SEQUENCES OF LCT-POLYTOPES

ANATOLY LIBGOBER AND MIRCEA MUSTAŢĂ

Abstract

To r ideals on a germ of smooth variety X one attaches a rational polytope in \mathbf{R}_{+}^{r} (the LCT-polytope) that generalizes the notion of log canonical threshold in the case of one ideal. We study these polytopes, and prove a strong form of the Ascending Chain Condition in this setting: we show that if a sequence $\left(P_{m}\right)_{m \geq 1}$ of LCT-polytopes in \mathbf{R}_{+}^{r} converges to a compact subset Q in the Hausdorff metric, then $Q=\bigcap_{m \geq m_{0}} P_{m}$ for some m_{0}, and Q is an LCT-polytope.

1. Introduction

Let X be a smooth algebraic variety over an algebraically closed field k, of characteristic zero. To a nonzero ideal \mathfrak{a} on X, and to a point x in the zero locus of \mathfrak{a} one associates the local \log canonical threshold $\operatorname{lct}_{x}(\mathfrak{a})$. This positive rational number is an invariant of the singularities of \mathfrak{a} at x that plays a fundamental role in birational geometry (see for example [Kol2] and [EM]).

To r ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ on X, and to a point x that lies in the zero locus of each \mathfrak{a}_{i} we associate the LCT-polytope $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$. This is a rational convex polytope in \mathbf{R}_{+}^{r} that describes the \log canonical thresholds at x of all products $\mathfrak{a}_{1}^{m_{1}} \cdots \mathfrak{a}_{r}^{m_{r}}$. More precisely, it consists of those $\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbf{R}_{+}^{r}$ such that the pair $\left(X, \mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{r}^{\lambda_{r}}\right)$ is \log canonical at x. In the case $r=1$, the polytope $\operatorname{LCT}_{x}(\mathfrak{a})$ is the segment $\left[0, \operatorname{lct}_{x}(\mathfrak{a})\right]$. These polytopes are a special case of the polytopes of quasi-adjunction introduced and studied by the first author in [Lib1] and [Lib2]. Even if one is only interested in the singularities of one ideal \mathfrak{a}, studying the LCT-polytopes $\operatorname{LCT}(\mathfrak{a}, \mathfrak{b})$ for various auxiliary ideals \mathfrak{b} gives important information.

Shokurov conjectured in Sho that log canonical thresholds in fixed dimension satisfy the Ascending Chain Condition. The conjecture is made in a general setting in which the ambient variety is allowed to have log canonical singularities. In its general form, it was shown by Birkar [Bir] to imply a positive answer to the (most important case of the) Termination of Flips Conjecture. In the special setting of smooth ambient varieties, the conjecture was proved by de Fernex, Ein and the third author in dFEM, building on ideas and results from dFM and Kol1.

[^0]In this note we consider the Ascending Chain Condition for LCT-polytopes. In particular, we show that given any sequence of LCT-polytopes in \mathbf{R}^{r} (corresponding to ideals on smooth n-dimensional varieties) $P_{1} \subseteq P_{2} \subseteq \ldots$, the sequence is eventually stationary. In fact, we prove a much stronger assertion.

We consider the polytopes in \mathbf{R}^{r} as elements in the space \mathcal{H}_{r} of all compact subsets of \mathbf{R}^{r} endowed with the Hausdorff metric. This is a complete metric space, and the subsets lying in a given compact subset $K \subset \mathbf{R}^{r}$ form a compact subspace of \mathcal{H}_{r}. It is easy to see that every LCT-polytope as above is contained in the cube $[0, n]^{r} \subseteq \mathbf{R}^{r}$. It follows that every sequence of LCT-polytopes has a convergent subsequence to some compact subset $Q \subseteq[0, n]^{r}$.

Our main result says that if a sequence of LCT-polytopes $\left(P_{m}\right)_{m \geq 1}$ converges to the compact set Q in the Hausdorff metric, then there is m_{0} such that $Q=\cap_{m \geq m_{0}} P_{m}$. Furthermore, Q is a rational convex polytope. In fact, there are ideals $\mathfrak{a}_{1}, \ldots \mathfrak{a}_{s} \subset K \llbracket x_{1}, \ldots, x_{n} \rrbracket$ (for some $s \leq r$ and some field extension K of k) such that $Q=\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)$ (suitably embedded in \mathbf{R}^{r}). If the ground field k has infinite transcendence degree over \mathbf{Q} (for example, if $k=\mathbf{C}$), then we may take $K=k$.

The proof uses the result in dFEM about the ACC property of log canonical thresholds on smooth varieties of fixed dimension. In fact, we use in an essential way also the ideas and the constructions in loc. cit. We give an introduction to the basic properties of LCT-polytopes in the following section, emphasizing the analogy with the case $r=1$. The main theorems are proved in the last section.

2. Basics of LCT-polytopes

In this section we present some basic results about LCT-polytopes. We always work over an algebraically closed field k, of characteristic zero. We denote by \mathbf{R}_{+}the set of nonnegative real numbers, and by \mathbf{N} the nonnegative integers. Our ambient space X is either a smooth variety over k, or $\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$. We assume that the reader is familiar with the results about the usual \log canonical threshold, for which we refer to [Kol2], $\S 8$ for the finite type case, and to [dFM] for the case of formal power series.

Let X be a regular scheme, as above, and $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ nonzero ideal sheaves on X. We put

$$
\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbf{R}_{+}^{r} \mid\left(X, \mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{r}^{\lambda_{r}}\right) \text { is log canonical }\right\}
$$

We will mostly be concerned with a local variant of this definition: if $x \in X$ is a closed point, then

$$
\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbf{R}_{+}^{r} \mid\left(X, \mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{r}^{\lambda_{r}}\right) \text { is } \log \text { canonical at } x\right\} .
$$

If the ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are principal, with $\mathfrak{a}_{i}=\left(f_{i}\right)$, then we simply write $\operatorname{LCT}\left(f_{1}, \ldots, f_{r}\right)$ and $\operatorname{LCT}_{x}\left(f_{1}, \ldots, f_{r}\right)$.

The above sets can be explicitly described in terms of a log resolution, as follows. Suppose that $\pi: Y \rightarrow X$ is a \log resolution of $\mathfrak{a}_{1} \cdot \ldots \cdot \mathfrak{a}_{r}$. Recall that this means that Y is nonsingular, π is proper and birational, and we have a simple normal crossings divisor $\sum_{j=1}^{N} E_{j}$ on Y such that

$$
K_{Y / X}=\sum_{j=1}^{N} \kappa_{j} E_{j}, \text { and } \mathfrak{a}_{i} \cdot \mathcal{O}_{Y}=\mathcal{O}_{Y}\left(-\sum_{j=1}^{N} \alpha_{i, j} E_{j}\right) \text { for } 1 \leq i \leq r
$$

The existence of such a \log resolution in the formal power series case is a consequence of the results in Tem.

It follows from the description of log canonical pairs in terms of a log resolution that $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ consists precisely of those $\lambda \in \mathbf{R}_{+}^{r}$ such that

$$
\begin{equation*}
\sum_{i=1}^{r} \alpha_{i, j} \lambda_{i} \leq \kappa_{j}+1 \text { for } 1 \leq j \leq N \tag{1}
\end{equation*}
$$

Similarly, $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots \mathfrak{a}_{r}\right)$ is cut out by the equations in (1) corresponding to those j such that $x \in \pi\left(E_{j}\right)$.

It follows from the above description that both $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ and $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ are rational polyhedra (that is, they are cut out in \mathbf{R}^{r} by finitely many affine linear inequalities, with rational coefficients). We call $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ and $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ the LCT-polyhedron of $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$, and respectively, the LCT-polyhedron at x of $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$.

Remark 2.1. The above polyhedra are r-dimensional. Indeed, note that they contain the origin, as well as λe_{i} for $0<\lambda \ll 1$ (here e_{1}, \ldots, e_{r} is the standard basis of \mathbf{R}^{r}).

The following lemma follows immediately from the description of LCT-polyhedra in terms of a log resolution.
Lemma 2.2. Given the nonzero ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$, there are closed points $x_{1}, \ldots, x_{m} \in X$ such that

$$
\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\bigcap_{j=1}^{m} \operatorname{LCT}_{x_{j}}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right) .
$$

Because of this lemma, from now on we will focus on the local LCT-polyhedra.
Lemma 2.3. Let $\mathfrak{a}_{1}, \ldots \mathfrak{a}_{r}$ be nonzero ideals on X.
i) If $x \in \operatorname{Supp}\left(V\left(\mathfrak{a}_{i}\right)\right)$, then $\left\{\lambda_{i} \mid \lambda \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)\right\}$ is bounded.
ii) If $x \notin \operatorname{Supp}\left(V\left(\mathfrak{a}_{r}\right)\right)$, then $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r-1}\right) \times \mathbf{R}_{+}$.

Proof. With the notation in (11), we see that if $x \in \operatorname{Supp}\left(V\left(\mathfrak{a}_{i}\right)\right)$, then there is j with $\alpha_{i, j}>0$, and such that $x \in \pi\left(E_{j}\right)$. It follows that if $\lambda \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$, then $\lambda_{i} \leq$ $\left(\kappa_{j}+1\right) / \alpha_{i, j}$, which gives i). The assertion in ii) is clear.

In light of this lemma, it is enough to study $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ for $x \in \bigcap_{i} \operatorname{Supp}\left(V\left(\mathfrak{a}_{i}\right)\right)$. In this case we see that the LCT-polyhedron at x of $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ is bounded, hence it is a polytope. We will henceforth refer to it as the LCT-polytope at x of $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$.

Remark 2.4. A related construction, giving polyhedra as invariants of tuples of divisors, was used in [Lib2] and [ib1]. Consider a collection of germs

$$
f_{1}\left(x_{1}, \ldots, x_{n+1}\right), \ldots, f_{r}\left(x_{1}, \ldots, x_{n+1}\right)
$$

of reduced local equations of divisors $D_{i}=V\left(f_{i}\right)$ at a point $P \in X=\mathbf{C}^{n+1}$, that we assume to have isolated non-normal crossings (cf. [Lib2]). With each $\varphi \in \emptyset_{P}$ one associates the top degree form:

$$
\begin{equation*}
\omega_{\varphi}\left(j_{1}, \ldots, j_{r} \mid m_{1}, \ldots, m_{r}\right)=f_{1}^{\frac{j_{1}-m_{1}+1}{m_{1}}} \cdot \ldots \cdot f_{r}^{\frac{j_{r}-m_{r}+1}{m_{r}}} \varphi\left(x_{1}, \ldots, x_{n+1}\right) d x_{1} \wedge \ldots \wedge d x_{n+1} \tag{2}
\end{equation*}
$$

on the unramified covering $X_{m_{1}, \ldots, m_{r}}$ of $X \backslash \sum_{i} D_{i}$ with Galois group $\oplus_{i} \mathbf{Z} / m_{i} \mathbf{Z}$. The form ω_{φ} extends to a holomorphic form on a resolution of singularities of a compactification $\bar{X}_{m_{1}, \ldots, m_{r}}$ of $X_{m_{1}, \ldots, m_{r}}$ if and only if $\left(\frac{j_{1}+1}{m_{1}}, \ldots, \frac{j_{r}+1}{m_{r}}\right) \in \mathbf{R}^{r}$ satisfies a system of linear inequalities, i.e. it belongs to a polytope $\mathcal{P}\left(\varphi \mid f_{1}, \ldots, f_{r}\right)$. This system can be described in terms of a log-resolution $\pi: Y \rightarrow X$ of the principal ideals $\left(f_{1} \cdots f_{r}\right)$ as above, using the resolution of $\bar{X}_{m_{1}, \ldots, m_{r}}$ given by a resolution of the quotient singularities of the normalization of $\bar{X}_{m_{1}, \ldots, m_{r}} \times{ }_{X} Y$. This leads to the following explicit collection of inequalities describing when $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathcal{P}\left(\varphi \mid f_{1}, \ldots, f_{r}\right)$ (cf. [Lib1, (4)]):

$$
\begin{equation*}
\sum_{i=1}^{r} \alpha_{i, j}\left(1-\lambda_{i}\right) \leq \kappa_{j}+1+e_{j}(\varphi) \text { for } 1 \leq j \leq N \tag{3}
\end{equation*}
$$

Here $\alpha_{i, j}, \kappa_{j}$ are as in (11), and $e_{j}(\varphi)$ is the multiplicity of $\pi^{*}(\varphi)$ along E_{j}.
Vice versa, for a fixed $\left(\frac{j_{1}+1}{m_{1}}, \ldots, \frac{j_{r}+1}{m_{r}}\right)$ with $0 \leq j_{i}<m_{i}$ for all i, the set of $\varphi \in \mathcal{O}_{P}$ such that the given point lies in $\mathcal{P}\left(\varphi \mid f_{1}, \ldots, f_{r}\right)$ is an ideal $\mathcal{A}\left(j_{1}, \ldots, j_{r} \mid m_{1}, \ldots, m_{r}\right) \subset \mathcal{O}_{P}$ (an ideal of quasi-adjunction).

Allowing φ to run over all elements in \mathcal{O}_{P} produces a finite collection of polytopes in the $[0,1]^{r}$. We similarly have a finite collection of ideals of quasi-adjunction. Moreover, every ideal of quasi-adjunction \mathcal{A} can be written as $\mathcal{A}=\mathcal{A}\left(j_{1}, \ldots, j_{r} \mid m_{1}, \ldots, m_{r}\right)$ for some point $\left(\frac{j_{1}+1}{m_{1}}, \ldots, \frac{j_{r}+1}{m_{r}}\right)$ that can be chosen in the boundary of a polytope (3). The subset of the boundary consisting of those $\left(\frac{j_{1}+1}{m_{1}}, \ldots, \frac{j_{r}+1}{m_{r}}\right)$ defining a particular \mathcal{A} is a polyhedral subset (face of quasi-adjunction). Therefore one has a correspondence between faces \mathcal{F} of the polytopes $\mathcal{P}\left(\varphi \mid f_{1}, \ldots, f_{r}\right)$ and certain ideals $\mathcal{A}(\mathcal{F})$ in \mathcal{O}_{P}.

The polytope (3) corresponding to $\varphi=1$ coincides with the image of the LCTpolytope (1) for $\mathfrak{a}_{i}=\left(f_{i}\right)$ via the affine map $\left(\lambda_{i}\right) \rightarrow\left(1-\lambda_{i}\right)$. An ideal of quasi-adjunction $\mathcal{A}(\mathcal{F})$ associated to a point $\left(\frac{j_{1}+1}{m_{1}}, \ldots, \frac{j_{r}+1}{m_{r}}\right) \in \mathcal{F}$ coincides with the multiplier ideal of the divisor $\sum \mu_{i} D_{i}$, where $\mu_{i}=1-\frac{j_{i}+1}{m_{i}}-\varepsilon$, with $0<\varepsilon \ll 1$. Indeed, strict inequality in the conditions (3) is equivalent to φ being a section of $\pi_{*}\left(K_{Y / X}-\left\lfloor\sum_{i}\left(1-\lambda_{i}\right) \pi^{*}\left(D_{i}\right)\right\rfloor\right)$.

In the case $r=1$, each polytope (3) is a segment $[\alpha, 1]$, and the face of quasi-adjunction α is a jumping coefficient for the mixed multiplier ideals of f_{1}, \ldots, f_{r}. If the singularity of $f=f_{1} \cdots f_{r}$ at P is isolated, the collection of such α coincides with the subset of the spectrum of the singularity in the interval $[0,1]$.

Example 2.5. If $r=1$, then $\operatorname{LCT}(\mathfrak{a})=[0, \operatorname{lct}(\mathfrak{a})]$, and $\operatorname{LCT}_{x}(\mathfrak{a})=\left[0, \operatorname{lct}_{x}(\mathfrak{a})\right]$.
Example 2.6. If $\mathfrak{a}_{i}=\left(x_{1}^{q_{i, 1}} \cdots x_{n}^{q_{i, n}}\right) \subseteq k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbf{R}_{+}^{r} \mid \sum_{i=1}^{r} q_{i, j} \lambda_{i} \leq 1 \text { for } 1 \leq j \leq n\right\}
$$

Example 2.7. One can generalize the previous example to the case of arbitrary monomial ideals. This extends Howald's Theorem from [How, which is the case $r=1$. Suppose that $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are nonzero ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ generated by monomials. Let $P_{\mathfrak{a}_{i}}$ denote the Newton polyhedron of \mathfrak{a}_{i}, that is, $P_{\mathfrak{a}_{i}}$ is the convex hull of $\left\{u \in \mathbf{N}^{n} \mid x^{u} \in \mathfrak{a}_{i}\right\}$. Here, if $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbf{N}^{n}$, we denote by x^{u} the monomial $x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}$. By taking a toric resolution of $\mathfrak{a}_{1} \cdot \ldots \cdot \mathfrak{a}_{r}$, it is easy to see that

$$
\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\operatorname{LCT}_{0}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\left\{\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbf{R}_{+}^{r} \mid e \in \sum_{i=1}^{r} \lambda_{i} P_{\mathfrak{a}_{i}}\right\},
$$

where $e=(1, \ldots, 1) \in \mathbf{R}^{n}$.
Example 2.8. In the case of plane curves, readily availble explicit resolutions allow the computation of LCT-polytopes.. In terms of the polytopes of quasi-adjunction considered in Lib1], the LCT-polytope is the image of the polytope "farthest" from the origin along the line $x_{1}=\ldots=x_{r}$ under the change of variables $\left(\lambda_{i}\right) \rightarrow\left(1-\lambda_{i}\right)$.
a) If $f=x, g=x-y^{2} \in k[x, y]$, then

$$
\begin{equation*}
\operatorname{LCT}_{0}(f, g)=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{R}_{+}^{2} \mid \lambda_{1} \leq 1, \lambda_{2} \leq 1, \lambda_{1}+\lambda_{2} \leq 3 / 2\right\} \tag{4}
\end{equation*}
$$

b) If $f=x^{2}+y^{5}, g=x^{5}+y^{2} \in k[x, y]$, then $\operatorname{LCT}_{0}(f, g)$ is the intersection of the unit square and of the half planes

$$
\begin{equation*}
10 \lambda_{1}+4 \lambda_{2} \leq 7, \quad 4 \lambda_{1}+10 \lambda_{2} \leq 7 \tag{5}
\end{equation*}
$$

Remark 2.9. Even if one is interested in the singularities of an ideal \mathfrak{a}, considering the LCT-polytopes for several ideals gives interesting information. Suppose, for example, that \mathfrak{a} is a nonzero ideal on X, and $x \in X$ is a closed point in $\operatorname{Supp}(V(\mathfrak{a}))$. One defines a function $\varphi: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$by $\varphi(t)=\operatorname{lct}_{x}\left(\mathfrak{a} \cdot \mathfrak{m}_{x}^{t}\right)^{-1}$, where \mathfrak{m}_{x} is the ideal defining x. This is a convex nondecreasing function that encodes useful information about the singularities of \mathfrak{a} at x (see JLM for basic facts about such functions, and applications). For example, the right derivative $\varphi_{r}^{\prime}(0)$ is equal to $\operatorname{lct}_{x}(\mathfrak{a})^{-1} \cdot \max \frac{\operatorname{ord}_{E}\left(\mathfrak{m}_{x}\right)}{\operatorname{ord}_{E}(\mathfrak{a})}$, where the maximum is over all divisors E over X that compute $\operatorname{lct}_{x}(\mathfrak{a})$.

Note that φ is determined by $P:=\operatorname{LCT}_{x}\left(\mathfrak{a}, \mathfrak{m}_{x}\right)$, and conversely. Indeed, $\varphi(t)=\alpha$ if and only if $\operatorname{lct}\left(\mathfrak{a}^{1 / \alpha} \cdot \mathfrak{m}_{x}^{t / \alpha}\right)=1$. Therefore $\varphi(t)$ is characterized by the fact that $(1, t)$ lies on the boundary of $\varphi(t) \cdot P$.

We record in the following proposition some general properties of LCT-polytopes. We denote by e_{1}, \ldots, e_{r} the standard basis in \mathbf{R}^{r}. For $\lambda=\left(\lambda_{i}\right)$ and $\mu=\left(\mu_{i}\right)$ in \mathbf{R}^{r}, we put $\lambda \preceq \mu$ if $\lambda_{i} \leq \mu_{i}$ for all i. We put $\lambda \prec \mu$ if, in addition, $\lambda \neq \mu$.

Proposition 2.10. Suppose that $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are nonzero ideals on X, and $x \in X$ is a closed point such that $x \in \operatorname{Supp}\left(V\left(\mathfrak{a}_{i}\right)\right)$ for all i.
i) If m_{1}, \ldots, m_{r} are positive integers, then the polytope $\mathrm{LCT}_{x}\left(\mathfrak{a}_{1}^{m_{1}}, \ldots, \mathfrak{a}_{r}^{m_{r}}\right)$ is the image of $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ by the map $\left(u_{1}, \ldots, u_{r}\right) \rightarrow\left(u_{1} / m_{1}, \ldots, u_{r} / m_{r}\right)$.
ii) If $\mathfrak{a}_{i}^{\prime} \subseteq \mathfrak{a}_{i}$ for every i, then $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}^{\prime}, \ldots, \mathfrak{a}_{r}^{\prime}\right) \subseteq \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$.
iii) $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right) \subseteq \prod_{i=1}^{r}\left[0, \operatorname{lct}_{x}\left(\mathfrak{a}_{i}\right)\right] \subseteq[0, n]^{r}$, where $n=\operatorname{dim}(X)$.
iv) The simplex

$$
\left\{\lambda \in \mathbf{R}_{+}^{r} \left\lvert\, \sum_{i=1}^{r} \frac{1}{\operatorname{lct}_{x}\left(\mathfrak{a}_{i}\right)} \lambda_{i} \leq 1\right.\right\}
$$

is contained in $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$.
v) If $\lambda, \lambda^{\prime} \in \mathbf{R}_{+}^{r}$ are such that $\lambda \preceq \lambda^{\prime}$, and $\lambda^{\prime} \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$, then $\lambda \in$ $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$.

Proof. All assertions immediately follow from definition, and from familiar facts about singularities of pairs, see Kol2 and dFM. The assertion in iv) follows from the fact that $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ is convex, and the fact that the origin, as well as each $\operatorname{lct}_{x}\left(\mathfrak{a}_{i}\right) e_{i}$ lies in $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$.

Remark 2.11. Suppose that X is a nonsingular affine algebraic variety. It follows from Proposition 2.10 iv) that if $f_{1}, \ldots, f_{r} \in \mathcal{O}(X)$, then $\operatorname{LCT}\left(f_{1}, \ldots, f_{r}\right)$ is contained in the cube $[0,1]^{r}$. On the other hand, if $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are ideals on X, and if for every $i, g_{i} \in \mathfrak{a}_{i}$ is a general linear combination of some fixed set of generators of \mathfrak{a}_{i}, then an argument based on Bertini's Theorem as in [Laz, Proposition 9.2.28] gives

$$
\operatorname{LCT}\left(g_{1}, \ldots, g_{r}\right)=\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right) \cap[0,1]^{r}
$$

Remark 2.12. If $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are ideals on a smooth variety X, and if $x \in X$, then $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\operatorname{LCT}\left(\mathfrak{a}_{1} \cdot \widehat{\mathcal{O}_{X, x}}, \ldots, \mathfrak{a}_{r} \cdot \widehat{\mathcal{O}_{X, x}}\right)$. This follows easily from dFM, Proposition 2.7], that treats the case of \log canonical thresholds. Since $\widehat{\mathcal{O}_{X, x}} \simeq k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, it follows that in order to study the possible LCT-polytopes in a given dimension n, we may restrict to the case when $X=\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$.

Lemma 2.13. If $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are nonzero ideals on X, and if \mathfrak{m}_{x} is the ideal defining a closed point $x \in X$, then

$$
\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\bigcap_{q \geq 1} \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}+\mathfrak{m}_{x}^{q}, \ldots, \mathfrak{a}_{r}+\mathfrak{m}_{x}^{q}\right)
$$

Proof. The inclusion " \subseteq " is trivial, so let us suppose that $\lambda=\left(\lambda_{i}\right)$ lies in the above intersection. It is enough to show that every $\lambda^{\prime} \in \mathbf{Q}_{+}^{r}$ with $\lambda^{\prime} \preceq \lambda$ lies in $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$. Therefore, we may assume that $\lambda \in \mathbf{Q}_{+}^{r}$. Choose N such that all $N \lambda_{i}$ are integers. By assumption, we have $\operatorname{lct}\left(\left(\mathfrak{a}_{1}+\mathfrak{m}_{x}^{q}\right)^{N \lambda_{1}} \cdots\left(\mathfrak{a}_{r}+\mathfrak{m}_{x}^{q}\right)^{N \lambda_{r}}\right) \geq 1 / N$.

Let $\tau:=\min \left\{\lambda_{i} \mid \lambda_{i}>0\right\}$. Since the ideals $\mathfrak{a}_{1}^{N \lambda_{1}} \cdots \mathfrak{a}_{r}^{N \lambda_{r}}$ and $\left(\mathfrak{a}_{1}+\mathfrak{m}_{x}^{q}\right)^{N \lambda_{1}} \cdots\left(\mathfrak{a}_{r}+\right.$ $\left.\mathfrak{m}_{x}^{q}\right)^{N \lambda_{r}}$ are congruent modulo $\mathfrak{m}_{x}^{q N \tau}$, it follows that

$$
\operatorname{lct}_{x}\left(\left(\mathfrak{a}_{1}+\mathfrak{m}_{x}^{q}\right)^{N \lambda_{1}} \cdots\left(\mathfrak{a}_{r}+\mathfrak{m}_{x}^{q}\right)^{N \lambda_{r}}\right)-\operatorname{lct}_{x}\left(\mathfrak{a}_{1}^{N \lambda_{1}} \cdots \mathfrak{a}_{r}^{N \lambda_{r}}\right) \leq \frac{n}{q N \tau}
$$

where $n=\operatorname{dim}\left(\mathcal{O}_{X, x}\right)$ (see [dFM, Corollary 2.10]). We conclude that $\operatorname{lct}_{x}\left(\mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{r}^{\lambda_{r}}\right) \geq$ $1-\frac{n}{q \tau}$. Letting q go to infinity, this gives $\lambda \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1} \ldots, \mathfrak{a}_{r}\right)$.

The above lemma and the previous remark can be used to reduce proving results about LCT-polytopes on $\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$ to proving the similar results on \mathbf{A}^{n}. In order to illustrate this, we give the following

Proposition 2.14. If $H \subset X$ is a smooth hypersurface containing x, and if \mathfrak{a}_{i} are ideals on X such that all $\mathfrak{a}_{i} \mathcal{O}_{H}$ are nonzero, then

$$
\operatorname{LCT}_{x}\left(\mathfrak{a}_{1} \mathcal{O}_{H}, \ldots, \mathfrak{a}_{r} \mathcal{O}_{H}\right) \subseteq \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)
$$

Proof. When X is a nonsingular variety over k, this follows easily from Inversion of Adjunction (see 【Kol2, Theorem 7.5]). If $X=\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$, after a change of coordinates we may assume that $H=\left(x_{1}=0\right)$. In this case, by Lemma 2.13 it is enough to prove the proposition when we replace \mathfrak{a}_{i} by $\mathfrak{a}_{i}+\mathfrak{m}_{x}^{q}$. Since there are ideals $\mathfrak{a}_{i}^{\prime}$ in $k\left[x_{1}, \ldots, x_{n}\right]$ such that $\mathfrak{a}_{i}+\mathfrak{m}_{x}^{q}=\mathfrak{a}_{i}^{\prime} \cdot k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, we conclude using the case of ideals in \mathbf{A}^{n} via Remark 2.12.

Remark 2.15. If X is a nonsingular variety over k, it is sometimes convenient to phrase the description of $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ in the language of mixed multiplier ideals, for which we refer to [Laz, Chapter 9]. Recall that the pair $\left(X, \mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{r}^{\lambda_{r}}\right)$ is klt at $x \in X$ if and only if the mixed multiplier ideal $\mathcal{J}\left(X, \mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{r}^{\lambda_{r}}\right)$ is not contained in the ideal \mathfrak{m}_{x} defining x. We deduce using the definition of the LCT-polytopes that $\lambda \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ if and only if for every $\mu=\left(\mu_{i}\right) \in \mathbf{R}_{+}^{r}$ with $\mu \prec \lambda$, we have $\mathcal{J}\left(X, \mathfrak{a}_{1}^{\mu_{1}} \cdots \mathfrak{a}_{r}^{\mu_{r}}\right) \nsubseteq \mathfrak{m}_{x}$.

The following proposition is the generalization to the case $r>1$ of [Kol2, Proposition 8.19]. As above, we denote by \mathfrak{m}_{x} the ideal defining the closed point $x \in X$.

Proposition 2.16. Let $\mathfrak{b}, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ be nonzero ideals on X, with $\operatorname{dim}(X)=n$. If $\lambda=$ $\left(\lambda_{j}\right) \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$, and N is a positive integer such that $\mathfrak{a}_{i}+\mathfrak{m}_{x}^{N}=\mathfrak{b}+\mathfrak{m}_{x}^{N}$ for some i, then

$$
\lambda-\min \left\{n / N, \lambda_{i}\right\} e_{i} \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{b}, \ldots, \mathfrak{a}_{r}\right)
$$

where \mathfrak{b} appears on the $i^{\text {th }}$ component.
Proof. By Lemma 2.3, we may assume that all \mathfrak{a}_{i} vanish at x. After replacing \mathfrak{a}_{i} by $\mathfrak{a}_{i}+\mathfrak{m}_{x}^{N}$, we may also assume that $\mathfrak{a}_{i}=\mathfrak{b}+\mathfrak{m}_{x}^{N}$. Arguing as in the proof of Proposition 2.14, we see that it is enough to prove the statement when X is a smooth variety over k. In this case it is convenient to use the language of mixed multiplier ideals, see Remark 2.15, Let us consider any $\mu=\left(\mu_{j}\right) \in \mathbf{R}_{+}^{r}$, with $\mu \prec \lambda$, so by assumption the mixed multiplier ideal $\mathcal{J}\left(X, \mathfrak{a}_{1}^{\mu_{1}} \cdots \mathfrak{a}_{r}^{\mu_{r}}\right)$ is not contained in \mathfrak{m}_{x}.

By the Summation Theorem (for the version that we need, see JM, Corollary 4.2]) we have

$$
\mathcal{J}\left(X, \mathfrak{a}_{1}^{\mu_{1}} \cdots\left(\mathfrak{b}+\mathfrak{m}_{x}^{N}\right)^{\mu_{i}} \cdots \mathfrak{a}_{r}^{\mu_{r}}\right)=\sum_{\alpha+\beta=\mu_{i}} \mathcal{J}\left(X, \mathfrak{a}_{1}^{\mu_{1}} \cdots \mathfrak{b}^{\alpha} \mathfrak{m}_{x}^{N \beta} \cdots \mathfrak{a}_{r}^{\mu_{r}}\right)
$$

It follows that for some $\alpha, \beta \geq 0$ with $\alpha+\beta=\mu_{i}$ we have

$$
\mathcal{J}\left(X, \mathfrak{a}_{1}^{\mu_{1}} \cdots \mathfrak{b}^{\alpha} \mathfrak{m}_{x}^{N \beta} \cdots \mathfrak{a}_{r}^{\mu_{r}}\right) \nsubseteq \mathfrak{m}_{x}
$$

This clearly implies that $\left(\mu_{1}, \ldots, 0, \ldots, \mu_{r}\right) \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{b}, \ldots \mathfrak{a}_{r}\right)$. Suppose now that $\mu_{i}>\frac{n}{N}$. Since $\mathcal{J}\left(\mathfrak{m}_{x}^{n}\right) \subseteq \mathfrak{m}_{x}$ it follows that $N \beta<n$, and we have $\left(\mu_{1}, \ldots, \mu_{i}-\frac{n}{N}, \ldots, \mu_{r}\right) \in$ $\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{b}, \ldots, \mathfrak{a}_{r}\right)$. We conclude that $\mu-\min \left\{n / N, \mu_{i}\right\} e_{i} \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{b}, \ldots, \mathfrak{a}_{r}\right)$. Since this holds for every $\mu \prec \lambda$, we get the conclusion of the proposition.

An iterated application of the proposition gives the following result improving Lemma 2.13,

Corollary 2.17. Let $\mathfrak{a}_{i}, \mathfrak{b}_{i}$ be ideals on X, for $1 \leq i \leq r$, and let N be a positive integer such that $\mathfrak{a}_{i}+\mathfrak{m}_{x}^{N}=\mathfrak{b}_{i}+\mathfrak{m}_{x}^{N}$ for all i. If $\lambda=\left(\lambda_{i}\right) \in \operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$, then $\lambda^{\prime}=\left(\lambda_{i}^{\prime}\right) \in \operatorname{LCT}_{x}\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{r}\right)$, where $\lambda_{i}^{\prime}=\max \left\{\lambda_{i}-\frac{n}{N}, 0\right\}$ for all i.

Recall that on the space \mathcal{H}_{r} of all nonempty compact subsets in \mathbf{R}^{r} we have the Hausdorff metric, defined as follows. If $K \subset \mathbf{R}^{r}$ is an arbitrary compact set, for every $x \in \mathbf{R}^{r}$ we put $d(x, K)=\min _{y \in K} d(x, y)$, where $d(x, y)$ denotes the Euclidean distance between x and y. The Hausdorff distance between two compact sets K_{1} and K_{2} is defined by

$$
\delta\left(K_{1}, K_{2}\right):=\max \left\{\max _{x \in K_{1}} d\left(x, K_{2}\right), \max _{x \in K_{2}} d\left(x, K_{1}\right)\right\}
$$

The set of all nonempty compact subsets of \mathbf{R}^{r} thus becomes a complete metric space. Furthermore, the subspace of \mathcal{H}_{r} consisting of all compact subsets of a fixed compact set K in \mathbf{R}^{r} is compact. For some basic facts about the Hausdorff metric, see [Mun, p.281]. Using this notion, we deduce from Corollary 2.17 the next

Corollary 2.18. Suppose that $\mathfrak{a}_{i}, \mathfrak{b}_{i}$ are ideals on X, and $x \in X$ lies in $\bigcap_{i} \operatorname{Supp}\left(V\left(\mathfrak{a}_{i}\right)\right)$. If N is a positive integer such that $\mathfrak{a}_{i}+\mathfrak{m}_{x}^{N}=\mathfrak{b}_{i}+\mathfrak{m}_{x}^{N}$ for all i, then

$$
\delta\left(\operatorname{LCT}_{x}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right), \operatorname{LCT}_{x}\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{r}\right)\right) \leq \frac{n \sqrt{r}}{N}
$$

Example 2.19. Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ be proper nonzero ideals on $X=\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$. If $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{r}$ are the inverse images of these ideals on $X^{\prime}=\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n}, y \rrbracket\right)$ via the canonical projection, then $\operatorname{LCT}\left(\mathfrak{b}_{1}+\left(y^{d}\right), \mathfrak{b}_{2}, \ldots, \mathfrak{b}_{r}\right)$ is equal to

$$
\begin{equation*}
\left\{\left(\lambda_{1}+t, \lambda_{2}, \ldots, \lambda_{r}\right) \mid\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right), 0 \leq t \leq 1 / d\right\} \tag{6}
\end{equation*}
$$

Indeed, note first that by Lemma 2.13 (or Corollary 2.17), it is enough to prove the above assertion when we replace each \mathfrak{a}_{i} by $\mathfrak{a}_{i}+\left(x_{1}, \ldots, x_{n}\right)^{\ell}$, for all $\ell \geq 1$. It follows from Remark 2.12 that it is enough to prove the similar equality when the \mathfrak{a}_{i} are nonzero ideals on $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ vanishing at the origin, we have $\mathfrak{b}_{i}=\mathfrak{a}_{i} \cdot k\left[x_{1}, \ldots, x_{n}, y\right]$, and we compute the LCT-polytopes at the origin. In this case it is again convenient to use the language of mixed multiplier ideal sheaves. Recall that by Remark 2.15, we have $\lambda \in \operatorname{LCT}_{0}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ if and only if for every $\mu=\left(\mu_{i}\right) \in \mathbf{R}_{+}^{r}$ with $\mu \prec \lambda$, we have $\mathcal{J}\left(\mathbf{A}^{n}, \mathfrak{a}_{1}^{\mu_{1}} \cdots \mathfrak{a}_{r}^{\mu_{r}}\right) \nsubseteq\left(x_{1}, \ldots, x_{n}\right)$. It follows from the Summation Theorem (see [JM, Corollary 4.2]) that for every $\mu_{1}, \ldots, \mu_{r} \in \mathbf{R}_{+}$, we have

$$
\begin{aligned}
\mathcal{J}\left(\mathbf{A}^{n+1},\left(\mathfrak{b}_{1}+\right.\right. & \left.\left.\left(y^{d}\right)\right)^{\mu_{1}} \mathfrak{b}_{2}^{\mu_{2}} \cdots \mathfrak{b}_{r}^{\mu_{r}}\right)=\sum_{\alpha+\beta=\mu_{1}} \mathcal{J}\left(\mathbf{A}^{n+1}, \mathfrak{b}_{1}^{\alpha} y^{d \beta} \mathfrak{b}_{2}^{\mu_{2}} \cdots \mathfrak{b}_{r}^{\mu_{r}}\right) \\
& =\sum_{\alpha+\beta=\mu_{1}}\left(y^{\lfloor d \beta\rfloor}\right) \cdot \mathcal{J}\left(\mathbf{A}^{n}, \mathfrak{b}_{1}^{\alpha} \mathfrak{b}_{2}^{\mu_{2}} \cdots \mathfrak{b}_{r}^{\mu_{r}}\right),
\end{aligned}
$$

where the second equality follows from [Laz, Remark 9.5.23]. Therefore, this ideal is not contained in $\left(x_{1}, \ldots, x_{n}, y\right)$ if and only there is $\beta \in \mathbf{R}_{+}$with $\beta_{1}<1 / d$ such that $\mathcal{J}\left(\mathbf{A}^{n}, \mathfrak{b}_{1}^{\mu_{1}-\beta} \mathfrak{b}_{2}^{\mu_{2}} \cdots \mathfrak{b}_{r}^{\mu_{r}}\right)$ is not contained in $\left(x_{1}, \ldots, x_{n}\right)$. The description in (6) easily follows.

3. Limits of LCT-polytopes

Recall that by Remark 2.12, in order to study the possible LCT-polytopes in a given dimension n, we may restrict to the case when $X=\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$. Of course, in this case it is not necessary to include the closed point in the notation.

Remark 3.1. Note that if $k \subset K$ is a field extension of algebraically closed fields, and if $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are nonzero proper ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, and if we put $\mathfrak{a}_{i}^{\prime}=\mathfrak{a}_{i} \cdot K \llbracket x_{1}, \ldots, x_{n} \rrbracket$, then $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)=\operatorname{LCT}\left(\mathfrak{a}_{1}^{\prime}, \ldots, \mathfrak{a}_{r}^{\prime}\right)$. Indeed, by Lemma 2.13 it is enough to show that for all $N \geq 1$ we have

$$
\begin{equation*}
\operatorname{LCT}\left(\mathfrak{a}_{1}+\mathfrak{m}^{N}, \ldots, \mathfrak{a}_{r}+\mathfrak{m}^{N}\right)=\operatorname{LCT}\left(\mathfrak{a}_{1}^{\prime}+\left(\mathfrak{m}^{\prime}\right)^{N}, \ldots, \mathfrak{a}_{r}^{\prime}+\left(\mathfrak{m}^{\prime}\right)^{N}\right) \tag{7}
\end{equation*}
$$

where \mathfrak{m} and \mathfrak{m}^{\prime} are the maximal ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ and respectively, $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$. Let us fix N. There are ideals \mathfrak{b}_{i} in $k\left[x_{1}, \ldots, x_{n}\right]$ such that $\mathfrak{b}_{i} \cdot k \llbracket x_{1}, \ldots, x_{n} \rrbracket=\mathfrak{a}_{i}+\mathfrak{m}^{N}$
for every i. If $\mathfrak{b}_{i}^{\prime}=\mathfrak{b}_{i} \cdot K\left[x_{1}, \ldots, x_{n}\right]$, then $\mathfrak{b}_{i}^{\prime} \cdot K \llbracket x_{1}, \ldots, x_{n} \rrbracket=\mathfrak{a}_{i}^{\prime}$. It is easy to see that $\operatorname{LCT}_{0}\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{r}\right)=\operatorname{LCT}_{0}\left(\mathfrak{b}_{1}^{\prime}, \ldots \mathfrak{b}_{r}^{\prime}\right)$, using a \log resolution of $\mathfrak{b}_{1} \cdot \ldots \cdot \mathfrak{b}_{r}$ to compute the left-hand side of the equality, and the base-extension of this log resolution to $\operatorname{Spec}(K)$ to compute the right-hand side (see for example [FM, Proposition 2.9] for the case of one ideal). The assertion in (7) is now a consequence of Remark 2.12. Therefore every LCT-polytope of ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ is an LCT-polytope of ideals in $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

Remark 3.2. If k is an algebraically closed field having infinite transcendence degree over \mathbf{Q} (for example, $k=\mathbf{C}$), then every LCT-polytope of r ideals in some $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$ can be realized as the LCT-polytope of r ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$. Indeed, suppose that $P=\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$, with $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ proper nonzero ideals in $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$. Since each \mathfrak{a}_{i} is finitely generated, we can find an algebraically closed subfield $L \subset K$ of countable transcendence degree over \mathbf{Q}, and ideals \mathfrak{b}_{i} in $L \llbracket x_{1}, \ldots, x_{n} \rrbracket$ such that $\mathfrak{a}_{i}=\mathfrak{b}_{i} \cdot K \llbracket x_{1}, \ldots, x_{n} \rrbracket$ for every i. Using the fact that k has infinite transcendence degree over \mathbf{Q}, we can find an embedding $L \hookrightarrow k$. If $\mathfrak{b}_{i}^{\prime}=\mathfrak{b}_{i} \cdot k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, we deduce from the previous remark that $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right)=\operatorname{LCT}\left(\mathfrak{b}_{1}^{\prime}, \ldots, \mathfrak{b}_{n}^{\prime}\right)$.

By Proposition 2.10 iv), all LCT-polytopes corresponding to r proper nonzero ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ are contained in the compact set $[0, n]^{r}$. Therefore every sequence of LCTpolytopes has a convergent subsequence (in the Hausdorff metric). Our goal is to show that the limit is again an LCT-polytope, corresponding to possibly fewer than r ideals. Furthermore, we prove that in this case, the limit is equal to the intersection of all but finitely many of the given LCT-polytopes.
Theorem 3.3. If $P_{m}=\operatorname{LCT}\left(\mathfrak{a}_{1}^{(m)}, \ldots, \mathfrak{a}_{r}^{(m)}\right)$ for $m \geq 1$, where the $\mathfrak{a}_{i}^{(m)}$ are proper nonzero ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, and if the P_{m} converge in the Hausdorff metric to a compact set $Q \subseteq \mathbf{R}^{r}$, then Q is again an LCT-polytope. More precisely, if I is the set of those $i \leq r$ such that $Q \nsubseteq\left(x_{i}=0\right)$, then we can find proper nonzero ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}$ in $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$, with $s=\# I$ and K an algebraically closed field extension of k, such that $Q=j_{I}\left(\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)\right)$, where $j_{I}: \mathbf{R}^{s} \hookrightarrow \mathbf{R}^{r}$ is the inclusion corresponding to the coordinates in I.

Remark 3.4. We make the convention that the LCT-polytope of an empty set of ideals consists of $\{0\}$. In the context of Theorem 3.3, it can happen that $s=0$, in which case Q consists of the origin in \mathbf{R}^{r}.

Remark 3.5. It follows from Remark 3.2 that if the transcendence degree of k over \mathbf{Q} is infinite, then in Theorem 3.3 we may take $K=k$.

Theorem 3.6. If $\left(P_{m}\right)_{m \geq 1}$ and Q are as in Theorem 3.3, then there is m_{0} such that $Q=\bigcap_{m \geq m_{0}} P_{m}$.

This result can be considered as a strong form of the Ascending Chain Condition for LCT-polytopes. In fact, it immediately gives

Corollary 3.7. If $P_{m}=\operatorname{LCT}\left(\mathfrak{a}_{1}^{(m)}, \ldots, \mathfrak{a}_{r}^{(m)}\right)$ for $m \geq 1$, where the $\mathfrak{a}_{i}^{(m)}$ are proper nonzero ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, and if $P_{1} \subseteq P_{2} \subseteq \cdots$, then this sequence is eventually stationary.

Proof. It is enough to find a subsequence that is eventually stationary. Since $P_{m} \subseteq[0, n]^{r}$ for all m, we deduce that after passing to a subsequence, we may assume that the P_{m} converge to some Q in the Hausdorff metric. Theorem 3.6 implies that there is m_{0} such that $Q=\bigcap_{m \geq m_{0}} P_{m}$. On the other hand, it is easy to see that in our case $\bigcup_{m \geq 1} P_{m} \subseteq Q$ (see, for example, Lemma 3.8 iii) below). This gives $P_{m}=Q$ for every $m \geq m_{0}$.

For the proof of Theorems 3.3 and 3.6 we will need a couple of lemmas. The first one gives some easy properties of Hausdorff convergence that we will need. We denote by $d(\cdot, \cdot)$ the Euclidean distance in \mathbf{R}^{r}, and by $\delta(\cdot, \cdot)$ the Hausdorff metric on the space \mathcal{H}_{r} of all nonempty compact subsets of \mathbf{R}^{r}.

Lemma 3.8. Let $\left(K_{m}\right)_{m \geq 1}$ be a sequence of compact subsets in \mathbf{R}^{r}, converging in the Hausdorff metric to the compact subset K.
i) If $C \subseteq \mathbf{R}^{r}$ is closed, and $K_{m} \subseteq C$ for all m, then $K \subseteq C$.
ii) If $u_{m} \in K_{m}$, and $\left(u_{m}\right)_{m \geq 1}$ converges to $u \in \mathbf{R}^{r}$, then $u \in K$.
iii) $\bigcap_{m} K_{m} \subseteq K$.

Proof. The assertion in i) follows easily from definition. For ii), note that if $u \notin K$, then there is a ball $B(u, \varepsilon)$ centered at u, and of radius $\varepsilon>0$ that does not intersect K. By assumption, there is m_{0} such that $\delta\left(K_{m}, K\right)<\varepsilon / 2$ for all $m \geq m_{0}$. For such m, since $u_{m} \in K_{m}$, we have $d\left(u_{m}, K\right)<\varepsilon / 2$, hence we can find $w_{m} \in K$ such that $d\left(u_{m}, w_{m}\right)<\varepsilon / 2$. On the other hand, after possibly enlarging m_{0}, we may assume that $d\left(u_{m}, u\right)<\varepsilon / 2$ for $m \geq m_{0}$. Therefore

$$
d\left(u, w_{m}\right) \leq d\left(u, u_{m}\right)+d\left(u_{m}, w_{m}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon,
$$

contradicting the fact that $B(u, \varepsilon) \cap K=\emptyset$. This proves ii), and the assertion in iii) is a special case.

For a proper nonzero ideal \mathfrak{a} in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, its order $\operatorname{ord}(\mathfrak{a})$ is the largest nonnegative integer d such that \mathfrak{a} is contained in the $d^{\text {th }}$ power of the maximal ideal \mathfrak{m}. Recall the following estimates for the \log canonical threshold in terms of the order:

$$
\begin{equation*}
\frac{1}{\operatorname{ord}(\mathfrak{a})} \leq \operatorname{lct}(\mathfrak{a}) \leq \frac{n}{\operatorname{ord}(\mathfrak{a})} \tag{8}
\end{equation*}
$$

(the first inequality reduces to the case $n=1$ via Proposition 2.14, while the second inequality follows from $\left.\operatorname{lct}(\mathfrak{a}) \leq \operatorname{lct}\left(\mathfrak{m}^{\operatorname{ord}(\mathfrak{a})}\right)=n / \operatorname{ord}(\mathfrak{a})\right)$.
Lemma 3.9. With the notation in Theorem 3.3, the following are equivalent:
i) $Q \subseteq\left(x_{i}=0\right)$.
ii) $\lim _{m \rightarrow \infty} \operatorname{ord}\left(\mathfrak{a}_{i}^{(m)}\right)=\infty$.
iii) The set $\left\{\operatorname{ord}\left(\mathfrak{a}_{i}^{(m)}\right) \mid m \geq 1\right\}$ is unbounded.

Proof. Suppose first that $Q \subseteq\left(x_{i}=0\right)$. For every m we have $\operatorname{lct}\left(\mathfrak{a}_{i}^{(m)}\right) \cdot e_{i} \in P_{m}$, where e_{1}, \ldots, e_{r} is the standard basis of \mathbf{R}^{r}. It follows from Lemma 3.8 ii) that every limit point of the sequence $\left(\operatorname{lct}\left(\mathfrak{a}_{i}^{(m)}\right) \cdot e_{i}\right)_{m>1}$ lies in Q. Therefore $\lim _{m \rightarrow \infty} \operatorname{lct}\left(\mathfrak{a}_{i}^{(m)}\right)=0$, and ii) follows from the first inequality in (8) .

Since the implication ii) \Rightarrow iii) is trivial, in order to finish the proof of the lemma it is enough to prove iii $) \Rightarrow \mathrm{i}$). Suppose that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in Q$, and $\lambda_{i}>0$. We can find m_{0} such that $\delta\left(P_{m}, Q\right)<\lambda_{i} / 2$ for all $m \geq m_{0}$. For every such m, we can find $w^{(m)}=\left(w_{1}^{(m)}, \ldots, w_{r}^{(m)}\right) \in P_{m}$ such that $d\left(w^{(m)}, \lambda\right)<\lambda_{i} / 2$. In particular, $w_{i}^{(m)}>\lambda_{i} / 2$. Since $w^{(m)} \in P_{m}$, we see using the second inequality in (8) that for all $m \geq m_{0}$

$$
\frac{\lambda_{i}}{2}<w_{i}^{(m)} \leq \operatorname{lct}\left(\mathfrak{a}_{i}^{(m)}\right) \leq \frac{n}{\operatorname{ord}\left(\mathfrak{a}_{i}^{(m)}\right)}
$$

This contradicts iii).

The main ingredient in the proof of Theorems 3.3 and 3.6 is the generic limit construction from Kol1 and dFEM. Let $\left(\mathfrak{a}_{1}^{(m)}\right)_{m}, \ldots,\left(\mathfrak{a}_{r}^{(m)}\right)_{m}$ be sequences as in Theorem [3.3. In order to simplify the notation, let us relabel the sequences such that the set I in the theorem is equal to $\{1, \ldots, s\}$. Associated to the s sequences $\left(\mathfrak{a}_{i}^{(m)}\right)_{m \geq 1}$, with $1 \leq i \leq s$, we get s generic limits $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}$. These are ideals in $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$, where K is a suitable algebraically closed field extension of k. It follows from Lemma 4.3 in dFEM] and the above Lemma 3.9 that all \mathfrak{a}_{i} are nonzero. Furthermore, since every $\mathfrak{a}_{i}^{(m)}$ is contained in the maximal ideal, the same holds for the ideals \mathfrak{a}_{i}. The fundamental property of the generic limit construction is that there is a strictly increasing sequence $\left(m_{\ell}\right)_{\ell}$ such that for every nonnegative rational numbers w_{1}, \ldots, w_{s} we have

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \operatorname{lct}\left(\left(\mathfrak{a}_{1}^{\left(m_{\ell}\right)}\right)^{w_{1}} \cdots\left(\mathfrak{a}_{s}^{\left(m_{\ell}\right)}\right)^{w_{s}}\right)=\operatorname{lct}\left(\mathfrak{a}_{1}^{w_{1}} \cdots \mathfrak{a}_{s}^{w_{s}}\right) \tag{9}
\end{equation*}
$$

(see [dFEM, Corollary 4.5]).
Remark 3.10. The construction in dFEM deals with only two sequences of ideals, but as pointed out in loc. cit., everything generalizes in an obvious way to any finite number of sequences. We also note that the field K given in loc. cit. is not algebraically closed, but since we are only interested in (9), we can simply extend the generic limit ideals to an algebraic closure. The equation (9) is stated in loc. cit. only for integers w_{1}, \ldots, w_{s}. On the other hand, if the w_{i} are rational numbers, and if N is a positive integer such that all $N w_{i} \in \mathbf{Z}$, the formula for $\left(N w_{1}, \ldots, N w_{s}\right)$ implies the one for $\left(w_{1}, \ldots, w_{s}\right)$ by rescaling.

We isolate in the following lemma the key argument needed for the proofs of Theorems 3.3 and 3.6. We use the notation in those theorems, as well the notation for the generic limit ideals introduced above.

Lemma 3.11. If $\lambda \in \operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right) \cap \mathbf{Q}^{s}$, then there are infinitely many m such that $j_{I}(\lambda) \in P_{m}$.

Proof. Write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$, hence by assumption $\operatorname{lct}\left(\mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{s}^{\lambda_{s}}\right) \geq 1$. Fix a positive integer N such that $N \lambda_{i} \in \mathbf{Z}$ for every i. Consider the set

$$
\Gamma:=\left\{\operatorname{lct}\left(\left(\mathfrak{a}_{1}^{(m)}\right)^{N \lambda_{1}} \cdots\left(\mathfrak{a}_{s}^{(m)}\right)^{N \lambda_{s}}\right) \mid m \in \mathbf{Z}_{>0}\right\} .
$$

Since the elements of Γ are \log canonical thresholds of ideals on $\operatorname{Spec}\left(k \llbracket x_{1}, \ldots, x_{n} \rrbracket\right)$, it follows from dFEM, Theorem 5.1] that Γ satisfies ACC, that is, it contains no infinite strictly increasing sequences. On the other hand, (9) shows that $\frac{1}{N} \operatorname{lct}\left(\mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{s}^{\lambda_{s}}\right)$ lies in the closure of Γ. We deduce that there are infinitely many m such that

$$
\operatorname{lct}\left(\left(\mathfrak{a}_{1}^{(m)}\right)^{N \lambda_{1}} \cdots\left(\mathfrak{a}_{s}^{(m)}\right)^{N \lambda_{s}}\right) \geq \frac{1}{N} \operatorname{lct}\left(\mathfrak{a}_{1}^{\lambda_{1}} \cdots \mathfrak{a}_{s}^{\lambda_{s}}\right) \geq \frac{1}{N}
$$

Therefore $j_{I}(\lambda) \in P_{m}$ for all such m.

We can now give the proofs of our main results.

Proof of Theorem 3.3. With the above notation, it is enough to show that we have $Q=$ $j_{I}\left(\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)\right.$) (of course, we may assume that $s \geq 1$, as otherwise there is nothing to prove). Note first that Lemma 3.11 gives the inclusion $j_{I}\left(\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)\right) \subseteq Q$. Indeed, since $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right) \cap \mathbf{Q}^{s}$ is dense in $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)$, and Q is closed, it is enough to prove the inclusion $j_{I}\left(\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right) \cap \mathbf{Q}^{s}\right) \subseteq Q$, and this follows from the lemma (note that by Lemma 3.8 iii), the intersection of infinitely many of the P_{m} is contained in Q).

We now prove the reverse inclusion: suppose that $u=\left(u_{1}, \ldots, u_{r}\right) \in Q$ (hence $u_{i}=0$ for $\left.i>s\right)$, and let us show that $\left(u_{1}, \ldots, u_{s}\right) \in \operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)$. Note first that by Lemma 3.8 i), we have $Q \subseteq \mathbf{R}_{+}^{r}$. Fix $\varepsilon>0$, and let us choose $w=\left(w_{1}, \ldots, w_{s}\right) \in \mathbf{Q}_{+}^{s}$ such that $w_{i} \leq u_{i}$ for all i, with strict inequality if $u_{i}>0$, and such that $\left(u_{i}-w_{i}\right)<\varepsilon$ for all i. We will show that in this case $\operatorname{lct}\left(\mathfrak{a}_{1}^{w_{1}} \cdots \mathfrak{a}_{s}^{w_{s}}\right) \geq 1$. Since this holds for every $\varepsilon>0$, we get $\operatorname{lct}\left(\mathfrak{a}_{1}^{u_{1}} \cdots \mathfrak{a}_{s}^{u_{s}}\right) \geq 1$, that is, $u \in j_{I}\left(\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)\right)$.

Let $\left(m_{\ell}\right)$ be a strictly increasing sequence such that (19) holds. We can choose q such that for all $m \geq q$ we have $\delta\left(P_{m}, Q\right)<\min \left\{u_{i}-w_{i} \mid u_{i}>0\right\}$. For every such m, let us choose $v_{m} \in P_{m}$ with $d\left(v_{m}, u\right)<\min \left\{u_{i}-w_{i} \mid u_{i}>0\right\}$. We may assume that $v_{m} \in \mathbf{Q}^{r}$. Since $v_{m}=\left(v_{m, 1}, \ldots, v_{m, r}\right) \in P_{m}$, we have $\operatorname{lct}\left(\left(\mathfrak{a}_{1}^{(m)}\right)^{v_{m, 1}} \cdots\left(\mathfrak{a}_{r}^{(m)}\right)^{v_{m, r}}\right) \geq 1$. On the other hand, by construction $w_{i} \leq v_{m, i}$ for every $i \leq s$, hence $\operatorname{lct}\left(\left(\mathfrak{a}_{1}^{(m)}\right)^{w_{1}} \cdots\left(\mathfrak{a}_{s}^{(m)}\right)^{w_{m}}\right) \geq 1$ for all $m \geq q$. Therefore (9) implies $\operatorname{lct}\left(\mathfrak{a}_{1}^{w_{1}} \cdots \mathfrak{a}_{s}^{w_{s}}\right) \geq 1$, completing the proof.

Proof of Theorem 3.6. It is enough to show that there is m_{0} such that $Q \subseteq P_{m}$ for all $m \geq m_{0}$. Indeed, in this case $Q \subseteq \bigcap_{m \geq m_{0}} P_{m} \subseteq Q$, where the second inclusion follows from Lemma 3.8 iii).

Let us assume that this is not the case. After possibly replacing the sequence $\left(P_{m}\right)_{m \geq 1}$ by a subsequence, we may assume that $Q \nsubseteq P_{m}$ for any m. Note that by Theorem 3.3, Q is a rational polytope, so it is the convex hull of its vertices, which lie in \mathbf{Q}^{r}. Furthermore, by the above proof, each such vertex lies in $j_{I}\left(P\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}\right)\right)$; hence by Lemma 3.11, it lies in infinitely many P_{m}. After replacing the sequence $\left(P_{m}\right)_{m \geq 1}$ by a subsequence, and after doing this for all vertices of Q, we conclude that all vertices of Q lie in P_{m} for all m. Therefore $Q \subseteq P_{m}$ for all m, a contradiction. This concludes the proof of the theorem.

Example 3.12. It follows from Example 2.19 that if $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are proper nonzero ideals in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, then $\operatorname{LCT}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right)$ is the intersection of a sequence $P_{1} \supset P_{2} \supset \ldots$ that is not eventually stationary, where each P_{i} is the LCT-polytope of r proper nonzero ideals in $k \llbracket x_{1}, \ldots, x_{n}, y \rrbracket$.

Remark 3.13. If in Theorem 3.3 we have $P_{m}=\operatorname{LCT}\left(f_{1}^{(m)}, \ldots, f_{r}^{(m)}\right)$ with the $f_{i}^{(m)}$ nonzero elements in the maximal ideal of $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, then one can obtain Q as (the linear embedding of) $\operatorname{LCT}\left(f_{1}, \ldots, f_{s}\right)$, with f_{i} nonzero elements in the maximal ideal of some $K \llbracket x_{1}, \ldots, x_{n} \rrbracket$. Indeed, one can modify the construction in dFEM by replacing the Hilbert schemes parametrizing all ideals in quotient rings $k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}, \ldots, x_{n}\right)^{d}$ with parameter spaces for principal ideals in these rings (when $r=1$, this is done in [Kol1]).

Since the set of all \log canonical thresholds $\operatorname{lct}(f)$, with $f \in k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ satisfies ACC, it follows that there is a largest such invariant that is <1. Finding this value for arbitrary n is an open problem. For example, it is well-known that this value is $\frac{5}{6}$ if $n=2$ (obtained for $f=x^{2}-y^{3}$). As the following example shows, one can get similar results for $r \geq 2$, and at least in the plane, these are easier than for $r=1$.
Example 3.14. We know that if $f, g \in k \llbracket x, y \rrbracket$ are nonzero elements in the maximal ideal of $k \llbracket x, y \rrbracket$, then $\operatorname{LCT}(f, g) \subseteq[0,1]^{2}$. In fact, we have $\operatorname{LCT}(f, g)=[0,1]^{2}$ if and only if after a change of variables $(f, g)=(x, y)$, and otherwise

$$
\operatorname{LCT}(f, g) \subseteq\left\{\left(\lambda_{1}, \lambda_{2}\right) \in[0,1]^{2} \mid \lambda_{1}+\lambda_{2} \leq 3 / 2\right\} .
$$

Indeed, it follows from Example 2.6 that $\operatorname{LCT}(x, y)=[0,1]^{2}$. If there is no change of variable such that $(f, g)=(x, y)$, then there is a line in the tangent space at the origin to $X=\operatorname{Spec}(k \llbracket x, y \rrbracket)$ that is contained in $T_{0}(V(f)) \cap T_{0}(V(g))$. This corresponds to a point p on the exceptional divisor E in the blow-up $B=\operatorname{Bl}_{0}(X) \xrightarrow{\pi} X$, and the condition says that $\operatorname{ord}_{p}\left(\pi^{*}(f)\right), \operatorname{ord}_{p}\left(\pi^{*}(g)\right) \geq 2$. It follows that if F is the exceptional divisor on the blow-up of B at p, then for every $\left(\lambda_{1}, \lambda_{2}\right) \in \operatorname{LCT}(f, g)$ we have

$$
2 \lambda_{1}+2 \lambda_{2} \leq \lambda_{1} \cdot \operatorname{ord}_{F}(f)+\lambda_{2} \cdot \operatorname{ord}_{F}(g) \leq \operatorname{ord}_{F}\left(K_{-/ X}\right)+1=3
$$

Example 2.8 a) shows that there are f and g such that $\operatorname{LCT}(f, g)=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in[0,1]^{2} \mid\right.$ $\left.\lambda_{1}+\lambda_{2} \leq 3 / 2\right\}$.

We note that if $r \geq 3$, then

$$
\begin{equation*}
\operatorname{LCT}\left(f_{1}, \ldots, f_{r}\right) \subseteq\left\{\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in[0,1]^{r} \mid \lambda_{1}+\cdots+\lambda_{r} \leq 2\right\} \tag{10}
\end{equation*}
$$

for every nonzero $f_{1}, \ldots, f_{r} \in(x, y)$. Indeed, we see by considering the exceptional divisor E on B above that if $\operatorname{lct}\left(f_{1}^{\lambda_{1}} \cdots f_{r}^{\lambda_{r}}\right) \geq 1$, then $\sum_{i} \lambda_{i} \leq \sum_{i} \lambda_{i} \cdot \operatorname{ord}_{E}\left(f_{i}\right) \leq 2$. We also observe that if f_{1}, \ldots, f_{r} are general linear forms, then $\pi: B \rightarrow X$ gives a log resolution of $\left(X,\left(f_{1} \cdots f_{r}\right)\right)$, and we see that in this case we have equatlity in (10).

References

[Bir] C. Birkar, Ascending chain condition for \log canonical thresholds and termination of log flips, Duke Math. J. 136 (2007), 173-180.
[CL] P. Cassou-Nogues and A. Libgober, Multivariable Hodge theoretical invariants of germs of plane curves, preprint available at arXiv:0904.1030
[dFEM] T. de Fernex, L. Ein, and M. Mustaţă, Shokurov's ACC Conjecture for log canonical thresholds on smooth varieties, Duke Math. J., to appear.
[dFM] T. de Fernex and M. Mustaţă, Limits of log canonical thresholds, Ann. Sci. École Norm. Sup. (4) 42 (2009), 493-517.
[EM] L. Ein and M. Mustaţă, Invariants of singularities of pairs, in International Congress of Mathematicians, Vol. II, 583-602, Eur. Math. Soc., Zürich, 2006.
[How] J. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), 2665-2671.
[JLM] M. Jonsson, R. Lazarsfeld, and M. Mustaţă, Notes on invariants of graded sequences of ideals, in preparation.
[JM] S.-Y. Jow and E. Miller, Multiplier ideals of sums via cellular resolutions, Math. Res. Lett. 15 (2008), 359-373.
[Kol1] J. Kollár, Which powers of holomorphic functions are integrable?, preprint available at arXiv:0805.0756.
[Kol2] J. Kollár, Singularities of pairs, in Algebraic geometry, Santa Cruz 1995, 221-286, Proc. Symp. Pure Math. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.
[Laz] R. Lazarsfeld, Positivity in algebraic geometry, II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 49, Springer-Verlag, Berlin, 2004.
[Lib1] A. Libgober, Hodge decomposition of Alexander invariants, Manuscripta Math. 107 (2002), 251-269.
[Lib2] A. Libgober, Homotopy groups of complements to ample divisors, Singularity theory and its applications, 179-204, Adv. Stud. Pure Math. 43, Math. Soc. Japan, Tokyo, 2006.
[Mun] J. Munkres, Topology, Prentice Hall, 2nd edition, 1999.
[Sho] V. V. Shokurov, Three-dimensional log perestroikas. With an appendix in English by Yujiro Kawamata, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105-203, translation in Russian Acad. Sci. Izv. Math. 40 (1993), 95-202.
[Tem] M. Temkin, Functorial desingularization over Q: boundaries and the embedded case, preprint available at arXiv:0912.2570

Department of Mathematics, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7045, USA

E-mail address: libgober@math.uic.edu

Department of Mathematics, University of Michigan, 530 Church Street, Ann ArBOR, MI 48109, USA

E-mail address: mmustata@umich.edu

[^0]: 2010 Mathematics Subject Classification. Primary 14B05; Secondary 14J17, 14E30.
 The first author was patially supported by NSF grant DMS-0705050. The second author was partially supported by NSF grant DMS-0758454 and a Packard Fellowship.

