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Abstract. We consider the dynamics of nonlinear Schrödinger equations with
strong constant magnetic fields. In an asymptotic scaling limit the system

exhibits a purely magnetic confinement, based on the spectral properties of the

Landau Hamiltonian. Using an averaging technique we derive an associated
effective description via an averaged model of nonlinear Schrödinger type. In

a special case this also yields a derivation of the LLL equation.

1. Introduction

In this work, we study the asymptotic scaling limit, as ε → 0+ of nonlinear
Schrödinger equations (NLS) with strong magnetic fields. Such equations arise,
e.g., in the macroscopic description of fermion pairs in the state of Bose-Einstein
condensation, cf. [10]. To be more precise, we consider the following NLS-type
model (in dimensionless units) in three spatial dimensions:

(1.1) i∂tψ =
1

2

(
− i∇x +Aε(x)

)2
ψ + V (z)ψ + βε|ψ|2σψ,

where (t,x) ∈ R × R3, σ ∈ N, and βε ∈ R, some nonlinear coupling constant
(to be made precise later on). We will denote the spatial degrees of freedom by
x = (x1, x2, z) ∈ R3 and also write x = (x1, x2), for simplicity. The real-valued
potential V is assumed to be smooth and sub-quadratic, i.e., for α > 2:

(1.2) |∂αV (z)| 6 Cα, for all z ∈ R.

A possible example would be a harmonic oscillator potential in z-direction. The
vector potential Aε is assumed to be given by

Aε(x) =
1

2ε2
(−x2, x1, 0),

where 0 < ε� 1 is a small (adiabatic) parameter. This implies thatAε is divergence
free ∇x ·Aε = 0, and hence(

− i∇x +Aε(x)
)2

= −∆x +
1

4ε4
|x|2− i

ε2
(x1∂x2

− x2∂x1
).

The corresponding magnetic field is given by

Bε = ∇×Aε =
1

ε2
(0, 0, 1) ∈ R3,

i.e., a constant magnetic field in the z-direction with field strength |Bε| = 1
ε2 � 1.
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We want to analyze the strong magnetic confinement limit as ε→ 0+, assuming
that the initial data for (1.1) is of the form

ψ(0,x) = ε−1ψ0

(x
ε
, z
)
, with ‖ψ0‖L2 = 1.

In other words, we assume that the initial wave function is already confined at
the scale epsilon in the x-directions (an assumption which is consistent with the
asymptotic limiting regime considered). To this end, we rescale

x′ =
x

ε
, z′ = z, ψε(t, x′, z′) = εψ (t, εx′, z′) ,

ensuring that ‖ψε‖L2 = ‖ψ‖L2 = 1. Moreover, we shall assume that the nonlinear
coupling constant is of the form βε = λε2σ � 1, where λ ∈ R is fixed. We are thus
in a weak interaction regime.

In the rescaled variables, equation (1.1) becomes (dropping the primes in the
variables for simplicity)

(1.3) i∂tψ
ε =

1

ε2
Hψε − 1

2
∂2
zψ

ε + V (z)ψε + λ|ψε|2σψε, ψε|t=0 = ψ0(x, z),

where, using x⊥ = (−x2, x1), we denote

H =
1

2

(
−i∇x +

1

2
x⊥
)2

= −1

2
∆x +

1

8
|x|2− i

2
x⊥ · ∇x,

i.e., the classical Landau Hamiltonian in symmetric gauge, cf. [13]. Note that H
commutes with the rest of the linear Hamiltonian, i.e.,

[H, ∂2
z ] = [H, V ] = 0.

We comment on the case where V depends not only on z briefly in Remark 1.2
below.

Let us recall some well-known facts about the spectral properties of H. One finds
that H is essentially self-adjoint on C∞0 (R2) ⊂ L2(R2) with pure point spectrum
given by

(1.4) specH =
{
n+

1

2

}
, n ∈ N0.

These are the same eigenvalues as for a one-dimensional harmonic oscillator. Each
n ∈ N0 thereby corresponds to a distinct Landau level. In contrast to the harmonic
oscillator, however, the corresponding eigenspaces PnL

2(R2), are infinitely degen-
erate. Here, and in the following, we denote by Pn = P 2

n the spectral projection in
L2(R2) onto the n-th eigenspace of H.

In view of (1.3), it is clear that H induces high frequency oscillations (in time)
∝ O(ε−2) within the solution ψε. By filtering these oscillations, we consequently
expect the following limit in a strong norm,

φε(t,x) := eitH/ε
2

ψε(t,x)
ε→0+−→ φ(t,x).

In order to describe the behavior of the limit φ, a natural functional framework is
given by the space,

Σ2 :=
{
u ∈ H2(R3) : |x|2u ∈ L2(R3)

}
,

which is equipped with the norm

(1.5) ‖u‖Σ2 :=
(
‖u‖2H2 + ‖|x|2u‖2L2

)1/2
.

It will be useful for us that Σ2 is a Banach algebra. This space and its generaliza-
tions are commonly used in the existence theory of NLS with magnetic potentials,
cf., for instance, [7, 17, 18].
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Next, we introduce the following nonlinear function,

(1.6)

F (θ, u) := eiθH
(∣∣e−iθHu∣∣2σ e−iθHu)

= eiθ(H−1/2)

(∣∣∣e−iθ(H−1/2)u
∣∣∣2σ e−iθ(H−1/2)u

)
,

and study the behavior of F
(
t/ε2, u

)
, as ε → 0, where it is readily seen that

F ∈ C(R × Σ2,Σ2). Moreover, in view of (1.4) the operator eiθ(H−1/2) is 2π-
periodic with respect to θ, hence F is also 2π-periodic with respect to θ. Denoting
the average of this function by

Fav(u) := lim
T→∞

1

T

∫ T

0

F (θ, u) dθ

=
1

2π

∫ 2π

0

eiθH
(∣∣e−iθHu∣∣2σ e−iθHu) dθ,(1.7)

the limiting model as ε→ 0 formally reads:

(1.8) i∂tφ = −1

2
∂2
zφ+ V (z)φ+ λFav(φ),

subject to initial data φ(0,x) = ψ0(x, z). Here we have used the fact that H
commutes with the rest of the linear Hamiltonian. Equation (1.8) describes the
resulting averaged particle dynamics. Note that (1.8) is still a model in three
spatial dimensions. In particular, the Gross-Pitaevskii energy associated to (1.8) is

E(φ) =
1

2

∫
R3

|∂zφ|2 dx dz +

∫
R3

V (z)|φ|2 dx dz

+
λ

2π(σ + 1)

∫
R3

∫ 2π

0

∣∣e−iθHφ∣∣2σ+2
dθ dx dz.

However, the dependence of the solution to (1.8) on x = (x1, x2) only stems from
the nonlinear averaging operator Fav(φ). Thus, in the linear case λ = 0, (1.8)
becomes a true one-dimensional equation along the unconfined z-axis.

With these notations at hand, we can now state the main result of this work:

Theorem 1.1. Let V satisfy (1.2), σ ∈ N and ψ0 ∈ Σ2.
(i) There is a Tmax ∈ (0,∞] and a unique maximal solution φ ∈ C([0, Tmax),Σ2) ∩
C1([0, Tmax), L2(R3)) of the limiting equation (1.8), such that

‖φ(t, ·)‖L2 = ‖ψ0‖L2 , E(φ(t, ·)) = E(ψ0), ∀ t ∈ [0, Tmax).

(ii) For all T ∈ (0, Tmax) there are εT > 0, CT > 0 such that, for all ε ∈ (0, εT ],
equation (1.3) admits a unique solution ψε ∈ C([0, T ],Σ2) ∩ C1([0, T ], L2(R3)),
which is uniformly bounded with respect to ε ∈ (0, εT ] in L∞((0, T ),Σ2) and satisfies

max
t∈[0,T ]

∥∥∥ψε(t, ·)− e−itH/ε2φ(t, ·)
∥∥∥
L2
6 CT ε

2.

(iii) If, in addition, the initial data is concentrated in the n-th Landau level ψ0 =
Pnψ0, then for all t ∈ [0, Tmax) it holds φ(t) = Pnφ(t) and

i∂tφ = −1

2
∂2
zφ+ V (z)φ+ λPn

(
|φ|2σφ

)
.

This theorem is in the same spirit as earlier results for NLS with strong anisotropic
electric confinement potentials, cf. [2, 3, 4, 14]. Similarly, in [6] the authors study
a Schrödinger type model including strong magnetic fields combined with a strong
electric confinement. In the present work, however, the confinement is solely due to
the magnetic vector potential Aε, a situation, which, to the best of our knowledge,
has not been studied before in the case of nonlinear Schrödinger equations. (For
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linear Schrödinger equations, related questions have been considered in the context
of the Aharanov-Bohm effect, see, e.g., [12]). The main qualitative difference be-
tween electric and magnetic confinement seems to be that in the latter case, the
resulting limiting equation (1.8) always remains a model in three spatial dimensions
(even after projecting onto the n-th Landau level). In particular, it seems futile to
use an expansion in terms of eigenfunctions of the confining Hamiltonian H, as is
done in earlier works, cf. [2, 4], since in the present situation this would result in a
system of infinitely many coupled NLS.

We note that, instead of (1.1), one might want to consider the analogous equation
in only two spatial dimensions, i.e.,

i∂tψ =
1

2

(
− i∇x +Aε(x)

)2
ψ + λε2σ|ψ|2σψ, ψ|t=0 = ψ0(x),

where x = (x1, x2) ∈ R2. If the associated initial data satisfies ψ0 = Pnψ0(x), then
the same type of analysis yields the following limiting model:

i∂tφ = λPn
(
|φ|2σφ

)
, ψ|t=0 = ψ0(x).

The latter is a generalization of the lowest Landau level equation (LLL), which is
obtained for σ = 1 and n = 0. In this case, one usually denotes ζ = x1 + ix2 ∈ C
and P0 becomes the orthogonal projector in L2(C) on the Bargmann-Fock space

E =
{
e−|ζ|

2/2f(ζ) where f is entire
}
∩ L2(C).

The LLL equation has been extensively studied, see [1, 15], and, more recently, [9].

Remark 1.2. It is also possible to generalize our results to include potentials which
are of the form V = V

(
x
ε , z
)
. In the rescaled variables, the analog of (1.3) then

reads

i∂tψ
ε =

1

ε2
Hψε − 1

2
∂2
zψ

ε + V (x, z)ψ + λ|ψ|2σψ, ψ|t=0 = ψ0(x, z).

By replacing the nonlinear function F with

F̃ (θ, u) = eiθH
((
V (x, z) + λ

∣∣e−iθHu∣∣2σ) e−iθHu) ,
our Theorem 1.1 can be generalized in a straightforward way to obtain the following
limit model

i∂tφ = −1

2
∂2
zφ+

1

2π

∫ 2π

0

F̃ (θ, φ) dθ.

It is worth noting that

1

2π

∫ 2π

0

F̃ (θ, u)dθ =
∑
n∈N0

PnV Pn + λFav(u),

so the first term on the right hand side is diagonal in the Landau levels and thus
assertion (iii) of our main theorem remains valid also in this case.

This paper is now organized as follows. In Section 2 below, we shall derive the
necessary well-posedness theory for both (1.3) and (1.8). The averaging procedure,
which yields assertion (ii) of our main theorem is given Section 3. Finally, we
discuss the case of the dynamics within a given Landau level in Section 4.
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2. Well-posedness results

Before going into the details of the proof of the main theorem, we first need to
provide a suitable (local in-time) well-posedness theory for (1.3) as well as (1.8). To
this end, we recall the well-posedness results for magnetic NLS proved in [17], which
themselves rely on a construction of the fundamental solution of the associated
linear Schrödinger group by [18] and [7, 8]. Indeed, in view of our assumptions on
A and V it is easily seen that (1.3) falls within the class of models studied in [17],
i.e., NLS with smooth, sub-quadratic electric potentials V and magnetic potentials
A ∈ C∞(R3;R3) satisfying:

|∂αA(x)| 6 Cα, ∀|α| > 1,

and such that Bjk = ∂jAk − ∂kAj fulfills

|∂αBjk(x)| 6 Cα〈x〉−1−δ, ∀|α| > 1,

for some δ > 0. Under this assumptions we have the following local well-posedness
result.

Proposition 2.1. Let A and V be as above. Then for any ψ0 ∈ Σ2 there is a
maximal existence time T ε1 ∈ (0,+∞] such that (1.3) has a unique solution

ψε ∈ C([0, T ε1 ); Σ2) ∩ C1((0, T ε1 );L2(R3)),

depending continuously on the initial data ψ0.

This result is proved, under slightly more general conditions, in [17, Theorem 1].
(We point out that [17] uses a different, but equivalent norm in Σ2.) To this end
one uses the fact that the linear Schrödinger group S(t) = e−itH generated by the
magnetic Hamiltonian

H =
1

2

(
− i∇x +A(x)

)2
ψ + V (z),

admits space-time Strichartz estimates on some sufficiently small time interval I ⊂
R, containing the origin. (Global in-time Strichartz estimates cannot be expected,
in general, due to the possibility of eigenvalues within specH.)

Remark 2.2. The existence time T ε1 > 0 obtained above, in principle could shrink
to zero as ε → 0+, but it will be a consequence of our approximation result that
this is, in fact, not the case.

The result above does not directly translate to the limiting equation (1.8). The
reason for this is that (1.8) does not contain the full three-dimensional Laplacian,
but only ∂2

z . Thus, the dispersive properties of the associated Schrödinger group
are much weaker in this case, and one cannot expect the full range of Strichartz
estimates to be available. Nevertheless one can prove the following result, using a
classical fixed point argument.

Lemma 2.3. Let V satisfy (1.2) and σ ∈ N. Then for any ψ0 ∈ Σ2 there is a
maximal existence time Tmax ∈ (0,∞] such that (1.8) has a unique solution

φ ∈ C([0, Tmax); Σ2) ∩ C1((0, Tmax);L2(R3)),

depending continuously on the initial data ψ0. In addition, the usual conservation
laws for the total mass and energy hold, i.e.,

‖φ(t, ·)‖L2 = ‖ψ0‖L2 , E(φ(t, ·)) = E(ψ0), ∀ t ∈ [0, Tmax).

Proof. The result follows from a classical fixed-point argument (see, e.g., [5]) based
on Duhamel’s formula for the solution φ, i.e.,

φ(t) = U(t)ψ0 − iλ
∫ t

0

U(t− s)Fav(φ(s)) ds =: Φ(φ)(t),
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where U(t) = e−itHz is the Schrödinger group generated by

Hz = −1

2
∂2
z + V (z),

with smooth, sub-quadratic potential V (z). In order to prove that the map Φ is a
contraction on some suitably chosen ball BR(0) ⊂ C([0, T ); Σ2), we first recall that
the results of [7, 8] show that for any ϕ ∈ Σ2: U( · )ϕ ∈ C(R; Σ2) ∩ C1(R;L2(R3)).
It therefore suffices to show that the nonlinear term Fav is locally Lipschitz to
conclude the desired result, cf. [16, Chapter 6.1]. To this end, we first note that
for σ ∈ N, the map z 7→ |z|2σz is smooth and locally Lipschitz. This fact directly
translates to Fav in view of the second line in (1.7) and the fact that Σ2 is a Banach
algebra. Continuous dependence on the initial data, as well as the conservation laws
for the mass and energy then follow by classical arguments, cf. [5, 16]. �

Remark 2.4. Unfortunately, the conservation laws of mass and energy are not
sufficient to infer global in-time existence of such solutions, i.e., Tmax = +∞, even
in the defocusing case λ > 0. In order to obtain a global result, one would need to
work with solutions in Σ1 = {u ∈ H1(R3) : |x|u ∈ L2(R3)}, whose life-span can be
controlled by the mass and energy. This, however, results in a severe restriction on σ
when one tries to prove Lipschitz continuity of the nonlinearity in three dimensions.

3. A-priori estimates and averaging

This section is devoted to the proof of Theorem 1.1 (i) and (ii). Clearly, item
(i) is a direct consequence of Lemma 2.3. In the following it will be convenient to
work with the norm

‖f‖′Σ2 :=
(
‖f‖2L2 + ‖H0f‖2L2 + ‖∂2

zf‖2L2 + ‖z2f‖2L2

)1/2
defined in terms of the harmonic oscillator

H0 = −∆x +
1

4
|x|2.

One can show (see [11] and also [3]) that there are constants 0 < C
<
< C

>
< ∞

such that for all f ∈ Σ2,

C<‖f‖Σ2 6 ‖f‖′Σ2 6 C>‖f‖Σ2 .

As a preliminary to the proof of item (ii) we investigate the boundedness prop-
erties of e−itH and e−itH0 on the space Σ2.

Lemma 3.1. For all t ∈ R and all f ∈ Σ2,

‖e−itHf‖′Σ2 = ‖f‖′Σ2 .

Proof. This simply follows from the fact that the operator H commutes with all
four operators 1, H0, −∂2

z and z2 that appear in the definition of the norm ‖ · ‖′Σ2 .
For H0 this can be seen by noting that

H =
1

2
H0 −

i

2
x⊥ · ∇x

and that H0 commutes with ix⊥ · ∇x. �

Lemma 3.2. There is a C > 0 such that for all t ∈ R and all f ∈ Σ2,

‖e−itHzf‖′Σ2 6 eC|t|‖f‖′Σ2 .
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Proof. Clearly, the term involving H0 in the definition of ‖ · ‖′Σ2 is invariant under

e−itHz . We shall prove now that for all sufficiently smooth and rapidly decaying f ,

(3.1)

d

dt

(
‖e−itHzf‖2L2 + ‖∂2

ze
−itHzf‖2L2 + ‖z2e−itHzf‖2L2

)
6 C

(
‖e−itHzf‖2L2 + ‖∂2

ze
−itHzf‖2L2 + ‖z2e−itHzf‖2L2

)
.

By Gronwall’s lemma this implies that

‖e−itHzf‖2L2 + ‖∂2
ze
−itHzf‖2L2 + ‖z2e−itHzf‖2L2

6 eC|t|
(
‖f‖2L2 + ‖∂2

zf‖2L2 + ‖z2f‖2L2

)
,

which, by density, extends to all f ∈ Σ2 and, thus, yields the asserted bound on
‖e−itHzf‖′Σ2 .

It remains to prove (3.1). We first compute for sufficiently “nice” functions f

d

dt

(
‖e−itHzf‖2L2 + ‖∂2

ze
−itHzf‖2L2 + ‖z2e−itHzf‖2L2

)
= i
(
e−itHzf, [Hz, ∂4

z ]e−itHzf
)

+ i
(
e−itHzf, [Hz, z4]e−itHzf

)
= −2Im

(
∂2
ze
−itHzf, [Hz, ∂2

z ]e−itHzf
)
− 2Im

(
z2e−itHzf, [Hz, z2]e−itHzf

)
.

Thus, by the Schwarz inequality,

d

dt

(
‖e−itHzf‖2L2 + ‖∂2

ze
−itHzf‖2L2 + ‖z2e−itHzf‖2L2

)
6 2‖∂2

ze
−itHzf‖L2

∥∥[Hz, ∂2
z ]e−itHzf

∥∥
L2 + 2‖z2e−itHzf‖L2

∥∥[Hz, z2]e−itHzf
∥∥
L2

6 2
(
‖∂2
ze
−itHzf‖2L2 + ‖z2e−itHzf‖2L2

)1/2
×
(∥∥[Hz, ∂2

z ]e−itHzf
∥∥2

L2 +
∥∥[Hz, z2]e−itHzf

∥∥2

L2

)1/2

.

We now compute the commutators

[Hz, ∂2
z ] = [V, ∂2

z ] = −2V ′∂z − V ′′ and [Hz, z2] = −1

2
[∂2
z , z

2] = −2z∂z − 1.

Thus, clearly, ∥∥[Hz, z2]e−itHzf
∥∥
L2 .

∥∥e−itHzf∥∥
Σ2 .

Moreover, in view of our assumption (1.2) on V (with α = 2),∥∥[Hz, ∂2
z ]e−itHzf

∥∥
L2 .

∥∥(|z|+ 1)∂ze
−itHzf

∥∥
L2 +

∥∥e−itHzf∥∥
L2 .

∥∥e−itHzf∥∥
Σ2 .

This concludes the proof of (3.1) and therefore of the lemma. �

We now begin with the proof of item (ii) in Theorem 1.1, following the same
strategy as in [14]. We fix 0 < T < Tmax, where Tmax is as in item (i) of the
theorem, and set

(3.2) M := sup
ε>0
‖e−itH/ε

2

φ‖L∞((0,T )×R3).

Because of the continuous imbedding Σ2 ↪→ H2(R3) ↪→ L∞(R3), Lemma 3.1 and
the existence result in Lemma 2.3 we have

‖e−itH/ε
2

φ‖L∞((0,T )×R3) 6 C‖e−itH/ε
2

φ‖L∞((0,T ),Σ2) = C‖φ‖L∞((0,T ),Σ2) < +∞,

that is, M < ∞. In particular, we have ‖ψ0‖L∞ = ‖φ(0, ·)‖L∞ 6 M. Next, we
introduce

(3.3) T ε := sup {t ∈ [0, T ε1 ) : ‖ψε(s)‖L∞ 6 2M for all s ∈ [0, t]} ,

where T ε1 > 0 is local existence time defined in Proposition 2.1. We have T ε > 0
by continuity and the fact that ‖ψε(0)‖ 6M .
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Lemma 3.3. There is a CM > 0 such that for all ε > 0 and all t ∈ [0, T ε],

‖ψε(t)‖′Σ2 6 ‖ψ0‖′Σ2 eCM t.

Proof. It follows from Lemmas 3.1 and 3.2 and the fact that H and Hz commute
that for all t ∈ R and f ∈ Σ2,

(3.4)
∥∥∥e−it(ε−2H+Hz)f

∥∥∥′
Σ2
6 eC|t|‖f‖′Σ2 .

The crucial point here is that the right side is independent of ε.
Equation (1.3) for ψε in Duhamel form reads

ψε(t) = e−it(ε
−2H+Hz)ψ0 − iλ

∫ t

0

e−i(t−s)(ε
−2H+Hz)|ψε(s)|2σψε(s) ds.

Therefore, according to (3.4), if t ≥ 0,

‖ψε(t)‖′Σ2 6 eCt
(
‖ψ0‖′Σ2 + |λ|

∫ t

0

eCs
∥∥|ψε(s)|2σψε(s)∥∥′

Σ2 ds

)
.

Since σ is an integer we easily find the following Moser-type inequality,∥∥|f |2σf∥∥′
Σ2 6 C

′‖f‖2σL∞‖f‖′Σ2 .

Therefore, recalling that ‖ψε(s)‖L∞ 6 2M if s 6 T ε, we obtain for all t ∈ [0, T ε],

‖ψε(t)‖′Σ2 6 eCt
(
‖ψ0‖′Σ2 + C ′|λ|(2M)2σ

∫ t

0

eCs ‖ψε(s)‖Σ2 ds

)
.

By Gronwall’s lemma this yields

‖ψε(t)‖′Σ2 6 ‖ψ0‖′Σ2eCt+C
′|λ|(2M)2σt

for all t ∈ (0, T ε], which proves the lemma. �

In view of the continuity of t 7→ ψε(t) ∈ Σ2, an important consequence of the
foregoing lemma is that

(3.5) if T ε <∞, then T ε < T ε1 and ‖ψε(T ε)‖L∞ = 2M ,

a fact we shall use in the proof below.

Proof of Theorem 1.1(ii). We consider the filtered unknown φε := eitH/ε
2

ψε, which
satisfies

i∂tφ
ε = −1

2
∂2
zφ

ε + V (z)φ+ λF

(
t

ε2
, φε
)
, φε|t=0 = ψ0,

where F is defined in (1.6). Denoting the difference

uε := φε − φ

for 0 6 t < min(Tmax, T
ε
1 ) and recalling that φ solves (1.8) we obtain that uε

satisfies

uε(t) = λ

∫ t

0

U(t− s)
(
F
( s
ε2
, φε(s)

)
− F

( s
ε2
, φ(s)

))
ds

+ λ

∫ t

0

U(t− s)
(
F
( s
ε2
, φ(s)

)
− Fav(φ(s))

)
ds

≡ A1 +A2.

Here we denote, as before, the Schrödinger group U(t) = e−itHz , and we have also
used the fact that uε(0) = 0.
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In order to estimate A1, we recall that for 0 6 t 6 min(T, T ε), (3.2) and (3.3)
imply that

‖A1‖L2 .
∫ t

0

∥∥∥|ψε(s)|2σψε(s)− |e−isH/ε2φ(s)|2σe−isH/ε
2

φ(s)
∥∥∥
L2
ds

.
∫ t

0

(
‖ψε(s)‖2σL∞ +

∥∥∥e−isH/ε2φ(s)
∥∥∥2σ

L∞

)
‖ψε(s)− e−isH/ε

2

φ(s)‖L2ds

.M2σ

∫ t

0

‖uε(s)‖L2ds

.
∫ t

0

‖uε(s)‖L2ds.

Here and in the rest of this proof we use the convention that the implied constant
in . may depend on T , but not on ε.

On the other hand, in order to estimate A2 we introduce the following function,
defined on R× Σ2,

F(θ, u) =

∫ θ

0

(F (s, u)− Fav(u))ds,

and write as in [3, 14]

U(t− s)
(
F
( s
ε2
, φ(s)

)
− Fav(φ(s))

)
= ε2 d

ds

(
U(t− s)F

( s
ε2
, φ(s)

))
− iε2U(t− s)HzF

( s
ε2
, φ(s)

)
− ε2U(t− s)DuF

( s
ε2
, φ(s)

)
· ∂tφ(s),

where we recall that Hz = − 1
2∂

2
z + V (z). Then we can bound

‖A2‖L2 6 ε2|λ|
∥∥∥∥F ( t

ε2
, φ(t)

)∥∥∥∥
L2

+ ε2|λ|
∫ t

0

∥∥∥HzF ( s
ε2
, φ(s)

)∥∥∥
L2
ds

+ ε2|λ|
∫ t

0

∥∥∥DuF
( s
ε2
, φ(s)

)
· ∂tφ(s)

∥∥∥
L2
ds.

In order to bound the right-hand side, we note that, since F (·, u) is 2π-periodic
and Fav is its average, F(·, u) is also 2π-periodic. Hence, it is readily seen that this
function satisfies the following properties,

if ‖u‖Σ2 6 R, then sup
θ∈R
‖F(θ, u)‖Σ2 6 CR2σ+1,

if ‖u‖Σ2 + ‖v‖L2 6 R, then sup
θ∈R
‖DuF(θ, u) · v‖L2 6 CR2σ+1.

Since φ ∈ L∞([0, T ],Σ2), ∂tφ ∈ L∞([0, T ], L2(R3)) and since ‖Hzu‖L2 . ‖u‖Σ2 (by
our assumptions (1.2) on V ), we can finally bound

‖A2‖L2 . ε2.

(Here, we have also used the fact that the time interval has at most length T . 1.)
In summary, we have proved that, for all t ∈ [0,min(T, T ε)],

‖uε(t, ·)‖L2 . ε2 +

∫ t

0

‖uε(s, ·)‖L2ds.

Thus, Gronwall’s lemma yields that, for all t ∈ [0,min(T, T ε)],

(3.6) ‖ψε(t)− e−itH/ε
2

φ(t)‖L2 = ‖φε(t)− φ(t)‖L2 = ‖uε(t)‖L2 . ε2.
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We consequently deduce from (3.2), a Gagliardo–Nirenberg inequality, (3.6), Lemma
3.1 and Lemma 3.3 that, for all t ∈ [0,min(T, T ε)],

‖ψε(t)‖L∞ 6M + ‖ψε(t)− e−itH/ε
2

φ(t)‖L∞

6M + C‖ψε(t)− e−itH/ε
2

φ(t)‖1/4L2 ‖ψε(t)− e−itH/ε
2

φ(t)‖3/4H2

6M + C ′ε1/2 (‖ψε(t)‖′Σ2 + ‖φ(t)‖′Σ2)
3/4

6M + C ′′ε1/2.

Here the constant C ′′ depends on T , but not on ε. (Note that the factor eCM t in
Lemma 3.3 can be bounded by eCMT for t 6 min(T, T ε).)

Hence, for ε < εT := (M/C ′′)2, we have

(3.7) ∀t 6 min(T, T ε), ‖ψε(t)‖L∞ < 2M.

We claim that this implies T ε > T . In fact, this is trivial when T ε = ∞ and
otherwise we deduce from (3.5) that ‖ψε(T ε)‖ = 2M , which contradicts (3.7).

Consequently, (3.6) is valid on [0, T ] which proves the inequality in item (ii)
of Theorem 1.1. Finally the claimed uniform boundedness in L∞((0, T ),Σ2) with
respect to ε ∈ (0, εT ] follows from Lemma 3.3 and the fact that T ε > T . This
completes the proof. �

4. Dynamics within a single Landau level

In this section, we first prove that for initial data ψ0 concentrated within a given
Landau level, the effective dynamics is given by item (iii) of Theorem 1.1. To this
end, we denote by Pn = P 2

n the spectral projection onto the n-th eigenspace of H,
and assume that initially ψ0 = Pnψ0.

Proof of Theorem 1.1(iii). We let P⊥n = 1− Pn and w := P⊥n φ ∈ C([0, Tmax),Σ2),
and recall that w(0,x) = 0, since φ(0,x) = Pnψ0(x). It suffices to show that
w(t,x) = 0, for all t ∈ [0, Tmax). To this end, we first note that the equation
satisfied by w is

i∂tw = Hzw +
λ

2π

∫ 2π

0

P⊥n F (θ, φ)dθ,

where F is defined by (1.6). We rewrite this equation as

i∂tw = Hzw +
λ

2π

∫ 2π

0

P⊥n F (θ, Pnφ) dθ

+
λ

2π

∫ 2π

0

P⊥n (F (θ, Pnφ+ w)− F (θ, Pnφ)) dθ,

and also note that

F (θ, u) = eiθH
(∣∣e−iθHu∣∣2σ e−iθHu)

= eiθ(H−n−1/2)

(∣∣∣e−iθ(H−n−1/2)u
∣∣∣2σ e−iθ(H−n−1/2)u

)
.

Using this, we see that∫ 2π

0

P⊥n F (θ, Pnφ)dθ =

∫ 2π

0

P⊥n e
iθ(H−n−1/2)

(
|Pnφ|2σ Pnφ

)
dθ

=
∑
m 6=n

(∫ 2π

0

eiθ(m−n)dθ

)
Pm

(
|Pnφ|2σ Pnφ

)
= 0,
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due to the 2π-periodicity of eiθ(m−n). By writing the Duhamel formulation of the
equation w, we therefore obtain

w(t) = −iλ
∫ t

0

e−i(t−s)Hz
1

2π

∫ 2π

0

P⊥n (F (θ, Pnφ(s) + w(s))− F (θ, Pnφ(s))) dθds,

and therefore

‖w(t)‖L2 6
|λ|
2π

∫ t

0

∫ 2π

0

‖F (θ, Pnφ(s) + w(s))− F (θ, Pnφ(s))‖L2 dθ ds

6 C
∫ t

0

sup
θ

(
‖e−iθH(Pnφ(s) + w(s))‖2σL∞ + ‖e−iθHPnφ(s)‖2σL∞

)
‖w(s)‖L2 ds.

Since Σ2 ↪→ H2(R3) ↪→ L∞(R3), we can use Lemma 3.1 to obtain

‖e−iθH(Pnφ(s) + w(s))‖L∞ = ‖e−iθHφ(s)‖L∞ . ‖e−iθHφ(s)‖′Σ2 = ‖φ(s)‖′Σ2 .

According to item (i) in Theorem 1.1 this is bounded on any interval [0, T ] with
T < Tmax. Similarly, we bound

‖e−iθHPnφ(s)‖L∞ . ‖e−iθHPnφ(s)‖′Σ2 6 ‖Pnφ(s)‖′Σ2 .

We now obtain the same bound as before if we use that

‖Pnφ(s)‖′Σ2 6 ‖φ(s)‖′Σ2 .

The proof of this inequality is similar to the proof of Lemma 3.1. In fact, the
inequality is obvious for all terms in the definition of the norm ‖ ·‖′Σ2 except for the
one involving H0. As observed in Lemma 3.1, however, H0 commutes with H and
therefore also with Pn. Thus, ‖H0Pnu‖L2 = ‖PnH0u‖L2 6 ‖H0u‖L2 , as claimed.

To summarize, we have shown that for any T < Tmax there is a C such that for
all t ∈ [0, T ],

‖w(t)‖L2 6 C
∫ t

0

‖w(s)‖L2 ds.

By Gronwall’s lemma, we deduce that w ≡ 0 on [0, T ] for any T < Tmax. This
completes the proof of the theorem. �

References

1. A. Aftalion, X. Blanc, F. Nier, Lowest Landau level functional and Bargmann spaces for

Bose-Einstein condensates. J. Funct. Anal. 241 (2006), no. 2, 661–702.

2. N. Ben Abdallah, F. Castella, F. Delebecque-Fendt, F. Méhats, The strongly confined
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