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Abstract. In this paper, we study the relation between Castelnuovo-Mumford

regularity and Bridgeland stability for the Hilbert scheme of n points on P2.
For the largest bn

2
c Bridgeland walls, we show that the general ideal sheaf

destabilized along a smaller Bridgeland wall has smaller regularity than one

destabilized along a larger Bridgeland wall. We give a detailed analysis of the
case of monomial schemes and obtain a precise relation between the regularity

and the Bridgeland stability for the case of Borel fixed ideals.

1. Introduction

In this paper, we consider the relation between the Castelnuovo-Mumford reg-
ularity and the Bridgeland stability of zero-dimensional subschemes of P2. Our
study is motivated by the following result which relates geometric invariant theory
(GIT) stability and Castelnuovo-Mumford regularity.

Theorem. [HH13, Corollary 4.5] Let C ⊂ P3g−4 be a c-semistable bicanonical
curve. Then OC is 2-regular.

Note that c-semistability of curves [HH13, Definition 2.6] is a purely geomet-
ric notion concerning singularities and subcurves, whereas Castelnuovo-Mumford
regularity is an algebraic notion regarding the syzygies of ideal sheaves.

For points in P2, a similar but weaker statement holds. A set of n points in P2
is GIT semistable if and only if at most 2n/3 of the points are collinear, in which
case the regularity is at most 2n/3. However, the regularities of semistable points
cover a broad spectrum. Our goal in this paper is to use Bridgeland stability to
obtain a closer relationship between stability and regularity.

There is a distinguished half-planeH = {(s, t)|s > 0, t ∈ R} of Bridgeland stability
conditions for P2. Let ξ be a Chern character. The half-plane H admits a wall-and-
chamber decomposition, where in each chamber the set of Bridgeland semistable
objects with Chern character ξ remains constant.

The Bridgeland walls where an ideal sheaf of points is destabilized consist of the
vertical line s = 0 and a finite set of nested semicircular wallsWc centered along the
s-axis at s = −c − 3

2
< 0 [ABCH13, Section 6]. Since the semicircular Bridgeland
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walls are nested, we can order them by inclusion. If an ideal sheaf IZ is destabilized
along the wall Wc, then IZ is Bridgeland stable in the region bounded by Wc and
s = 0. Let σ ≺ σ ′ if all σ ′-semistable ideal sheaves with Chern character ξ are
σ-semistable. Consequently, Bridgeland stability induces a stratification of P2[n]

P2[n] =
∐
α

Xα,

where

Xα = {Z ∈ P2[n] | IZ is α-semistable but β-unstable ∀α ≺ β}
and α runs over a Bridgeland stability condition in each chamber. We have
Xα =

⋃
β�α X

β (see Section 2). By [ABCH13, Sections 9,10] and [LZ], this strat-

ification coincides with the stratification of P2[n] according to the stable base loci
of linear systems. Recall that the effective cone of a variety has a wall and cham-
ber decomposition such that in each chamber the stable base locus of the divisors
remain constant.

Similarly, there is a stratification induced by Castelnuovo-Mumford regularity:

P2[n] =
∐
r∈Z

Xr-reg,

where Xr-reg is the collection of ideals whose Castelnuovo-Mumford regularity is
r. The regularity, being a cohomological invariant [Eis95, Proposition 20.16], is

upper-semicontinuous and we have Xr-reg =
∐
r ′≥r X

r ′-reg.

This naturally raises the question of comparing the two stratifications. We will
show that a general scheme destabilized at one of the bn

2
c largest Bridgeland walls

has smaller regularity than the general scheme destabilized along the larger walls.
Our main theorem will be proved in Section 5:

Theorem. Let pi be the maximal ideal of the closed point pi ∈ P2, i = 1, . . . , s.
Let Z be the subscheme given by ∩si=1p

mi

i and let n be its length. Define

h := max


t∑
j=1

mij

∣∣∣∣∣∣ pi1 , . . . , pit are collinear

 .
If n ≤ 2h − 3, then Z is destabilized at the wall Wreg(Z)−1. In particular, general
points destabilized at Wk+1 have higher regularity than those destabilized at Wk,
∀k ≥ n

2
− 1.

For zero-dimensional subschemes cut out by monomials, we have a more precise
connection between regularity and Bridgeland stability:

Proposition. Let Z be a zero-dimensional monomial scheme in P2. If the ideal
sheaf IZ is destabilized at the wall Wµ(Z) with center x = −µ(Z) − 3

2
, then

3

4
(reg(IZ) − 1) ≤ µ(Z) ≤ reg(IZ) − 1.

(1) The left equality holds if and only if reg(IZ) + 1 = 2m is even and IZ =
〈xm, ym〉

(2) The right equality holds if and only if IZ = 〈xa1 , xa2yb2 , . . . , ybr〉 with
max1≤i≤r−1(ai + bi+1 − 1) ≤ max(a1, br).
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In particular, for Borel fixed ideals, the regularity and the Bridgeland stability
completely determine each other:

Corollary. Let Z ⊂ P2 be a zero-dimensional monomial scheme whose ideal is
Borel-fixed (which holds if it is a generic initial ideal, for instance). Then the ideal
sheaf IZ is destabilized at the wall Wreg(IZ)−1.

In general, the relation between regularity and the Bridgeland slope is not mono-
tonic. Let Z1 and Z2 be two schemes of length n destabilized along Wµ(Z1)

and Wµ(Z2), respectively. It may happen that while reg(Z1) > reg(Z2), we have
µ(Z1) < µ(Z2). We close the introduction with the following simple but illustrative
example.

Example 1.1. Let Z1 and Z2 be the monomial scheme defined by 〈x4, y4〉 and
〈x6, x5y, x4y2, xy3, y4〉, respectively. Both are of length 16, and by the arguments
of Section 3, we see that reg(IZ1

) = 7, reg(IZ2
) = 6 and µ(Z1) =

9
2
, µ(Z2) = 5.

We work over an algebraically closed field K of characteristic zero.

Acknowledgements. We would like to thank Aaron Bertram and Jack Huizenga
for enlightening conversations.

2. Preliminaries on Bridgeland stability conditions

We briefly review the basics of Bridgeland stability conditions on P2. We refer
the reader to [ABCH13] and [CH14] for more details. Let Db(P2) be the bounded
derived category of coherent sheaves on P2, and K(P2) be the K-group of Db(P2).

Definition 2.1. A Bridgeland stability condition on P2 consists of a pair (A,Z),
where A is the heart of a t-structure on Db(P2) and Z : K(P2)→ C is a homomor-
phism (called the central charge) satisfying

• if 0 6= E ∈ A, Z(E) lies in the semi-closed upper half-plane {reiπθ | r >
0, 0 < θ ≤ 1}.
• (A,Z) has the Harder-Narasimhan property, which will be defined below.

Definition 2.2. Writing Z = −d + ir, the slope µ(E) of 0 6= E ∈ A is defined by
µ(E) = d(E)/r(E) if r(E) 6= 0 and µ(E) =∞ otherwise.

Definition 2.3. An object E ∈ A is called stable (resp. semistable) if for every
proper subobject F ⊂ E in A, µ(F) < µ(E) (resp. µ(F) ≤ µ(E)).

Definition 2.4. The pair (A,Z) has the Harder-Narasimhan property if any nonzero
object E ∈ A admits a finite filtration

0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that each Harder-Narasimhan factor Fi = Ei/Ei−1 is semistable and µ(F1) >
µ(F2) > · · · > µ(Fn).

Let L be the class of a line in P2.

Definition 2.5. Let E be a coherent sheaf on P2. The Mumford slope of E is
defined by deg(E)/rank(E), where deg(E) = ch1(E) ·L and rank(E) = ch0(E) ·L2 are
the ordinary degree and rank.
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Let µmin(E) (resp. µmax(E)) denote the minimum (resp. maximum) slope of a
Harder-Narasimhan factor of a coherent sheaf E with respect to the Mumford slope.
For s ∈ R, let Qs and Fs be the full subcategory of Coh(P2) defined by

• Q ∈ Qs if Q is torsion or µmin(Q) > s.
• F ∈ Fs if F is torsion-free, and µmax(F) ≤ s.

Each pair (Fs,Qs) is a torsion pair [Bri08, Lemma 6.1], and induces a t-structure
via tilting on Db(P2) with heart [HRS96]

As = {E ∈ Db(P2) | H−1(E) ∈ Fs, H0(E) ∈ Qs, and Hi(E) = 0 otherwise}.

Theorem. [Bri08, AB13, BM11] For each s ∈ R and t > 0, define

Zs,t(E) = −

∫
P2

e−(s+it)Lch(E).

Then the pair (As,Zs,t) defines a Bridgeland stability condition on Db(P2).

We thus obtain an upper half-plane H of Bridgeland stability conditions.
Fix a class ξ in the numerical Grothendieck group. If ξ has positive rank, define

the slope and the discriminant by

µ(ξ) =
ch1(ξ)

rank (ξ)
, ∆ =

1

2
µ(ξ)2 −

ch2(ξ)

rank (ξ)
.

For an ideal sheaf IZ of n points, we have µ = 0 and ∆ = n. A sheaf E of positive
rank is Gieseker semistable if for every proper subsheaf 0 6= F ⊂ E, µ(F) ≤ µ(E) and
in case of equality ∆(F) ≥ ∆(E). The sheaf is called Gieseker stable if the second
inequality is strict. The sheaf E is Gieseker semistable if and only if for some s, E
is Zs,t-semistable for all t� 0 [ABCH13, Section 6]. Every ideal sheaf of points is
Gieseker (in fact, slope) stable.

There exists a locally finite set of walls in the (s, t)-half plane depending on ξ
such that the set of σ-(semi)stable objects of class ξ does not change as the σ varies
in a chamber [Bri08, BM11, BM14]. These walls are called Bridgeland walls. For
P2, the Bridgeland walls where a Gieseker semistable sheaf is destabilized consist of
line s = µ(ξ) and a finite number of nested semicircles with center (c, 0) with c < µ
[ABCH13, Section 6]. The largest semicircular wall is called the Gieseker wall and
the smallest semicircular wall is called the collapsing wall. If ξ = (1, 0,−n), the
Chern character of the ideal sheaf of a zero-dimensional subscheme of P2 of length
n, then the wall with center (c, 0) has radius

√
c2 − 2n. Throughout the paper

Wµ =Wn
µ will denote the wall centered at (−µ− 3

2
, 0). An ideal sheaf destabilized

along Wµ is Bridgeland stable for all Bridgeland stability conditions outside Wµ
and not semistable for any Bridgeland stability condition contained in Wµ. All
Bridgeland walls for n ≤ 9 were explicitly computed in [ABCH13, Section 10].

In Figure 1, we reproduce the example of n = 5. Along the Gieseker wall W− 11
2

ideal sheaves of collinear points are destabilized. Along the wallW− 9
2

ideal sheaves

of schemes with a collinear subscheme of length four are destabilized. All ideal
sheaves are destabilized along the collapsing wall W− 7

2
.
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Figure 1. The Bridgeland walls for P2[5].

3. Monomial schemes

A monomial subscheme of P2 is a subscheme whose ideal is generated by mono-
mials. For these schemes, the relation between Castelnuovo-Mumford regularity
and Bridgeland stability is clear because the regularity is easy to compute and the
Bridgeland stability is explicitly described by [CH14]. To reveal the relation, we
need to study the combinatorics.

Proposition 3.1. Let Z be a zero-dimensional monomial scheme in P2. If the
ideal sheaf IZ is destabilized at the wall Wµ(Z) with center x = −µ(Z) − 3

2
, then

3

4
(reg(IZ) − 1) ≤ µ(Z) ≤ reg(IZ) − 1.

(1) The left equality holds if and only if reg(IZ) + 1 = 2m is even and IZ =
〈xm, ym〉.

(2) The right equality holds if and only if IZ = 〈xa1 , xa2yb2 , . . . , ybr〉 satisfies
max1≤i≤r−1(ai + bi+1 − 1) ≤ max(a1, br).

A zero-dimensional monomial subscheme Z in P2, in a suitable affine coordinate
system, has defining ideal IZ generated by a set of monomials

(†) xa1 , xa2yb2 , . . . , ybr

where a1 > . . . > ar−1 > ar = 0 and 0 = b1 < b2 < . . . < br.
It is convenient to represent monomial subschemes by their block diagrams. The

block diagram D for Z consists of br left-aligned rows of consecutive boxes such
that the ith row counting from the bottom has aj boxes if bj < i ≤ bj+1. The
lower left corner represents the monomial 1. The box to the right of (resp. above)
xiyj represent xi+1yj (resp. xiyj+1). With this interpretation, the box diagram
D records the monomials in K[x, y] which are not in IZ. The next figure shows an
example.
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Figure 2. The block diagram for 〈x9, x7y2, x4y3, x2y5, xy6, y7〉

We will always place the lower left corner of D at the origin and assume that
the boxes in D are unit length.

Proof of Proposition 3.1. We briefly recapitulate the computation of µ(Z) in [CH14].
Index the rows of a box diagramD from bottom to top, and the columns from left to
right. Let hj (resp. vj) be the number of boxes in the jth row (resp. column). Let
r(D) and c(D) be the number of rows and columns in D. Define the kth horizontal
slope µk and the ith vertical slope µ ′i by

µk =
1

k

k∑
j=1

(hj + j− 1) − 1, µ ′i =
1

i

i∑
j=1

(vj + j− 1) − 1.

Then the slope µ(Z) of Z is defined by

µ(Z) = max
1≤k≤r(D),1≤i≤c(D)

{µk, µ
′
i}.

By [CH14, Theorem 1.6], the ideal sheaf IZ is destabilized at the wall Wµ(Z) with

center x = −µ(Z) − 3
2

.
On the other hand, the regularity of IZ can be computed from its minimal free

resolution given by

0→ r−1⊕
i=1

O(−ai − bi+1)
M−→ r⊕

i=1

O(−ai − bi)→ IZ → 0,

where M is the r× (r− 1) matrix with entries

mi,i = y
bi+1−bi , mi+1,i = −xai−ai+1 , and mi,j = 0 otherwise.

Since ai + bi+1 − 1 ≥ ai + bi for i = 1, . . . , r− 1 and ar−1 + br − 1 ≥ ar + br, the
Castelnuovo-Mumford regularity reg(IZ) of IZ is

reg(IZ) = max
1≤i≤r−1

(ai + bi+1 − 1).

If we place the block diagram D in the a-b plane with its lower left corner
at the origin and set every box to be a unit square, then the points (ai, bi+1)
are the vertices of D contained in the first quadrant. Hence, the block diagrams
representing ideals with regularity l are precisely those which lie below and touch
the line a+ b = l+ 1.

Fix the regularity to equal l. To maximize µ(Z) subject to reg(Z) = l, we need
to maximize µk and µ ′i under the condition that the box diagram lies below and
touches the line a + b = l + 1. Since the box diagram of IZ = 〈xl, xl−1y, . . . , yl〉
contains every positive integral lattice point under the line a+ b = l+ 1, it follows
that Z gives the the maximum µ-value, which is l− 1. Note that µk = l− 1 if and



REGULARITY AND BRIDGELAND STABILITY 7

only if h1 = l, h2 = l− 1, . . . , hk = l− (k− 1). Hence, µ(Z) = l− 1 precisely when
either h1 = l or v1 = l. Equivalently, equality holds for IZ = 〈xa1 , xa2yb2 , . . . , ybr〉
if IZ satisfies max1≤i≤r−1(ai + bi+1 − 1) ≤ max(a1, br).

To minimize µ(Z) subject to reg(Z) = l, we use as few boxes as possible to
minimize the slopes µk and µ ′i. A box diagram that touches the line a+ b = l+ 1

at (a ′, b ′) contains the box diagram of the ideal 〈xa ′
, yb

′〉. It follows that the ideal
of Z should be of the form 〈xa, yb〉 with a+ b = l+ 1. Then

max
1≤k≤r(D)

{µk} = µb = a+
b− 1

2
− 1

and similarly

max
1≤i≤c(D)

{µ ′i} = µ
′
a = b+

a− 1

2
− 1

so that

µ(Z) = max

(
a+

b− 1

2
− 1, b+

a− 1

2
− 1

)
.

Thus µ(Z) achieves the minimum when a and b are almost equal. If l is even,
then (a, b) = ( l

2
+ 1, l

2
) gives µ(Z) = 3l

4
− 1
2

. If l is odd, then (a, b) = ( l+1
2
, l+1
2

)

gives µ(Z) = 3l
4
− 3
4

. Furthermore, if n > (l+1)2

4
, then either the horizontal slope

µ l+1
2

or the vertical slope µ ′l+1
2

is strictly larger than 3l
4
− 3
4

. We conclude that

3l
4
− 3
4
≤ µ(Z) with equality only if Z is the monomial ideal 〈x l+1

2 , y
l+1
2 〉. �

Recall that an ideal I generated by monomials in x and y is Borel fixed if xiyj ∈ I
for some j > 0 implies xi+1yj−1 ∈ I. Borel fixedness is one of the most important
combinatorial properties in the study of monomial ideals. For instance, generic
initial ideals with respect to a monomial order are Borel fixed. See [Eis95, Theo-
rem 15.20] for a detailed discussion. We obtain the following corollary.

Corollary 3.2. Let Z ⊂ P2 be a zero-dimensional monomial scheme whose ideal
is Borel-fixed. Then the ideal sheaf IZ is destabilized at the wall Wreg(IZ)−1.

Proof. A Borel-fixed ideal is of the form 〈xa, xa−1yλa−1 , . . . , yλ0〉 with λ0 > . . . >
λa−1 > 0 . Then (i + λi−1 − 1) ≤ λ0 = max(a, λ0) for i = 1, . . . , a. The corollary
follows from Proposition 3.1 (2). �

Every possible Betti diagram of a zero-dimensional scheme in P2 occurs as the
Betti diagram of a monomial scheme [Eis05]. Let

(
k
2

)
< n ≤

(
k+1
2

)
and let Z be a

scheme of length n. Then the regularity of Z can be any integer between k and n.
Given k ≤ l ≤ n, take a box diagram D with n boxes and at most l rows such that
h1 = l and hi ≤ l + 1 − i for 2 ≤ i ≤ l. Since n ≤

(
l+1
2

)
such diagrams D exist.

Moreover, µ(Z) = l− 1 = reg(IZ) − 1, the maximum possible by Proposition 3.1.
We can also ask for the minimum possible µ(Z) given a scheme Z of length

n and regularity l. If 0 < m ≤ l
2

and m(l + 1 − m) ≤ n < (m + 1)(l − m),
then the tallest rectangle with upper right vertex on the line x + y = l + 1 is the
m × (l −m + 1) rectangle. Hence, µ(Z) ≥ reg(IZ) − 1

2
− m

2
. Equality occurs, for

instance, when n = m(l+ 1−m). In case, l is even (resp. odd) and n ≥ l
2
( l
2
+ 1)

(resp. n ≥ ( l+1
2

)2), then µ(Z) ≥ 3
4

reg(IZ) − 1
2

(resp. 3
4

reg(IZ) − 3
4

). In particular,
we conclude that

1 ≤ reg(IZ) − µ(Z) ≤
√
n+ 1

2
.
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Equality is attained on the right hand side when reg(IZ) is odd and n = (reg(IZ)+1)2

4
.

We summarize this in the following proposition.

Proposition 3.3. Let Z be a monomial scheme of length n and regularity l. If
0 < m ≤ l

2
and m(l+ 1−m) ≤ n < (m+ 1)(l−m), then

1 ≤ reg(IZ) − µ(Z) ≤
m

2
+
1

2
.

In general,

1 ≤ reg(IZ) − µ(Z) ≤
√
n+ 1

2
.

4. General points

In this section, we discuss the relation between Bridgeland stability and regular-
ity for general points on P2.

Let
(
r
2

)
< n ≤

(
r+1
2

)
. Then, for a dense open set U ∈ P2[n], the minimal free

resolution of IZ is the Gaeta resolution

0→ O⊕a(−r−1)⊕O⊕max(0,−b)(−r)→ O⊕max(0,b)(−r)⊕O⊕c(−r+1)→ IZ → 0,

where a = n−
(
r
2

)
> 0, c =

(
r+1
2

)
−n ≥ 0 and b = c−a+ 1 [Eis05]. The regularity

of IZ is r. Since regularity is upper-semicontinuous and P2[n] is irreducible, there
exists an open set U1 containing U such that reg(IZ) = r for Z ∈ U1.

On the other hand, there exists an open dense setU2 ∈ P2[n] such that for Z ∈ U2
the ideal sheaf IZ is destabilized at the collapsing wallWµn

with center (−µn−
3
2
, 0).

By a general point of P2[n], we will mean a point Z ∈ U1 ∩ U2. For such Z, there
exists a precise relation between the regularity k and the Bridgeland slope µn.
Huizenga computed µn for all n [Hui, Theorem 7.2]. The slope µn is the smallest
positive slope of a stable vector bundle on the parabola µ2 + 3µ + 2 − 2n = 2∆,
where µ is the slope and ∆ is the discriminant. The computation of µn, while easy
for any given n, depends on a fractal curve. Consequently, it is hard to write a
closed formula.

Luckily, there are good bounds for µn. Let

S =

{
0

1
,
1

2
,
3

5
,
8

13
, . . .

}
∪

{
α > φ−1 =

√
5− 1

2

}
consisting of consecutive ratios of Fibonacci numbers and numbers larger than the
inverse of the golden ratio. Let n =

(
k
2

)
+s with 0 ≤ s < k. By [ABCH13, Theorem

4.5], we have

µn =

{
k− 2+ s

k−1 if s
k−1 ∈ S

k− 1− k−s
k+1 if 1− s+1

k+1 ∈ S.
Furthermore, by [ABCH13, Lemma 4.1, Corollary 4.9], the inequalities

µn−1 ≤ µn ≤

{
k− 2+ s

k−1 if s
k−1 ≥

1
2

k− 1− k−s
k+1 if s

k−1 ≤
1
2

hold. When k is odd and s = k−1
2

, then s
k−1 = 1

2
∈ S and µn = k− 3

2
. When k is

even and n =
(
k
2

)
+ k
2
+1, then the positive root xp of 1

2
(µ2+3µ+2)−n = 1

2
satisfies

xp > k−
3
2

. By [Hui, Theorem 7.2], we conclude that µn > k−
3
2

. Combining these
inequalities we deduce the following proposition.
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Proposition 4.1. Let Z be a general point of P2[n]. Let Wµn
be the collapsing

wall.

(1) If n =
(
k
2

)
, then µn = reg(IZ) − 1.

(2) If n =
(
k
2

)
+ s with 1

2
≥ s
k−1 > 0, then

reg(IZ) − 1−
max(k− s, dφ−1(k+ 1)e)

k+ 1
≤ µn ≤ reg(IZ) − 1−

k− s

k+ 1

and the right inequality is an equality if 1− s+1
k+1 ∈ S.

(3) If n =
(
k
2

)
+ s with s

k−1 ≥
1
2

, then

reg(IZ) −
3

2
≤ µn ≤ reg(IZ) − 2+

s

k− 1

and the right inequality is an equality if s
k−1 ∈ S.

In particular, reg(IZ) − 2 < µn ≤ reg(IZ) − 1 for a general Z.
We point out that the sets U1 −U2 and U2 −U1 are both nonempty in general.

Example 4.2. The minimum regularity for a scheme Z of length 7 is 4 and µ7 =
12
5

[Hui, Table 1]. Consider the monomial scheme generated with defining ideal

〈x4, xy, y4〉. The regularity of this scheme is 4 but it is destabilized along the wall
W3. Hence, this monomial scheme is a point of U1 which is not in U2.

Example 4.3. The minimum regularity for a scheme Z of length 9 is 4. For a
complete intersection scheme of type (3, 3), the minimal resolution is

0→ O(−6)→ O(−3)⊕O(−3)→ IZ → 0.

Hence, the regularity is 5. On the other hand, the general scheme and a complete
intersection scheme both have µ = 3 [ABCH13], [CH14, Theorem 5.1]. Hence, the
complete intersection scheme is in U2 but not in U1.

5. Outer walls of the Bridgeland manifold

In general, it is hard to test whether a specific ideal sheaf IZ is destabilized along
a given wall Wµ. However, for the largest bn

2
c semicircular Bridgeland walls, one

can give a concrete characterization of the ideal sheaves destabilized along the wall.
This characterization allows us to compute the regularity.

Let Ynµ denote the locally closed subset of P2[n] parameterizing subschemes Z
destabilized along Wµ. By the one-to-one correspondence between the Bridgeland
walls and Mori walls [ABCH13], we may rephrase [ABCH13, Proposition 4.16] as
follows.

Proposition 5.1. Let n ≤ k(k+3)/2. Let Wk be the wall with center x = −k− 3
2

.

(a) If n ≤ 2k + 1, then Ynk parameterizes Z that have a linear subscheme of
length k+ 2 but no linear subscheme of length greater than k+ 2;

(b) If n = 2k+2, then Ynk parameterizes Z that are contained in a conic or have
a linear subscheme of length k+ 2 but does not have a linear subscheme of
length greater than k+ 2.

Fatabbi’s theorem [Fat94] allows us to say more about the regularity of the
schemes destabilized along Wk.
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Proposition 5.2. (Fat points) Let pi be the maximal ideals of distinct closed points
pi ∈ P2, i = 1, . . . , s. Let Z be the subscheme given by ∩si=1p

mi

i and suppose that
Z is of length n. Define

h := max


t∑
j=1

mij

∣∣∣∣∣∣ pi1 , . . . , pit are collinear

 .
If n ≤ 2h− 3, then Z is destabilized at the wall Wreg(Z)−1. In particular, a general
member of Ynk+1 has a higher regularity than a general member of Ynk , ∀k ≥ n

2
− 1.

Proof. The assumption n ≤ 2h − 3 allow us to apply [Fat94, Theorem 3.3] and
conclude that the regularity of Z equals h. We shall prove that Z has no linear sub-
schemes of length h+1. Let L be a linear subcheme of Z supported on pi1 , . . . , pit .
Let f be a linear form vanishing on pi1 , . . . , pit . Then pij = 〈f, gij〉 for some linear

form gij and f and p
mij

ij
, j = 1, . . . , t are contained in the ideal IL of L.

For the length of L to be as large as possible, we take the smallest possible ideal

that contains f +
∑t
j=1 pij . Since p

mij

ij
= 〈fmij , f

mij
−1
gij , . . . , g

mij

ij
〉, any ideal

containing f +
∑t
j=1 pij must also contain g

mij

ij
. It follows that 〈f, gmi1

i1
〉 ∩ . . . ∩

〈f, gmit

it
〉 defines a linear subscheme of Z of maximal length

∑t
j=1mij supported

on the cycle
∑t
j=1mijpij . Since the regularity h is the maximum that the degree∑t

j=1mij can achieve, it is the maximum length of a linear subscheme of Z. Now,

since n ≤ 2(h − 2) + 1 by assumption, we may apply Proposition 5.1 and obtain
the first assertion.

General points Z of Ynk , k ≥ n
2
−1, have no multiplicities i.e. mi = 1, ∀i; have k+2

collinear points; and the rest are in general position. This corresponds to the case
h = k+2 ≥ n

2
+1 >

[
n
2

]
, so Fatabbi’s theorem applies and reg(IZ) = h = k+2. �

We emphasize again that, as we have noted in the introduction, the relation
between regularity and the Bridgeland slope in general is not monotonic (Exam-
ple 1.1).
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