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Abstract. We consider the linear Wigner-Fokker-Planck equation subject to

confining potentials which are smooth perturbations of the harmonic oscillator

potential. For a certain class of perturbations we prove that the equation ad-
mits a unique stationary solution in a weighted Sobolev space. A key ingredient

of the proof is a new result on the existence of spectral gaps for Fokker-Planck

type operators in certain weighted L2–spaces. In addition we show that the
steady state corresponds to a positive density matrix operator with unit trace

and that the solutions of the time-dependent problem converge towards the
steady state with an exponential rate.

1. Introduction

This work is devoted to the study of the Wigner-Fokker-Planck equation (WFP),
considered in the following dimensionless form (where all physical constants are
normalized to one for simplicity):

(1.1)

{
∂tw + ξ · ∇xw + Θ[V ]w = ∆ξw + 2 divξ (ξw) + ∆xw,

w
∣∣
t=0

= w0(x, ξ),

where x, ξ ∈ Rd, for d ≥ 1, and t ∈ R+. Here, w(t, x, ξ) is the (real valued) Wigner
transform [37] of a quantum mechanical density matrix ρ(t, x, y), as defined by

(1.2) w(t, x, ξ) :=
1

(2π)d

∫
Rd

ρ
(
t, x+

η

2
, x− η

2

)
e−iξ·η dη.

Recall that, for any time t ∈ R+, a quantum mechanical (mixed) state is given by a
positive, self-adjoint trace class operator ρ(t) ∈ T +

1 . Here we denote by B(L2(Rd))
the set of bounded operators on L2(Rd) and by

T1 := {ρ ∈ B(L2(Rd)) : tr |ρ| <∞} ,
the corresponding set of trace-class operators. We consequently write ρ ∈ T +

1 ⊂
T1, if in addition ρ ≥ 0 (in the sense of non-negative operators). Since T1 ⊂ T2,
the space of Hilbert-Schmidt operators, i.e.

T2 := {ρ ∈ B(L2(Rd)) : tr(ρ∗ρ) <∞} ,
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we can identify the operator ρ(t) with its corresponding integral kernel ρ(t, ·, ·) ∈
L2(R2d), the so-called density matrix. Consequently, ρ(t) acts on any given function
ϕ ∈ L2(Rd) via

(ρ(t)ϕ)(x) =

∫
Rd

ρ(t, x, y)ϕ(y) dy.

Using the Wigner transformation (1.2), which by definition yields a real-valued
function w(t, ·, ·) ∈ L2(R2d), one obtains a phase-space description of quantum
mechanics, reminiscent of classical statistical mechanics, with x ∈ Rd being the
position and ξ ∈ Rd the momentum. However, in contrast to classical phase space
distributions, w(t, x, ξ) in general also takes negative values.

Equation (1.1) governs the time evolution of w(t, x, ξ) in the framework of so-
called open quantum systems, which model both the Hamiltonian evolution of a
quantum system and its interaction with an environment (see [13], e.g.). Here,
we specifically describe these interactions by the Fokker-Planck (FP) type diffusion
operator on the r.h.s. of (1.1). For notational simplicity we use here only normalized
constants in the quantum FP operator. However, all of the subsequent analysis
also applies to the general WFP model presented in [34] (cf. Remark 2.4 below).
Potential forces acting on w(t, ·, ·) are taken into account by the pseudo-differential
operator

(Θ[V ]f)(x, ξ) := − i

(2π)d

∫∫
R2d

δV (x, η) f(x, ξ′) eiη·(ξ−ξ′) dξ′ dη,(1.3)

where the symbol δV is given by

δV (x, η) = V
(
x+

η

2

)
− V

(
x− η

2

)
,(1.4)

and V is a given real valued function. The WFP equation is a kinetic model
for quantum mechanical charge-transport, including diffusive effects, as needed,
e.g., in the description of quantum Brownian motion [15], quantum optics [18],
and semiconductor device simulations [16]. It can be considered as a quantum
mechanical generalization of the usual kinetic Fokker-Planck equation (or Kramer’s
equation), to which it is known to converge in the classical limit ~ → 0, after an
appropriate rescaling of the appearing physical parameters [10]. The WFP equation
has been partly derived in [11] as a rigorous scaling limit for a system of particles
interacting with a heat bath of phonons. Additional “derivations” (based on formal
arguments from physics) can also can be found in [14, 15, 35, 36].

In recent years, mathematical studies of WFP type equations mainly focused on
the Cauchy problem (with or without self-consistent Poisson-coupling), see [2, 3,
4, 7, 9, 12]. In these works, the task of establishing a rigorous definition for the
particle density n(t, x) has led to various functional analytical settings. To this
end, it is important to note that the dynamics induced by (1.1) maps T +

1 (L2(Rd))
into itself, since the so-called Lindblad condition is fulfilled (see again Remark 2.4
below). For more details on this we refer to [7, 9] and the references given therein.
In the present work we shall be mainly interested in the asymptotic behavior as
t → +∞ of solutions to (1.1). To this end, we first need to study the stationary
problem corresponding to (1.1). Let us remark, that stationary equations for open
quantum systems, based on the Wigner formalism, seem to be rather difficult to
treat as only very few results exist (in spite of significant efforts, cf. [6] where the
stationary, inflow-problem for the linear Wigner equation in d = 1 was analyzed).
In fact the only result for the WFP equation is given in [34], where the existence
of a unique steady state for a quadratic potential V (x) ∝ |x|2 has been proved.
However, the cited work is based on several explicit calculations, which can not be
applied in the case of a more general potential V (x).
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The goal of the present paper is twofold : First, we aim to establish the existence
of a normalized steady state w∞(x, ξ) for (1.1) in the case of confining potentials
V (x), which are given by a suitable class of perturbations of quadratic potentials
(thus, V (x) can be considered as a perturbed harmonic oscillator potential). The
second goal is to study the long-time behavior of (1.1). We shall prove exponential
convergence of the time-dependent solution w(t, x, ξ) towards w∞ as t → +∞.
In a subsequent step, we shall also prove that the stationary Wigner function w∞
corresponds to a density matrix operator ρ∞ ∈ T +

1 . Remarkably, this proof exploits
the positivity preservation of the time-dependent problem (using results from [9]),
via a stability property of the steady states.

To establish the existence of a (unique) steady state w∞, the basic idea is to
prove the existence of a spectral gap for the unperturbed Wigner-Fokker-Planck
operator with quadratic potential. This implies invertibility of the (unperturbed)
WFP-operator on the orthogonal of its kernel. Assuming that the perturbation
potential is sufficiently small with respect to this spectral gap, we can set up a
fixed point iteration to obtain the existence of w∞. The key difficulty in doing
so, is the choice of a suitable functional setting: On the one hand a Gaussian
weighted L2–space seems to be a natural candidate, since it ensures dissipativity of
the unperturbed WFP-operator (see Section 3). Indeed, this space is classical in the
study of the long-time behavior of the classical (kinetic) Fokker-Planck equation, see
[26]. However, it does not allow for feasible perturbations through Θ[V0]. In fact,
even for smooth and compactly supported perturbation potentials V0, the operator
Θ[V0] would be unbounded in such an L2–space (due to the non-locality of Θ[V0], see
Remark 5.2). We therefore have to enlarge the functional space and to show that
the unperturbed WFP-operator then still has a (now smaller) spectral gap. This is
a key step in our approach. It is a result from spectral and semigroup theory (cf.
Proposition 4.8) which is related to a more general mathematical theory of spectral
gap estimates for kinetic equations, developed in parallel in [24] (see also [29]). We
also remark that for V (x) = |x|2 the WFP equation corresponds to a differential
operator with quadratic symbol [34] and thus our approach is closely related to
recent results for hypo-elliptic and sub-elliptic operators given in [17, 26, 31].

Comparing our methods to closely related results in the quantum mechanical
literature, we first cite [20], where several criteria for the existence of stationary
density matrices for quantum dynamical semigroups (in Lindblad form) were ob-
tained by means of compactness methods. In [5] the applicability of this general
approach to the WFP equation was established. In [22, 21] sufficient conditions
(based on commutator relations for the Lindblad operators) for the large-time con-
vergence of open quantum systems were derived. However, these techniques do not
provide a rate of convergence towards the steady states. In comparison to that,
the novelty of the present work consists in establishing steady states in a kinetic
framework and in proving exponential convergence rates. However, the optimality
of such rates for the WFP equation remains an open problem. In this context one
should also mention the recent work [25], in which explicit estimates on the norm
of a semigroup in terms of bounds on the resolvent of its generator are obtained,
very much along the same lines as in present paper and in [24].

The paper is organized as follows: In Section 2 we present the basic mathematical
setting (in particular the class of potentials covered in our approach) and state our
two main theorems. In Section 3 we collect some known results for the case of a
purely quadratic potential and we introduce the Gaussian weighted L2–space for
this unperturbed WFP operator. This basic setting is then generalized in Section 4,
which contains the core of our (enlarged) functional framework: We shall prove
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new spectral gap estimates for the WFP operator with a harmonic potential in L2–
spaces with only polynomial weights. In Section 5 we prove the boundedness of the
operator Θ[V0] in these spaces. Finally, Section 6 concludes the proof of our main
result by combining the previously established elements. Appendix A includes the
rather technical proof of a preliminary step which guarantees the applicability of
the spectral method developed in [24].

2. Setting of the problem and main results

2.1. Basic definitions. In this work we shall use the following convention for the
Fourier transform of a function ϕ(x):

ϕ̂(k) :=

∫
Rd

ϕ(x) e−ik·xdx.

From now on we shall assume that the (real valued, time-independent) potential
V , appearing in (1.1), is of the form

V (x) =
1

2
|x|2 + λV0(x),(2.1)

with V0 ∈ C∞(Rd;R) and λ ∈ R some given perturbation parameter. In other
words we consider a smooth perturbation V0 of the harmonic oscillator potential.
The precise assumption on V0 is listed in (2.9). An easy calculation shows that for
such a V the stationary equation, corresponding to (1.1), can be written as

Lw = λΘ[V0]w,(2.2)

where L is the linear operator

Lw := −ξ · ∇xw + x · ∇ξw + ∆ξw + 2 divξ(ξw) + ∆xw.(2.3)

Remark 2.1. When considering the slightly more general class of potentials

V (x) =
1

2
|x|2 + α · x+ λV0(x), λ ∈ R, α ∈ Rd,

we would find, instead of (2.3), the following operator: Lαw := Lw + α · ∇ξw.
Thus, by the change of variables x 7→ x+ α we are back to (2.3).

The basic idea for establishing the existence of (stationary) solutions to (2.2) is
the use of a fixed point iteration. However, L has a non-trivial kernel. Indeed it
has been proved in [34] that, in the case λ = 0, there exists a unique stationary
solution µ ∈ S(R2d), satisfying

Lµ = 0(2.4)

and the normalization condition∫∫
R2d

µ(x, ξ) dxdξ = 1.(2.5)

Explicitly, µ can be written as

(2.6) µ = c e−A(x,ξ),

where the function A is given by

(2.7) A(x, ξ) :=
1

4

(
|x|2 + 2x · ξ + 3|ξ|2

)
,

and the constant c > 0 is chosen such that (2.5) holds. Note that for any ρ ∈ T1

such that w ∈ L1(R2d) the following formal identity

tr ρ =

∫
Rd

ρ(x, x) dx =

∫∫
R2d

w(x, ξ) dxdξ,
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can be rigorously justified by a limiting procedure in T1, see [1]. Since tr ρ is
proportional to the total mass of the quantum system, we can interpret condition
(2.5) as a mass normalization.

In the following, we shall denote by σ > 0 the biggest constant such that

(2.8) HessA− σ I ≥ 0, for all (x, ξ) ∈ R2d,

in the sense of positive definite matrices, where I denotes the identity matrix on
R2d. In the analysis of the classical FP equation, condition (2.8) is referred to as
the Bakry-Emery criterion [8]. In our case one easily computes

σ = 1− 1/
√

2.

In a Gaussian weighted L2–space, σ will be the spectral gap of the unperturbed
WFP-operator and hence the decay rate towards the corresponding steady µ (cf.
(3.9), (3.10) below).

The functional setting of our problem will be based on the following weighted
Hilbert spaces. While the stationary and transient Wigner function are real valued,
we need to consider function spaces over C, for the upcoming spectral analysis.

Definition 2.2. For any m ∈ N, we define Hm := L2(R2d, ν−1
m dxdξ), where the

weight is

ν−1
m := 1 +Am(x, ξ).

We equip Hm with the inner product

〈f, g〉Hm
=

∫∫
R2d

fḡ

νm
dxdξ.

Clearly, we have that Hm+1 ⊂ Hm, for all m ∈ N.

2.2. Main results. With these definitions at hand, we can now state the main
theorems of our work. Note that for the sake of transparency we did not try to
optimize the appearing constants.

Theorem 1. Let m ≥ Kd be some fixed integer, where K = K(A) ∈ (1, 144] is
a constant depending only on A(x, ξ) (defined in Lemma 4.2). Assume that the
perturbation potential V0 satisfies

Γm := Cm max
|j|≤m

‖∂jxV0‖L∞(Rd) < +∞,(2.9)

where Cm > 0 depends only on m and d, as seen in the proof of Proposition 5.1.
Next we fix some γ̃m ∈ (0, γm), where γm > 0 is given in (4.7). Furthermore, let
the perturbation parameter λ satisfy

|λ| < γ̃m
Γmδm

,(2.10)

where δm = δm(γ̃m) > 1 is defined in (4.15). Then it holds:

(i) The stationary Wigner-Fokker-Planck equation (2.2) admits a unique weak
solution w∞ ∈ Hm ∩ H1(R2d), satisfying

∫∫
R2d w∞ dx dξ = 1. Moreover,

w∞ is real valued and satisfies w∞ ∈ H2
loc(R2d).

(ii) Equation (1.1) admits a unique mild solution w ∈ C([0,∞),Hm). In addi-
tion, for any such mild solution w(t) with initial data w0 ∈ Hm satsifying∫∫

R2d w0 dxdξ = 1, we have

‖w(t)− w∞ ‖Hm
≤ δme−κmt ‖w0 − w∞ ‖Hm

, ∀ t ≥ 0,

with an exponential decay rate

κm := γ̃m − |λ|δmΓm > 0.
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(iii) Concerning the continuity of w∞ = w∞(λ) w.r.t. λ, we have

‖w∞ − µ ‖Hm
≤ |λ|δmΓm
γ̃m − |λ|δmΓm

‖µ‖Hm
.

Remark 2.3. In this result, the constant σm := γ̃m/δm > 0, roughly speaking,
plays the same role for L onHm as σ > 0 does in the case ofH (whereH is defined in
Definition 3.1), where it is nothing but the size of the spectral gap, see Proposition
3.5. For L on H, σ also gives the exponential decay rate in the unperturbed case
λ = 0. For L on Hm the situation is more complicated. Here, assertion (ii) yields
an exponential decay of the unperturbed semi-group with rate κm = γ̃m ∈ (0, γm)
and γm 6= σm (but possibly equal to σ, as can be seen from (4.15)). In addition,
one should note that δm > 1 may blow-up as γ̃m ↗ γm, cf. estimate (4.11).

Theorem 1 is formulated in the Wigner picture of quantum mechanics. We shall
now turn our attention to the corresponding density matrix operators ρ(t). This
is important since it is a priori not clear that w∞ is physically meaningful – in
the sense of being the Wigner transform of a positive trace class operator. To this
end we denote by ρ∞ the Hilbert-Schmidt operator corresponding to the kernel
ρ∞(x, y), which is obtained from w∞(x, ξ) by the inverse Wigner transform, i.e.

ρ∞(x, y) =

∫
Rd

w∞

(
x+ y

2
, ξ

)
e−iξ·(x−y) dξ.

Analogously we denote by ρ0 the Hilbert-Schmidt operator corresponding to the
initial Wigner function w0 ∈ Hm.

We remark that the existence of a unique mild solution of equation (1.1) on Hm
will be a byproduct of our analysis.

Theorem 2. Let m ≥ Kd be some fixed integer. Let V0, λ, and w0 satisfy the
same assumptions as in Theorem 1. Then we have:

(i) The steady state ρ∞ is a positive trace-class operator on L2(Rd), satisfying
tr ρ∞ = 1.

(ii) Let ρ ∈ C([0,∞),T2) be the unique density matrix trajectory corresponding
to the mild solution of (1.1). Then, the steady state ρ∞ is exponentially
stable, in the sense that

‖ ρ(t)− ρ∞ ‖T2
≤ (2π)

d
2 δme−κmt‖w0 − w∞ ‖Hm

, ∀ t ≥ 0.

(iii) If the initial state w0 ∈ Hm corresponds to a density matrix ρ0 ∈ T +
1 (and

hence w0 is real valued, tr ρ0 ≡
∫∫

w0 dxdξ = 1), then we also have

lim
t→∞

‖ ρ(t)− ρ∞‖T1
= 0.

Note that, in the presented framework, we do not obtain exponential convergence
towards the steady state in the T1-norm but only in the sense of Hilbert-Schmidt
operators. This is due to the weak compactness methods involved in the proof of
Grümm’s theorem (cf. the proof of Th. 2 in §6).

Remark 2.4. Consider now the following, more general quantum Fokker-Planck
type operator replacing the r.h.s. of (1.1):

Qw := Dpp∆ξw + 2Dpq divx (∇ξw) + 2Df divξ (ξw) +Dqq ∆xw.

It is straightforward to extend our results to this case as long as the Lindblad
condition holds, i.e.

(2.11) Dpp ≥ 0, DppDqq −
(
D2

pq +
D2

f

4

)
≥ 0.
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The modified quadratic function A(x, ξ) is given in [34]. The Lindblad condition
(2.11) implies that discarding in (1.1) the diffusion in x, and hence reducing the
r.h.s. to the classical Fokker-Planck operator Qclw := ∆ξw+ 2 divξ(ξw), would not
describe a “correct” open quantum system. Nevertheless, this is a frequently used
model in applications [38], yielding reasonable results in numerical simulations.

3. Basic properties of the unperturbed operator L

3.1. Functional framework. It has been shown in [34] that the operator L, de-
fined in (2.3), can be rewritten in the following form

Lw = div (∇w + w(∇A+ F )) ,(3.1)

with

(3.2) div(F e−A) =
1

c
div(Fµ) = 0.

Here and in the sequel, all differential operators act with respect to both x and ξ
(if not indicated otherwise). In (3.1), the function A is defined by (2.7) and

F :=

(
−ξ

x+ 2ξ

)
−∇A =

1

2

(
−x− 3ξ
x+ ξ

)
.(3.3)

The reason to do so is that (3.1) belongs to a class of non-symmetric Fokker-Planck
operators considered in [8]. From this point of view, a natural functional space to
study the unperturbed operator L is given by the following definition.

Definition 3.1. Let H := L2(R2d, µ−1 dxdξ), equipped with the inner product

〈f, g〉H =

∫∫
R2d

fḡ

µ
dxdξ.

We can now decompose L into its symmetric and anti-symmetric part in H, i.e.

(3.4) L = Ls + Las,

where

(3.5) Lsw := div (∇w + w∇A) , Lasw := div(Fw).

It has been shown in [34], that the following property holds:

Lsµ = 0, Lasµ = 0.(3.6)

where µ is the stationary state defined in (2.6). Next we shall properly define
the operator L. To this end we first consider L

∣∣
C∞0

, which is closable (w.r.t. the

H-norm) since it is dissipative:

Lemma 3.2. L
∣∣
C∞0

is dissipative, i.e. it satisfies Re 〈Lw,w〉H ≤ 0, for all w ∈
C∞0 (R2d).

Proof. Using ∇A = −µ−1∇µ we have, on the one hand

〈Lsw,w〉H =

∫∫
R2d

w̄

µ
div (∇w + w∇A) dx dξ =

∫∫
R2d

w̄

µ
div

(
µ∇

(
w

µ

))
dxdξ

= −
∫∫

R2d

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 dxdξ ≤ 0.

On the other hand, it follows from (3.2) that

w divF = −w
µ
F · ∇µ,

and thus

div(Fw) = −µF ·
(
w

µ2
∇µ− ∇w

µ

)
= µF · ∇

(
w

µ

)
.
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An easy calculation then shows

Re 〈Lasw,w〉H = Re

∫∫
R2d

w̄

µ
div(Fw) dxdξ = Re

∫∫
R2d

w̄

µ
F · ∇

(
w

µ

)
µdxdξ

= − 1

2

∫∫
R2d

∣∣∣∣wµ
∣∣∣∣2 div(Fµ) dxdξ = 0,

by (3.2). To sum up we have shown that Re 〈Lw,w〉H ≤ 0 holds. �

The operator L ≡ L
∣∣
C∞0

is now closed, densely defined on H and dissipative.

Moreover one easily sees that L∗ = Ls − Las. The main goal of this section is to
prove that L admits a spectral gap and is invertible on the orthogonal complement
of its kernel. For the first property, we start showing that L is the generator of a
C0-semigroup of contractions on H. For this we recall the following result from [9].

Lemma 3.3. Let the operator P = p2 (x, ξ,∇x,∇ξ), where p2 is a second order
polynomial, be defined on the domain D(P ) = C∞0 (R2d). Then P is closable and

P
∣∣
C∞0

is the maximum extension of P in L2(R2d).

Several variants of such a result (on different functional spaces) can be found in
[2, 3]. We can use this result now in order to prove that L is the generator of a
C0-semigroup.

Lemma 3.4. L generates a C0-semigroup of contractions on H.

Proof. Defining v := w/
√
µ transforms the evolution problem

∂tw = Lw, w
∣∣
t=0

= w0 ∈ H

into its analog on L2(R2d). The new unknown v(t, x, ξ) then satisfies the following
equation

∂tv = Hv, v
∣∣
t=0

= w0/
√
µ,

where H is (formally) given by

Hv = ∆v + F · ∇v + Uv,

and the new “potential” U = U(x, ξ) reads

U =
1

2
∆A− 1

4
|∇A|2.

Defining H on D(H) = C∞0 (R2d), we have

Lw =
√
µH

(
w
√
µ

)
,

and thus the dissipativity of L on H directly carries over to H ≡ H
∣∣
C∞0

on L2(R2d).

Next, we consider H∗
∣∣
C∞0

, defined via 〈Hf, g〉L2 = 〈f,H∗g〉L2 , for f, g ∈ C∞0 (R2d).

Due to the definitions (2.7) and (3.3), the operator H∗
∣∣
C∞0

is exactly of the form

needed in order to apply Lemma 3.3. Thus, H∗ ≡ H∗
∣∣
C∞0

is also dissipative (on all

of its domain). Hence, the Lumer-Phillips Theorem (see [30], Section 1.4) implies
that H is the generator of a C0-semigroup on L2(R2d), denoted by eHt.

Reversing the transformation w → v then implies that L is the generator of the
C0-semigroup Ut on H, given by

Utw0 =
√
µ eHt

(
w0√
µ

)
.

This finishes the proof. �
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3.2. Semigroup properties on H. The above lemma shows that the unperturbed
WFP equation

∂tw = Lw, w
∣∣
t=0

= w0 ∈ H,

has, for all w0 ∈ H, a unique mild solution w ∈ C([0,∞),H), where w(t, x, ξ) =
Utw0(x, ξ), with Ut defined above. Obviously we also have Utµ = µ, by (2.4).
Moreover, in [34] the Green’s function of Ut was computed explicitly. It shows that
Ut conserves mass, i.e.∫∫

R2d

w(t, x, ξ) dx dξ =

∫∫
R2d

w0(x, ξ) dxdξ, ∀ t ≥ 0.

Next, we define

(3.7) H⊥ := {w ∈ H : w ⊥ µ} ⊂ H,

which is a closed subset of H. Note that w ⊥ µ simply means that

〈w, µ〉H ≡
∫∫

R2d

w(x, ξ) dxdξ = 0.

Hence, we have for w ∈ C∞0 (R2d), using (3.5):

〈Lasw, µ〉H ≡
∫∫

R2d

Lasw(x, ξ) dxdξ = 0.

Thus, Las : H⊥ ∩ D(Las) → H⊥. Moreover, Ls : H⊥ ∩ D(Ls) → H⊥, since H⊥
is spanned by the eigenfunctions of Ls (except of µ). To sum up, the operators Ls

and Las are simultaneously reducible on the two subspaces H = span[µ]⊕H⊥.
We also have that Ut maps H⊥ into itself, since for w0 ∈ H⊥ the conservation

of mass implies

(3.8) 〈Utw0, µ〉H ≡
∫∫

R2d

w(t, x, ξ) dx dξ =

∫∫
R2d

w0(x, ξ) dxdξ = 0, ∀ t ≥ 0.

Lemma 3.4 allows us to prove that L has a spectral gap in H, in the sense that

(3.9) σ(L) \ {0} ⊂ {z ∈ C : Re z ≤ −σ}.

Proposition 3.5. It holds

‖L−1‖B(H⊥) ≤
1

σ
,

where σ > 0 is defined in (2.8).

Proof. Condition (2.8) implies that Ls has a spectral gap of size σ > 0 (cf. §3.2 in
[8], e.g.). Moreover, [8, Theorem 2.19] also yields exponential decay (with the same
rate) for the non-symmetric WFP equation:

‖Ut(w0 − µ)‖H ≤ e−σt‖w0 − µ ‖H.(3.10)

Here, w0 ∈ H has to satisfy
∫∫

R2d w0 dxdξ =
∫∫

R2d µ dxdξ = 1. By the discussion

above, we know that L
∣∣
H⊥ is the generator of Ut

∣∣
H⊥ . Hence, (3.10) implies

‖(L− z)−1 ‖B(H⊥) ≤
1

Re z + σ
, ∀ z ∈ C, Re z > −σ,(3.11)

which proves the assertion for z = 0. �

As a final preparatory step in this section, we shall prove more detailed coercivity
properties of L within H⊥. We shall denote H1 := {w ∈ H : ∇w ∈ H}, and H−1

will denote its dual.
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Lemma 3.6. In H⊥ the operator L satisfies

(3.12) −Re 〈Lw,w〉H ≥ σ ‖w‖
2
H.

Similarly, there exists a constant 0 < α < σ, such that

(3.13) −Re 〈Lw,w〉H ≥ α ‖w‖
2
H1 , ∀w ∈ H⊥ ∩H1.

Proof. We shall use the weighted Poincaré inequality (see [8]): For any function
f ∈ L2(R2d, µdxdξ), such that

∫∫
R2d fµdxdξ = 0, it holds:∫∫

R2d

|f |2 µ dxdξ ≤ 1

σ

∫∫
R2d

µ |∇f |2 dx dξ.(3.14)

Estimate (3.12) then readily follows by setting f = w/µ:

Re 〈Lw,w〉H = −
∫∫

R2d

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 dx dξ ≤ −σ

∫∫
R2d

|w|2

µ
dxdξ.

In order to prove assertion (3.13), we note that

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 =

|∇w|2

µ
− 2d

|w|2

µ
− div

(
|w|2 ∇µ

µ2

)
,

taking into account that ∆(logµ) = −2d. Next, let 0 < α < 1 (to be chosen later),
and write

Re 〈Lw,w〉H =− α
∫∫

R2d

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 dxdξ − (1− α)

∫∫
R2d

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 dxdξ

=− α
∫∫

R2d

|∇w|2

µ
dxdξ + 2dα

∫∫
R2d

|w|2

µ
dxdξ

− (1− α)

∫∫
R2d

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 dx dξ.

Inequality (3.14) for f = w/µ then implies:

−(1− α)

∫∫
R2d

µ

∣∣∣∣∇(wµ
)∣∣∣∣2 dx dξ ≤ −σ(1− α)

∫∫
R2d

|w|2

µ
dxdξ.

Therefore

Re 〈Lw,w〉H ≤ −α
∫∫

R2d

|∇w|2

µ
dx dξ + (2dα− σ (1− α))

∫∫
R2d

|w|2

µ
dxdξ.

The choice α = σ/(σ + 2d+ 1) yields assertion (3.13). �

In the next section we shall study the operator L in the larger functional spaces
Hm (see Definition 2.2). This is necessary since the perturbation operator Θ[V0] is
unbounded in H, even for V0 ∈ C∞0 (Rd), cf. Remark 5.2.

4. Study of the unperturbed problem in Hm
In this section, we adapt the general procedure outlined in [24, 29] to the specific

model at hand. One of the main differences to the models studied in [24] is the fact
that the WFP operator includes a diffusion in x. Nevertheless, we shall follow the
main ideas of [24]. In a first step, this requires us to gain sufficient control on the
action of Ut on Hm. After that, we establish a new decomposition of L (not to be
confused with the decomposition L = Ls +Las used above) in order to lift resolvent
estimates onto the enlarged space Hm ⊃ H. Together with the Gearhart-Prüss
Theorem (cf. Theorem V.1.11 in [19]), these estimates will finally allow us to infer
exponential decay of Ut on Hm.
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4.1. Mathematical preliminaries. In (3.5) we decomposed the unperturbed evo-
lution operator as L = Ls + Las. As a first, from basic property of the spaces Hm
(see Definition 2.2), we note that Las is still anti-symmetric in Hm, m ∈ N.

Lemma 4.1. It holds

Re 〈Lasw,w〉Hm
= 0, ∀m ∈ N.(4.1)

Proof. A straightforward calculation yields div(F ) = 0. Hence

Re 〈Lasw,w〉Hm
= Re

∫∫
R2d

w̄

νm
div(F w) dxdξ =

1

2

∫∫
R2d

F · ∇
(
|w|2

)
ν−1
m dxdξ

= − 1

2

∫∫
R2d

|w|2mAm−1 F · ∇A dxdξ,

after integrating by parts and using ν−1
m = 1+Am(x, ξ). Now, it is easily seen from

(3.3) that F · ∇A = 0, which implies (4.1). �

The proof shows that, in the definition ofHm, it is important to choose the weight
νm as a (smooth) function of A = − log µ

c . Otherwise the fundamental property
(4.1) would no longer be true. Also note that in contrast to Las, the operator Ls is
not symmetric in Hm. Before studying further properties of L in Hm we state the
following technical lemma. In order to keep the presentation simple, we shall not
attempt to give the optimal constants.

Lemma 4.2. Let A = − log µ
c , as given in (2.7). Then the following properties

hold:

(a) There exists a constant a1 > 0, such that for all m ∈ N it holds:

a1 (1 +Am) ≤ Am−1 |∇A|2 , for all |x|2 + |ξ|2 ≥ 12.

(b) Choosing K := 4
a1

it holds for all integer m ≥ Kd:

4d (1 +Am) ≤ mAm−1 |∇A|2 , for all |x|2 + |ξ|2 ≥ 12.

(c) There exists a constant a2 > 1 such that

|∇A|2 ≤ a2A, ∀x, ξ ∈ Rd.

(d) For any |x|, |ξ| ≥ 1
ε and m ≥ 1, it holds

∆ (1 +Am) ≤ mAm−1 |∇A|2 ε2 6(m− 1 + 3d).

Proof. Using Young’s inequality we easily obtain

(4.2)
1

12
(|x|2 + |ξ|2) ≤ A(x, ξ) ≤ |x|2 + |ξ|2,

(4.3)
1

18
(|x|2 + |ξ|2) ≤ |∇A(x, ξ)|2 ≤ 3(|x|2 + |ξ|2).

This yields assertion (c). To show (a), we note from (4.2) that

1 ≤ A ≤ Am, ∀ |x|2 + |ξ|2 ≥ 12.

Hence, we obtain with (4.2), (4.3):

1 +Am ≤ 2Am ≤ 36Am−1|∇A|2,
which is assertion (a). We further note that assertion (b) is a direct consequence
of (a). Finally, to prove assertion (d), we compute

∆ (1 +Am) = mAm−1 |∇A|2
(
m− 1

A
+

2d

|∇A|2

)
≤ mAm−1 |∇A|2 ε2 6 (m− 1 + 3d), for |x|, |ξ| ≥ 1

ε
.
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�

Remark 4.3. Note that the constants a1 ≥ 1
36 , a2 ≤ 36, and K = 4

a1
≤ 144 can

be chosen independent of m ∈ N and of the spatial dimension d ∈ N. Moreover,
K = 1 is not possible for d = 1.

4.2. Semigroup properties on Hm. Analogously to (3.7), we now define the
following closed subset of Hm:

H⊥m := {w ∈ Hm : w ⊥ νm} , m ∈ N,

which is again characterized by the zero-mass condition

(4.4) 〈w, νm〉Hm
≡
∫∫

R2d

w(x, ξ) dxdξ = 0.

Thus we have H⊥ ⊂ H⊥m ∀m ∈ N. As before, we define L on Hm via L ≡ L
∣∣
C∞0

which yields a closed, densely defined operator on Hm for each m ∈ N. In addition,
we also have the following result.

Lemma 4.4. For each m ∈ N, the operator L generates a C0-semigroup of bounded
operators on Hm, satisfying

(4.5) ‖Ut‖B(Hm) ≤ eβm t, βm ∈ R.

Proof. We compute

Re 〈Lw,w〉Hm
= −

∫∫
R2d

|∇w|2

νm
dx dξ

+
1

2

∫∫
R2d

|w|2
(

∆Am −mAm−1 |∇A|2 +
2d

νm

)
dxdξ,

by taking into account (4.1) and the fact that ν−1
m = 1 +Am(x, ξ). Using assertion

(c) of Lemma 4.2, we can estimate

∆(Am) = mAm−2
(
(m− 1) |∇A|2 + 2dA

)
≤ m

(
(m− 1) a2 + 2d

)
Am−1.

Moreover, since, for all x, ξ ∈ Rd: Am−1(x, ξ) ≤ 1 + Am(x, ξ), we consequently
obtain

∆(Am)−mAm−1 |∇A|2 +
2d

νm
≤ ∆(Am) +

2d

νm
≤ βm(1 +Am),

where

βm := 2d+m
(

(m− 1)a2 + 2d
)
.

In summary, this yields

Re 〈Lw,w〉Hm
≤ βm ‖w‖2Hm

.

Thus, for the unperturbed evolution equation ∂tw = Lw we infer

d

dt
‖w‖2Hm

= 2 Re 〈Lw,w〉Hm
≤ 2βm ‖w‖2Hm

,

and the assertion follows. �

Remark 4.5. Note that βm cannot be negative in Lemma 4.4 since Ut(µ) = µ.
However, using some refined estimates below, we shall find (see Proposition 4.8)
that the restricted semigroup Ut

∣∣
H⊥m

is exponentially decaying, provided m ∈ N is

sufficiently large. To this end, we note that the two (non-orthogonal) subspaces
Hm = span[µ] ⊕ H⊥m are invariant under L and under Ut (∀m ∈ N) due to mass
conservation (3.8) and (4.4).
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As a final preparatory step, we shall need the following decomposition result for
L, where we denote

H1
m := {w ∈ Hm : ∇w ∈ Hm}.

Proposition 4.6. Let m ≥ Kd be some fixed integer, and K was defined in Lemma
4.2. Then there exists an 0 < ε < 1 such that the operator L can be split into
L = Lε1 + Lε2, with Lε1, L

ε
2 defined in (A.1) and (A.2) and satisfying:

(1) Lε1 : Hm → Hm is a closed and unbounded operator, while Lε1 : H1
m → H

and Lε1 : Hm → H−1 are bounded operators.
(2) (Lε2 − z) : H → H and (Lε2 − z) : Hm → Hm are closed, unbounded and

invertible operators for every z ∈ Ω := {z ∈ C : Re z > −Λm}, where
Λm > 0 is a positive constant defined in (A.5).

(3) The operator
Lε1(Lε2 − z)−1 : Hm → H ⊂ Hm

is bounded for any z ∈ Ω.

The proof is lengthy and rather technical and therefore deferred to Appendix A.

Remark 4.7. Note that in Proposition 4.6, ε has to be chosen positive, in order to
ensure assertion (1). In fact, while Lε2 continues to be coercive also for ε = 0, the
operators Lε1 : H1

m → H and Lε1 : Hm → H−1 become unbounded as ε → 0. The
fact that Lε1 is bounded for ε > 0 is essential, in order to obtain the decay estimate
(4.6), cf. the proof of Proposition 4.8.

Indeed, introducing the decomposition L = Lε1 + Lε2 is one of the key ideas in
[24, 29] in order to lift estimates for the resolvent R(z) = (L− z)−1 onto the larger
space Hm. The general decomposition procedure introduced in [24] applies to the
WFP equation and provides the following exponential decay of Ut on Hm.

Proposition 4.8. Let σ > 0 be the spectral gap of Ls in H, and let w0 ∈ Hm with∫∫
R2d w0 dxdξ = 1. Then, for every integer m ≥ Kd, it holds

‖Ut(w0 − µ)‖Hm ≤ δme−γ̃mt‖w0 − µ‖Hm ,(4.6)

for any γ̃m ∈ (0, γm), where

γm := min{Λm ; σ} > 0,(4.7)

and δm = δm(γ̃m) > 1 is given in (4.15). Furthermore, we have for the resolvent
set

%
(
L
∣∣
Hm

)
⊇ Ω1 := {z ∈ C : Re z > −γm, z 6= 0}.(4.8)

Proof. For the sake of completeness we briefly present the proof which follows the
ones of Theorem 2.1, Theorem 3.1, and Theorem 4.1 in [24]. The spirit of the proof
is the following: By using the operator factorization from Proposition 4.6, we shall
infer an estimate for the resolvent on Hm. Restricting the resolvent to H⊥m removes
its singularity at z = 0 and consequently yields a uniform estimate on the complex
half plane {z ∈ C : Re z ≥ −γ̃m}. The Gearhart-Prüss Theorem [23, 32] then yields
the exponential decay of Ut on H⊥m. The proof now follows in several steps:

Step 1: Following [28] we define on Hm the operator

R(z) := (Lε2 − z)−1 −
(
(L− z)

∣∣
H

)−1
Lε1(Lε2 − z)−1, z ∈ Ω1.(4.9)

Theorem 2.1 and Remark 2.2 in [24] implies that R(z) is the inverse operator of
(L− z) in Hm for any z ∈ Ω1 and therefore statement (4.8) holds.

Step 2: The next step is devoted to obtaining uniform estimates for R(z) =(
(L− z)

∣∣
Hm

)−1

, for z ∈ C on some appropriately defined half planes, cf. [24,
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Theorem 3.1 (4)]. To this end, we shall first prove the following bound for the
resolvent on H:

sup
s
‖(L− (a+ is))−1‖B(H) = K0 <∞, ∀ a ∈ (−σ, 0).(4.10)

Indeed, the constant K0 = K0(σ, a) can be explicitly obtained by considering the
resolvent equation for Re z > −σ and z 6= 0:

(L− z)f = g on H,

Using the orthogonal decomposition f = f⊥ + c1µ, g = g⊥ + c2µ, having in mind
that L maps H⊥ into H⊥, we infer

f⊥ = (L− z)
∣∣−1

H⊥ g
⊥ , c1 = −c2

z
.

In view of (3.11) this yields

‖f‖2H ≤
1

(Re z + σ)2
‖g⊥‖2H +

|c2|2

|z|2
≤ max

{
1

(Re z + σ)2
;

1

|z|2

}
‖g‖2H.

Hence,

‖(L− z)−1‖B(H) ≤ max

{
1

Re z + σ
;

1

|z|

}
for Re z > −σ, z 6= 0;

and K0 ≤ max
{

1
a+σ ; 1

|a|

}
.

From this bound on (L − z)
∣∣−1

H we can deduce a bound on (L − z)
∣∣−1

Hm
for

z ∈ Ω1 ≡ {z ∈ C : Re z > −γm, z 6= 0}. Using (4.9), (A.4), and Lε1 ∈ B(H1
m → H),

we infer

‖(L− z)−1‖B(Hm)

≤ ‖(Lε2 − z)−1‖B(Hm→H1
m)

(
1 + ‖(L− z)−1‖B(H) ‖Lε1‖B(H1

m→H)

)
≤ max

{
1

Re z + Λm
;

1

Λm

}(
1 + max

{
1

Re z + σ
;

1

|z|

}
‖Lε1‖B(H1

m→H)

)
=: ϑm(z).

(4.11)

Next we consider the resolvent of L
∣∣
H⊥m

. First we note that both subspaces of

Hm = span[µ] ⊕ H⊥m are invariant for (L−z)−1 (cf. Remark 4.5). Hence (L−z)
∣∣−1

Hm

and (L − z)
∣∣−1

H⊥m
coincide on H⊥m. Since z = 0 is an isolated and non-degenerate

eigenvalue of L
∣∣
Hm

, we conclude σ
(
L
∣∣
H⊥m

)
= σ

(
L
∣∣
Hm

)
\ {0}. Since L generates a

C0-semigroup on H⊥m, it is closed and its resolvent is analytic on

%
(
L
∣∣
H⊥m

)
⊇ {z ∈ C : Re z > −γm}.

For any fixed γ̃m ∈ (0, γm) we henceforth conclude from (4.11) that the resolvent
of L

∣∣
H⊥m

is uniformly bounded (on a whole right half space)

(4.12)
∥∥(L− z)−1

∥∥
B(H⊥m)

≤M(γ̃m) <∞, Re z ≥ −γ̃m .

Note, however, that the constant M(γ̃m) is not known explicitly.

Step 3: Next we shall show that this resolvent estimate yields an exponential
decay estimate for the semigroup Ut on H⊥m. In order to do so, we will apply the
Gearhart-Prüss-Theorem to the rescaled semigroup eγ̃mtUt, cf. Theorem V.1.11 in
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[19] (see also [24, Theorem 3.1] and [25]). This is possible in view of the uniform
bound (4.12) and yields the following estimate for Ut:

‖Ut‖B(H⊥m) ≤
(1 +Mω)2C2

L

2πt
e−γ̃mt, t > 0,(4.13)

where ω > βm + γ̃m + 1, CL ≤ π(ω − βm − γ̃m)−1, and

(4.14) M := sup
s∈R
‖(L− (−γ̃m + is))−1‖B(H⊥m) ≤ ϑm(−γ̃m),

where the second inequality follows directly from (4.11) and the definition of M .
Note that (4.14) asserts a bound on the resolvent along the (fixed) line

{z ∈ C : z = −γ̃m + is},
in contrast to (4.12). Keeping this in mind, we conclude that the estimates in the
proof of Theorem V.1.11 in [19] in fact only depend on the resolvent evaluated at
z = −γ̃m + is. Interpolating (4.13) with (4.5), we consequently conclude

‖Ut‖B(H⊥m) ≤ δme−γ̃mt,

where (after optimizing in ω > βm + γ̃m + 1)

δm := max
{π

2
ϑm(−γ̃m)2 ; eβm+γ̃m

}
> 1.(4.15)

This finishes the proof.
�

Proposition 4.8 implies that the operator L is invertible in the space H⊥m, for
m ≥ Kd. More precisely, invoking classical arguments (cf. Theorem 1.5.3 in [30]),
we infer

∀m ≥ Kd : ‖L−1 ‖B(H⊥m) ≤
δm
γ̃m

=:
1

σm
.(4.16)

Note that the constant σm > 0 depends on m and thus on d and A. The reason why
we obtain exponential decay of Ut on Hm with a rate γ̃m < γm can be understood
from the fact that in order to apply the Gearhart-Prüss Theorem one needs to
guarantee a uniform resolvent estimates on some complex half plane, which is not
sharp, in contrast to e.g. the Hille-Yoshida theorem (used on H).

5. Boundedness of the perturbation

In this section we shall prove the boundedness of the operator Θ[V0] in Hm which
is the key technical result for our perturbation analysis. We recall that our potential
V from (2.1) consists of the harmonic potential plus the perturbation λV0. Hence,
we shall now consider −λΘ[V0] as a perturbation of L.

Proposition 5.1. Let m ∈ N and the potential V0 ∈ Cmb (Rd). Then the operator
Θ[V0] maps Hm into H⊥m and

‖Θ[V0]‖B(Hm) ≤ Γm := Cm max
|j|≤m

∥∥∂jxV0

∥∥
L∞(Rd)

,

where Cm > 0 denotes some positive constant, depending only on m and d.

Proof. We first note that, in view of (4.2), the norm ‖f‖2Hm
and the norm

‖f‖2m :=

∫∫
R2d

|f |2(x, ξ)
(

1 +
(
|x|2 + |ξ|2

)m)
dx dξ

are equivalent. It is therefore enough to prove that∫∫
R2d

|Θ[V0]w|2
(

1 +
(
|x|2 + |ξ|2

)m)
dx dξ ≤ C0 ‖w‖2m :(5.1)
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for some C0 ≥ 0. In the following we denote by

(5.2) (Fξ→ηw)(x, η) ≡ ŵ(x, η) :=

∫
Rd

w(x, ξ) e−iξ·ηdξ,

the partial Fourier transform with respect to the variable ξ ∈ Rd only. Recall from
(1.3) that the operator Θ[V0] acts via

(5.3) Θ[V0]w = −iF−1
η→ξ

(
δV0(x, η) · Fξ→ηw(x, η)

)
.

Using Plancherel’s formula and Hölder’s inequality, this implies

‖Θ[V0]w‖L2 ≤ 2 ‖V0‖L∞ ‖w‖L2 .

Thus, in order to prove (5.1), we only need to estimate∫∫
R2d

|Θ[V0]w(x, ξ)|2
(
|x|2 + |ξ|2

)m
dx dξ.

We rewrite this term, using

(
|x|2 + |ξ|2

)m
=

m∑
j=0

(
m

j

)
|x|2(m−j) |ξ|2j ,

in the following form:∫∫
R2d

|Θ[V0]w(x, ξ)|2
(
|x|2 + |ξ|2

)m
dx dξ

=

m∑
j=0

(
m

j

) ∫∫
R2d

|x|2(m−j) |ξ|2j |Θ[V0]w(x, ξ)|2 dxdξ.

It holds

|ξ|2j =
∑
|n|=j

cn,j ξ
2n1 · · · ξ2nd ,

where cn,j are some coefficients depending only on n ∈ Nd. Therefore∫∫
R2d

|Θ[V0]w(x, ξ)|2
(
|x|2 + |ξ|2

)m
dx dξ

=

m∑
j=0

(
m

j

)∑
|n|=j

cn,j

∫
R2d

|x|2(m−j) ξ2n |Θ[V0]w(x, ξ)|2 dx dξ

 ,

where we denote ξ2n := ξ2n1 · · · ξ2nd . From (5.3) we see that

‖ξn (Θ[V0]w)‖2L2(R2d) = (2π)−d
∥∥∂nη (δV0ŵ)

∥∥2

L2(R2d)
,(5.4)

with ŵ(x, η) defined by (5.2). We expand the right hand side of this identity by
using the Leibniz formula (see also [27]), and we apply

sup
x,η∈Rd

∣∣∂jηk (δV0) (x, η)
∣∣ ≤ 2(1−j) sup

y∈Rd

∣∣∂jyk V0(y)
∣∣ ,

(cf. Definition (1.4)). Then we can estimate (5.4) as follows:∫∫
R2d

ξ2n|Θ[V0]w(x, ξ)|2 dx dξ ≤ C(n) max
|k|≤|n|

‖∂jxV0‖2L∞(Rd)‖ξ
n−kw‖2L2(R2d),
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where C(n) > 0 depends only on binomial coefficients. In summary, we obtain∫∫
R2d

|Θ[V0]w(x, ξ)|2(|x|2 + |ξ|2)m dx dξ

≤ C̃m

m∑
j=0

(
m

j

)( ∑
|n|=j

cn,j max
|k|≤|n|

‖∂kxV0‖2L∞(Rd)

∥∥|x|m−jξn−kw∥∥2

L2(R2d)

)
≤ C2

m max
|j|≤m

‖∂jxV0‖2L∞(Rd)

∫∫
R2d

|w|2(x, ξ)(|x|2 + |ξ|2)m dxdξ,

with C̃m, Cm > 0 depending only on binomial coefficients. Thus, the assertion is
proved. �

Remark 5.2. The unboundedness of Θ[V0] in H (the exponentially weighted
Hilbert space) is due to its non-locality, which can be seen from the following
reformulation of (1.3) (cf. §3 of [7]):

(Θ[V ]f)(x, ξ) = −2π−dW (x, ξ) ∗ξ f(x, ξ),

with

W (x, k) := Im
[
e2ix·kV̂ (2k)

]
.

To illustrate the situation let us take V0(x) = sin(x · k0) for some k0 ∈ Rd \ {0}.
This implies

(Θ[V ]f)(x, ξ) = 2d cos(2x · k0) [f(x, ξ − k0)− f(x, ξ + k0)].

The problem is that such a shift operator cannot be bounded in an L2-space with
an inverse Gaussian weight, as the following computation shows:∫

Rd

|f(ξ − k0)|2 e|ξ|
2

dξ = e|k0|
2

∫
Rd

|f(ξ)|2 e|ξ|
2

e2k0·ξ dξ, f ∈ L2(Rd, e|ξ|
2

dξ).

6. Proof of the main theorems

The results of the preceding sections allow us to give the proofs of Theorem 1
and Theorem 2.

Proof of Theorem 1. We start with Assertion (i): Let m be the integer fixed in the
assertion. Any solution w∞ ∈ Hm of (2.2) that is subject to the normalization∫∫

w∞ dxdξ = 1, satisfies the unique decomposition w∞ = µ + w∗ with w∗ ∈ H⊥m,
i.e.

∫∫
w∗dxdξ = 0. Therefore, we consider the following fixed point iteration for

w∗:

T : H⊥m → H⊥m, wn−1 7→ T (wn−1) ≡ wn,

where wn ∈ H⊥m solves

Lwn = λΘ [V0] (wn−1 + µ) .

To be able to apply Banach’s fixed point theorem, we have to prove that the map-
ping T is a contraction on H⊥m. To this end we write, for any wn−1, w̃n−1 ∈ H⊥m,

‖wn − w̃n‖H⊥m =
∥∥λL−1 Θ [V0] (wn−1 − w̃n−1)

∥∥
H⊥m

and estimate

‖wn − w̃n‖H⊥m ≤ |λ|
∥∥L−1

∥∥
B(H⊥m)

‖Θ[V0](wn−1 − w̃n−1) ‖H⊥m .

From (4.16) and Proposition 5.1 we obtain

‖wn − w̃n‖H⊥m ≤
Γm|λ|
σm

‖wn−1 − w̃n−1‖H⊥m ,
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since the potential V0 satisfies (2.9). Since |λ| < σm/Γm, there exists a unique
fixed point w∗ = T (w∗) ∈ H⊥m. Thus, the unique (stationary) solution of (2.2) is
obtained as w∞ = µ+ w∗ ∈ Hm. Note, however, that µ 6⊥ w∗ in the sense of Hm.

The obtained solution w∞ is real valued, since T maps real valued functions to
real valued functions. Moreover, w∞ ∈ Hm satisfies (2.2), at least in the distribu-
tional sense. Furthermore, Θ[V0]w∞ ∈ Hm and Lw∞ ∈ H−2(R2d) and thus (2.2)
also holds in H−2(R2d). To explore – a posteriori – the regularity of w∞, we rewrite
(2.2) in the following weak form∫∫

R2d

(∇xw∞ · ∇xϕ+∇ξw∞ · ∇ξϕ+ w∞ϕ) dxdξ = H−1〈F (w∞), ϕ〉H1 ,

for any ϕ ∈ H1(R2d), where

F (w∞) := w∞ − divx(ξw∞) + divξ(xw∞ + 2ξw∞)− λΘ[V0]w∞.

Clearly F (w∞) ∈ H−1(R2d) and thus w∞ ∈ H1(R2d) follows. Moreover, since
F (w∞) ∈ L2

loc(R2d), we also have w∞ ∈ H2
loc(R2d).

For the proof of Assertion (ii), we first note that Θ[V0] is a bounded perturbation
of L on Hm and thus (1.1) admits a unique mild solution w ∈ C([0,∞),Hm).
Since Θ[V0] maps Hm into H⊥m, we also know that along this solution the mass is
conserved, i.e.

∫∫
w(t) dxdξ = 1, for all t ≥ 0.

Next, consider the new unknown g(t) := w(t)−w∞ with g0 = w0−w∞. Due to
mass conservation g(t) ∈ H⊥m for all t ≥ 0, and we also have

∂tg = Lg − λΘ[V0]g,

since w∞ is a stationary solution of (1.1). Taking into account that the semigroup
Ut associated with L in the space Hm satisfies (4.6), it holds:

‖g(t)‖Hm
≤ δme−γ̃mt‖g0‖Hm

+ δm|λ|
∫ t

0

e−γ̃m(t−s)‖Θ[V0]g(s)‖Hm
ds

≤ δme−γ̃mt‖g0‖Hm
+ δm|λ|Γm

∫ t

0

e−γ̃m(t−s)‖g(s)‖Hm
ds,

for any γ̃m ∈ (δm|λ|Γm, γm) and with Γm defined in Proposition 5.1. Gronwall’s
lemma then implies

‖g(t)‖Hm ≤ δme−t(γ̃m−δm|λ|Γm)‖g0‖Hm .

It remains to prove Assertion (iii): As before we write w∞ = µ + w∗, where
w∗ ∈ H⊥m solves

(L− λΘ[V0])w∗ = λΘ[V0]µ.

Since ‖Θ[V0]‖B(Hm) ≤ Γm, we obtain ‖λΘ[V0]µ‖Hm
≤ |λ|Γm‖µ‖Hm . Next, we

consider L on H⊥m. From the proof of Proposition 4.8 we conclude for its resolvent
set:

%
(
L
∣∣
H⊥m

)
⊇ {z ∈ C : Re z > −γm} ,

and thus

%

(
(L− λΘ[V0])

∣∣∣
H⊥m

)
⊇ {z ∈ C : Re z > |λ|Γm − γm} .

Since |λ|Γm − γm < 0 (see (2.10)) we have

(L− λΘ[V0])
−1

= L−1
(
Id− λΘ[V0]L−1

)−1
(on H⊥m).
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Using (4.16) and |λ|Γm < σm (see (2.10)) we conclude∥∥(L− λΘ[V0])
∣∣∣−1

H⊥m

∥∥
B(H⊥m)

≤ 1

σm

1

1− |λ|Γm 1
σm

=
1

σm − |λ|Γm
.

Thus, by writing

w∗ =

(
(L− λΘ[V0])

∣∣∣
H⊥m

)−1

(λΘ[V0]µ),

we infer

‖w∗‖Hm
≡ ‖w∞ − µ‖Hm

≤ |λ|Γm‖µ‖Hm

σm − |λ|Γm
and the assertion is proved. �

Remark 6.1. Due to the mass normalization
∫∫

w∞ dxdξ =
∫∫

µdxdξ = 1, the
fixed point w∗ must take both positive and negative values. Thus, w∞ = µ + w∗
may, in general, also take negative values.

Proof of Theorem 2. We start with assertion (ii), which follows from the fact that

‖ ρ ‖T2
= ‖ ρ(·, ·) ‖L2 = (2π)d/2 ‖w(·, ·) ‖L2 ≤ (2π)d/2 ‖w(·, ·)‖Hm

, ∀ ρ ∈ T2.

Thus, we infer

ρ(t)
t→∞−→ ρ∞ in T2 ,

with the exponential rate obtained from Theorem 1 (ii).
To prove assertion (i) we consider the transient equation (1.1) as an auxiliary

problem: Choose any ρ0 ∈ T +
1 such that tr ρ0 = 1 and the corresponding w0 ∈ Hm.

Due to the results on the linear Cauchy problem given in [9] we know that (1.1)
gives rise to a unique mild solution ρ ∈ C([0,∞); T +

1 ), satisfying tr ρ(t) = 1, for
all t ≥ 0. Hence, the trajectory {ρ(t), t ≥ 0} is bounded in T1. Since T1 has a
predual, i.e. the compact operators on L2(Rd), the Banach-Alaoglu Theorem then
asserts the existence of a sequence {tn}n∈N ⊂ R+ with tn →∞, such that

ρ(tn)
n→∞−→ ρ̃ in T1 weak-?

for some limiting ρ̃ ∈ T1. The already obtained T2-convergence of ρ(t) towards
ρ∞ ∈ T2 implies ρ∞ = ρ̃ ∈ T1. And the uniqueness of the steady state yields the
convergences of the whole t-dependent function ρ(t) → ρ̃ in T1 weak-?. Finally,
we also conclude positivity of the operator ρ∞ by the T2-convergence and the fact
that we already know from [9]: ρ(t) ≥ 0, for all t ≥ 0.

It remains to prove tr ρ∞ = 1. To this end, we recall that for any ρ ∈ T +
1 the

corresponding kernel

ϑ(x, η) := ρ
(
x+

η

2
, x− η

2

)
satisfies ϑ ∈ C(Rdη, L1

+(Rdx)), see [1], and it also holds

(6.1) tr ρ =

∫
Rd

ϑ(x, 0) dx.

Further, note that ϑ(x, η) = (Fξ→ηw)(x, η) ≡ ŵ(x, η), by (1.2). On the other hand,
for any w ∈ Hm we know that ŵ ∈ C(Rdη, L1(Rdx)), due to the polynomial L2-weight

ν−1
m in x ∈ Rd and a simple Sobolev imbedding w.r.t. the variable η ∈ Rd (for both

embeddings we used m > d
2 ). Hence the normalization condition

∫∫
w∞ dxdξ = 1

implies tr ρ∞ = 1, via (6.1), and assertion (ii) is proved.
Finally, we prove claim (iii) by first noting that the T2-convergence of ρ(t) implies

convergence in the strong operator topology. Thus, having in mind that ‖ρ(t)‖T1
=

‖ρ0‖T1
= 1, we infer from Grümm’s theorem (Th. 2.19 in [33]) that ρ(t) also

converges in the T1-norm towards ρ∞. This concludes the proof of Theorem 2. �
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Appendix A. Proof of Proposition 4.6

The proof will be divided into several steps:

Step 1: Let χ ∈ C∞0 (R2d) be such that χ = 1 on B1(0), with supp(χ) ⊆ B2(0),

‖∇χ‖L∞ ≤
√

2, and let χε(y) := χ(ε y), for any y = (x, ξ) ∈ R2d, 0 < ε < 1. We
define

Lε1w :=
(
dw − νm∇ν−1

m · ∇w
)
χε,(A.1)

as well as

Lε2w := νm div
(
ν−1
m ∇w

)
+∇w · ∇A+ dw + div(wF )(A.2)

+
(
dw − νm∇ν−1

m · ∇w
)

(1− χε) .

It is easily seen that Lε1 indeed satisfies property (1).

Step 2: In order to prove properties (2) and (3), we need to show that

(Lε2 − z)−1 : Hm → H1
m,

is bounded for z ∈ Ω ⊂ C. To this end, it suffices to show that (Lε2 − z) satisfies
∀ z ∈ Ω:

−Re 〈(Lε2 − z)w,w〉Hm
≥ c‖w‖2H1

m
,(A.3)

with some c = c(Re z) > 0. Indeed, suppose (A.3) holds for all (complex valued)
w ∈ H2

m := {w ∈ Hm : ∇w, (∇A + F ) · ∇w,∆w ∈ Hm}. Then, Lε2 − z is densely
defined on D(Lε2) := H2

m ⊂ Hm and dissipative. Hence, it has a maximal dissipative
(and thus surjective on Hm) extension, which we shall consider in the sequel. From
(A.3) we conclude

c‖w‖2H1
m
≤ −Re 〈(Lε2 − z)w,w〉Hm

≤ ‖w‖H1
m
‖(Lε2 − z)w‖Hm

, c > 0,

which implies

‖(Lε2 − z)−1w̃‖H1
m
≤ 1

c
‖w̃‖Hm , for all w̃ ∈ Hm.(A.4)

For future reference we note that this bound will turn out to be uniform on the
lines z = a+ is, s ∈ R (with fixed a > −Λm), since c = c(Re z).

Step 3: Now, we have to prove (A.3). To this end, we decompose

Re 〈Lε2w,w〉Hm
=−

∫∫
R2d

(1 +Am) |∇w|2 dxdξ

− m

2

∫∫
R2d

|w|2Am−1 |∇A|2 dxdξ

+ d

∫∫
R2d

|w|2 (1 +Am) (1− χε) dxdξ

+
1

2

∫∫
R2d

|w|2∇ (1− χε) · ∇ (1 +Am) dxdξ

+
1

2

∫∫
R2d

|w|2 (1− χε) ∆ (1 +Am) dxdξ

=: I1 + I2 + I3 + I4 + I5.
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Using Lemma 4.2 (b), we readily obtain for ε ≤ 1√
3
:

|I3| ≤
m

4

∫∫
R2d

|w|2Am−1 |∇A|2 (1− χε) dx dξ

≤ m

4

∫∫
R2d

|w|2Am−1 |∇A|2 dx dξ.

In order to treat the term I4, we note that

|∇χε| = ε|∇χ|, |∇χ| ≤
√

2, supp {∇χε} ⊂
{
y ∈ R2d

∣∣ 1

ε
≤ |y| ≤ 2

ε

}
.

Therefore, by (4.3),

1

|∇A|
≤
√

18 ε for y = (x, ξ) ∈ supp {∇χε}.

With ε < 1 this allows us to estimate

|∇ (1− χε) · ∇ (1 +Am)| ≤ εmAm−1 |∇χ| |∇A|

≤ 6ε2mAm−1 |∇A|2 ≤ 6εmAm−1 |∇A|2 ,

which implies

|I4| ≤ 3mε

∫∫
R2d

|w|2Am−1 |∇A|2 dxdξ.

The term I5 can be estimated using Lemma 4.2 (d):

I5 =
1

2

∫∫
R2d

|w|2 (1− χε) ∆(1 +Am) dxdξ

≤ 3mε2 (m− 1 + 3d)

∫∫
R2d

|w|2 (1− χε) Am−1 |∇A|2 dx dξ

≤ 3mε2 (m− 1 + 3d)

∫∫
R2d

|w|2Am−1 |∇A|2 dxdξ.

In summary, we obtain

1

4
I2 + |I4| ≤ −

(m
8
− 3mε

) ∫∫
R2d

|w|2Am−1 |∇A|2 dxdξ,

and

3

4
I2 + I3 + I5 ≤ −

(m
8
− 3mε2 (m− 1 + 3d)

) ∫∫
R2d

|w|2Am−1 |∇A|2 dx dξ.

Now choosing ε ≤ min
{

1
24 ; 1

12
√
m

}
, we can estimate (using m ≥ d)

m

(
1

8
− 3ε

)
≥ 0, m

(
1

8
− 3ε2(m− 1 + 3d)

)
≥ m

24
.

Therefore

−Re 〈Lε2w,w〉Hm
≥
∫∫

R2d

(1 +Am)|∇w|2dxdξ

+
(m

8
− 2
)∫∫

R2d

|w|2Am−1|∇A|2dxdξ,

which we estimate further using Lemma 4.2 (b):

−Re 〈Lε2w,w〉Hm ≥
∫∫

R2d

(1 +Am)|∇w|2 dxdξ

+
d

6

∫∫
R2d

|w|2(1 +Am)(1− χ1/
√

12) dxdξ.
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This establishes the desired estimate outside of (x, ξ) ∈ B1/
√

12(0). In order to take

into account the contribution near |y| = 0, we consider∫∫
R2d

(1 +Am) |∇w|2 dx dξ.

Applying Sobolev’s inequality we obtain for any d > 1:∫∫
R2d

(1 +Am) |∇w|2 dx dξ ≥
∫∫

R2d

|∇w|2 dx dξ ≥ C2
d ‖w‖2Lq(R2d),

with q = 4d
2d−2 . This can be estimated further via

C2
d ‖w‖2Lq(R2d) ≥ C

2
d ‖w‖2Lq(B1/

√
12(0)) ≥

C2
1

‖1 +Am‖L∞(B1/
√

12(0))
‖w‖2Hm(B1/

√
12(0)),

where C1 depends only on the Sobolev constant Cd and on the measure of the ball
B1/
√

12(0). Finally, in order to deal with d = 1 we apply Cauchy-Schwarz to obtain∫∫
R2

|∇w| dxdξ =

∫∫
R2

|∇w| (1 +Am)
1/2

(1 +Am)
−1/2

dx dξ

≤
(∫∫

R2

|∇w|2 (1 +Am) dxdξ

)1/2 (∫∫
R2

(1 +Am)
−1

dxdξ

)1/2

.

By assumption we have m > 1 (cf. Remark 4.3). Hence, the second factor on the
r.h.s. is a finite constant, denoted by CA,m. Applying again Sobolev’s inequality
(for d = 1), we obtain

‖∇w‖L1(R2) ≥ C̃1 ‖w‖L2(R2) ≥
C̃1

‖1 +Am‖1/2L∞(B1/
√

12(0))

‖w‖Hm(B1/
√

12(0)).

By combining all the above estimates we infer for all (complex valued) w ∈ H2
m:

−Re 〈Lε2w,w〉Hm
≥ Λm 〈w,w〉H1

m
,

where Λm > 0 is given by
(A.5)

Λm := min
{ C2

1

2‖1 +Am‖L∞(B1/
√

12(0))
;

C̃2
1

2C2
A,m‖1 +Am‖L∞(B1/

√
12(0))

;
1

2
;
d

6

}
.

In summary, inequality (A.3) holds on H2
m for any Re z > −Λm. And we easily

see that c(z) = min{Λm ; Λm + Re z}. Hence, the operator (Lε2 − z) is invertible in
H1
m. And we have to choose ε = ε(m) > 0 such that

ε ≤ min

{
1

12
√
m

;
1

24

}
.(A.6)

�
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16. A. Donarini, T. Novotný, and A.P. Jauho, Simple models suffice for the single-dot quantum
shuttle, New J. of Physics 7 (2005), 237–262.

17. J.-P. Eckmann and M. Hairer, Spectral Properties of Hypoelliptic Operators, Commun. Math.

Phys. 235, no. 2, 233–253.
18. M. Elk and P. Lambropoulos, Connection between approximate Fokker-Planck equations and

the Wigner function applied to the micromaser, Quantum Semiclass. Opt. 8 (1996), 23–37.

19. K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,
Springer-Verlang, New York, 2000.

20. F. Fagnola and R. Rebolledo, On the existence of stationary states for quantum dynamical
semigroups, J. Math. Phys. 42 (2001), 1296–1308.

21. F. Fagnola and R. Rebolledo, Algebraic conditions for convergence of a quantum Markov

semigroup to a steady state, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11(3) (2008),
467–474.

22. A. Frigerio and M. Verri, Long-Time Asymptotic Properties of Dynamical Semigroups on

W ∗–algebras, Math. Z. 180 (1982), 275–286.
23. L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math.

Soc. 236 (1978), 385394.

24. M.P. Gualdani, S. Mischler and C. Mouhot. Factorization for non-symmetric operators and
exponential H-theorem. Preprint arxiv.org/pdf/1006.5523.
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