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Abstract. We consider semiclassically scaled Schrödinger equations with an
external potential and a highly oscillatory periodic potential. We construct as-
ymptotic solutions in the form of semiclassical wave packets. These solutions
are concentrated (both, in space and in frequency) around the effective semi-
classical phase-space flow, and involve a slowly varying envelope whose dynam-
ics is governed by a homogenized Schrödinger equation with time-dependent
effective mass tensor. The corresponding adiabatic decoupling of the slow and
fast degrees of freedom is shown to be valid up to Ehrenfest time scales.

1. Introduction.

1.1. General setting. We consider the following semiclassically scaled Schrödinger
equation: ⎧⎨

⎩ iε∂tψ
ε +

ε2

2
Δψε = VΓ

(x
ε

)
ψε + V (x)ψε, (t, x) ∈ R× R

d,

ψε
|t=0 = ψε

0,
(1.1)

with d � 1, the spatial dimension, and ψε = ψε(t, x) ∈ C. Here, we already have
rescaled all physical parameters such that only one semiclassical parameter ε > 0
(i.e. the scaled Planck’s constant) remains. In the following we shall be interested
in the asymptotic description of ψε(t, x) for ε � 1. To this end, the potential
VΓ(y) ∈ R is assumed to be smooth and periodic with respect to some regular
lattice Γ � Z

d, generated by a given basis {η1, . . . , ηd}, η� ∈ R
d, i.e.

VΓ(y + γ) = VΓ(y), ∀ y ∈ R
d, γ ∈ Γ (1.2)
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where

Γ ≡
{
γ =

d∑
�=1

γ�η� ∈ R
d : γ� ∈ Z

}
.

In addition, the slowly-varying potential V is assumed to satisfy the following:

Assumption 1.1. V ∈ C3(Rd;R) and ∂γV ∈ L∞ (
R

d
)
, for |γ| = 2, 3.

Note that this implies that V (x) grows at most quadratically at infinity. Equation
1.1 describes the dynamics of quantum particles in a periodic lattice-potential VΓ
under the influence of an external, slowly varying potential V , generating a driving
force F = −∇V . A typical application arises in solid state physics where (1.1)
describes the time-evolution of electrons moving in a crystalline lattice (generated by
the ionic cores). The asymptotics of (1.1) as ε→ 0+ is a natural two-scale problem
which is well-studied in the physics and mathematics literature. Early mathematical
results are based on time-dependent WKB type expansions [3, 15, 31, 38] (see also
[7] for a more recent application in the nonlinear case), which, however, suffer from
the appearance of caustics and are thus only valid for small times. In order to
overcome this problem, other methods based on, e.g., Gaussian beams [11, 31], or
Wigner measures [13, 14, 27], have been developed. These approaches yield an
asymptotic description for time-scales of order O(1) (i.e. beyond caustics). More
recently, so-called space-adiabatic perturbation theory has been used (together with
Weyl pseudo-differential calculus) to derive an effective Hamiltonian, governing the
dynamics of particles in periodic potentials VΓ under the additional influence of
slowly varying perturbations [22, 40]. The semi-classical asymptotics of this effective
model is then obtained in a second step, invoking an Egorov-type theorem.
On the other hand, it is well known that in the case without periodic potential,

semiclassical approximations which are valid up to Ehrenfest time t ∼ O(ln 1/ε)
can be constructed in a rather simple way. The corresponding asymptotic method
is based on propagating semiclassical wave packets, or coherent states, i.e. approxi-
mate solutions of (1.1) which are sufficiently concentrated in space and in frequency
around the classical Hamiltonian phase-space flow. More precisely, one considers

ψε(t, x) ≈ ε−d/4u

(
t,
x− q(t)√

ε

)
ei(S(t)+(x−q(t))·p(t))/ε, (1.3)

where (q(t), p(t)) ∈ C3
(
R;R2d

)
satisfies Hamilton’s equation of motion{

q̇(t) = p(t), q(0) = q0,

ṗ(t) = −∇xV (q(t)) , p(0) = p0,
(1.4)

and the purely time-dependent function S(t) denotes the classical action (see §1.3
below). The right hand side of (1.3) corresponds to a wave function which is equally
localized in space and in frequency (at scale

√
ε), so the uncertainty principle is

optimized. In other words, the three quantities

‖ψε(t)‖L2(Rd),

∥∥∥∥
(√

ε∇− ip(t)√
ε

)
ψε(t)

∥∥∥∥
L2(Rd)

, and

∥∥∥∥x− q(t)√
ε

ψε(t)

∥∥∥∥
L2(Rd)

have the same order of magnitude, O(1), as ε→ 0. The basic idea for this type of
asymptotic method can be found in the classical works of [16, 26] (see also [4, 29]
for a broader introduction). It has been developed further in, e.g., [8, 9, 35, 36, 39]
and in addition also proved to be applicable in the case of nonlinear Schrödinger
equations [6] (a situation in which the use of Wigner measures of space-adiabatic
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perturbation theory fails). Asymptotic results based on such semiclassical wave
packets also have the advantage of giving a rather clear connection between quantum
mechanics and classical particle dynamics and are thus frequently used in numerical
simulations (see e.g. [12]).
Ehrenfest time is the largest time up to which the wave packet approximation is

valid, in general. Without any extra geometric assumption, the coherent structure
may be lost at some time of order C ln 1/ε, if C is too large. See e.g. [5, 10, 30, 33, 34]
and references therein.
Interestingly enough, though, it seems that so far this method has not been

extended to include also highly oscillatory periodic potentials VΓ
(
x
ε

)
, and it will be

the main task of this work to do so. To this end, it will be necessary to understand
the influence of VΓ

(
x
ε

)
on the dispersive properties of the solution ψε(t, x). In

particular, having in mind the results quoted above, one expects that in this case
the usual kinetic energy of a particle E = 1

2 |k|2 has to be replaced by Em(k), i.e.
the energy of the m-th Bloch band associated to VΓ. We shall show that under
the additional influence of a slowly varying potential V (x), this procedure is in fact
asymptotically correct (i.e. for ε � 1) up to Ehrenfest time, provided the initial
data ψε

0 is sufficiently concentrated around (q0, p0) ∈ R
2d.

Remark 1.2. Indeed, we could also allow for time-dependent external potentials
V (t, x) ∈ R measurable in time, smooth in x, and satisfying

∂γxV ∈ L∞
(
Rt × R

d
x

)
, |γ| = 2, 3.

Under this assumptions, it is straightforward to adapt the analysis given below. For
the sake of notation, we shall not do so here, but rather leave the details to the
reader.

1.2. Bloch and semiclassical wave packets. In order to state our result more
precisely, we first recall some well-known analysis on the spectral theory for periodic
Schrödinger operators, initiated in [41], and presented in, e.g., [32, 40] as follows:
Let

Hper := −1
2
Δy + VΓ(y),

and denote by Y ⊂ Γ the (centered) fundamental domain of the lattice Γ, equipped
with periodic boundary conditions, i.e. Y � T

d. Similarly, we denote by Y ∗ � T
d

the fundamental domain of the corresponding dual lattice. The latter is usually
referred to as the Brillouin zone. Bloch–Floquet theory asserts that Hper admits a
fiber-decomposition

Hper =
1

|Y ∗|
∫
Y ∗
HΓ(k) dk,

where for k ∈ Y ∗, we denote

HΓ(k) =
1

2
(−i∇y + k)

2
+ VΓ (y) ,

acting on

H2
per(Y ) = {ϕ ∈ H2

loc(R
d) ; ϕ(y + γ) = ϕ(y), ∀γ ∈ Γ, a.e. y ∈ R

d}.
It therefore suffices to consider the following spectral problem on Y :

HΓ(k)χm(·, k) = Em(k)χm(·, k), k ∈ Y ∗, m ∈ N, (1.5)
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where Em(k) ∈ R and χm(y, k), respectively, denote an eigenvalue/eigenvector pair
of HΓ(k), parametrized by k ∈ Y ∗, the so-called crystal momentum. These eigen-
values can be ordered increasingly, such that

E1(k) � . . . � Em(k) � Em+1(k) � . . . ,

where each eigenvalue is repeated according to its multiplicity (which is known
to be finite). The associated eigenfunctions χm(·, k) ∈ H2

per(Y ) form a complete

orthonormal basis of L2(Y ). Moreover, they are known to be real-analytic with
respect to k on Y ∗ \Ω, where Ω is a set of Lebesgue measure zero (the set of band
crossings). We thus have

specHper =
⋃
m∈N

{Em(k) ; k ∈ Y ∗} ⊂ R,

where {Em(k); k ∈ Y ∗} is usually called the m-th energy band (or Bloch band) and

ϕm(y, k) := eik·yχm(y, k)

satisfies, for every fixed k ∈ R
d, Hperϕm = Em(k)ϕm, in the space

H2
k = {ϕ ∈ H2

loc(R
d) : ϕ(y + γ) = eik·γϕ(y), ∀γ ∈ Γ}.

Next, we consider for some m ∈ N the corresponding semi-classical band Hamil-
tonian, i.e.

hscm(k, x) = Em(k) + V (x), (k, x) ∈ Y ∗ × R
d,

and denote the semiclassical phase space trajectories associated to hscm by{
q̇(t) = ∇kEm (p(t)) , q(0) = q0,

ṗ(t) = −∇xV (q(t)) , p(0) = p0.
(1.6)

This system is the analog of (1.4) in the presence of an additional periodic potential.

Example 1.3 (No external potential). In the case V (x) = 0, we simply have

p(t) = p0, q(t) = q0 + t∇kEm(p0), (1.7)

that is, a shift with constant speed ω = ∇Em(p0).

In order to make sure that the system (1.6) is well-defined, we shall from now on
impose the following condition on Em(k).

Assumption 1.4. We assume that Em(p(t)) is a simple eigenvalue, uniformly for
all t ∈ R, i.e. there exists a δ > 0, such that

|Em(p(t))− En(k)| � δ, ∀n �= m, t ∈ R, k ∈ Y ∗.
It is known that if Em(k) is simple, it is infinitely differentiable and thus the right

hand side of (1.6) is well defined. Under Assumption 1.4, we consequently obtain a
smooth classical flow (q0, p0) �→ (q(t), p(t)), for all t ∈ R. In addition, one can choose
χm(y, k) to be Γ–periodic with respect to y and such that (y, t) �→ χm(y, p(t)) is
bounded together with all its derivatives.

Example 1.5. By compactness of Y ∗, Assumption 1.4 is satisfied if Em(k) is a
simple eigenvalue for all k ∈ Y ∗. In particular, in d = 1 it is known that every
Em(k) is simple, except possibly at k = 0 or at the edge of the Brillouin zone.
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1.3. Main result. With the above definitions at hand, we are now able to state
our main mathematical result. To this end, we first define a semiclassical wave
packet in the m-th Bloch band (satisfying Assumption 1.4) by

ϕε(t, x) = ε−d/4u

(
t,
x− q(t)√

ε

)
χm

(x
ε
, p(t)

)
eiφm(t,x)/ε (1.8)

with q(t), p(t) given by system (1.6) and u(t, z) ∈ C, a smooth slowly varying
envelope which will determined by an envelope equation yet to be derived (see
below). In addition, the ε-oscillatory phase is

φm(t, x) = Sm(t) + p(t) · (x− q(t)), (1.9)

where Sm(t) ∈ R is the (purely time-dependent) semi-classical action

Sm(t) =

∫ t

0

Lm(p(s), q(s)) ds, (1.10)

with Lm denoting the Lagrangian associated to the effective Hamiltonian hscm, i.e.

Lm(p(s), q(s)) = p(s) · q̇(s)− hscm (p(s), q(s))

= p(s) · ∇Em(p(s))− hscm (p(s), q(s)) ,
(1.11)

in view of (1.6). Note that this is nothing but the Legendre transform of the effective
Hamiltonian hscm.
The function ϕε given by (1.8) generalizes the usual class of semiclassical wave

packets considered in e.g. [16, 26]. Note that in contrast to two-scale WKB ap-
proximation considered in [3, 15, 38], it involves an additional scale of the order
1/
√
ε, the scale of concentration of the amplitude u. In addition, (1.8) does not

suffer from the appearance of caustics. Nevertheless, in comparison to the highly
oscillatory Bloch function χm, the amplitude is still slowly varying and thus we can
expect an adiabatic decoupling between the slow and fast scales to hold on (long)
macroscopic time-scales. Indeed, we shall prove the following result:

Theorem 1.6. Let VΓ be smooth and V satisfy Assumptions 1.1. In addition, let
Assumption 1.4 hold and the initial data be given by

ψε
0(x) = ε−d/4u0

(
x− q0√

ε

)
χm

(x
ε
, p0

)
eip0·(x−q0)/ε,

with q0, p0 ∈ R
d and some given profile u0 ∈ S(Rd). Then there exists C > 0 such

that the solution of (1.1) can be approximated by

‖ψε(t)− ϕε(t)‖L2(Rd) � C
√
εeCt.

Here, ϕε is given by (1.8) with

u(t, z) = v(t, z) exp

(∫ t

0

β(τ)dτ

)
,

where β(t) ∈ iR is the so-called Berry phase term

β(t) := 〈χm(p(t)),∇kχm(p(t))〉L2(Y ) · ∇V (q(t)),
and v ∈ C(R;S(Rd)) satisfies the following homogenized Schrödinger equation

i∂tv +
1

2
divz

(∇2
kEm (p(t)) · ∇z

)
v =

1

2

〈
z,∇2

xV (q(t)) z
〉
v, v|t=0 = u0. (1.12)
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In particular there exists C0 > 0 so that

sup
0�t�C0 ln

1
ε

‖ψε(t)− ϕε(t)‖L2(Rd)−→
ε→0

0.

Remark 1.7. In fact it is possible to prove the same result under less restrictive
regularity assumptions on u0 and VΓ. Indeed, Proposition 5.1 shows that it is suf-
ficient to require that u0 belongs to a certain weighted Sobolev space. Concerning
the periodic potential, it is possible to lower the regularity considerably, depending
on the dimension. For example, in d = 3 it is sufficient to assume VΓ to be infinites-
imally bounded with respect to −Δ. This implies χm(·, k) ∈ H2

per(Y ) ↪→ L∞(R3),
which, together with several density arguments (to be invoked at different stages of
the formal expansion), is enough to justify the analysis given below.

Theorem 1.6 provides an approximate description of the solution to (1.1) up to
Ehrenfest time and can be seen as the analog of the results given in [16, 26, 8,
9, 18, 35, 36, 39] where the case of slowly varying potentials V (x) is considered.
The proof does not rely on the use of pseudo-differential calculus or space space-
adiabatic perturbation theory and can thus be considered to be considerably simpler
from a mathematical point of view. In fact, our approach is similar to the one
given in [18], which derives an analogous result for the so-called Born-Oppenheimer
approximation of molecular dynamics. Note however, that we allow for more general
initial amplitudes, not necessarily Gaussian. Indeed, in the special case where the
initial envelope u0 is a Gaussian, then its evolution u remains Gaussian, and can be
completely characterized; see §4.3. Also note that in contrast to the closely related
method of Gaussian beams presented in, e.g., [11, 31], we do not need to include
complex-valued phases and in addition, obtain an approximation valid for longer
times.
The Berry phase term is an example for so-called geometric phases in quantum

mechanics. It is a well known feature of semiclassical approximation in periodic po-
tentials, see, e.g., [28] for more details and a geometric interpretation. The homoge-
nized Schrödinger equation features a rather unusual dispersive behavior described
by a time-dependent effective mass tensor M(t)−1 = ∇2

kEm (p(t)), i.e. the Hessian
of Em(k) evaluated at k = p(t). To our knowledge, Theorem 1.6 is the first result
in which a Schrödinger type equation with time-dependent effective mass has been
rigorously derived (see also the discussion in Remark 3.1).

Remark 1.8. Let us also mention that the same class of initial data has been con-
sidered in [1] for a Schrödinger equation with locally periodic potential VΓ(x, y) and
corresponding x-dependent Bloch bands Em(k;x). In this work, the authors derive
a homogenized Schrödinger equation, provided that ψε

0 is concentrated around a
stationary point (q0, p0) of the semiclassical phase space flow, i.e.

∇kEm(p0; q0) = ∇xEm(p0; q0) = 0.

This implies q(t) = q0 and p(t) = p0, for all t ∈ R, yielding (at least asymptotically)
a localization of the wave function. We observe the same phenomenon in our case
under the condition V (x) = 0 and ∇kEm(k) = 0 (see Example 1.3).

This work is now organized as follows: In the next section, we shall formally
derive an approximate solution to (1.1) by means of a (formal) multi-scale expan-
sion. This expansion yields a system of three linear equations, which we shall solve
in Section 3. In particular, we shall obtain from it the homogenized Schrödinger
equation. The corresponding Cauchy problem is then analyzed in Section 4, where
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we also include a brief discussion on the particularly important case of Gaussian
profiles (yielding a direct connection to [16]). A rigorous stability result for our
approximation, up to Ehrenfest time, is then given in Section 5.

Remark 1.9. We expect that our results can be generalized to the case of (weakly)
nonlinear Schrödinger equations (as considered in [6, 7]). This will be the aim of a
future work.

2. Formal derivation of an approximate solution.

2.1. Reduction through exact computations. We seek the solution ψε of (1.1)
in the following form

ψε(t, x) = ε−d/4 Uε

(
t,
x− q(t)√

ε
,
x

ε

)
eiφm(t,x)/ε, (2.1)

where the phase φm(t, x) is given by (1.9), the function Uε = Uε(t, z, y) is assumed
to be smooth, Γ-periodic with respect to y, and admits an asymptotic expansion

Uε(t, z, y) ∼
ε→0

∑
j�0

εj/2Uj(t, z, y). (2.2)

It will be implicit in the rest of this paper that Uj(t, z, y) always denotes a function
which is Γ-periodic with respect to y. Note that due to the inclusion of the factor
ε−d/4 the L2(Rd) norm of the right hand side of (2.1) is in fact uniformly bounded
with respect to ε, whereas the L∞(Rd) norm in general will grow as ε → 0. The
asymptotic expansion 2.2 therefore has to be understood in the L2 sense.
Taking into account that in view of (1.9), ∇xφm(t, x) = p(t), we compute:

εd/4e−iφm/εiε∂tψ
ε = iε∂tUε − i√εq̇ · ∇zUε − ∂tφmUε,

εd/4e−iφm/εε2Δψε = εΔzUε +ΔyUε + 2
√
ε (∇y · ∇z)Uε − |p|2Uε

+ 2i
√
εp · ∇zUε + 2ip · ∇yUε,

where in all of the above expressions, the various functions have to be understood
to be evaluated as follows:

ψε = ψε(t, x) ; Uε = Uε

(
t,
x− q(t)√

ε
,
x

ε

)
.

Thus, ordering equal powers of ε in equation (1.9) we find that

εd/4e−iφm/ε

(
iε∂tψ

ε +
ε2

2
Δψε − VΓ

(x
ε

)
ψε − V (x)ψε

)
= bε0 +

√
εbε1 + εbε2,

with

bε0 = −∂tφmUε +
1

2
ΔyUε − 1

2
|p|2Uε + ip · ∇yUε − VΓ(y)Uε − V (q)Uε,

bε1 = −iq̇ · ∇zUε + (∇y · ∇z)Uε + ip · ∇zUε,

bε2 = i∂tUε +
1

2
ΔzUε.

So far, we have neither used the fact that q(t), p(t) are given by the Hamiltonian
flow (1.6), nor the explicit dependence of φm on time. Using these properties, allows
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us to rewrite bε0, b
ε
1, b

ε
2 as follows:

bε0 = (hscm(p(t), q(t)) +∇V (q(t)) · (x− q(t)))Uε −HΓ (p(t))Uε − V (q(t))Uε,

bε1 = i (p(t)−∇kEm (p(t))) · ∇zUε + (∇y · ∇z)Uε,

bε2 = i∂tUε +
1

2
ΔzUε.

Now, recall that in the above lines, Uε is evaluated at the shifted spatial variable
z = (x− q(t))/√ε. Taking this into account, we notice that the above hierarchy has
to be modified, and we find:

bε0 = hscm(p(t), q(t))Uε −HΓ (p(t))Uε − V (
q(t) + z

√
ε
)Uε,

bε1 = i (p(t)−∇kEm (p(t))) · ∇zUε + (∇y · ∇z)Uε + (∇V (q(t)) · z)Uε,

bε2 = i∂tUε +
1

2
ΔzUε.

Next, we perform a Taylor expansion of V around the point q(t):

V
(
q(t) + z

√
ε
)
= V (q(t)) +

√
ε∇V (q(t)) · z + ε

2

〈
z,∇2V (q(t)) z

〉
+O

(
ε3/2 〈z〉3

)
,

since V is at most quadratic in view of Assumption 1.1. Recalling that hscm(p, q) =
Em(p)+V (q), the terms involving V (q) cancel out in b

ε
0, the terms involving ∇V (q)

cancel out in bε1, and thus, we finally obtain:

Lemma 2.1. Let the Assumptions 1.1, 1.4 hold and ψε be related to Uε through
(2.1). Then it holds

iε∂tψ
ε +

ε2

2
Δψε − VΓ

(x
ε

)
ψε − V (x)ψε =

eiφm/ε

εd/4

(
bε0 +

√
εbε1 + εbε2 + ε3/2rε

)
(t, z, y)

∣∣∣
(z,y)=

(
x−q(t)√

ε
, xε

),

with

bε0 = (Em (p(t))−HΓ (p(t)))Uε,

bε1 = i (p(t)−∇kEm (p(t))) · ∇zUε + (∇y · ∇z)Uε,

bε2 = i∂tUε +
1

2
ΔzUε − 1

2

〈
z,∇2V (q(t)) z

〉 Uε,

and a remainder rε(t, z, y) satisfying

|rε(t, z, y)| � C 〈z〉3 |Uε(t, z, y)|, ∀(t, z, y) ∈ R× R
d × Y,

where the constant C > 0 is independent of t, z, y and ε.

2.2. Introducing the approximate solution. We now expand Uε in powers of
ε, according to (2.2). To this end, we introduce the following (time-dependent)
linear operators

L0 = Em (p(t))−HΓ (p(t)) ,

L1 = i (p(t)−∇kEm (p(t))) · ∇z +∇y · ∇z,

L2 = i∂t +
1

2
Δz − 1

2

〈
z,∇2V (q(t)) z

〉
.

These operators act on functions which are smooth in (t, z, y), localized in z (with
two momenta in L2(Rd)), and Γ-periodic in y. In order to solve (1.1) up to a
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sufficiently small error term (in L2), we need to cancel the first three terms in our
asymptotic expansion. This yields, the following system of equations⎧⎪⎨

⎪⎩
L0U0 = 0,

L0U1 + L1U0 = 0,

L0U2 + L1U1 + L2U0 = 0.

(2.3)

Assuming for the moment that we can do so, this means that we (formally) solve
(1.1) up to errors of order ε3/2 (in L2), which is expected to generate a small
perturbation of the exact solution (in view of the ε in front of the time derivative
of ψε in (1.1)).
We consequently define the approximate solution

ψε
app(t, x) := ε−d/4

(
U0 +

√
εU1 + εU2

)(
t,
x− q(t)√

ε
,
x

ε

)
eiφm(t,x)/ε. (2.4)

In view of Lemma 2.1, we thus have the following result (provided we can solve the
system (2.3) in a unique way):

Lemma 2.2. Let ψε
app given by (2.4), where U0, U1, U2 solve (2.3). Then(

iε∂t +
ε2

2
Δ− VΓ − V

)
ψε
app =

eiφm/ε

εd/4
ε3/2 (rε + rε1 + rε2) (t, z, y)

∣∣∣
(z,y)=

(
x−q(t)√

ε
, xε

),

where the remainder terms rε1, r
ε
2 are given by

rε1(t, z, y) = L2U1(t, z, y), rε2(t, z, y) = L1U2(t, z, y),

and rε satisfies

|rε(t, z, y)| � C 〈z〉3 ∣∣(U0 +√εU1 + εU2
)
(t, z, y)

∣∣ , ∀(t, z, y) ∈ R× R
d × Y,

where the constant C > 0 is independent of t, z, y and ε.

3. Derivation of the homogenized equation.

3.1. Some useful algebraic identities. Given the form of L0, the equation
L0U0 = 0 implies

U0(t, z, y) = u(t, z)χm (y, p(t)) . (3.1)

Before studying the other two equations, we shall recall some algebraic formulas
related to the eigenvalues and eigenvectors of HΓ. First, in view of the identity
(1.5), we have

(∇k (HΓ − Em))χm + (HΓ − Em)∇kχm = 0. (3.2)

Taking the scalar product in L2(Y ) with χm, we infer

∇kEm = 〈χm,∇kHΓχm〉L2(Y ) + 〈χm, (HΓ − Em)∇kχm〉L2(Y ) .

Since HΓ is self-adjoint, the last term is zero, thanks to (1.5). We infer

∇kEm(k) = 〈χm, (−i∇y + k)χm〉L2(Y ) . (3.3)

Differentiating (3.2) again, we have, for all j, � ∈ {1, . . . , d}:
∂2kjk�

(HΓ − Em)χm + ∂kj
(HΓ − Em) ∂k�

χm + ∂k�
(HΓ − Em) ∂kj

χm

+ (HΓ − Em) ∂
2
kjk�

χm = 0.
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Taking the scalar product with χm, we have:

∂2kjk�
Em(k) = δj� +

〈(−i∂yj + kj
)
∂k�

χm + (−i∂y�
+ k�) ∂kjχm, χm

〉
L2(Y )

− 〈
∂k�

Em∂kjχm + ∂kjEm∂k�
χm, χm

〉
L2(Y )

.
(3.4)

3.2. Higher order solvability conditions. By Fredholm’s alternative, a neces-
sary and sufficient condition to solve the equation L0U1 + L1U0 = 0, is that L1U0
is orthogonal to kerL0, that is:

〈χm, L1U0〉L2(Y ) = 0. (3.5)

Given the expression of L1 and the formula (3.1), we compute

L1U0 = i (p(t)−∇kEm (p(t))) · ∇zu(t, z)χm (y, p(t)) +∇yχm (y, p(t)) · ∇zu(t, z).

In view of (3.3), we infer that (3.5) is automatically fulfilled. We thus obtain

U1(t, z, y) = u1(t, z)χm (y, p(t)) + u⊥1 (t, z, y),

where u⊥1 , the part of U1 which is orthogonal to kerL0, is obtained by inverting an
elliptic equation:

u⊥1 = −L−10 L1U0.

Note that the formula for L1U0 can also be written as

L1U0 = −i∇k (Em (p(t))−HΓ (p(t)))χm (y, p(t)) · ∇zu(t, z),

thus taking into account (3.2), we simply have:

u⊥1 (t, z, y) = −i∇kχm (y, p(t)) · ∇zu(t, z).

At this stage, we shall, for simplicity choose u1 = 0, in which case U1 becomes
simply a function of u:

U1(t, z, y) = −i∇kχm (y, p(t)) · ∇zu(t, z). (3.6)

As a next step in the formal analysis, we must solve

L0U2 + L1U1 + L2U0 = 0.

By the same argument as before, we require

〈χm, L1U1 + L2U0〉L2(Y ) = 0. (3.7)

With the expression (3.6), we compute

L1U1 =
d∑

j,�=1

(
(p(t)−∇kEm (p(t)))j ∂k�

χm (y, p(t))− i∂2kjk�
χm (y, p(t))

)
∂2zjz�u,

and we also have

L2U0 =

((
i∂t +

1

2
Δz − 1

2

〈
z,∇2V (q(t)) z

〉)
u

)
χm (y, p(t))

+ iu ṗ(t) · ∇kχm (y, p(t)) .

Recalling that ṗ(t) = −∇V (q(t)), we find:
〈χm, L1U1 + L2U0〉L2(Y ) =

=

(
i∂t +

1

2
Δz − 1

2

〈
z,∇2V (q(t)) z

〉)
u− i∇V (q(t)) · 〈χm,∇kχm〉L2(Y ) u

−
∑
j,�

〈
χm, ∂kjEm (p(t)) ∂k�

χm + i∂2kjk�
χm

〉
L2(Y )

∂2zjz�u
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By making the last sum symmetric with respect to j and �, and using (3.4), we
finally obtain the homogenized Schrödinger equation with time-dependent effective
mass tensor:

i∂tu+
1

2
divz

(∇2
kEm(p(t)) · ∇z

)
u =

1

2

〈
z,∇2V (q(t)) z

〉
u+ iβ(t)u, (3.8)

where we recall

β(t) := ∇V (q(t)) · 〈χm(p(t)),∇kχm(p(t))〉L2(Y ) ,

the so-called Berry phase term. From ‖χm‖L2(Y ) = 1, we infer that

Re 〈χm,∇kχm〉L2(Y ) = 0.

In other words, 〈χm,∇kχm〉L2(Y ) ∈ iR and thus iβ(t) ∈ R, acts like a purely time-

dependent, real-valued, potential. Thus, invoking the unitary change of variable

v(t, z) = u(t, z)e−
∫ t
0
β(s)ds

implies that v(t, z) solves (1.12). Equation (3.8) models a quantum mechanical
time-dependent harmonic oscillator, in which the time dependence is present both
in the differential operator, and in the potential.

Remark 3.1. In the case where V (x) = 0, we have β(t) = 0 and p(t) = p0 (in view
of Example 1.3). In this case v(t, z) = u(t, z) and Equation (3.8) simplifies to an
equation with a time-independent effective mass tensor:

i∂tu+
1

2
divz

(
M−1 · ∇z

)
u = 0, M−1 = ∇2

kEm (p0) .

This equation has been derived in [2] (see also [37, 20, 23] for similar results).
Note, however, that in the quoted works the scaling of the original equation (1.1)
is different (i.e. not in semiclassical form).

Assuming for the moment that we can solve (3.8), we can write

U2(t, z, y) = u2(t, z)χm (y, p(t)) + u⊥2 (t, z, y), (3.9)

where
u⊥2 = −L−10 (L1U1 + L2U0) .

Like we did for u1, we shall from now on also impose u2 ≡ 0 and thus U2 = u⊥2 .
For the upcoming analysis, we define the following class of energy spaces

Σk =

⎧⎨
⎩f ∈ L2(Rd) ; ‖f‖Σk :=

∑
|α|+|β|�k

∥∥xα∂βxf∥∥L2(Rd)
<∞; k ∈ N

⎫⎬
⎭ .

Having in mind (3.1), (3.6), (3.9), and the fact that L−10 : L2(Y )→ H2
per(Y ), we

directly obtain the following result:

Proposition 3.2. Let Assumption 1.4 hold and let u ∈ C(R; Σk) solve (3.8). Set

U0(t, z, y) = u(t, z)χm (y, p(t)) ,

U1(t, z, y) = −i∇kχm (y, p(t)) · ∇zu(t, z),

U2(t, z, y) = −L−10 (L1U1(t, z, y) + L2U0(t, z, y)) .

Then Uj ∈ C(R; Σk−j
z × C∞per(Y )), for j = 0, 1, 2 and (U0, U1, U2) solves (2.3).

4. The envelope equation. We examine the Cauchy problem for (3.8), with spe-
cial emphasis on the large time control of u.
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4.1. The general Cauchy problem. Equation 3.8 can be seen as the quantum
mechanical evolutionary problem corresponding to the following time-dependent
Hamiltonian,

H(t, z, ζ) =
1

2

〈
ζ,∇2

kEm (p(t)) ζ
〉
+
1

2

〈
z,∇2V (q(t)) z

〉
+ iβ(t). (4.1)

Under Assumptions 1.1 and 1.4, this Hamiltonian is self-adjoint, smooth in time,
and quadratic in (z, ζ) (in fact, at most quadratic would be sufficient). Using the
result given in [24, p.197] (see also [25]), we directly infer the following existence
result:

Lemma 4.1 (From [24]). For d � 1 and v0 ∈ L2(Rd), consider the equation

i∂tv +
1

2

∑
1�j,k�d

ajk(t)∂
2
jkv =

1

2

∑
1�j,k�d

bjk(t)xjxkv ; v|t=0 = v0. (4.2)

If the coefficients ajk and bjk are continuous and real-valued, such that the matrices
(ajk)j,k and (bjk)j,k are symmetric for all time, then (4.2) has a unique solution
v ∈ C(R;L2(Rd)). It satisfies

‖v(t)‖L2(Rd) = ‖v0‖L2(Rd), ∀t ∈ R. (4.3)

Moreover, if v0 ∈ Σk for some k ∈ N, then v ∈ C(R; Σk).

In particular, this implies that if u0 ∈ Σk, then (1.12) has a unique solution
v ∈ C(R; Σk). As a consequence, (3.8) has a unique solution u ∈ C(R; Σk) such
that u|t=0 = u0.

Remark 4.2. It may happen that the functions ajk are zero on some non-negligible
set. In this case, (4.2) ceases to be dispersive. Note that the standard harmonic
oscillator is dispersive, locally in time only, since it has eigenvalues. We shall see
that this is not a problem in our analysis though.

4.2. Exponential control of the envelope equation. To prove Theorem 1.6,
we need to control the error present in Lemma 2.2 for large time. In general, i.e.
without extra geometric assumptions on the wave packet, exponential growth in
time must be expected:

Proposition 4.3. Let u0 ∈ Σk, k ∈ N. Then the solution u to (3.8) satisfies
u ∈ C(R; Σk), and there exists C > 0 such that

‖u(t, ·)‖Σk � CeCt, t � 0.

Proof. The result can be established by induction on k. The constant C must
actually be expected to depend on k, as shown by the case of

i∂tu+
1

2
Δzu = −|z|

2

2
u ; u|t=0 = u0.

There, the fundamental solution is explicit (generalized Mehler formula, see e.g.
[21]), and we check that ‖u(t)‖Σk behaves like ekt.
For k = 0, the result is obvious, since in view of Lemma 4.1, the L2-norm is

conserved. The case k = 1 illustrates the general mechanism of the proof, and
we shall stick to this case for simplicity. The key remark is that even though
the operators z and ∇z (involved in the definition of Σ1) do not commute with
the Hamiltonian (4.1), the commutators yield a closed system of estimates. First,
multiplying (3.8) by z, we find

(i∂t −H) zu = − [H, z]u = ∇2
kEm (p(t))∇zu.
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The L2 estimate (4.3) then yields

‖zu(t)‖L2 � ‖zu0‖L2 +

∫ t

0

∥∥∇2
kEm (p(s))∇zu(s)

∥∥
L2 ds

� ‖zu0‖L2 + C

∫ t

0

‖∇zu(s)‖L2 ds,

for some C independent of t, since ∇2
kEm is bounded on Y ∗ which is compact.

Similarly,

(i∂t −H)∇zu = − [H,∇z]u = ∇2V (q(t)) zu,

and, in view of Assumption 1.1,

‖∇zu(t)‖L2 � ‖∇zu0‖L2 + C

∫ t

0

‖zu(s)‖L2 ds.

Summing over the two inequalities and using the conservation of mass, we infer

‖u(t)‖Σ1 � ‖u0‖Σ1 + C

∫ t

0

‖u(s)‖Σ1 ds,

and Gronwall’s lemma yields the proposition in the case k = 1. By induction,
applying (z,∇z) to (3.8) k times, the defects of commutation always yield the same
sort of estimate, and the proposition follows easily.

4.3. Gaussian wave packets. In the case where the initial datum in (3.8) is a
Gaussian, we can compute its evolution and show that it remains Gaussian, by
following the same strategy as in [16] (see also [17, 18]). As a matter of fact, the
order in which we have proceeded is different from the one in [16], since we have
isolated the envelope equation (3.8) before considering special initial data. As a
consequence, we have fewer unknowns. Consider (3.8) with initial datum

u(0, z) =
1

(detA)1/2
exp

(
−1
2

〈
z,BA−1z

〉)
, (4.4)

where the matrices A and B satisfy the following properties:

A and B are invertible; (4.5)

BA−1 is symmetric : BA−1 =M1 + iM2, with Mj real symmetric; (4.6)

ReBA−1 is strictly positive definite; (4.7)(
ReBA−1

)−1
= AA∗. (4.8)

Proposition 4.4. Let u solve (3.8), with initial datum (4.4), where the matrices
A and B satisfy (4.5)–(4.8). Then for all time, u(t, z) is given by

u(t, z) =
1

(detA(t))1/2
exp

(
−1
2

〈
z,B(t)A(t)−1z

〉)
, (4.9)

where the matrices A(t) and B(t) evolve according to the differential equations{
Ȧ(t) = i∇2

kEm (p(t))B(t) ; A(0) = A,

Ḃ(t) = i∇2
xV (q(t))A(t) ; B(0) = B.

(4.10)

In addition, for all time t ∈ R, A(t) and B(t) satisfy (4.5)–(4.8).
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Proof. The argument is the same as in [16] (see also [17, 18]): One easily checks that
if A(t) and B(t) evolve according to (4.10), then u given by (4.9) solves (3.8). On the
other hand, it is clear that (4.10) has a global solution. Finally, since ∇2

kEm (p(t))
and ∇2

xV (q(t)) are symmetric matrices, it follows from [16, Lemma 2.1] that for all
time, A(t) and B(t) satisfy (4.5)–(4.8).

5. Stability of the approximation up to Ehrenfest time. As a final step we
need to show that the derived approximation ψε

app(t) indeed approximates the exact
solution ψε(t) up to Ehrenfest time.

Proposition 5.1. Let Assumptions 1.1 and 1.4 hold and u0 ∈ Σ5. Then there
exists C > 0 such that

‖ψε(t)− ψε
app(t)‖L2(Rd) � C

√
εeCt,

where ψε
app(t, x) is given by (2.4) with u(t, z) solving (3.8) subject to u|t=0 = u0,

and U0, U1, U2 are given by Proposition 3.2.

Proof. First, note that ψε and ψε
app do not coincide at time t = 0, since elliptic

inversion has forced us to introduce U1 and U2 which are not zero initially. Setting
wε = ψε − ψε

app, and using (1.1) and Lemma 2.2, we see that the error solves(
iε∂t +

ε2

2
Δ− VΓ − V

)
wε = −e

iφm/ε

εd/4
ε3/2 (rε + rε1 + rε2) (t, z, y)

∣∣∣
(z,y)=

(
x−q(t)√

ε
, xε

),

wε(0, x) = ε−d/4
(√
εU1 + εU2

)(
0,
x− q0√

ε
,
x

ε

)
eiφm(0,x)/ε.

The a-priori L2 estimate yields

‖wε(t)‖L2 �
√
ε‖U1(0)‖L2

zL
∞
y
+ ε‖U2(0)‖L2

zL
∞
y

+
√
ε

∫ t

0

(
‖rε(s)‖L2

zL
∞
y
+ ‖rε1(s)‖L2

zL
∞
y
+ ‖rε2(s)‖L2

zL
∞
y

)
ds.

The assertion then follows from Lemma 2.2 (establishing the needed properties
for the functions rε, rε1 and r

ε
2), Proposition 3.2, and Proposition 4.3. With this

approach, we need to know that rε is in L2z, so U0, U1 and U2 have three momenta
in L2z: in view of Proposition 3.2 and Proposition 4.3, this amounts to demanding
u0 ∈ Σ5.
This asymptotic stability result directly yields the assertion of Theorem 1.6.

End of the proof of Theorem 1.6. To conclude, it suffices to notice that

ϕε(t, x) = ψε
app(t, x)−

(√
εU1 + εU2

)
(t, z, y)

∣∣∣
(z,y)=

(
x−q(t)√

ε
, xε

),

so Proposition 3.2 and Proposition 4.3 imply

‖ϕε(t)− ψε
app(t)‖L2 � C

√
εeCt.

This estimate and Proposition 5.1 yield Theorem 1.6.

Remark 5.2. The construction of the approximate solution ψε
app has forced us to

introduce non-zero correctors U1 and U2, given by elliptic inversion. Therefore, we
had to consider well-prepared initial data for ψε

app. This aspect is harmless as long
as one is interested only in the leading order behavior of ψε as ε → 0. However,
arbitrary accurate approximations for ψε (in terms of powers of ε) require the use of
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higher order correctors at t = 0. These, in contrast to the leading order term, will
no longer be concentrated in a single Bloch-band χm. This is due to the spectral
analysis implied by the presence of the periodic potential VΓ, and shows a sharp
contrast with the case VΓ = 0.

Of course the above given stability result immediately generalizes to situations
where, instead of a single ϕε, a superposition of finitely many semiclassical wave
packets is considered,

ψε
0(x) = ε−d/4

N∑
n=1

un

(
x− qn√

ε

)
χmn

(x
ε
, pn

)
eipn·(x−qn)/ε.

Since the underlying semiclassical Schrödinger equation (1.1) is linear, each of these
initial wave packets will evolve individually from the rest, as in Theorem 1.6. It
might also be possible (with some technical modifications which we have not inves-
tigated) to consider a continuous superposition of wave packets, yielding a semi-
classical approximation known under the name “frozen Gaussians”, see [19].
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