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Abstract

We extend the multiplicative submodularity of the principal determinants
of a nonnegative definite hermitian matrix to other spectral functions. We
show that if f is the primitive of a function that is operator monotone on
an interval containing the spectrum of a hermitian matrix A, then the function
I 7→ trf(A[I]) is supermodular, meaning that trf(A[I])+trf(A[J ]) 6 trf(A[I∪
J ]) + trf(A[I ∩ J ]), where A[I] denotes the I × I principal submatrix of A.
We discuss extensions to self-adjoint operators on infinite dimensional Hilbert
space and to M -matrices. We discuss an application to CUR approximation of
nonnegative hermitian matrices.
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1 Introduction and statement of the main result

Let m be a positive integer and denote [m] := {1, . . . , m}. A real valued function
w : 2[m] → R defined on all subsets of [m] is called nondecreasing if w(I) 6 w(J)
when I ⊂ J ⊂ [m]. It is submodular if

w(I) + w(J) > w(I ∪ J) + w(I ∩ J)

for any two subsets I, J of [m]. The function w is called nonincreasing or supermod-
ular whenever −w is nondecreasing or submodular, respectively. A function that is
both submodular and supermodular is called modular.

The importance of submodular functions in combinatorial optimization is well
known. Several polynomial time algorithms to minimize a submodular function un-
der a matroid constraint are known, we refer the reader to the survey [Iwa08] for
more information. The maximization of a submodular function under a matroid con-
straint, and specially, under a cardinality constraint, νk(w) := maxI⊂[m],|I|6k w(I),
is also of great interest. For some submodular functions w the latter problem is
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NP-hard. However, a classical result [NWF78] shows that when w is nondecreas-
ing and submodular, the greedy algorithm allows one to compute an approximation
νG

k (w) of νk(w) which is such that νG
k (w) > (1−e−1)νk(w). See [CCPV07] for recent

developments regarding submodular maximization.
Denote respectively by Cm×m ⊃ Hm ⊃ Hm(E) the space of m × m complex

valued matrices, the space of m×m hermitian matrices, and the subset of A ∈ Hm

whose eigenvalues lie in the interval E ⊂ R. For I ⊂ [m] denote by A[I] the
principal submatrix of A, obtained from A by deleting the rows and columns in the
set [m] \ I. For A,B ∈ Hm denote by ≽ the Loewner ordering, so that A ≽ B if
A − B ∈ Hm([0,∞)). We also write A � B or A ≻ B if A − B ∈ Hm([0,∞)) \ {0}
or A − B ∈ Hm((0,∞)) respectively.

Recall that the principal minors of a nonnegative definite matrix satisfy the
multiplicative submodularity property:

det A[I ∪ J ] det A[I ∩ J ] 6 det A[I] det A[J ], where I, J ⊂ [m], A ∈ Hm([0,∞)).
(1.1)

In other words, the function log(·, A) : 2[m] → R given by

log(I, A) := log detA[I], I ⊂ [m], A ∈ Hm((0,∞)) (1.2)

is submodular. This inequality has arisen in the work of several authors. It goes
back to Gantmacher and Krĕın [GK60] and Kotelyanskĭı [Kot50], see the discussion
by Ky Fan [Fan67, Fan68]. It can also be found in [KK83, JB85]. The classical
Hadamard-Fischer inequality for the principal minors of nonnegative definite ma-
trices is obtained when I ∩ J = ∅, understanding that detA[∅] = 1. We refer the
reader to [FJ00] for a survey of determinantal inequalities, and to [CT88] for their
relation with information theory. It is well known that the inequality (1.1) hold also
for M -matrices, e.g. [Car67].

In this paper, we derive a general submodularity result for spectral functions
of hermitian matrices, for some p-trace of M -matrices and some extensions to self
adjoint positive operators on infinite dimensional separable Hilbert spaces.

We first summarize our results on hermitian matrices. Recall that if A = UDU∗,
where U is unitary and D = diag(λ1, . . . , λm) is the diagonal matrix with the eigen-
values of A on the diagonal, the matrix f(A) is defined to be U diag(f(λ1), . . . , f(λm))U∗.
Note in particular that tr f(A) = f(λ1) + · · · + f(λm).

Recall that a real function f is operator monotone on the interval E ⊂ R if for
all m > 1 and for all A,B ∈ Hm(E),

A ≼ B =⇒ f(A) ≼ f(B) .

An operator convex function on the interval E is defined by requiring that

tf(A) + (1 − t)f(B) ≽ f(tA + (1 − t)B)

for each t ∈ [0, 1]. A function f is operator antitone (resp. operator concave) on an
interval if −f is operator monotone (resp. operator convex) on the same interval.
Operator monotone and operator convex functions are characterized by Loewner
theory [Löw34]. In particular, integral representations like the one of (2.1) below
are known. We refer the reader to [Bha97] for more background. Matrix inequalities
involving operator monotone functions can be found in [AZ99, Zha02].

The main result of this paper is the following.
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Theorem 1 Let f be a real continuous function defined on an interval E of R,
and assume that f is the primitive of a function that is operator monotone on the
interior of E. Then, for every m × m hermitian matrix A with spectrum in E, the
function 2[m] → R

I 7→ tr f(A[I])

is supermodular.

It is understood that tr f(A[∅]) := 0 for every function f .
Recall that the primitive of an operator monotone function is operator convex

on the same interval, but that not all operator convex functions are obtained in this
way. We shall see that the conclusion of this theorem no longer holds if f is only
assumed to be operator convex.

Let us mention some immediate applications. The derivative of the map tp,
namely, ptp−1, is known to be operator antitone on (0,∞) for 0 < p 6 1, and
operator monotone on [0,∞) for 1 6 p 6 2. The derivative of the map t log t,
namely, 1 + log t, is also known to be operator monotone on (0,∞). (See [Bha97].)
Hence, the next result readily follows from the main theorem.

Corollary 2 Let A be a m × m nonnegative definite hermitian matrix. Then,
for all I, J ⊂ [m],

trA[I]p + trA[J ]p > trA[I ∪ J ]p + trA[I ∩ J ]p, for 0 6 p 6 1 , (1.3)
trA[I]p + trA[J ]p 6 trA[I ∪ J ]p + trA[I ∩ J ]p, for 1 6 p 6 2 , (1.4)

and

tr
(
A[I] log A[I]

)
+ tr

(
A[J ] log A[J ]

)
6 (1.5)

tr
(
A[I ∪ J ] log A[I ∪ J ]

)
+ tr

(
A[I ∩ J ] log A[I ∩ J ]

)
.
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We write A[I]p for (A[I])p. It is understood that A0 := limp↘0 Ap, for every non-
negative definite matrix A. In particular, A0 is the identity matrix Id if A is positive
definite, and, if A is nonnegative definite, trA0 = rankA.

We now survey briefly the contents of our paper. In §2 we prove Theorem 1. In
§3 we discuss M -matrices. We show the inequalities (1.1), (1.3) and (1.5). Moreover
trA[I]p is a supermodular function for each p < 0. In §4 we discuss the extensions of
Theorem 1 to the space S(H) of self adjoint operators on a separable Hilbert space H.
We consider the lattice of closed subspaces U in H, with joint and meet operations
clo(U + V) and U ∩ V, where clo denotes the closure of a set, together with its
sublattice of finite dimensional subspaces Uf . Let P (U) ∈ S(H) be the orthogonal
projection on U ∈ U . Associate with each U ∈ U the operator A(U) which is the
restriction of P (U)AP (U) to U. Thus, A(U) is an analog of B[I] for a hermitian
matrix B. For U ∈ Uf it is straightforward to show that w(U) := tr f(A(U)) is
submodular under the conditions given in §2. For an infinite dimensional subspace
U, we restrict out discussion to wp(U) := tr(A(U))p and the von Neumann entropy
w̃(U) := − tr(A(U) log A(U), under the assumption that A is positive and compact.
Assuming that trAp < ∞ we show that wp(U) is submodular for p ∈ (0, 1) and
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supermodular for p ∈ (1, 2). We show that w̃ is submodular it − tr(A log A) < ∞.
In §5 we discuss the CUR approximation [GTZ97] of nonnegative definite hermitian
matrix. The main problem here is to find a good approximation to the maximum of
tr(log A[I]) on all subsets I of [m] of cardinality k. We discuss briefly the obvious
greedy algorithm for this problem, give a simple condition where tr(log A[I]) is
nondecreasing, and give an estimate for the CUR approximation obtained by the
greedy algorithm in the general case. In §6 we give examples to show that in general
the results of §2 are best possible.

Note added to the arXiv postprint. The authors thank D. Petz for having brought
to their attention his work with K. Audenaert and F. Hiai (Strongly subaddtive func-
tions, Acta Math. Hungar. 128(4):386–394, 2010), after this paper was published on
line in Linear Algebra Appl. (December 2011, doi:10.1016/j.laa.2011.11.021). Theo-
rem 1 of this paper is a slightly more general version of their Theorem 4.1 (the latter
corresponds to the case in which the interval is (0,∞)). Some results of the present
Section 4 concerning the finite dimensional case (Theorem 5) can also be thought of
as an extension of theirs. Their work is motivated by quantum information theory.

2 Proof of Theorem 1

Observe first that if all the eigenvalues of A belong to the interval E , so do the
eigenvalues of the principal submatrix A[I]. Hence, the function I 7→ tr f(A[I]) is
well defined for all I ⊂ [m].

It suffices to consider the case in which the interval E is bounded. Moreover, if
the result is established for every matrix A the spectrum of which is included in the
interior of E , arguing by density, the result must also hold whenever the spectrum
of A is included in E . Hence, we may assume that E is open. Since the property to
be established is invariant by a translation and a scaling of the interval E , we finally
assume that E = (−1, 1). Then, a theorem of Loewner (Corollary V.4.5 in [Bha97])
shows that every operator monotone function g on (−1, 1) can be written as

g(t) = g(0) + g′(0)
∫ 1

−1

t

1 − λt
dµ(λ) (2.1)

where µ is a probability measure on [−1, 1]. Moreover, g′(0) > 0.
Assume now that f is a primitive of g, so that

f(t) = a + tg(0) + g′(0)
∫ t

0
ds

∫ 1

−1

s

1 − λs
dµ(λ) ,

for some constant a. Observe that for |t| < 1, the denominator 1 − λs is bounded
below by 1−|t|, and so, the above double integral is absolutely convergent. Applying
Fubini’s theorem, we get

f(t) = a + tg(0) + g′(0)
∫ 1

−1
dµ(λ)

∫ t

0

s

1 − λs
ds

= a + tg(0) + g′(0)
∫ 1

−1
φ(λ, t)dµ(λ)

where
φ(λ, t) := − t

λ
− 1

λ2
log(1 − λt) .
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Although λ appears at the denominator, this expression defines a function of (λ, t)
that extends continuously to [−1, 1] × (−1, 1). (In particular, φ(0, t) = 1

2 t2.)
For all λ ∈ [−1, 1], consider now the functions w̄ and wλ from 2[m] → R,

wλ(I) := trφ(λ,A[I]) , w̄(I) := tr(aId + g(0)A)[I] ,

so that

tr f(A[I]) = w̄(I) + g′(0)
∫ 1

−1
wλ(I)dµ(λ) . (2.2)

Observe first that the function I 7→ − 1
λ trA[I] is modular, for all λ ̸= 0. The

eigenvalues of the matrix Id − λA belong to the interval [1 − λ, 1 + λ], which im-
plies that this matrix is positive definite. Since the sum of supermodular functions
is supermodular, it follows from the multiplicative submodularity property of the
determinant, Eqn (1.1), that

wλ(I) = − 1
λ

tr A[I] − 1
λ2

log(I, Id − λA)

is supermodular, as soon as λ ̸= 0. Since wλ(I) depends continuously of λ, the same
is true when λ = 0. Note finally that the map w̄ is modular. Since the supermod-
ularity property is preserved by taking positive linear combinations and integrals
with respect to positive measures, the result follows from the representation (2.2). 2

3 Submodularity and super-modularity inequalities for
M-matrices

Denote by Rm×m
+ the set of nonnegative matrices. For A,B ∈ Rm×m we denote

A > B if A−B ∈ Rm×m
+ . We also write A 	 B and A > B if A−B ∈ Rn×n

+ \{0} and
A−B has positive entries respectively. For B ∈ Rm×m denote by ρ(B) the spectral
radius of B. The Perron-Frobenius theorem yields that ρ(B) is an eigenvalue of a
matrix B ∈ Rm×m

+ . Recall that A ∈ Rm×m is called an M -matrix if all off-diagonal
entries of A are nonpositive and all the principal minors of A are nonnegative.
Equivalently, A is an M -matrix if A = sId − B for some B ∈ Rm×m

+ and s > ρ(B).
In this section we assume that A is an M -matrix and B ∈ Rn×n

+ unless stated
otherwise. Note that A = sId−B is invertible if and only if s > ρ(B). Assume that
A is an invertible M -matrix. Then for any p ∈ R we define

Ap = sp
∞∑
i=0

(
p

i

)
(−s)−iBi, log A = (log s)Id −

∞∑
i=1

1
isi

Bi.

Since s > ρ(B), a standard argument shows that the above series absolutely con-
verges. When A is singular, we define, for every p > 0, tr Ap := limt→s+ tr(tId−B)p.
Indeed, one readily checks that the spectrum of the matrix (tId − B)p as a point-
wise limit as t → s+, if p > 0, so that limit of tr(tId − B)p as t → s+ does exist.
(However, we warn the reader of the abusive character of the notation trAp: the
matrix Ap := limt→s+(tId−B)p may not exist if 0 is not a semi-simple eigenvalue of
A.) Since ρ(B[I]) 6 ρ(B) for any I ⊂ [n], it follows that A[I] is also an M -matrix.
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Furthermore, if A is invertible then A[I] is invertible. We finally agree that if A is
singular then tr log A = −∞ and trAp = ∞ if p < 0.

The main result of this section is the following.

Theorem 3 Let A be an M -matrix. Then, for all I, J ⊂ [m],

trA[I]p + tr A[J ]p > tr A[I ∪ J ]p + tr A[I ∩ J ]p, for 0 6 p 6 1 ,

trA[I]p + tr A[J ]p 6 tr A[I ∪ J ]p + tr A[I ∩ J ]p, for p < 0 or 1 6 p 6 2 ,

and

tr
(
A[I] log A[I]

)
+ tr

(
A[J ] log A[J ]

)
6

tr
(
A[I ∪ J ] log A[I ∪ J ]

)
+ tr

(
A[I ∩ J ] log A[I ∩ J ]

)
.

The proof of this theorem relies on the following lemma.

Lemma 4 For any B ∈ Rm×m
+

tr B[I]n + trB[J ]n 6 trB[I ∪ J ]n + tr B[I ∩ J ]n

for every integer n > 1, and the equality holds for n = 1.

Proof. Consider the complete directed graph with m nodes. Define a closed
walk of length n to be a sequence α = (i1, . . . , in+1) of elements of [m] such that
in+1 = i1. We say that α is included in I, and we write α ⊂ I, if i1, . . . , in+1 ∈ I. The
weight of this walk is |α| := Bi1i2 . . . Binin+1 . By a classical result [Sta97, Th. 4.7.1],
trB[I]n is the sum of the weights of all closed walks of length n included in I. By
a disjunction of cases, we deduce that

trB[I ∪ J ]n =
∑
α⊂I
α ̸⊂J

|α| +
∑
α⊂I
α⊂J

|α| +
∑
α⊂J
α ̸⊂I

|α| +
∑

α⊂I∪J
α ̸⊂I
α ̸⊂J

|α| , (3.1)

with the convention that all sums are restricted to the walks α of length n. Adding
the two first sums in (3.1) yields trB[I]n. Moreover, adding trB[I∩J ]n to the third
sum in (3.1) yields trB[J ]n. We conclude that

trB[I ∪ J ]n + tr B[I ∩ J ]n − trB[I]n − trB[J ]n =
∑

α⊂I∪J
α ̸⊂I
α ̸⊂J

|α| > 0 ,

since the entries of the matrix B are nonnegative. Moreover, when n = 1, the latter
sum trivially vanishes. 2

Proof of Theorem 4. Suppose first that s > ρ(B). We first consider the
function trA[I]p. We have

tr A[I]p = sp tr Id[I] − sp+1p trB[I] + w′
p(I)

where
w′

p(I) :=
∑
i>2

(−1)isp+i p(p − 1) · · · (p − i + 1)
i!

trB[I]i .
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Observe that for p ∈ (−∞, 2], all the coefficients of the latter sum have the same
sign (or vanish), and this sign is positive if p ∈ (−∞, 0) ∪ (1, 2) and negative if
p ∈ (0, 1). Hence, it follows from Lemma 4 that the function w′

p is supermodular in
the former case and submodular in the latter case. Since I 7→ tr A[I]p is the sum
of the modular function I 7→ sp tr Id[I] − sp+1p trB[I] and of w′

p, the announced
submodularity and supermodularities of the map I 7→ trA[I]p hold for this matrix
A.

Similarly, since −(1−x) log(1−x)−x has negative Taylor coefficients, it follows
as above that − tr(A[I] log A[I]) is submodular.

Assume now that s = ρ(B), i.e., that A is a singular M -matrix. Let At = tId−B
for t > ρ(B). Letting t ↘ ρ(B) we deduce all the above inequalities for A except
for p = 0. Letting p ↘ 0 we deduce that tr A[I]0 is a submodular function. (Note
that we cannot use p < 0 since tr Ap in this case in ∞.) 2

Note that since log(1 − x) has negative Taylor coefficients, it follows as above
that the function I 7→ tr(log A[I]) is submodular, i.e., we have obtained yet another
proof of the inequality (1.1) for M -matrices [Car67].

4 Submodular functions on the lattice of closed sub-
spaces of a Hilbert space

Let H be a separable Hilbert space over C with the inner product ⟨x,y⟩ and the
norm ∥x∥ =

√
⟨x,x⟩. Denote by S(H) ⊃ S+(H) the space of bounded self adjoint

linear operators A : H → H and the cone of bounded positive self adjoint operators.
So ⟨Ax,y⟩ = ⟨x, Ay⟩ for A ∈ S(H) and ⟨Ax,x⟩ > 0 for A ∈ S+(H) for all x,y ∈ H.
For A ∈ S(H) the operator norm ∥A∥ is given by sup∥x∥61 |⟨Ax,x⟩|. More precisely,
the spectrum of A ∈ S(H) lies in the interval [a(A), b(A)] where

a(A) = inf
∥x∥61

⟨Ax,x⟩, b(A) = sup
∥x∥61

⟨Ax,x⟩, ∥A∥ = max(|a(A)|, |b(A)|). (4.1)

Assume that A ∈ S(H). We first discuss the analog of A[I] when I is a finite
subset of N of cardinality l. Let U be an l-dimensional subspace of H. Denote
by P (U) ∈ S+(H) the orthogonal projection on U. So H = U ⊕ U⊥ = U ⊕
(Id − P (U))H. Consider the operator P (U)AP (U). Clearly P (U)AP (U)U⊥ =
{0}, P (U)AP (U)U ⊆ U. Denote by A(U) the restriction of P (U)AP (U) to U. As
∥Px∥ 6 ∥x∥ for x ∈ H the characterization (4.1) yields

a(A) 6 a(A(U)) 6 b(A(U)) 6 b(A). (4.2)

In particular, if the spectrum of A lies in a given interval E , so does the spectrum
of A(U).

Let V be another finite dimensional vector space of H. Then A(U), A(V), A(U+
V), A(U ∩ V) are the analogs of A[I], A[J ], A[I ∪ J ], A[I ∩ J ] respectively.

Indeed, let W = U + V and choose an orthonormal basis W := {x1, . . . ,xm} in
W, such that X := {x1, . . . ,xq} is a basis in U, Z := {xp,xp+1, . . . ,xq} is a basis
in U ∩ V and Y := {xp,xp+1, . . . ,xm} is a basis in V. It is easy to see that the
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operators A(W), A(U), A(V), A(U ∩ V) are represented in the above bases by the
following matrices

A(W ) = [⟨Axi,xj⟩]mi=j=1, A(X) = [⟨Axi,xj⟩]qi=j=1,

A(Y ) = [⟨Axi,xj⟩]mi=j=p, A(Z) = [⟨Axi,xj⟩]qi=j=p.

Denote by U ⊃ Uf the set of all closed subspaces of H and the subset of all finite
dimensional subspaces, respectively. A function w : Uf → R is said to be submodular
if w(U)+w(V) > w(U+V)+w(U∩V) for all U,V ∈ Uf . It is supermodular if −w is
submodular, and modular if it is both submodular and supermodular. The following
result is an immediate consequence of Theorem 1 and of the previous observations.

Theorem 5 Let f be a real continuous function defined on an interval E of R,
and assume that f is the primitive of a function that is operator monotone on the
interior of E. Let H be an infinite dimensional separable Hilbert space space. Then,
for every A ∈ S(H) with spectrum in E, the function w : Uf → R given by

U 7→ tr f(A(U))

is supermodular. 2

A function w : Uf → R is extendable to U if the following condition holds for
each closed infinite dimensional subspace U ⊂ H. Let Ui, i > 1 be an increasing
sequence of finite dimensional subspaces of U such that ∪∞

i=1Ui is dense in U. Then
the sequence w(Ui), i > 1 converges to a unique value independent of the sequence
Ui, i > 1. We denote this limit by w(U).

In the rest of this section, we discuss the extension of certain submodular and
supermodular functions of a subspace U , arising from Theorem 5.

Denote by CS+(H) ⊂ S+(H) the closed ideal of positive compact operators. For
A ∈ CS+(H), the Hilbert space H has a countable orthonormal basis u1,u2, . . . such
that

Aui = λi(A)ui, i > 1, λ1(A) > λ2(A) > . . . > 0, lim
i→∞

λi(A) = 0.

We now state some known results about characterizations of eigenvalues of A ∈
S+(H) that we will use here. Consult with [Fri73]. Let Xm be the set of all or-
thonormal system of m vectors X := {x1, . . . ,xm} in H. The convoy principle (see
Lemma 1 in [Fri73]) can be stated in the form of Corollary 4.4.3 in [Fbk].

sup
X∈Xm

λi(A(X)) = λi(A) for i = 1, . . . , m. (4.3)

The supremum is achieved for X = {u1, . . . ,um}. This in particular implies the
Ky-Fan inequalities

tr(A(X)) =
m∑

i=1

⟨Axi,xi⟩ 6
m∑

i=1

λi(A).

Let U = span(x1, . . . ,xm). Then the eigenvalues of A(X) are the eigenvalues of
A(U). The following approximation result is well known and can be straightfor-
wardly deduced from the arguments in [Fri73].
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Lemma 6 Let H be an infinite dimensional separable Hilbert space. Let A ∈
CS+(H) and U be an infinite dimensional closed subspace of H. Assume that Ui, i >
1 is an increasing sequence of finite dimensional subspaces in U, such that ∪i>1Ui

is dense in U. Then for each j > 1, the sequence λj(A(Ui)), i > 1, dimUi > j is
nondecreasing and converges to λj(A(U)).

Let p > 0. Denote by wp : Uf → R the function wp(U) := tr A(U)p for
A ∈ S+(H). The interlacing properties of hermitian matrices yield that wp is
a nondecreasing function, i.e. wp(U) 6 wp(V) for U ⊂ V. For p > 0 de-
note by CS+,p(H) the subset of all positive compact operators A on H such that
trAp :=

∑∞
j=1 λj(A)p < ∞. Clearly CS+,p(H) $ CS+,q(H) for 0 < p < q.

Lemma 7 Let H be an infinite dimensional separable Hilbert space. Assume
that p > 0 and A ∈ CS+,p(H). Then the function U 7→ tr A(U)p is extendable from
Uf to U . Moreover wp is a nondecreasing function.

Proof. Let Ui, i > 1 be a sequence of finite dimensional subspaces of U such
that ∪∞

i=1Ui is dense in U. Assume that dimUi = ni. Then the positivity of
A(Ui) and (4.3) imply that 0 6 λj(A(Ui)) 6 λj(A(U)) 6 λj(A), for j = 1, . . . , ni.
Consider now, for each i > 1, the function φi : {1, 2, . . . } → [0,∞) such that
φi(j) = λj(A(Ui))p for 1 6 j 6 ni and φi(j) = 0 for j > ni. Consider also the func-
tion φ : {1, 2, . . . } → [0,∞) such that φ(j) := λj(A(U))p. Then, by Lemma 6, the
sequence of nonnegative functions φi, i > 1 converges monotonically to the function
φ as i → ∞, and then, the monotone convergence theorem implies that trA(Ui)p =∑

j>1 φi(j) converges, as i → ∞, to
∑

j>1 φ(j) = tr A(U)p 6 trAp < ∞. Finally,
the convoy principle implies that w : U → R is a nondecreasing function. 2

Lemma 8 Let H be an infinite dimensional separable Hilbert space. Assume
that A ∈ CS+(H), and that − tr(A log A) < ∞. Then the function w̃ : U 7→
− tr(A(U) log A(U)) is extendable from Uf to U .

Proof. Let Ui, i > 1 be as in the proof of Lemma 7, still with ni = dimUi.
Observe first that the function −x log x is increasing and nonnegative on [0, e−1]. As
limj→∞ λj(A) = 0, we can find an index ȷ̄ such that λj(A) 6 e−1 for all j > ȷ̄. Let us
fix such a j. Then, by the convoy principle, we have 0 6 λj(A(Ui)) 6 λj(A) 6 e−1,
for all i, and since the sequence λj(A(Ui)), i > 1 is nondecreasing, it follows that
the sequence −λj(A(Ui)) log λj(A(Ui)), i > 1 is nondecreasing and nonnegative.
Applying the monotone convergence theorem as in the proof of Lemma 7, we deduce
that

0 6 lim
i→∞

∑
j>ȷ̄

−λj(A(Ui)) log λj(A(Ui)) =
∑
j>ȷ̄

−λj(A(U)) log λj(A(U))

6
∑
j>ȷ̄

−λj(A) log λj(A) , (4.4)

again with the convention that λj(Ui) = 0 for j > ni. Since the sum in (4.4)
differs from the sum

∑
j>1 −λj(A) log λj(A) = − tr(A log(A)) < ∞ only by a finite
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number of terms, we conclude that the sum in (4.4) cannot be equal to ∞. Since
for all 0 6 j < ȷ̄, we also have λj(A(Ui)) → λj(A(U)) as i → ∞, we finally get

−∞ < lim
i→∞

− tr(A(Ui) log A(Ui)) = − tr(A(U) log A(U)) < ∞ .

2

Theorem 9 Let H be an infinite dimensional separable Hilbert space. As-
sume that p > 0 and A ∈ CS+,p(H). Then the function wp : U → R given by
wp(U) := tr(A(U))p is nondecreasing, it is submodular for p ∈ (0, 1), supermodular
for p ∈ (1, 2] and modular for p = 1. Furthermore, if A ∈ CS+(H) is such that
− tr(A log A) < ∞, and in particular, if A ∈ CS+,p(H) for some p ∈ (0, 1), then the
function w̃(U) := − tr(A(U) log A(U)),U ∈ U is submodular.

Proof. The results for the function wp(·) follows from Corollary 2 and Lemma
7. The submodularity property for the function w̃(·) follows from the same corol-
lary and Lemma 8. Finally, for p ∈ (0, 1), (−x log x)/xp → 0 as x ↘ 0, and
since λj(A) ↘ 0 as j ↗ ∞, the convergence of the series tr Ap =

∑
j λj(A)p im-

plies the convergence of the series − tr(A log A) =
∑

j −λj(A) log λj(A). Hence,
− tr(A log(A)) < ∞ holds as soon as A ∈ CS+,p(H) for some p ∈ (0, 1). 2

5 CUR approximation of nonnegative definite matrices

Let A ∈ Cm×n be of rank r = rank A. Assume that k ∈ [r − 1]. The best rank k
approximation of A, denoted as Ak, is given by the singular value decomposition,
abbreviated here as SVD, [GVL96]. When m and n are very big, e.g. n,m > 106,
finding Ak is not computationally possible, since the complexity of computing Ak

is O(kmn). A good alternative for Ak is the CUR approximation, where C ∈
Rm×k, R ∈ Ck×n are submatrices of A of the form A[[m], J ], A[I, [n]], where J ⊂
[n], I ⊂ [m] are subsets of columns and rows of A of cardinality k. Here U ∈
Ck×k is a suitably chosen matrix. The best choice U⋆ for the Frobenius norm, i.e.
arg minU tr((A − CUR)(A − CUR)∗), is given by C†AR†, where B† denotes the
Moore-Penrose inverse [FMMN]. Again, for m, n ≫ 1 it is unfeasible to compute
U⋆.

Assume that A[I, J ] ∈ Ck×k, the submatrix of A based on the rows and columns
I, J respectively, is invertible. Then CA[I, J ]−1R has the same I rows and J columns
as A. Hence the best choice of I⋆, J⋆ seems to be given by [GTZ97]

µk(A) := max{| det A[I, J ]|, I ⊂ [m], J ⊂ [n], |I| = |J | = k} = |det A[I⋆, J⋆]|. (5.1)

More precisely, for A = [aij ]
m,n
i=j=1 ∈ Cm×n let ∥A∥∞,e := maxi∈[m],j∈[n] |aij | be the

entrywise max-norm of A. Denote by σ1(A) > . . . > σr(A) > 0 the r-positive
singular values of A. If detA[I, J ] ̸= 0 one has the inequality [GTZ97]

∥A − CA[I, J ]−1R∥∞,e 6 µk(A)
|det A[I, J ]|

(k + 1)σk+1(A). (5.2)

(See [Fbk, §4.13] for a simple proof of the above inequality.)
In this section we discuss the maximal problem (5.1) and the related problem of

CUR approximation where A ∈ Hm,+.
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Lemma 10 For A ∈ Hm,+ and k ∈ [m], the maximum in (5.1) is achieved for
I⋆ = J⋆, i.e.

µk(A) = max
I⊂[m],|I|=k

det A[I]. (5.3)

Proof. Let A = [aij ]mi=j=1. We first consider the easy case k = 1. Recall that
aii > 0 and each 2 principal minor of A is nonnegative. Hence aiiaij − |aij |2 > 0.
Thus max(aii, ajj) > |aij | = |aji|. Hence (5.3) holds for k = 1. Assume that k > 1.
Let Ck(A) = ∧kA ∈ C(m

k )×(m
k ) be the k-th compound of A. (The entries of Ck(A)

are all detA[I, J ], |I| = |J | = k arranged in a lexicographical order.) Recall that
Ck(A) ∈ H(m

k ),+. Hence the previous argument applied now to any 2 × 2 principal
minor of the matrix Ck(A) yields (5.3). 2

We now introduce a simple greedy algorithm for finding an approximation of
µk(A) for A ∈ Hm,+ and the corresponding row index I.

Algorithm 11
Input: A = [aij ] ∈ Hm,+, k ∈ [m], I = ∅,K = [m], t = 1
Output: A subset I of [m] of cardinality k and det A[I](= t)
Find i ∈ K aii = maxj∈K ajj.
If aii = 0 set I = [k], t = 0 exit
I = I ∪ {i},K = K \ {i}, t = taii

If |I| = k exit
For p, q ∈ K apq = apq − apiaiq

aii

To analyse this algorithm, assume for the simplicity of argument that detA > 0.
Then, we may introduce the submodular function w(I) := tr(log A[I]), and consider,
as in the introduction, the maximum νk(w) of the function w over all subsets J ⊂ [m]
of cardinality k, so that νk(w) = log µk(A).

Algorithm 11 should be compared with the standard greedy algorithm [NWF78]
to approximate the maximum νk(w), which consists in constructing a sequence of
sets ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ [m] such that at each step r, Ir = Ir−1∪{ir} where the
index ir is chosen to so that w(Ir−1∪{ir}) = maxi∈[m]\Ir−1 w(Ir−1∪{i}). We denote
by νG(w) := w(Ik) the value of the solution Ik returned by this greedy algorithm.
Algorithm 11 is nothing but an implementation of this greedy algorithm, in which
at each step, the augmenting index ir is obtained as a maximal pivot (third line of
the algorithm) and the value w(Ir) is obtained incrementally from w(Ir−1) by one
Gaussian elimination step (fifth and seventh lines of the algorithm). In particular,
denoting by µG

k (A) the value returned by Algorithm 11, we get νG
k (w) = log µG

k (A).
Assume now that w is nondecreasing. Then, it is straightforward to show that

if m > 2, then det A[J ] > 1 for each J ⊂ [m], so that w is nonnegative. Then, the
result of [NWF78] can be applied to w, showing that the greedy algorithm has an
approximation factor 1 − e−1, i.e., νG

k (w) > (1 − e−1)νk(w). It follows that the set
I returned by Algorithm 11 satisfies

det A[I] = µG
k (A) > µk(A)1−e−1

. (5.4)

Therefore, we arrive at the following estimate of the CUR approximation error of
the greedy algorithm.
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Proposition 12 Let m > 2, and let A ∈ Hm,+ be such that w(I) := tr log A[I]
is nondecreasing. Then, the subset I returned by Algorithm 11 satisfies:

∥A − A[[m], I]A[I]−1A[[m], I]∗∥∞,e 6 (k + 1)µk(A)e−1
σk+1(A).

Proof. Combine Inequality (5.4) with Inequality (5.2). 2

We now give a simple condition for w to be a nondecreasing function.

Lemma 13 Let A ∈ Hm,+. Assume that λm(A) > 1. Then w is a nondecreasing
function.

Proof. Let I be a nontrivial subset of m and let i ∈ [m] \ I. As the eigenvalues
of B := A[I] interlace the eigenvalues of C := A[I ∪ {i}] we deduce that

det C =
|I|+1∏
j=1

λj(C) > (detB)λ|I|+1(C) > (detB)λm(A) > det B.

2

We conclude this section with an upper estimate of the CUR approximation
error of A ∈ Hm,+ using Algorithm 11. This estimate relies on the Hadamard
determinant inequality and remains valid even when w is not nondecreasing.

Proposition 14 Let A ∈ Hm,+ and k ∈ [m − 1]. Assume that k 6 rank A. Let
I be any subset of [m] of cardinality k returned by Algorithm 11. Let a1, . . . , ak be
the k maximal entries out of the m diagonal entries of A. Then

∥A − A[[m], I]A[I]−1A[[m], I]∗∥∞,e 6
∏k

i=1 ai

det A[I]
(k + 1)σk+1(A).

Proof. Let I⋆ be such that µk(A) = det A[I⋆]. The Hadamard determinant in-
equality yields that detA[I⋆] 6

∏
j∈I⋆ ajj . Clearly

∏
j∈I⋆ ajj 6 a1 . . . ak. Use (5.2)

to deduce the lemma. 2

6 Examples and further comments

We now give counter-examples showing that several natural generalizations of the
present results do not hold. In particular, we shall see that the assumptions in
Corollary 2 under which the function I 7→ Tp(I,A) := trA[I]p is sub or super-
modular, for a m × m nonnegative definite matrix A, are tight.

To this end, we shall consider a hermitian m×m matrix B with a block partition
of the form

B =


L1 L2 L3

L1 B11 B12 B13

L2 B∗
12 B22 B23

L3 B∗
13 B∗

23 B33


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so that [m] is the disjoint union of the sets L1, L2, L3. Given I, J ⊂ [m], it is
convenient to set

δ(f, I, J,B) := tr f(B[I]) + tr f(B[J ]) − tr f(B[I ∪ J ]) − tr f(B[I ∩ J ]) .

Hence, δ(f, I, J,B) > 0 for all I, J whenever I 7→ tr f(B[I]) is submodular.
We now choose

I := L1 ∪ L2, J := L2 ∪ L3 .

Using the interpretation of the matrix product in terms of concatenation of paths,
we readily get

δ(t2, I, J,B) = −2 tr(B13B
∗
13) 6 0 . (6.1)

Moreover, the inequality is strict as soon as B13 ̸= 0. Since δ(tp, I, J,B) depends
continuously of p, we get the following proposition, in which one can take A = B.

Proposition 15 For all m > 3, and for p close enough to 2, the strict super-
modularity inequality for Tp(·, A) may hold. 2

In order to give examples in which the strict opposite inequality may hold, we
observe that

B13 = 0 =⇒ δ(t3, I, J,B) = 0 and δ(t4, I, J,B) = −4 trB∗
12B12B23B

∗
23 . (6.2)

Note that δ(t4, I, I, B) < 0, unless the nonnegative definite matrix B12B23B
∗
23B

∗
12 is

zero. We assume in the sequel that this is not the case.
Let us consider

A = Id + sB .

Using (6.1) and (6.2), together with the trivial fact that δ(t, I, J,B) = 0, and tr(I +
sB)p = tr I + ps tr B + · · · + p(p−1)(p−2)(p−3)

4! s4 trB4 + O(s5), we identify the first
terms of the Taylor expansion of δ(tp, I, J,A) in s,

δ(tp, I, J,A) = −p(p − 1)(p − 2)(p − 3)
3! s4 trB12B

∗
12B23B

∗
23 + O(s5) (6.3)

For s sufficiently small, the sign of the latter expression is positive for p ∈ (2, 3),
and negative for p > 3 or p < 0.

Proposition 16 For all m > 3, and for all p ∈ (2, 3) (resp p < 0 or p > 3) the
strict submodularity (resp. supermodularity) inequality for Tp(·, A) may hold. 2

Remark 17 The absence of systematic inequalities, except for p ∈ [0, 1] or
p ∈ [1, 2] is related to the absence of majorization properties. Indeed, consider
again the matrix B above, assume that it is of size 3, so that the blocks B12 and
B23 are scalars, and assume that B13 = 0, so that B is a Jacobi matrix. We choose
again I = {1, 2}, J = {2, 3}. The spectra of the matrices B,B[I], B[J ], B[I ∩ J ] are(√

B2
12 + B2

23, 0,−
√

B2
12 + B2

23

)
,

(
|B12|,−|B12|

)
,

(
|B23|,−|B23|

)
,

(
0
)

.
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Consider A := Id + B, so that A > 0 for 1 >
√

B2
12 + B2

23. The joint sequences of
the eigenvalues of A with A[I ∩ J ] and of A[I] with A[J ] are(√

B2
12 + B2

23+1, 1, 1,−
√

B2
12 + B2

23+1
)
,

(
|B12|+1, |B23|+1,−|B23|+1,−|B12|+1

)
.

Note that for B12B23 ̸= 0 none of the joint eigenvalue sequences majorizes the other
one. This example should be compared with a theorem of Bapat and Sunder [BS85],
concerning the special case in which I ∩ J = ∅: then, the sequence obtained by
concatenating the eigenvalues of A[I] and A[J ] is majorized by the sequence of
eigenvalues of A[I ∪ J ], and so, the inequality (1.4) for the map I 7→ trA[I]p holds
for for all p ∈ (−∞, 0) ∪ [1,∞) if I ∩ J = ∅.

Example 18 There are negative values of p for which Tp(·, A) is not supermod-
ular. Consider for instance the positive definite matrix

A =

 5 −12 9
−12 33 −24

9 −24 19

 , I = {1, 2}, J = {1, 3}, δ(t−1, I, J,A) = 16/35 > 0 .

The following counter example shows that Theorem 1 does not carry over to
operator convex maps.

Example 19 The map f(t) = t2(λ+t)−1 is known to be operator convex [Bha97,
Problem V.5.5]. Consider the positive definite matrix

A =

 1 −2 −2
−2 6 4
−2 4 8

 , λ = 1, I = {1, 2}, J = {1, 3} .

Then, δ(f, I, J,A) = 44/1085 > 0, showing that the map K 7→ tr f(A[K]) is not
supermodular.

We now summarize in Table 1 the submodularity and supermodularity properties
we know, omitting the proofs of the two easy cases.

p = −1, m > 3 may not be supermodular Ex. 18
p < 0, m > 3 may not be submodular Prop. 16
p < 0, m = 2 supermodular Omitted

0 6 p 6 1 submodular Coro. 2
1 6 p 6 2 supermodular Coro. 2

p > 2, m = 2 supermodular Omitted
p = 2, m > 3 may not be submodular Prop. 15

p ∈ (2, 3), m > 3 may not be supermodular Prop. 16
p > 3, m > 3 may not be submodular Prop. 16

Table 1: Summary of submodularity and supermodularity properties of the spectral
function Tp(I,A) = trA[I]p for a m × m nonnegative definite Hermitean matrix A.

Recall that for A,B ∈ Hm and A 6 B we have that trA 6 trB. Observe also
that Hm(E) is a convex subset of Hm. Since the primitive of an operator monotone
function is operator convex we deduce from Theorem 1:
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Corollary 20 Let f satisfies the assumptions of Theorem 1. Then for each
I ⊆ [m] the function A 7→ tr f(A[I]) is a convex function on Hm(E). 2

Remark 21 A different submodularity inequality involving spectral functions
appeared in [BGS08], with an application to an experiment design problem. It is
shown there that for all nonnegative definite hermitian matrices A,B, C, and for all
0 6 p 6 1, tr(A + B + C)p + trCp 6 tr(A + C)p + tr(B + C)p.
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modular set function subject to a matroid constraint (extended abstract). In
Integer programming and combinatorial optimization, volume 4513 of Lecture
Notes in Comput. Sci., pages 182–196. Springer, Berlin, 2007.

[Car67] D. Carlson, Weakly sign-symmetric matrices and some determinantal in-
equalities, Colloq. Math. 17 (1967), 123129.

[CT88] T. M. Cover and J. A. Thomas. Determinant inequalities via information
theory. SIAM J. Matrix Anal. Appl., 9(3):384–392, 1988.

[Fan67] Ky Fan. Subadditive functions on a distributive lattice and an extension of
Szász’s inequality. J. Math. Anal. Appl., 18:262–268, 1967.

[Fan68] Ky Fan. An inequality for subadditive functions on a distributive lat-
tice, with application to determinantal inequalities. Linear Algebra and Appl.,
1(1):33–38, 1968.

[FJ00] S. M. Fallat and C. R. Johnson. Determinantal inequalities: ancient history
and recent advances. In Algebra and its applications (Athens, OH, 1999), vol-
ume 259 of Contemp. Math., pages 199–212. Amer. Math. Soc., Providence, RI,
2000.

[Fri73] S. Friedland, Extremal eigenvalue problems for convex sets of symmetric
matrices and operators, Israel J. Math. 15 (1973), 311-331.

15



[Fbk] S. Friedland, Matrices, a book in preparation,
http://www2.math.uic.edu/∼friedlan/bookm.pdf

[FMMN] S. Friedland, V. Mehrmann, A. Miedlar and M. Nkengla, Fast low rank
approximations of matrices and tensors, Electronic Journal of Linear Algebra,
to appear, http://www2.math.uic.edu/∼friedlan/FriMMN08−7.2.pdf

[Gan59] F. R. Gantmacher, ”The theory of matrices”, Vols. I and II, Chelsea, New
York, 1959.
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[Löw34] K. Löwner. über monotone matrixfunktionen. Math. Z, 38:177–216, 1934.

[NWF78] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions. I. Math. Programming,
14(3):265–294, 1978.

[Sta97] R. Stanley. Enumerative combinatorics, volume I, Cambridge Universiy
Press, 1997.

[Zha02] X. Zhan. Matrix inequalities, volume 1790 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2002.

16


