ∈ Ui
so that Lz is simply connected, which implies that Ki(z) is the trivial group, which implies that the
kernel Ki is also the trivial group. Thus, the map ΦUi

: GUi
→ Λi is an isomorphism. Define the

map

(23) f∗ ≡ Φ−1
U2
◦ λh ◦ ΦU1

: GU1
→ GU2

which is an isomorphism such that the diagram (21) commutes.

By the hypotheses of Theorem 1.5 the manifolds M1 and M2 are both strongly Borel, hence their
finite coverings MU1

and MU2
satisfy the Borel Conjecture. The map f∗ induces a homotopy equiv-

alence between them, as both have contractible universal covering spaces. Then by the solution of
the Borel Conjecture for these spaces, there exists a homeomorphism f : MU1

→MU2
which induces

the map f∗ on their fundamental groups. This completes the proof of Theorem 1.5.

REMARK 4.3. Note that the choice of the clopen set Ui in the above proofs can be chosen to have
arbitrarily small diameter, and hence the degree of the corresponding covering map πUi

: MUi
→Mi

in (13) can be chosen to be arbitrarily large. As remarked in [18], the homeomorphism f that is
obtained from the solutions of the Borel Conjecture can be assume to be smooth for a sufficiently large
finite covering. It follows that the homeomorphism h : SP1

→ SP2
obtained from Proposition 3.6

can be chosen to be smooth along leaves.

5. Examples and counter-examples

In this section, we give several examples to illustrate the necessity of the hypotheses of Theorem 1.5.
We first recall a classical result, the classification of Vietoris solenoids of dimension one. We then
consider extensions of this construction to solenoids with dimension n ≥ 2 and give examples of
solenoids which are return equivalent but not homeomorphic. These examples are essentially the
simplest possible constructions. Many other variants on their construction are clearly possible,
especially for solenoids of dimensions greater than two, as briefly discussed in Section 5.3.
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5.1. Vietoris solenoids. A Vietoris solenoid [46, 48] is a 1-dimensional solenoid SP , where each
M` is a circle, and each p` : S1 → S1 in the presentation P is an orientation preserving covering map
of degree m` ≥ 2. Let ~m = {m1,m2, . . .} be the list of covering degrees for P. Then SP is also
called an ~m-adic solenoid of dimension one, and denoted by S(~m).

Let ~m = {m` | ` ≥ 1} denote a sequence of positive integers with each mi ≥ 2. Set m0 = 1, then
define the profinite group

G~m
def
= lim←− { q`+1 : Z/m1 · · ·m`+1Z→ Z/m0m1 · · ·m`Z | ` ≥ 1 }(24)

= lim←−
{
Z/Z m1←−− Z/m1Z

m2←−− Z/m1m2Z
m3←−− Z/m1m2m3Z

m4←−− · · ·
}

where q`+1 is the quotient map of degree m`+1. Each of the profinite groups G~m contains a copy of Z
embedded as a dense subgroup by z → ([z]0, [z]1, ..., [z]k, ...), where [z]k corresponds to the class of z
in the quotient group Z/m0 · · ·mkZ. There is a homeomorphism a~m : G~m → G~m given by “addition
of 1” in each finite factor group. The resulting action of Z is denoted by Φ~m : Z×G~m → G~m. The
dynamics of a~m acting on G~m is referred to as an adding machine, or equivalently as a (classical)
odometer. We then have the standard result:

PROPOSITION 5.1. The Vietoris solenoid S(~m) is homeomorphic to the suspension MΦ~m
of

the odometer action Φ~m with base manifold M0 = S1.

Two Vietoris solenoids SP and SQ are homeomorphic if and only if their presentations P and Q
yield group chains as in (5) which are equivalent. As all of these are chains of subgroups of the
fundamental group Z of S1, the equivalence problem for these chains reduces to giving conditions on
the sequences of integer covering degrees in P and Q which imply equivalence of the chains. There
are two invariants of sequences which arise in the classification problem. First, consider the function
which counts the total number of occurrences of a given prime in the sequence of integers ~m.

DEFINITION 5.2. Given a sequence of positive integers ~m as above, let C~m denote the function
from the set of prime numbers to the set of extended natural numbers {0, 1, 2, ...,∞} given by

C~m(p) =

∞∑
1

mi(p),

where mi(p) is the power of the prime p in the prime factorization of mi.

That is, C~m(p) = k means that the prime p occurs a total of k times in the prime factorization of
the integers in the sequence ~m.

THEOREM 5.3. The Vietoris solenoids S(~m) and S(~n) are homeomorphic as bundles over the
base manifold S1 if and only if C~m(p) = C~n(p) for all primes p.

Next, we recall the notion of “tail equivalence” on sequences. This notion was introduced by Bing
in [6], and plays a basic role in the study of return equivalence for Vietoris solenoids in [1].

DEFINITION 5.4. Two infinite sets of integers, ~m = {m` | ` ≥ 1} and ~n = {n` | ` ≥ 1}, are said

to be tail equivalent, and we write ~m
t∼ ~n, if there exists cofinite subsequences ~m∗ ⊂ ~m and ~n∗ ⊂ ~n

which are in bijective correspondence.

The following observation is a direct consequence of Definitions 5.2 and 5.4.

LEMMA 5.5. Two sequences of integers ~m and ~n as above are tail equivalent if and only if the
following two conditions hold:

(1) For all but finitely many primes p, C~m(p) = C~n(p), and
(2) for all primes p, C~m(p) =∞ if and only if C~n(p) =∞.

The classification of Vietoris solenoids up to homeomorphism by Bing [6] and McCord [35], and the
study of return equivalence by Aarts and Fokkink in [1] yields:
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THEOREM 5.6. [35, 1] The Vietoris solenoids S(~m) and S(~n) are homeomorphic if and only if
they are return equivalent, if and only if ~m and ~n are tail equivalent.

5.2. ~m-adic solenoids of dimension two. Let Σg be a closed surface of genus g ≥ 1, which is
obtained by attaching g torus handles T2 = S1 × S1 to the 2-sphere S2. For example, Σ1 is home-
omorphic to the 2-torus T2. Pick a basepoint x0 ∈ Σg and let G0 = π1(Σg, x0) be the fundamental
group. Choose an epimorphism a : G0 → Z, which corresponds to a non-trivial class [a] ∈ H1(Σg;Z)
in integral homology.

Let ~m = {m` | ` ≥ 1} denote a sequence of integers with each mi ≥ 2, and form the profinite ~m-adic
group G~m as in (24). Let Φ~m denote the odometer action of Z described above. Extend this to an
action of G0

(25) Φa~m : G0 ×G~m → G~m : Φa~m(g)(x) = Φ~m(a(g))(x) , g ∈ G0 , x ∈ G~m

DEFINITION 5.7. The ~m-adic surface M(Σg, a, ~m) is the suspension space (11) associated to the
the action Φa~m with base Σg.

We note a consequence of the construction of M(Σg, a, ~m), which follows immediately from the fact
that the action Φa~m is induced from the action Φ~m and the results of [1]:

PROPOSITION 5.8. Given closed orientable surfaces Σg1 and Σg2 of genus gi ≥ 1 for i = 1, 2,
epimorphisms ai : Gi,0 → Z and sequences ~m and ~n, then M(Σg1 , a1, ~m) is return equivalent to
M(Σg2 , a2, ~n) if and only if ~m and ~n are tail equivalent.

Finally, we consider the problem, given adic-surfaces M(Σg1 , a1, ~m) and M(Σg2 , a2, ~n) such that ~m
is tail equivalent to ~n, when are they homeomorphic as matchbox manifolds? First, consider the
case of genus g1 = g2 = 1 so that Σg1 = Σg2 = T2. Then Theorem 1.3 and Proposition 5.8 yield:

THEOREM 5.9. The adic-surfaces M(T2, a1, ~m) and M(T2, a2, ~n) are homeomorphic if and only
if ~m and ~n are tail equivalent.

For the general case of adic-surfaces where at least one base manifold has higher genus, we next give
examples of weak solenoids which are return equivalent but not homeomorphic. Note that in these
examples, their base manifolds are compact surfaces hence are strongly Borel, but all their leaves
have non-trivial fundamental groups, so the hypotheses of Theorem 1.5 are not satisfied.

THEOREM 5.10. Let M1 = M(Σg1 , a1, ~m) and M2 = M(Σg2 , a2, ~n) be adic-surfaces.

(1) If g1 > 1 and g2 = 1, then M1 and M2 are never homeomorphic.
(2) If g1 = g2 > 1 and a1 = a2, then M1 and M2 are homeomorphic if and only if C~m = C~n.

(3) If g1 = g2 > 1 and a1 = a2, then there exists ~m
t∼ ~n but M1 6≈M2.

Proof. First, recall that the Euler characteristic of the closed surface Σg of genus g ≥ 1 has Euler
characteristic χ(Σg) = 2 − 2g, and the Euler characteristic is multiplicative for coverings. That is,
if Σ′g is a k-fold covering of Σg then χ(Σ′g) = k · χ(Σg). In particular, for g > 1, a proper covering
Σ′g of Σg is never homeomorphic to Σg.

Next, each of the spaces M1 and M2 is homeomorphic to an inverse limit as in (2),

M1 = M(Σg1 , a1, ~m) ∼= lim
←−
{f`+1 : M`+1 →M`}(26)

M2 = M(Σg2 , a2, ~n) ∼= lim
←−
{g`+1 : N`+1 → N`} ,(27)

where M0 = Σg1 and N0 = Σg2 . For ` > 0, let m` denote the degree of the covering map f` and let
n` denote the degree of the covering map g`.

Now assume there is a homeomorphism H : M1 → M2. By the results of Rogers and Tollefson in

[38, 40], the map H is homotopic to a homeomorphism Ĥ which is induced by a map between the
inverse limit representations of M1 in (26) and of M2 in (27). Such a map has the following form:
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There exists an increasing integer-valued function k → `k for k ≥ 0, and continuous onto maps

H̃k : M`k → Nk where the collection of maps {H̃k | k ≥ k0} form a commutative diagram:

(28) M`0

H̃0

��

M`1

f
`1
`0oo

H̃1

��

· · ·oo M`k

H̃k

��

oo M`k+1

f
`k+1
`koo

H̃k+1

��

· · ·oo

N0 N1g1
oo · · ·oo Nkoo Nk+1gk

oo · · ·oo

where the fk and gk are the bonding maps in the inverse limit representations (26) and (27), and

f
`k+1

`k
= f`k+1 ◦ · · · ◦ f`k+1

denotes the composition of bonding maps.

All of the horizontal maps in the diagram (28) are covering maps by construction. Moreover, as the
spaces Mk and Nk are closed surfaces, we can assume that all of the vertical maps in (28) are also
covering maps. Thus, the Euler classes of all surfaces there are related by the covering degrees of

the maps. For example, χ(M`k) = dk · χ(Nk) where dk is the covering degree of H̃k.

To show 1) we assume that a homeomorphism H exists, and so we have diagram (28) as above.
Observe that g2 = 1 implies that χ(Σ2) = χ(T2) = 0, hence χ(Nk) = 0 for all k ≥ 0. Then as dk ≥ 1
for all k, we obtain χ(M`k) = 0. But this contradicts the assumption that g1 > 1 hence χ(M`k) < 0
as M`k is a covering of Σ1 which has χ(Σ1) < 0. Thus M1 6≈M2.

To show 2) first assume that C~m(p) = C~n(p) for all primes p. Then the odometer actions Φ~m : Z×
G~m → G~m and Φ~n : Z × G~n → G~n are conjugate by an automorphism θ : G~m → G~n. Then by
Proposition 3.6, the suspension spaces M(Σg1 , a1, ~m) and M2 = M(Σg1 , a1, ~n) are homeomorphic.

To show the converse in 2) assume that a homeomorphism H exists, and suppose that for some
prime p we have C~m(p) 6= C~n(p). We assume without loss of generality that C~m(p) < C~n(p). If
otherwise, then reverse the roles of ~m and ~n and consider the homeomorphism H−1. Then as
χ(Σ1) = χ(Σ2), for sufficiently large k the prime factorization of the Euler characteristic χ(M`k)
contains a lower power of p than the prime factorization of χ(Nk). But this contradicts the fact that

χ(M`k) = dk · χ(Nk) where dk is the covering degree of H̃k.

Finally, to show 3) let Σ = Σg1 = Σg2 where g = g1 = g2 > 1. It suffices to chose ~m, ~n such that

~m
t∼ ~n, but C~m 6= C~n. It then follows from 2) that M1 6≈ M2. Pick a prime p1 ≥ 3 and let ~m be

any sequence such that C~m(p1) = 0. Then define ~n by setting n1 = p1 and nk+1 = mk for all k ≥ 1.

Note that C~m(p1) = 0 6= 1 = C~n(p1), so C~m(p) 6= C~n(p) is satisfied. But clearly ~m
t∼ ~n, so the

adic-surfaces M(Σg, a1, ~m) and M(Σg, a1, ~n) are return equivalent by Proposition 5.8, but are not
homeomorphic by part 2) above. �

5.3. ~m-adic solenoids of higher dimension. Observe that the requirements on the base manifold
Σ used in the proofs of 2) and 3) of Theorem 5.10 are that:

(1) Σ is a strongly Borel manifold, so that the maps H̃k can be assumed to be coverings;
(2) the fundamental group G0 = π1(Σ, x) admits an epimorphism onto Z, or equivalently that

H1(Σ;Z) contains a copy of Z;
(3) the Euler characteristic χ(Σ) 6= 0.

Thus, the proof of parts 2) and 3) of Theorem 5.10 can be applied almost verbatim to show:

THEOREM 5.11. Let M be a closed manifold of dimension n ≥ 3. Assume that M is strongly
Borel, that H1(M ;Z) has rank at least 1, and the Euler characteristic χ(M) 6= 0. Let M1 =
M(M,a, ~m) and M2 = M(M,a, ~n) be the corresponding adic-solenoids, where a : π1(M,x) → Z is
an epimorphism. Then we have:

(1) M1 and M2 are homeomorphic if and only if C~m = C~n.

(2) there exists ~m
t∼ ~n but M1 6≈M2.
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Finally, we comment on the requirement in Theorem 1.5 that the base manifolds be strongly Borel.
Let M be a closed n-manifold where n ≥ 5. Suppose that M satisfies the conditions of Theorem 5.11.

Let N = M#S2×Sn−2 be the closed n-manifold obtained by attaching the handle S2×Sn−2. Then
π1(M,x) ∼= π1(N, x) where we choose the basepoint x ∈ M disjoint from the disk along which the
handle is attached.

Form the adic-solenoids M1 = M(M,a, ~m) and M2 = M(N, a, ~m) as before, but with bases M
and N . Then M1 and M2 are return equivalent, as in fact they have conjugate global monodromy
actions. On the other hand, all leaves in M1 have trivial higher homotopy groups, while all leaves
in M2 have non-trivial higher homotopy groups. Thus, M1 and M2 can not be homeomorphic.
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