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THE AMALGAMATION SPECTRUM

JOHN T. BALDWIN, ALEXEI KOLESNIKOV, AND SAHARON SHELAH

Abstract. We study when classes can have the disjoint amalgamation property for a proper initial

segment of cardinals.

Theorem A For every natural number k, there is a class Kk defined by a sentence in Lù1 ,ù that has

no models of cardinality greater than ik+1, but Kk has the disjoint amalgamation property on models of

cardinality less than or equal to ℵk−3 and has models of cardinality ℵk−1.

More strongly, we can have disjoint amalgamation up to ℵα for α < ù1, but have a bound on size of

models.

Theorem B For every countable ordinal α, there is a class Kα defined by a sentence in Lù1 ,ù that has

no models of cardinality greater thaniù1 , but K does have the disjoint amalgamation property on models

of cardinality less than or equal to ℵα .

Finally we show that we can extend the ℵα to iα in the second theorem consistently with ZFC and

while having ℵi ≪ ii for 0 < i ≤ α. Similar results hold for arbitrary ordinals α with |α| = κ and

Lκ+ ,ù .

A sentence φ of Lù1,ù is said to characterize ì, if φ has a model of cardinality
ì but no model in any larger cardinalities. There are a number of results [Mor65,
Hjo07, Kni77, LS93, Sou] giving various examples that show (the one due toHjorth
is the most general) any cardinal κ below iù1 can be characterized by a sentence φκ
of Lù1,ù. We consider the effect of requiring that the models of φ satisfy the disjoint
amalgamation property (up to some point).
For strong properties like categoricity one can show great regularities in the
eventual spectrum [She99, She83a, She83b]. These results deduce eventual cat-
egoricity from categoricity in a large enough cardinality or from a long enough
initial sequence of categoricity cardinals (possibly with additional model-theoretic
or set-theoretic hypotheses). These results become even stronger [GV06, Les] as
eventual categoricity is deduced from categoricity in LS(K)++ or even for count-
able languages from categoricity in LS(K)+ assuming tameness, the amalgamation
property, and arbitrarily large models.
In fact, Shelah’s argument for eventual categoricity from categoricity below ℵù
(assuming 2ℵn < 2ℵn+1 for n < ù) proceeds by showing one has strong amal-
gamation conditions for finite independent systems of countable models. These
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conditions involve both existence and uniqueness; but the uniqueness is not needed
for constructing arbitrarily large models. In the 1980’s, Grossberg [Gro02] raised
the issue of studying the amalgamation spectrum.

Definition 0.1. Let (K ,≺K) be an abstract elementary class. The amalgamation
spectrum of K is the class of cardinals κ such that if there are M ≺K N1 and
M ≺K N2 with all three in K with cardinality κ ≥ LS(K), then there is a model N3
necessarily of cardinality κ into which both N1 and N2 can be strongly embedded
overM .

In particular, Grossberg [Gro02] asked whether iù1 is the ‘Hanf number for
amalgamation’ for Lù1,ù. That is, does every sentence of Lù1,ù that satisfies the
amalgamation property in some cardinal above iù1 satisfy the amalgamation prop-
erty eventually. We do not answer that question. Our work is an approximation to
saying that this conjecture is optimal for the notion of disjoint amalgamation. The
aim is to find for each α < ù1 a sentence φα that, provably in ZFC, has disjoint
amalgamation up to iα but does not have arbitrarily large models. Our examples
show this result with the added hypothesis of GCH and in Section 3, we show
the result is consistent with many other choices for the function defining cardinal
exponentiation.
Our strategy in Section 1 is to allow generalized amalgamation only for systems
of less than k models (for appropriate k). In Section 2 we work with Lκ+,ù where
κ = ℵä and for each α < κ

+ construct an example to guarantee amalgamation only
up toℵä+α . This section introduces a new idea – the amalgamation of certain ranked
systems of models. In each case, the constructed class has a bounded number of
models.
Let us note one easy example.

Example 0.2. Let ô contain infinitely many unary predicates Pn and one binary
predicate E. Define a first order theory T so that Pn+1(x) → Pn(x), E is an
equivalence relation with two classes, which are each represented by exactly one
point in Pn − Pn+1 for each n. Now omit the type of two inequivalent points that
satisfy all the Pi . This gives a sentence of Lù1,ù that is categorical and satisfies
amalgamation in all uncountable powers but fails amalgamation in ℵ0.

The first two sections of this paper represent refinements of the same construction
and we gradually develop the machinery for stronger results. In the first section
we guarantee amalgamation and existence) up to κ+k (the kth successor of κ) for
a sentence in Lκ+,ù.
We note several not entirely standard notational conventions. We write |M | to
denote the universe of the modelM (and ‖M‖ for its cardinality) where emphasis
is needed. We use ⊂ for proper subset and ⊆ when the subset may be the larger set.
The symbol [M ]m denotes the set of m-element subsets ofM .

§1. Amalgamation can first fail at κ+(k−2). For any natural number k and any
cardinal κ, we construct a sentence of Lκ+,ù that satisfies disjoint amalgamation
up to κ+(k−3) (the (k − 3)-rd successor of κ) but no further; it has no models with
cardinality greater than ik(κ). When κ = ℵ0, we get result stated in the abstract.
We construct the class by force to have k-disjoint amalgamation on models of size
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less than κ. Then we use the relevant aspects of the ‘excellence technology’ to show
this implies 2-amalgamation on κ+(k−3).

Definition 1.1. Fix a natural number k and a cardinal κ.

1. Let ô contain n-ary predicates Pn;α, for each n ≤ k and α < κ.
2. Let Kk be the class of ô-structures (including the empty structure) such that:
(a) for each n ≤ k, the PMn;α partition the n-element subsets ofM ;
(b) there is no sequence of k + 1 elements of M that are indiscernible for
quantifier-free ô-formulas.

Throughout this paper indiscernible means indiscernible for quantifier free for-
mulas. Definition 1.1 implies that the predicates PMn;α are actually predicates of sets;
i.e., they are symmetric and hold only of sequences of distinct points.

Fact 1.2. For each k, the family Kk is defined by a universal first order theory
and the omission of certain family of types. In particular (Kk ,≺K) is an abstract
elementary class where ≺K denotes the substructure relation.

Definition 1.3. A set of K-structures N = 〈Nu : u ⊂ k〉 is a (< ë, k)-system
for K if for u, v ⊂ k:

1. each Nu ∈ K and ‖Nu‖ < ë;
2. if u ⊂ v then Nu ⊂ Nv ;
3. Nu ∩Nv = Nu∩v .

Because we are constructing classes that are closed under substructure in a rela-
tional languagewe can always amalgamatewithout introducing new points. That is,

Definition 1.4. We say that K has direct (< ë, k)-amalgamation if

1. k = 0 and there isM ∈ K with ‖M‖ = ì for all ì < ë.
2. k = 1 and for all ì < ë, eachM ∈ K with ‖M‖ = ì has a proper extension.
3. k ≥ 2 and for any (< ë, k)-system N there is a model M with universe⋃

u⊂k |Nu | such that for every u ⊂ k, Nu is a substructure ofM .

We can replace < ë by ë with the obvious modification. Note that when k = 2,
the direct amalgamation in the previous definition implies what is normally called
the disjoint amalgamation property. Note that the (ë, k)-amalgamation property
holds trivially in ë if there are no models in ë. We construct classes K that have
(ë,≤ k)-amalgamation (note≤) on an initial segment of cardinals but do not have
arbitrarily large models.

Definition 1.5. 1. A special (ë, k)-system (N, a) for K is a (ë, k)-system with
a special sequence of elements a = {aℓ : ℓ < k} such that:
(a) for each u ⊂ k, |Nu | = |N∅| ∪ {aℓ : ℓ ∈ u} and
(b) ‖N∅‖ = ë.

2. We say that K has special (ë, k)-amalgamation (or the special (ë, k)-existence
property) if k < 2 and K has direct (ë, k)-amalgamation or k ≥ 2 and if any
special (ë, k)-system can be directly amalgamated.

In this context (of a universal theory in a relational language), it suffices to study
special amalgamations.
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Lemma 1.6. Let n ≥ 2. IfK ⊆ Kk is closed under increasing unions and has special
(ë, n)-amalgamation (with respect to substructure as the notion of strong submodel )
then it has direct (ë, n)-amalgamation.

Proof. Fix n and ë. We prove the statement by induction on the number m ≤ n
of models among {N{ℓ} | ℓ < n} that are not of the form N∅ ∪ {aℓ}, i.e., are
not a one-point extension of the base model. The base case m = 0 is the special
amalgamation. Suppose now that we are able to amalgamate any (ë, n)-system in
which m models N{ℓ} are arbitrary extensions of N∅, and the rest are one-point
extensions.
Let N be a (ë, n)-system where the models {N{ℓ} | m < ℓ < n} are one-point
extensions of N∅, and the remaining m + 1 are any extensions of cardinality at
most ë. Enumerate the set |N{m}|− |N∅| as {bi | i < ë}. For u ⊂ n, if u containsm,
let N iu be the substructure of Nu with universe |Nu | − {bj | j ≥ i} (that is, in each
Nu we replace N{m} with N∅ ∪ {bj | j < i}).

We build the amalgamN in stages, by induction on i < ë. LetN 1 be an amalgam
of the special (ë, n)-system {N 1u | u ⊂ n,m ∈ u} ∪ {Nu | u ⊂ n,m /∈ u}. Note that
the amalgam is over N 0{m} = N∅.

Having constructed N i , let N i+1 be an amalgam of the special (ë, n)-system

{N i+1u | u ⊂ n,m ∈ u} ∪ {N i ↾ |Nu | ∪ |N i{m}| | u ⊂ n,m /∈ u}.

Note that the amalgam is over N i{m}. Taking unions at limits, we are done. ⊣1.6

So to establish amalgamation, we need only establish special amalgamation.
We first show both the amalgamation and the existence of special systems for
models of cardinality less than κ.

Lemma 1.7. 1. The class Kk has special (< κ, s)-amalgamation for all s ≤ k.
2. For each s ≤ k, and each ì < κ, there is a special (ì, s)-system.

Proof. We first prove both statements (1) and (2) for s ≤ 1 by constructing
a sequence of models in K , {Mâ | |Mâ | = â, â < κ}, such that Mâ ≺ Mâ+1.
For s = 0, let M0 be the empty structure. Given Mâ , for each tuple b ∈ Mâ and
each t = lg(b), let Pt+1,â (b, â) hold to construct Mâ+1. If â is a limit ordinal,
let Mâ :=

⋃
α<âMα . By construction, all elements in Mâ have different 1-types.

(Taking the union
⋃
â<κMâ , we also have shownKk satisfies (κ, 0)-amalgamation.)

Now we show statement (1) for 2 ≤ s ≤ k. Let M ⊂ Kk be a special (< κ, s)-
system. The crucial point is that since each model in M has size less than κ, and
the predicates Pn,α partition the universe, there are strictly fewer than κ predicates
Pn,α that are non-empty in the modelsMu , u ⊂ s . Let ã = ã(M ) < κ be such that
Ps,ã is empty in eachMu , u ⊂ s .
Let |Ms | :=

⋃
M . For each n < s and each b ∈n |Ms |, we necessarily have

b ∈ |Mu | for some u and so the truth of Pn,ã(b) has been determined. If n ≥ s ,
then for b ∈ n|Ms |, either b ∈ |Mu | for some u and so the truth of Ps,α(b) has been
determined, or b contains a := {aℓ : ℓ < s}. In the latter case, we define Ps,ã(b) for
some ã such that Ps,ã has not been used.
Now wemust show thatMs does not have a sequence of k+1 indiscernibles. But
this is straightforward. Note that any candidate sequence must contain a = {aℓ :
ℓ < s} or else the sequence is contained in someMu and so cannot be indiscernible
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since Mu ∈ Kk . Thus, we have P
Ms
s,ã(M )

(a). But any other s-element sequence

from Ms is contained in some Mu (by the definition of a special system) and so
satisfies PMss,α′ where P

Mu
s,α′ 6= ∅ so α(M ) 6= α′ and no indiscernible sequence can

contain a.
Finally, we show statement (2) for 2 ≤ s ≤ k. This result follows by induc-
tion using (1) from: if special (< κ,≤ s)-amalgamation holds there is a special
(< κ, s + 1)-system. And this is easy to see. For any ì < κ, since (ì, 1)-
amalgamation holds, there are in fact s + 1 one point extensions of a given model
N of size ì. Now applying (< κ,≤ s)-amalgamation, we construct the Nu for
u ⊂ s . ⊣1.7

The argument in the last paragraph of the above proof can be used to show the
following corollary.

Corollary 1.8. For s ≥ 1, if K has (< ë,≤ s)-amalgamation, then for all n ≤
s + 1 there are special (< ë, n)-systems.

We have disjoint amalgamation below κ; we want to show this property holds
in larger cardinals. We turn to the techniques of [She83a, She83b], expounded in
Part IV of [Bal]. The essential point is to trade (s + 1)-amalgamation in ë for
s-amalgamation in ë+.
For this induction step we need the notion of a filtration of a (ë, n)-system. In
the current situation, we could give a somewhat simpler description using special
systems. But little would be gained and we prefer to conform with the more general
formulation of e.g., [She83b, Bal]. We add countably many points at each step;
some may be from the leaves and some from the heart. Recall that we write ||M ||
for the cardinality of the universe of a structureM .

Definition 1.9. Suppose S = 〈Ms : s ∈ P−(n)〉 is a (ë, n)-system. A filtration
of S is a system Sα = 〈Mαs : s ∈ P

−(n), α < ë〉 such that:

1. each ‖Mαs ‖ = α
∗ = |α|+ ℵ0;

2. for each s in P−(n), {Mαs : α < ë} is a filtration ofMs ;
3. for each α, Sα is an (α∗, n)-system.

Claim 1.10. For any s < ù, ifKk has the (ë,≤ s+1) amalgamation property, then
it has the (ë+,≤ s)-amalgamation property.

Proof. We first note that the case s = 0 is easy. We get a model in ë+ by taking
the union of increasing chain of smaller models by (ë, 1)-amalgamation.
Now let s ≥ 1 and let S = M be a (ë+, s)-system. Choose a filtration Sα of S .

We can further choose Nα , Qα for α < ë such that:

1. ‖Nα‖ = |α|+ ë;
2. Nα ∩M =Mα∅ ;

3. Qα ∈ Kk has universe N
α ∪Mα+1s .

WeconstructNα by (ë, s)-amalgamationand thenQα by (ë, s+1)-amalgamation.
⊣1.10

We can show inductively that (ë+, s)-system exist. Filter a (ë+, s − 1)-system as
in the last paragraph of the proof of Lemma 1.8; choose an extension of N0 and
then iteratively apply (ë+, s + 1)-amalgamation.
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Theorem 1.11. 1. Kk has no models of cardinality greater than ik(κ).
2. Kk has the disjoint amalgamation property on models of cardinality less than or
equal to κ+(k−3).

3. Kk has models of cardinality κ
+(k−1).

4. there is a cardinal ì strictly less than ik(κ) where disjoint amalgamation fails.

Proof. Statement 1 is immediate from the Erdoš–Rado theorem. If we partition
the (k+1)-element subsets of a set of cardinality (ik(κ))

+ into κ sets determined by
thePn;α , then there is a set of cardinality κ+ (k+1would be enough!) homogeneous
for the partition.
Lemmas 1.6 and 1.7 give us direct (< κ, k) amalgamation. Statement 2 then
follows from Claim 1.10. Thus, we have Kk satisfies direct amalgamation property
for (κ+m , k − 1−m)-systems for 2 ≤ m ≤ k − 3.
Finally, for any ë, direct amalgamation of (ë,≤ 2)-systems implies everymodel of
cardinality ë+ extends to a model with cardinality ë++; see Lemma 1.8. So we have
statement 3. But this extension property implies that if the disjoint amalgamation
property holds for each ì < ik(κ), then there is a model of cardinality (ik(κ))

+,
contradicting part 1. Thus statement 4 holds. ⊣1.11

Note that the arguments in both [She83a, She83b] and [Bal] are carried out in
the context of the models of a complete sentence of Lù1,ù (atomic models of a first
order theory). The sentence here is far from complete. We use essentially that our
class is a universal theory with omitting types; there is no way to guarantee that all
consistent types are realized. This does not affect the amalgamation arguments in
the proof of Theorem 1.11.
The example is an abstract elementary class with ≺K taken as ô-substructure.
Note that we specifically constructed the class to have a bound on the number of
models. There is no hope that assuming the class has arbitrarily large models yields
a theoremwhich implies disjoint amalgamation on many cardinals. As, we can take
the disjoint union of the example here with ‘a completely well-behaved’ class: the
result has arbitrarily large models but the same disjoint amalgamation spectrum as
the example here.

§2. Disjoint amalgamation can hold at ℵα but fail. We improve the result of
Section 1 to show that for every α < ù1 there is a sentence ofLù1,ù that has disjoint
amalgamation up to ℵα and no model of cardinality greater than iù1 . We can get
the analogous result for Lκ+,ù beginning at κ = ℵä with no real change in the proof
so we do the more general case. Thus for each κ and α with κ ≤ α < κ+, we are
defining below a class Mκ,α of finite models and a class of models Kκ,α. Since the
dependence on κ and α is completely uniform, we will just writeM and K .

Notation 2.1. Fix for this section a cardinal κ = ℵä and an ordinal α with
κ ≤ α < κ+. Let ô = ôκ,α contain unary predicates P1;ã,α+2 with ã ≤ κ and n-ary
relation symbols Pn;ã,â for 2 ≤ n < ù, ã < κ, and â ≤ α + 1. As in Section 1, the
ô-structures in our class are such that [M ]n is partitioned by the Pn;ã,â .

The role of the parameter â in Pn;ã,â is to provide a “rank” for finite sets of
indiscernibles (every singleton has the maximal rank by our definition). The role of
ã is to make sure that there are κ predicates of each rank.
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Definition 2.2. Define a collection of finite structures M = Mκ,α by induction
on the size of the structure. For n ≥ 1, let M0 contain the empty structure and let
M1 be the set of all one-element ô-structures.
LetMn be the set of all n-element ô-structuresM such that:

1. for k ≤ n the Pk,ã,â partition [|M |]k as ã, â vary;
2. if |M | = {a1, . . . , an}, the sequence {a0, . . . , an−1} is indiscernible with respect
to the quantifier-free types, and

M |= P1;æ1,α+2(a1) ∧ P2;æ2 ,α2(a1, a2) ∧ · · · ∧ Pn,æn ,αn (a1, . . . an),

then α + 2 > α2 > · · · > αn.

Finally,M =
⋃
nMn .

Definition 2.3. The rank of a finite indiscernible sequence a is the ordinal ã such
that Pn,æ,ã(a) for n = lg(a) and some æ < κ.

Using this terminology, the second clause of Definition 2.2 can be phrased as
follows: the rank of increasing segments of indiscernible sequences is decreasing.
Also note that we have guaranteed that all 1-tuples have the maximal rank α + 2
(since the third index on a unary predicate is α + 2).
The class described in this section is the class of all ô-structuresM such that every
finite substructure ofM is a member ofM =Mκ,α .

Definition 2.4. Let Kκ,α = K := {M | every finite substructure ofM is inM}.

Note that since for every finite indiscernible sequence a the rank of increasing
segments of a is decreasing, then for some ë < i(2κ)+ the class K does not have
models of size greater than or equal to ë. Otherwise, we would be able to find
a model containing an infinite indiscernible sequence by a standard argument. But
then we would have an infinite decreasing sequence of ordinals.
The terms and notation for special (ë, k)-systems have been defined in Section 1;
but our demand here on amalgamation of certain systems is weaker because we
only require systems of sufficiently large rank to be amalgamated.

Notation 2.5. 1. Let (N, a) be a special system of models with a =
〈a0, . . . , ak−1〉. Let au = 〈ai | i ∈ u〉. We say that sequence a is formally
indiscernible if for every u, v ⊂ k if |u| = |v|, then tpqf(au , Nu) = tpqf(av , Nv).

2. By the rank of a formally indiscernible sequence a we mean the rank of the
indiscernible sequence au for one (any) u ⊂ k with |u| = k − 1.

Definition 2.6. We say that K has the (ℵæ , k, â)-amalgamation property if for
every special (ℵæ , k)-system (N, a):

1. if a is formally indiscernible of rank strictly greater than â , then there is an
amalgam N of (N, a) in K .

2. if a is not formally indiscernible, then there is an amalgam N of the system
(N, a) in K .

Note two important but obvious consequences of this definition. The second
holds because our requirement that all singletons have rank α +2 means that there
is no restriction on which special two-systems can be amalgamated. As in Section 1,
it suffices to prove special amalgamation.
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Remark 2.7. 1. The (ℵæ , k, â)-amalgamation property immediately yields the
(ℵæ , k, ã)-amalgamation property for any ã with â ≤ ã ≤ α + 1.

2. (ℵæ , 2, α + 1)-amalgamation property immediately yields disjoint amalgama-
tion of models with cardinality ℵæ .

The rest of the proof has two steps. We first show that we have a ‘pseudo-
amalgamation’ on the class of models of cardinality less than κ = ℵä, namely
(< ℵä , k, 0)-amalgamation for all k. Then we show this ‘pseudo-amalgamation’
extends up to ℵä+α ; we prove by induction that (< ℵä+â , k, â) amalgamation holds
for all k and all â ≤ α. This is not k-amalgamation on all systems of size ℵä+â ;
only on those systems of sufficiently large rank.

Lemma 2.8. The class K has the (< κ, k, 0)-amalgamation property for all k < ù.

Proof. We can constructmodels to satisfy the (< κ, s, 0)-amalgamationproperty
for s ≤ 1 as in the proof of Lemma 1.7, using that there are always new predicates
to define the extension.
Let (N, a) be a special (< κ, k)-system. If the sequence a := {a0, . . . , ak−1} is not
formally indiscernible, then we can define a ô-structureN∗ on |N |∪a in an arbitrary
way. The resulting model will be a member of K because we are not adding any
indiscernible sequences.
Suppose now that a is formally indiscernible of an arbitrary rank ç > 0. We now
interpret predicates on

⋃
u⊂k |Nu | to define a model N ∈ K . Define Pk,æ,0(a) for

some unused predicate Pk,æ,0. It is easy to define the rest of the new predicates (say
Pk+m,æ1 ,å) on sequences ab where b ∈ N and lg(b) = m) to guarantee that for each
n, the n-tuples are partitioned. There is no indiscernible sequence in N except a
that is not in some Nu . As, any such sequence would have to contain a but a has
rank 0. Thus, N ∈ K . ⊣2.8

Lemma 2.9. If â + k − 1 ≤ α + 2 and K satisfies (< ë, 1, α + 1)-amalgamation,
then there is a (ë, k)-system (N, a) such that the sequence a is formally indiscernible
of rank â + 1.

Proof. Choose a as an indiscernible sequence of length k with the ranks of
s-element subsequences chosen as â + k − s . In particular, the rank of the entire
sequence is â . By Lemma 2.8 there are extensions of a to models in K of every
cardinality below κ and then by (< ë, 1, α+1)-amalgamation to every power below
ë (recall that all singletons have the rank α + 2). Let N be union of this chain and
let N∅ denote N − a. Choose the Nu as N∅ ∪ {ai : i ∈ u}. ⊣2.9

Lemma 2.10. For all k < ù, if the class K has the (< ℵä+â , k, â)-amalgamation
property, then K has the (ℵä+â , k − 1, â + 1)-amalgamation property.

Moreover, any special (ℵä+â , k−1)-system (N, a), where a is formally indiscernible
of rank strictly greater than â + 1, can be amalgamated so that the rank of a in the
amalgam is â + 1.

Proof. Let (N, a) be a special (ℵä+â , k − 1)-system. If the sequence a :=
{a0, . . . , ak−2} is not formally indiscernible, then we can define a ô-structure on
N ∪ a in an arbitrary way. The resulting model will be a member of K because we
are not adding any indiscernible sequences.
Suppose now that a is formally indiscernible of rank strictly greater than â + 1.
Without loss of generality, we can assume that

⋃
u⊂k |Nu | = ℵâ and that the special
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sequence a is the first k − 1 elements of ℵâ . We need to define a ô-structure, on ℵâ
that extends the Nu .
For some ç < κ, assign a predicate Pk−1;ç,â+1 to hold of a0, . . . , ak−2. Thus,
when we finish the construction, we will have satisfied the “moreover” clause of the
lemma. Call this structureNk−1. Proceed by induction on k− 1 ≤ i < ℵâ to define
the amalgam N i+1 with domain i + 1. For this, let a′ = 〈a0, . . . , ak−2, i〉. And let

(N
i+1
, a′) be the special (|i |, k)-system

(〈N̂u : u ⊂ {a0, . . . , ak−2, i}, |u| = k − 1〉, a
′)

where N̂u = Nu−{i} ∩ (i + 1) if i ∈ u and N̂u = N
i if i 6∈ u.

If the sequence a′ is not formally indiscernible, then we can amalgamate without
a problem. Otherwise, the rank of any (k − 1)-tuple from a′ is â +1 (by our choice

of Pk−1;ç,â+1). (N
i+1
, a′) is a special (|i |, k)-system, and |i | = ℵå with å < ä + â .

The amalgam then exists by the (< ℵä+â , k, â)-amalgamation property. The union⋃
i<ℵâ
N i is the desired amalgam. ⊣2.10

The first sentence of the next theorem is an easy induction using Lemmas 2.8
and 2.10. The second is immediate from Definition 2.6 and Remark 2.7.2.

Theorem 2.11. Recall κ = ℵä . For all â ≤ α + 1, the class K has the
(ℵä+â , k, â + 1)-amalgamation property for all k < ù. In particular, the class K
has the (ℵä+α , k, α + 1)-amalgamation property for all k < ù and so K has disjoint
amalgamation over models of size ≤ ℵä+α . But K has no model of power i(2κ)+ .

The third sentence of the theorem follows from the standard bounds e.g., [She78a,
Bal] for finding indiscernible sequences. It would be interesting to find a smaller
upper bound on the size of the models.

§3. Disjoint amalgamation can hold up to iα . Under GCH we have shown in
Section 2 that for each α < ù1 there is a sentence of Lù1 ,ù that has disjoint
amalgamation up to ℵα = iα but does not have arbitrarily large models. In
this section we use the same class K we used in Section 2, but replace the use of
GCH by the use of a generalized Martin’s axiom to obtain the result with much
less stringent requirements on cardinal exponentiation. Thus, we begin the section
by describing and developing some consequences of a generalized Martin’s Axiom.
In Theorem 3.10, we return to the model theoretic goal. As usual, we can and do
carry out the argument for the more general situation of Lκ+,ù.

Definition 3.1 (Ax0(ë)). Let ë be a regular cardinal. Let P be a poset such that

1. Any decreasing sequence of length less than ë has the greatest lower bound.
2. (Strong form of ë+-cc) Given any 〈pi : i < ë+〉 there is a regressive h on ë+

and a club C such that for α, â ∈ C ∩ cof (ë) if h(α) = h(â), then pα and pâ
are compatible.

The axiom Ax0(ë) states that for any P satisfying (1) and (2), for any family of
fewer than 2ë dense sets in P there is a filter meeting them all.

The following is a standard fact.

Claim 3.2. The condition (2) in the above definition is equivalent to the following:
Given any 〈pi : i < ë+〉 there is h : ë+ → A such that
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1. A =
⋃
i<ë+ Ai ;

2. |Ai | ≤ ë;
3. the sequence of Ai is increasing and is continuous at points of cofinality ë;
4. h(j) ∈ Aj for all j;

and there is a club C such that for α, â ∈ C ∩ cof (ë) if h(α) = h(â), then pα and pâ
are compatible.

Definition 3.3. Suppose GCH holds in the ground model, and pick a cardinal
κ such that κ<κ = κ.
Let {ëi | i ≤ α} be an increasing continuous sequence of cardinals such that
ë0 = κ, if ëi is singular, then ëi+1 = ë

+
i , and if ëi is regular, then ëi+1 is a regular

cardinal greater than ëi .
Then we say the sequence ëi is a permissible partial exponentiation function.

Note that the cardinals ëi , i ≤ α, will become ii(κ) in the forcing extension.
The following was established in [She80], Theorem 4.12. The argument for that
theorem calls on [She78b].

Fact 3.4. Suppose GCH holds in the ground model, and pick a cardinal κ such
that κ<κ = κ.
If {ëi | i ≤ α} is a permissible partial exponential function then there is
a cardinal-preserving forcing extension V Pα of the ground model such that

1. for all i < α, we have 2ëi = ëi+1;
2. for each regular cardinal ëi , the generalized Martin’s axiom Ax0(ëi) holds.

Remark 3.5. The paper [She78b] demands the following additional condition on
partial orders in the statement of the generalized Martin’s axiom:

3. If p, q ∈ P are compatible, then there is the greatest lower bound of p and q
in P.

The paper [She80] states the consistency result without requiring the condi-
tion (3), but the proof refers the reader to [She78b]. The proposition below es-
tablishes that the condition (3) is not necessary.

Proposition 3.6. Suppose that Ax0(ë) holds for posets satisfying the conditions
(1)–(3). Let Q be a poset satisfying only the conditions (1) and (2). Then for any
family of fewer than 2ë dense sets in Q there is a filter meeting them all, i.e., Ax0(ë)
holds for all posets satisfying (1) and (2).

Proof. Take Q satisfying conditions (1) and (2). Let

P := {X ⊂ Q | |X | < ë, elements of X have a common lower bound in Q},

the partial order is X ≤ Y (X is stronger than Y ) if X = Y or X ⊃ Y and X
contains a common lower bound for Y in Q.
It is easy to check that P satisfies (1)–(3) and that, given a dense subset D of Q,
the set C := {X ∈ P | X ∩D 6= ∅} is dense in P. Now it is easy to get a filter in Q

meeting a collection of fewer than 2ë dense subsets. ⊣

From (1) in Fact 3.4, we have that ëi = ii(κ). We will need a stronger property
of cardinal exponentiation implied by Ax0: it turns out that, for every regular ëi ,
we have 2ì = 2ëi for all ëi ≤ ì < 2ëi . We prove this property after establishing
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the following two claims. In Corollary 3.9 we conclude in particular that ë<ëii = ëi
whenever ëi is regular.

Claim 3.7. Let ë<ë = ë, let Ax0(ë) hold, and let ë ≤ ì < 2ë. For any family
X = {Xi | i < ì} of almost disjoint subsets of ë, where |Xi | = ë, there is a set
X ∗ ⊂ ë, |X ∗| = ë, which is almost disjoint from each Xi , i < ì, i.e., |X ∗ ∩ Xi | < ë
for all i < ì.

Proof. Let

P := {(f,F ) | f ⊂ ë, |f| < ë,F ⊂ X , |F | < ë}.

The order is (f1,F1) ≤ (f2,F2) if f1 ⊇ f2, F1 ⊇ F2 and (f1 − f2) ∩
⋃
F2 = ∅.

(The intuition is that the first component is an approximation to the subset we are
building and the second component lists the subsets to which we promise not to
add any more elements.)
From regularity of ë, it follows that any decreasing chain of fewer than ë condi-
tions in P has the greatest lower bound. We claim that P has the strong ë+-chain
condition. This is easy given that ë<ë = ë. Indeed, let {(fi ,Fi) | i < ë+} be
a sequence in P, take Ai := ë<ë for all i < ë+ and define h(i) := fi ∈ Ai .
Then whenever h(i) = h(j) we have fi = fj , and so (fi ,Fi) and (fj ,Fj) are
compatible: the element (fi ,Fi ∪Fj) is below both of them.
Now we define the dense sets Di , i < ë, and Ei , i < ì:

Dα := {(f,F ) | f ∩ [α, ë) 6= ∅}, Ei := {(f,F ) | Xi ∈ F }.

It is easy to check that the subsets are dense. Given a condition (f,F ), there is
a set X ∈ X −F , so in particular |X | = ë and X is almost disjoint from every set
in F . Thus, (

⋃
F ) ∩ X is bounded in ë. So there is a point ä ∈ X ∩ [α, ë). Now

(f ∪ {ä},F ) ∈ Dα is a condition that extends (f,F ). Density of Ei is immediate.
A filter G meeting all the dense sets Dα and Ei gives the desired subset of ë: we
let X ∗ :=

⋃
(f,F )∈G f. For each of the setsXi ∈ X , there is a condition (f,F ) ∈ G

such thatF contains Xi . By the definition of the order, the intersection X ∗ ∩Xi is
equal to f ∩ Xi . Since the filter meets every Dα , the set X

∗ is unbounded in ë. ⊣

Claim 3.8. Let ë<ë = ë, suppose that Ax0(ë) holds, and let ë ≤ ì < 2ë. For any
ì with ë ≤ ì < 2ë we have 2ì = 2ë.

Proof. Let {Xi | i < ì} be a family of almost disjoint subsets of ë, each of
cardinality ë. For each S ⊂ ì we construct a subset AS ⊂ ë such that AS has an
unbounded intersection with Xi for every i ∈ S, and is almost disjoint from Xj for
every j /∈ S. The resulting map AS 7→ S gives a surjection from (a part of) P (ë)
to P (ì).
The argument is the same as the one in the previous claim: let

P := {(f,F ) | f ⊂ ë, |f| < ë,F ⊂ {Xi | i ∈ S}, |F | < ë}.

The order is (f1,F1) ≤ (f2,F2) if f1 ⊇ f2, F1 ⊇ F2 and (f1 − f2) ∩
⋃
F2 = ∅.

The conditions on the partial order are easily verified, just as in the previous claim.
The relevant dense sets in this case are Di,α for α < ë and i ∈ S, and Ei , for
i ∈ ì− S where

Di,α := {(f,F ) | f ∩Xi ∩ [α, ë) 6= ∅}, i ∈ S, α < ë
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and
Ej := {(f,F ) | Xj ∈ F }, j ∈ ì− S.

The dense sets Di,α make sure that we meet the set Xi , i ∈ S, unboundedly many
times, and the sets Ej ensure that every set Xj , j /∈ S, has a bounded intersection
with the set XS . ⊣

Corollary 3.9. Let κ be a cardinal such that κ<κ = κ, let α < κ+, and let
{ëi | i ≤ α} be a permissible partial exponential function.
Let V be a set-theoretic universe such that

1. for all i < α, we have 2ëi = ëi+1;
2. for each of the regular cardinals ëi , the axiom Ax0(ëi) holds.

Then for each of the regular cardinals ëi , i < α, we have ë
<ëi
i = ëi .

Proof. We prove this by induction on i < α. For i = 0, the statement is
given by the assumption on κ. If i is a limit ordinal, then ëi is singular, since
α < κ+. If i = j + 1, then there are two cases. If i is a limit ordinal, then

ë
<ëj
j = (2ëi )ëi = 2

ëi = ëj . If i is a successor, then Ax0(ëi) holds, and by Claim 3.8

2ì = 2ëi for all ì such that ëi ≤ ì < 2ëi . But then ë
<ëj
j = ëj . ⊣

Let α be a limit ordinal, and κ a cardinal such that κ < α < κ+. Let K = Kκ,α
be the class built in Section 2.
The main result of this section is the following:

Theorem 3.10. For any limit ordinal α, where κ ≤ α < κ+, it is relatively consis-
tent with (ZFC+ the exponential function below iα is a permissible function) that the
class K = Kκ,α has the disjoint amalgamation property in every cardinal up to iα(κ)
but K does not have arbitrarily large models.

For the remainder of the section, we work in V Pα from Fact 3.4. The proof of
the theorem will use the following steps.
By Lemma 2.8 in Section 2, for every ì < κ and every k < ù there are (ì, k)-
systems of models in K , and the class K has (< κ, k, 0)-amalgamation property for
all k < ù.
Next we restate Lemma 2.10 in the form appropriate for this section replacing

ℵα by ë (the proof is identical). This allows us in the succeeding Lemma to move
amalgamation below ë not just below ë+ but below 2ë (using our additional set
theoretic hypotheses).

Lemma 3.11. For all k < ù, if the class K has the (< ë, k, â)-amalgamation
property, then K has the (ë, k − 1, â + 1)-amalgamation property.
Moreover, any special (ë, k − 1)-system (N, a), where a is formally indiscernible

of rank strictly greater than â + 1, can be amalgamated so that the rank of a in the
amalgam is â + 1.

The new ingredient is the following lemma.

Lemma 3.12. Suppose ë ≥ κ is a regular cardinal, andAx0(ë) holds. For all k < ù,
if K has (< ë,≤ k + 2, â)-amalgamation property, then for all ì, ë ≤ ì < 2ë, the
class K has (ì, k, â + 2)-amalgamation property.

Proof. Let ë ≤ ì < 2ë. Fix a special system N̄ = {Nu | u ⊂ k}, where⋃
Nu = ì and aℓ = ℓ for ℓ < k. If {aℓ | ℓ < k} are not formally indiscernible,
we can amalgamate easily, so suppose {aℓ | ℓ < k} are formally indiscernible with
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rank of au strictly greater than â + 2 for all u ⊂ k. Our goal is to make
⋃
|Nu | into

a model.
Define a partially ordered set P.

Definition 3.13. Let P be a set of modelsM ∈ K such that

1. M has the universe B ⊂ ì, |B| < ë;
2. {al | l < k} ⊆ B;
3. if u ⊂ k, then Nu ↾ (B ∩ |Nu |) is a substructure ofM ;
4. the rank of a inM is at least â + 2;
5. the rank of every (k + 1)-element indiscernible sequence extending a inM is
at least â + 1.

The partial order is the reverse K-submodel relation.

Claim 3.14. The partially ordered set P satisfies the conditions of the generalized
Martin’s axiom Ax0(ë).

Proof of Claim. The cardinality of P is ì<ë < 2ë. The poset P is closed under
descending chains of length less than ë.
It remains to check the strong chain condition. Let {Mi | i < ë+} be a sequence
of elements in P. For i < ë+, let Ai be the set of K-models of size strictly less
than ë with the universe contained in

⋃
j<i |Mj |. There are ë

<ë = ë choices for the

universe of such a K-model; and for each universe, there are 2<ë choices for each
predicate; and κ predicates, so max{κ, 2<ë} ≤ ë ways to define a ô-structure.
Thus, the cardinality of each setAi is ë; continuity at points of cofinality ë follows
from regularity of ë.
Let A :=

⋃
i<ë+ Ai . Define h : ë

+ → A by letting

h(i) :=Mi ↾ (|Mi | ∩
⋃

j<i

|Mj |).

If h(ä1) = h(ä2), then M1 := Mä1 and M2 := Mä2 agree on their intersection.
We will show that these two elements of P are compatible, i.e., there is a K-model
N ∈ P extending bothM1 andM2. To show that such a model exists, we need to
use (k + 2)-amalgamation.
Without loss of generality, we may assume that M1 = M0 ∪ {b1} and M2 =
M0 ∪ {b2}, where b1 6= b2. To construct the model N , we amalgamate the special
system:

{Nu ↾ (|Nu | ∩ (|M1| ∪ |M2|)) | u ⊂ k, |u| = k − 1} ∪ {M1,M2}

with the rootM0 and the special sequence b = {a0, . . . , ak−1, b1, b2}.
If the sequence b is not formally indiscernible, we amalgamatewithout a problem;
otherwise the rank of the subsequence {a0, . . . , ak−1, b1} has to be at least â + 1 by
(5) in the definition of P. So the amalgam N exists by the special (< ë, k + 2, â)-
amalgamation. ⊣3.14

To finish the proof of Lemma 3.12, we need to show that for each i < ì the set
Di := {M ∈ P | i ∈ |M |} is dense in P.
This is easy by (< ë, k + 1, â + 1)-amalgamation. If M ∈ P and i /∈ |M |, we
amalgamate the special system

{Nu ↾ (|Nu | ∩ (|M | ∪ {i})) | u ⊂ k, |u| = k − 1} ∪ {M}
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with the root N∅ ∩M and the special sequence b = {a0, . . . , ak−1, i}. If b is not
formally indiscernible, we can amalgamate without a problem, otherwise the rank
of b has to be strictly greater than â + 1. By Lemma 2.10, in particular by the
“moreover” clause, we get the amalgamM ′ of the system in which the rank of b is
â + 1. Thus,M ′ ∈ P.
By Ax0(ë), there is a filter G on P meeting all the dense sets Di , i < ì. The
desired modelM∗ :=

⋃
G is the needed amalgam. ⊣3.12

Proof of Theorem 3.10. Using Lemmas 2.8, 3.11, and 3.12, we have the follow-
ing by induction on ã ≤ α:

1. if ã = 0 or ã is a limit ordinal, then K has (< iã(κ), k, ã)-amalgamation for
all k < ù;

2. if ã = â + 1 where â is a limit ordinal, then K has (< iã(κ), k, ã + 1)-
amalgamation for all k < ù;

3. if ã = â + 1 where â is a successor ordinal, then K has (< iã(κ), k, ã + 2)-
amalgamation for all k < ù.

In particular, we have (iã(κ), 2, α + 1)-amalgamation for all ã ≤ α. By Re-
mark 2.7.2, it means that we have the disjoint amalgamation over the models of size
up to iα(κ). ⊣3.10

This completes our arguments showing that disjoint amalgamation can fail late.
Among the intriguing questions is deleting the word disjoint.
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