
PHYSICAL REVIEW A 81, 032319 (2010)

Nuclear-magnetic-resonance quantum calculations of the Jones polynomial
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The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the
approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of
this evaluation, however, involves many known experimental challenges. Here we present experimental results for
a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition,
we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we
use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing
the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the
molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.
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I. INTRODUCTION

The Jones polynomial [1], a great discovery in knot
theory, has recently become an interesting topic for quantum
computing. In particular, the use of quantum computing
has been discussed for approximately evaluating the Jones
polynomial V (z) at selected values of z. For a knot displayed
as a braid of n strands (specified in terms of a sequence of
crossings), these are the values z of the form z = exp(2πi/k),
where k is an integer in the algorithm of Aharonov, Jones,
and Landau (AJL) [2] (A description of the AJL algorithm
can also be found in [3]). In Refs. [4,5] a quantum algorithm
is given by Kauffman and Lomonaco (KL) for three-strand
braids that can be used to evaluate the Jones polynomial at
a continuous range of the argument of z. The approximate
evaluation of the Jones polynomial by a quantum computer
involves forming a product of unitary matrices and taking the
trace of the product. The method of taking the trace described
for the AJL algorithm and the KL algorithm requires that the
quantum computer separately obtain an estimate of each of the
diagonal elements of the unitary matrix; then these estimates
are summed to yield an estimate of the trace. It is the taking
of the trace that accounts for most of the computational cost
of approximating the Jones polynomial.

The next section reviews the relation of the Jones poly-
nomial for a braid to a unitary transformation composed of
factors that correspond to braid crossings so the problem
of evaluating the Jones polynomial reduces to the problem of
evaluating the trace of a unitary matrix. An exposition of how
the KL algorithm (which we use in this article) can be regarded
as a special case of a generalization of the AJL algorithm is
presented after that. In this sense this article and its sequels will
be about experimental implementation of both the KL and the
AJL quantum algorithms for computing the Jones polynomial.

*To whom correspondence should be addressed: amr fahmy@
hms.harvard.edu

Following this, we present the method whereby an idealized
nuclear magnetic resonance (NMR) quantum computer [6,7]
can evaluate the trace of unitary matrix written as a product of
factors all at once, that is, without having to evaluate diagonal
elements of the unitary matrix separately. Experimental results
for the evaluation of cases of the two-by-two matrix, and hence
of the Jones polynomial for a braid of three strands, by use of
NMR is the subject of the last section.

II. THE JONES POLYNOMIAL AND UNITARY MATRICES

The Jones polynomial [1] marked the beginning of a signifi-
cant relationship between knot theory and statisical mechanics,
particularly through the relationship of the polynomial with
the Temperley-Lieb algebra, and through the explicit bracket
state sum model [8–12]. From the topological side the Jones
polynomial is striking because it can detect the difference
between many knots and their mirror images. The general
algorithm to find the Jones polynomial is in the �P complexity
class, and so this is an algorithm worth understanding in the
context of quantum computation.

Our approach to the Jones polynomnial in this article is
based on representations of the Artin Braid Group [5]. The
reader of this article can glean a quick introduction to ideas in
knot theory and the braid group from Figs. 1, 2, and 3. A knot is
an embedding of a circle in three-dimensional space, taken up
to ambient isotopy. Two knots are said to be ambient isotopic
if there is a time parameter family of embeddings starting with
one knot and ending with the other one. A link is an embedding
of several disjoint circles in three space, again taken up to
ambient isotopy. It is convenient to use projection diagrams
for knots and links to represent their topological type (up to
ambient isotopy) and to record sufficient data for calculation
and reconstruction. These diagrams are plane graphs with four
edges incident to each node (4-regular plane graphs) and extra
structure in the form of pictorial over and under crossing is
given at each node. In Fig. 1 we illustrate the Reidemeister
moves for such diagrams.
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FIG. 1. Reidemeister moves.

These moves accomplish ambient isotopies of the em-
beddings that correspond to given diagrams, and it is a fact
that two knot or link diagrams represent ambient isotopic
configurations in three-dimensional space if and only if the
two diagrams can be transformed one to another by a sequence
of Reidemeister moves. A braid in Bn is a collection of arcs in
three-space, starting at a selected set of n points and embedded
in such a way that the strands move always downward with
respect to a choice of vertical direction, until they reach a
second copy of this set of points. In the diagrams of Figs. 2
and 3, the reader will see braids drawn so that the vertical
direction corresponds to the direction up and down the page on
which the diagrams are drawn. Braids are taken up to isotopy in
three dimensions that fixes their end points and does not disturb
the levels of the points on any given braid strand. Braids can
be multiplied by attaching the bottom end points of one braid
to the top end points of another braid. If b and b′ are braids of
n strands, we denote their product by bb′.

In Fig. 2, we illustrate the generators σ1, σ2, σ3 of the
four-strand braid group B4. With n strands there are n − 1
generators σ1, σ2, · · · σn−1, where σi represents a right-handed
twist of strands i and i + 1, with all other strands proceeding
straight down with no twist. Each σi is undone by multipli-
cation by σ−1

i , a left-handed twist of the same two strands.
The result is that the braid group Bn lives up to its name
and forms a group under the multiplication that we have
described. The identity element in the group, denoted by 1
or by 1n, consists in n descending straight strands with no
twist. In Fig. 2 we have illustrated these inverses, and we have
illustrated the identities σ1σ2σ1 = σ2σ1σ2 and σ1σ3 = σ3σ1. In
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FIG. 2. Braid generators and relations.
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FIG. 3. Braid closures.

general, in Bn a complete set of relations for the group consists
in σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi when |i − j | > 1.

In this article we will use only the three-strand braid group,
with its two generators σ1 and σ2.

In Fig. 3 we illustrate how knots and links can be obtained
by taking closures (attach the top strand points to the bottom
strand points) of braids. In fact, by a classical theorem of J. W.
Alexander, every knot and link can be obtained as the closure
of a braid (always in more than one way). In Fig. 3 we see the
Hopf link, the trefoil knot, and the figure-eight knot as braid
closures.

The key idea behind the present quantum algorithms to
compute the Jones polynomial is to use unitary representations
of the braid group derived from Temperley-Lieb algebra
representations that take the form

ρ(σi) = A1 + A−1Ui

where σi is a standard generator of the Artin braid group,
A is a complex number of unit length, 1 is the two-by-two
unit matrix, and Ui is a symmetric real matrix that is part of a
representation of the Temperley-Lieb algebra. For more details
about this strategy and the background information about the
Jones polynomial, the bracket model for the Jones polynomial
and the Temperley-Lieb algebra the reader may wish to
consult Refs. [1,2,4,5,8–15]. In the following mathematical
description, we have given a minimal exposition of the
structure of such representations. As an example, the reader
may wish to examine Fig. 3 and note that the figure-eight knot
is the closure of the braid σ1σ

−1
2 σ1σ

−1
2 . In the next sections we

describe the unitary representations of the braid group in more
detail, and one can follow these with the specific example of
the figure-eight knot. Indeed, we have done this all the way
through in our experiments with NMR quantum computing.

A. Two projectors and a unitary representation
of the three-strand braid group

It is useful to think of the Temperley-Lieb algebra as gen-
erated by projections ei = Ui/δ so that e2

i = ei and eiei±1ei =
τei , where τ = δ−2 and ei and ej commute for |i − j | > 1.

With this in mind, consider elementary projectors e = |A〉〈A|
and f = |B〉〈B|. We assume that 〈A|A〉 = 〈B|B〉 = 1 so that
e2 = e and f 2 = f. Now note that

ef e = |A〉〈A|B〉〈B|A〉〈A| = 〈A|B〉〈B|A〉e = τe.
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Thus

ef e = τe,

where τ = 〈A|B〉〈B|A〉.
This algebra of two projectors is the simplest instance of

a representation of the Temperley-Lieb algebra. In particular,
this means that a representation of the three-strand braid group
is naturally associated with the algebra of two projectors.

Quite specifically if we let 〈A| = (a, b) and |A〉 = (a, b)T

the transpose of this row vector, then

e = |A〉〈A| =
[
a2 ab

ab b2

]

is a standard projector matrix when a2 + b2 = 1. To obtain a
specific representation, let e1 = [ 1 0

0 0 ] and e2 = [ a2 ab
ab b2 ]. It is

easy to check that e1e2e1 = a2e1 and that e2e1e2 = a2e2. Note
also that e1e2 = [ a2 ab

0 0 ] and e2e1 = [ a2 0
ab 0 ]. We define

Ui = δei

for i = 1, 2 with a2 = δ−2. Then we have, for i = 1, 2

U 2
i = δUi, U1U2U1 = U1, U2U1U2 = U2.

Thus we have a representation of the Temperley-Lieb algebra
on three strands. See Ref. [11] for a discussion of the properties
of the Temperley-Lieb algebra.

Note also that we have

trace(U1) = trace(U2) = δ,

while

trace(U1U2) = trace(U2U1) = 1,

where trace denotes the usual matrix trace. We will use these
results on the traces of these matrices in the next section. Now
we return to the matrix parameters: Since a2 + b2 = 1 this
means that δ−2 + b2 = 1 whence b2 = 1 − δ−2. Therefore b

is real when δ2 is greater than or equal to 1.
We are interested in the case where δ = −A2 − A−2 and A

is a unit complex number. Under these circumstances the braid
group representation

ρ(σi) = A1 + A−1Ui

will be unitary whenever Ui is a real symmetric matrix. Thus
we will obtain a unitary representation of the three-strand braid
group B3 when δ2 � 1.

For any A with d = −A2 − A−2 these formulas define a
representation of the braid group. With A = exp(iθ ), we have
d = −2cos(2θ ). We find a specific range of angles θ in the
following disjoint union of angular intervals

θ ∈ [0, π/6] � [π/3, 2π/3] � [5π/6, 7π/6]

� [4π/3, 5π/3] � [11π/6, 2π ]

that give unitary representations of the three-strand braid
group. Thus a specialization of a more general representation
of the braid group gives rise to a continuous family of unitary
representations of the braid group.

B. A Quantum algorithm for the Jones polynomial
on three-strand braids

We gave above an example of a unitary representation of the
three-strand braid group. In fact, we can use this representation
to compute the Jones polynomial for closures of three-braids,
and therefore this representation provides a test case for the
corresponding quantum computation. We now analyze this
case by first making explicit how the bracket polynomial is
computed from this representation. This unitary representation
and its application to a quantum algorithm first appeared in
Ref. [4]. When coupled with the Hadamard test, this algorithm
gets values for the Jones polynomial in polynomial time in the
same way as the AJL algorithm [2]. It remains to be seen how
fast these algorithms are in principle when asked to compute
the polynomial itself rather than certain specializations of it.

First recall that the representation depends on two matrices
U1 and U2 with

U1 =
[
δ 0

0 0

]
and U2 =

[
δ−1

√
1 − δ−2

√
1 − δ−2 δ − δ−1

]
.

The representation is given on the two braid generators by

ρ(σ1) = A1 + A−1U1 (1)

and

ρ(σ2) = A1 + A−1U2 (2)

for any A with δ = −A2 − A−2 and with A = exp(iθ ),
then δ = −2cos(2θ ). We get the specific range of
angles θ ∈ [0, π/6] � [π/3, 2π/3] � [5π/6, 7π/6] � [4π/3,

5π/3] � [11π/6, 2π ] that give unitary representations of the
three-strand braid group.

Note that tr(U1) = tr(U2) = δ while tr(U1U2) =
tr(U2U1) = 1. If b is any braid, let I (b) denote the sum
of the exponents in the braid word that expresses b. For b a
three-strand braid, it follows that

ρ(b) = AI (b)1 + τ (b),

where τ (b) is a sum of products in the Temperley-Lieb algebra
involving U1 and U2. Since the Temperley-Lieb algebra in
this dimension is generated by 1, U1, U2, U1U2, and U2U1, it
follows that

〈b〉 = AI (b)δ2 + tr[τ (b)],

where b denotes the standard braid closure of b and the sharp
brackets denote the bracket polynomial. From this we see at
once that

〈b〉 = tr[ρ(b)] + AI (b)(δ2 − 2).

It follows from this calculation that the question of computing
the bracket polynomial for the closure of the three-strand braid
b is mathematically equivalent to the problem of computing
the trace of the matrix ρ(b).

The matrix in question is a product of unitary matrices, the
quantum gates that we have associated with the braids σ1 and
σ2. The entries of the matrix ρ(b) are the results of preparation
and detection for the two-dimensional basis of qubits for our
machine:

〈i|ρ(b)|j 〉.
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Given that the computer is prepared in |j 〉, the probability of
observing it in state |i〉 is equal to |〈i|ρ(b)|j 〉|2. Thus we can,
by running the quantum computation repeatedly, estimate the
absolute squares of the entries of the matrix ρ(b). This will not
yield the complex phase information that is needed for either
the trace of the matrix or the absolute value of that trace.

However, we do know how to write a quantum algorithm to
compute the trace of a unitary matrix (via the Hadamard test).
Since ρ(b) is unitary, we can use this approach to approximate
the trace of ρ(b). This yields a quantum algorithim for the
Jones polynomial for three-stand braids (evaluated at points A

such that the representation is unitary). Knowing tr[ρ(b)] from
the quantum computation, we then have the formula for the
bracket, as above,

〈b〉 = trace[ρ(b)] + AI (b)(δ2 − 2).

Then the normalized polynomial, invariant under all three
Reidemeister moves is given by

f (b) = (−A3)−I (b)〈b〉.
Finally, the Jones polynomial in its usual form is given by the
formula

V (b)(t) = f (b)(t−1/4).

Thus we conclude that our quantum computer can approx-
imate values of the Jones polynomial.

III. RELATIONSHIP WITH THE AJL ALGORITHM

Here is how the KL algorithm described in the previous
section becomes a special case of a generalization of the AJL
algorithm: Here we use notation from the AJL article. In that
article, the generators Ui (in our previous notation) for the
Temperley-Lieb algebra, are denoted by Ei.

Let Lk = λk = sin(kθ ). For the time being θ is an arbitrary
angle. Let A = iexp(iθ/2) so that δ = −A2 − A−2 = 2cos(θ ).

We need to choose θ so that sin(kθ ) is non-negative for the
range of k’s we use (these depend on the choice of line graph as
in AJL). And we insist that sin(kθ ) is nonzero except for k = 0.

Then it follows from trigonometry that (Lk−1 + Lk+1)/Lk = δ

for all k.

Recall that the representation of the Temperley-Lieb al-
gebra in AJL is given in terms of Ei such that E2

i = δEi

and the Ei satisfy the Temperley-Lieb relations. Each Ei acts
nontrivially at the i and i + 1 places in the bit-string basis
for the space and each Ei is based on La−1, La, La+1, where
a = z(i) is the end point of a walk described by the bitstring
using only first (i − 1) bits. Bitstrings represent walks on a
line graph. Thus 1011 represents the walk Right, Left, Right,
Right ending at node number 3 in

1 − − − − − 2 − − − − − 3 − − − − − 4.

For p = 1011, z(1) = 1, z(2) = 2, z(3) = 1, z(4) = 2,

z(5) = 3.

More precisely, if we let

|v(a)〉 = [
√

La−1/La,
√

La+1/La]T

(i.e., this is a column vector; T denotes transpose), then

Ei = |v(z(i))〉〈v(z(i))|.

Here it is understood that this refers to the action on the
bitstrings

− − − − − − − − − − 01 − − − − − − − − − −
and

− − − − − − − − − − 10 − − − − − − − − − −
obtained from the given bitstring by modifying the i and i + 1
places. The basis order is 01 before 10. Conceptually, this
is a useful description, but it also helps to have the specific
formulas laid out.

Now look at the special case of a line graph with three nodes
and two edges:

1 − − − − − 2 − − − − − 3.

The only admissible binary sequences are |110〉 and |101〉, so
the space corresponding to this graph is two dimensional, and
it is acted on by E1 with z(1) = 1 in both cases (the empty
walk terminates in the first node) and E2 with z(2) = 2 for
|110〉 and z(2) = 2 for |101〉. Then we have

E1|110〉 = 0, E1|101〉 = δ|101〉,
E2|xyz〉 = |v〉〈v|xyz〉

(xyz = 101 or 110), where v = (
√

1/δ,
√

δ − 1/δ)T .

If one compares this two-dimensional representation of the
three strand Temperley-Lieb algebra and the corresponding
braid group representation, with the representation Kauffman
and Lomonaco use in their article, it is clear that it is the
same [up to the convenient replacement of A = exp(iθ ) by
A = iexp(iθ/2)]. The trace formula of AJL is a variation
of the trace formula that Kauffman and Lomonaco use.
Note that the AJL algorithm as formulated in [2] does
not use the continuous range of angles that are available
to the KL algorithm. In the sequel to this article and in
a separate article on the mathematics, we shall show how
the entire AJL algorithm generalizes to continuous angular
ranges.

IV. THEORY OF AN NMR SPECTROMETER USED
AS A QUANTUM COMPUTER

By convention, a quantum computer as conceived in theory
is assumed to yield an outcome associated with a quantum
measurement of some (possibly mixed) quantum state. In
contrast, NMR machines implement a restricted version of
an expectation-value quantum computer (EVQC), which in
place of an outcome yields, to some finite precision, the
expectation value for a measurement of a (again, possibly
mixed) quantum state [7]. Reflecting facts of NMR spec-
trometers, an NMR quantum computer (NMRQC) imple-
ments only the special measurement operators discussed in
Ref. [17], and these measurement operators all have zero
trace.

Here are the details. For a Hermitian measurement operator
M applied to a density matrix ρ, the EVQC of precision ε

yields a complex number z such that

|z − tr(Mρ)| � ε
(M), (3)

where 
(M) is the difference between the minimum and the
maximum eigenvalue of the measurement operator M , which
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is just the possible range to the trace as ρ varies over all
possible density matrices. [The factor 
(M) makes limitations
of resolution immune to the mere analytic trick of multiplying
the measurement operator by a constant.]

The measurement operators of main interest for the algo-
rithm by which we estimate the trace of a unitary operator are
I1x and I1y , shortly to be defined.

A. Thermal equilibrium and initial state preparation

To first order, the initial thermal state density operator of an
ensemble (very large number) of quantum systems with n + 1
qubits each [18] is given by

ρth ≈ 1

N

(
1n+1 −

n+1∑
l=1

αlIlz

)
(4)

with αl = h̄ωl

kT
, 1n+1 is the 2n+1-by-2n+1 unit matrix

Ilz = 1
2 1 ⊗ · · · ⊗ 1 ⊗ σz ⊗ 1 ⊗ · · · ⊗ 1,

where the Pauli matrix σz appears as the lth term in the product,
ωl is the resonance frequency of qubit l, k is Boltzmann’s
constant, T is temperature, and N = 2n+1.

The initial density operator required for our algorithm is
given by

ρ0 = 1

N
(1n+1 − α1I1z), (5)

which can be prepared from ρth by a variety of methods [19].

B. Algorithm to estimate the trace of U

The method presented here is based on the algorithm that
first appeared in Ref. [20]. As mentioned above we assume that
U is given in the form of local operations on n qubits. Given
a program for U , Barenco et al. [21] describe a procedure
to construct a program or local operations for the operator
controlled-U, cU . cU operates on n + 1 qubits, does not affect
the first qubit, applies U on the remaining n qubits if the first
qubit is |1〉 and does nothing otherwise:

cU |1〉|ψ〉 = (1 ⊗ U )|1〉|ψ〉 = |1〉U |ψ〉
cU |0〉|ψ〉 = |0〉|ψ〉.

In block matrix form, cU is given by:

cU =
(

1n 0

0 U

)
.

We now describe our algorithm:
Step 1: Prepare the density operator:

ρ1 = 1

N
(1n+1 − α1I1x) = 1

N
1n+1 − α1

2N

(
0 1n

1n 0

)
, (6)

where

I1x = 1

2
σx ⊗ 1n and σx =

[
0 1

1 0

]
.

Step 2: Apply cU to ρ1:

ρ2 = cUρ1cU
† = 1

N
1n+1 − α1

2N

(
0 U †

U 0

)
. (7)

FIG. 4. (Color online) The trefoil knot generated by the
sequence σ 3

1 .

Step 3: Measure 〈I1x + iI1y〉 to estimate

trace((I1x + iI1y) ρ2) = α1

N
trace(U ), (8)

where

I1y = 1

2
σy ⊗ 1n and σy =

[
0 −i

i 0

]
.

By Eq. (3) the result of this measurement is a complex number,
z, such that ∣∣∣Re(z) − α1

N
Re[trace(U )]

∣∣∣ � ε

(9)∣∣∣Im(z) − α1

N
Im[trace(U )]

∣∣∣ � ε.

It follows that the measurement result satisfies

|z − trace(U )| �
√

2Nε/α1. (10)

V. EXAMPLE KNOTS AND EXPERIMENTAL RESULTS

Experimental results for two knots and one link on three
strands were obtained using the methods outlined above,
see Figs. 4 to 9. Specifically, we present results for the
trefoil knot, the figure-eight knot, the Borromean rings. A
two-spin system (details of the molecule and pulse sequences
are given later) was used, the initial state given by the

FIG. 5. (Color online) Experimental results for the trefoil knot.
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FIG. 6. (Color online) The figure-eight knot generated by the
sequence σ1 σ−1

2 σ1 σ−1
2 .

density operator proportional to I1x was prepared and a
reference spectrum was then collected. This was followed
by application of a controlled-unitary operator corresponding
to and representing each knot separately found from the
representation

s1 = ρ(σ1) and s2 = ρ(σ2).

Measurement of the expectation value of I1x + iI1y after
applying the controlled-unitary operator yields the trace of the
unitary operator representing the knot and thus the estimate of
the Jones polynomial for each knot.

As an example, to estimate the Jones polynomial for
the figure-eight knot, which is the closure of the braid
σ1σ

−1
2 σ1σ

−1
2 , we will apply the sequence of unitary transforms

cs1 cs−1
2 cs1 cs−1

2 and then measure the expectation value of
I1x + iI1y , where cs is controlled-s.

For each of the three knots, the Jones polynomial was
estimated at the complex numbers eiθ for all θ in the range 0 �
θ � π/6 at single degree increments (31 values). Comparison
to the theoretical values shows excellent correspondence with
experimental observations. Furthermore, the Jones polynomial
itself for each of these knots can be constructed from the
experimental results.

FIG. 7. (Color online) Experimental results for the figure-eight
knot.

FIG. 8. (Color online) The Borromean rings generated by the
sequence σ1σ

−1
2 σ1σ

−1
2 σ1σ

−1
2 .

A. Experimental setup and molecule

The experimental implementation of the algorithm to
estimate the trace of the unitary operator involves finding a
suitable molecule (here: 13C-chloroform) that can be used as
the hardware of the NMR quantum computer, designing a pulse
sequences that implement the desired unitary transformation
with high fidelity and adjusting and calibrating the experi-
mental setup. This involves adjusting the homogeneity of the
magnet, adjusting the radiofrequency pulse lengths, power
and irradiation frequencies and cancellation of all signals that
originate from 12C-chloroform, decoupling of 1H during 13C
detection, separate detection of Ix and Iy .

The precision of NMR measurements is very high. But
the accuracy of the measured value may be decreased by
several experimental imperfections, e.g., inhomogeneity and
miscalibration of radiofrequency pulses, relaxation effects, and
so on. Such experimental imperfections are the reason why
our experimental results do not precisely match the theoretical
expectations.

All experiments were performed on a Bruker Avance
DMX 750 NMR spectrometer, equipped with a TXI 5-mm
probe head with XYZ gradients. The sample was a 9:1
mixture of chloroform and deuterated acetone. It naturally
contained about 1% of 13C−1H chloroform which was the

FIG. 9. (Color online) Experimental results for the Borromean
rings.
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FIG. 10. Pulse sequence to implement a controlled-s1,2 operation (left) and its inverse (right). For s1 set γ to 0. (To obtain a
propagator of 1 ⊕ s1,2 respectively its inverse, we have to apply a global phase factor of e∓iπβ/2. The propagator of a pulse on the
second spin-1/2 is defined as Upulse := e−iεSν , with Sν := (1 ⊗ σν/2), ε ∈ {α, β, γ } and ν ∈ {y, z}, where α = 0.5π − 2θ , β = 0.5π + θ

and γ = tan−1[cos 4θ/
√

4 cos2 2θ − 1] + π/2 and 0 � θ � π/6. For the free evolution Uevolution := e−iπtJ2IzSz with 2IzSz := 2(σz/2 ⊗ σz/2).
The pulse sequence is applied to the initial density operator I1x .

active compound that represented the hardware of our NMR
quantum computer. The spin systems Larmor frequencies were
188.6349005 MHz for 13C and 750.1354275 MHz for 1H.
The corresponding chemical shifts are 77.2 and 7.235 ppm,
respectively. The two spin-1/2 nuclei of 13C−1H chloroform
interact through scalar coupling. The corresponding coupling
constant is J = 209.5 Hz. The longitudinal relaxation times
(T1) and transversal relaxation times (T2) of both spin-1/2
nuclei are: 13C T1: 21.8 s, 13C T2: 0.19 s, 1H T1: 6.1 s, 1H
T2: 0.48 s. In order to suppress the signal of 99% 12C−1H
chloroform and to prepare the initial operator Ix , where I

corresponds to 13C (1H will be referred to as S), the following
preparation sequence was used in all experiments: the 1H
spins were saturated by cw irradiation. Subsequently they were
dephased by applying a 9.9 µs 90◦(1H) pulse followed by a B0

gradient. This sequence of 90◦ pulse and gradient was repeated
twice with orthogonal gradients. Subsequently the 13C spin
was excited using a 19.45-µs 90◦(13C) pulse. This preparation
sequence was followed by the pulse sequence of the individual
experiments (see Fig. 10). Finally the 13C signal was detected
by measuring 512 points during 452 ms. In order to improve
the sensitivity, we decoupled all 1H spins during the detection
period by applying the DIPSI-2 [22] decoupling sequence.

VI. CONCLUSION

In this article, we showed how the KL algorithm is a special
case of a generalized AJL algorithm. Using the KL algorithm,
we obtained a unitary representation of the three-strand braid
group and discussed a method for computing the Jones
polynomial using this representation over a range of complex
numbers. Next, the theory of an idealized NMR quantum
computer was presented and we showed how the trace of a uni-
tary matrix can be experimentally determined. Experimental
realization for three different knots were performed where the
experimental data agreed with theoretical calculations. Future
work includes generalizing the AJL algorithm for calculation
at a range of values, as was done for the three-strand braid
group in this work, and their experimental implementations.
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