# THE GEOMETRY OF THE CRITICALLY-PERIODIC CURVES IN THE SPACE OF CUBIC POLYNOMIALS 

LAURA DE MARCO AND AARON SCHIFF


#### Abstract

We provide an algorithm for computing the Euler characteristic of the curves $\mathcal{S}_{p}$ in $\mathcal{P}_{3}^{c m} \simeq \mathbb{C}^{2}$, consisting of all polynomials with a periodic critical point of period $p$ in the space of critically-marked, complex, cubic polynomials. The curves were introduced in $[\mathrm{Mi}, \mathrm{BKM}]$, and the algorithm applies the main results of [DP2]. The output is shown for periods $p \leq 26$.


## 1. Introduction

Let $\mathcal{P}_{3}^{c m}$ denote the space of cubic polynomials with marked critical points. It is convenient to parametrize the space $\mathcal{P}_{3}^{c m}$ by $(a, v) \in \mathbb{C}^{2}$, where the pair $(a, v)$ corresponds to the polynomial

$$
f_{a, v}(z)=z^{3}-3 a^{2} z+2 a^{3}+v
$$

with critical points at $\pm a$ and critical value $v=f_{a, v}(+a)$. Any complex polynomial of degree 3 is conformally conjugate to one of this form; the space $\mathcal{P}_{3}^{c m}$ projects with degree two to the moduli space of cubic polynomials with marked critical points.

In this article, we study the geometry of the curves $\mathcal{S}_{p} \subset \mathcal{P}_{3}^{c m}$, introduced by J. Milnor in $[\mathrm{Mi}]$, consisting of cubic polynomials $f_{a, v}$ for which the critical point $+a$ has period exactly $p$. That is,

$$
\mathcal{S}_{p}=\left\{(a, v) \in \mathcal{P}_{3}^{c m}: f_{a, v}^{p}(a)=a, f_{a, v}^{k}(a) \neq a \text { for all } 1 \leq k<p\right\}
$$

The curve $\mathcal{S}_{p}$ is smooth for all $p$ [Mi, Theorem 5.1]. As a (possibly disconnected) Riemann surface, the curve $\mathcal{S}_{p}$ has finite type: it is obtained from a compact Riemann surface $\overline{\mathcal{S}_{p}}$ by removing finitely many points. The punctures lie at infinity in the space $\mathcal{P}_{3}^{c m}$. To date, the irreducibility of $\mathcal{S}_{p}$ is unknown, though it is shown in [BKM, §8] for periods $p \leq 4$.

The goal of this article is to explain an algorithm to compute the Euler characteristic of the compactification $\overline{\mathcal{S}_{p}}$. In [BKM, Theorem 7.2], it is shown to satisfy

$$
\begin{equation*}
\chi\left(\overline{\mathcal{S}_{p}}\right)=d_{p}(2-p)+N_{p} . \tag{1.1}
\end{equation*}
$$

The number $d_{p}$ is the degree of the curve $\mathcal{S}_{p}$, and it is easily computable from the defining equation. The number $N_{p}$ denotes the number of ends of $\mathcal{S}_{p}$, the punctures

Research supported by the National Science Foundation.
$\overline{\mathcal{S}_{p}} \backslash \mathcal{S}_{p}$. Our contribution is the algorithmic process to compute $N_{p}$, applying the main results of [DP2]. The Euler characteristic of $\overline{\mathcal{S}_{p}}$ is shown in Table 1, to period $p=26$.

We remark that the computation of the Euler characteristic $\chi\left(\overline{\mathcal{S}_{p}}\right)$ cannot be handled by traditional methods beyond the small periods. A quick genus computation with Maple ${ }^{\mathrm{TM}}$, for example, yielded Euler characteristics for $p \leq 4$ and failed to provide an output for $p=5$ where $\mathcal{S}_{5}$ is a curve of degree 80 . The degree of $\mathcal{S}_{p}$ is on the order of $3^{p-1}$, and the curves $\overline{\mathcal{S}_{p}}$ will be highly singular at infinity for any choice of projective compactification of $\mathcal{P}_{3}^{c m} \simeq \mathbb{C}^{2}$ and $p$ sufficiently large. The Euler characteristics for periods $p \leq 4$ appear in [BKM].
1.1. Outline of the algorithm. As described in [Mi], the ends of $\mathcal{S}_{p}$ correspond to the escape regions of $\mathcal{S}_{p}$, the open subsets of $\mathcal{S}_{p}$ consisting of polynomials with the critical point $-a$ tending to infinity under iteration. The main ingredient in the computation of $N_{p}$ is the combinatorial analysis of polynomial dynamics on the basin of infinity, developed in [BH2] and [DP2]. Recall that the basin of infinity of a polynomial $f$ is the domain

$$
X(f)=\left\{z \in \mathbb{C}: f^{n}(z) \rightarrow \infty\right\}
$$

From [BH2], we use the properties of the tableau (or equivalently, the Yoccoz tau function) of a cubic polynomial; this combinatorial object encodes the first-return of a critical point to its "critical nest." From [DP2] we use the combinatorics of the pictograph, a more refined encoding of the first-return of a critical point to a "decorated critical nest," allowing us to distinguish and count topological conjugacy classes.

The steps of the algorithm are:
(1) Fix $p$. For each $k$ dividing $p$, with $1 \leq k \leq p$, determine all admissible tau functions with period $k$.
(2) Count the number of topological conjugacy classes of basins of infinity $(f, X(f))$ associated to each tau function.
(3) Compute the number of topological conjugacy classes of polynomials in $\mathcal{S}_{p}$ with one escaping critical point: each class is determined by the class of its basin of infinity (with a tau function of period $k$ ) and a point in the Mandelbrot set associated to a period $p / k$ critical point.
(4) Determine the number $N_{p}$ of escape regions in $\mathcal{S}_{p}$ : there are either one or two ends in $\mathcal{S}_{p}$ associated to each topological conjugacy class computed in the previous step, determined by the twist period of the tau function.
(5) Test the output against the degree of $\mathcal{S}_{p}: N_{p}$ is the total number of escape regions, while the degree of $\mathcal{S}_{p}$ must equal the number of escape regions counted with multiplicity. The multiplicity is computed from the tau function.

| Period | tau functions | Central ends | Euler characteristic | $-\chi\left(\overline{\mathcal{S}_{p}}\right) / 3^{p-1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 2 | -2.000 |
| 2 | 1 | 1 | 2 | -0.667 |
| 3 | 3 | 5 | 0 | 0.000 |
| 4 | 6 | 13 | -28 | 1.037 |
| 5 | 15 | 41 | -184 | 2.272 |
| 6 | 29 | 109 | -784 | 3.226 |
| 7 | 69 | 341 | -3236 | 4.439 |
| 8 | 141 | 973 | -11848 | 5.417 |
| 9 | 308 | 2853 | -14744 | 6.515 |
| 10 | 649 | 8301 | -505876 | 7.517 |
| 11 | 1406 | 24533 | -1694848 | 8.560 |
| 12 | 2969 | 71737 | -5630092 | 9.568 |
| 13 | 6400 | 211653 | -18491088 | 10.594 |
| 14 | 13636 | 623485 | -60318292 | 12.698 |
| 15 | 29284 | 1842585 | -195372312 | 13.616 |
| 16 | 62746 | 5447957 | -629500300 | 14.624 |
| 17 | 134966 | 16134965 | -2018178784 | 15.628 |
| 18 | 290089 | 47820749 | -6443997868 | 16.633 |
| 19 | 625298 | 141888285 | -20498523376 | 17.637 |
| 20 | 1348264 | 421295297 | -64995935796 | 18.641 |
| 21 | 2912779 | 1251903973 | 19.644 |  |
| 22 | 6298309 | 3722380213 | -205481381144 | 1934 |
| 23 | 13639477 | 11074683701 | -647923373764 | 20.647 |
| 24 | 29567647 | 32965853477 | -2038171671252 | 21.650 |
| 25 | 64181452 | 98175789309 | -6397686770076 | 22.652 |
| 26 | 139464021 | 292501047833 | -20042379058084 | 23.655 |

Table 1. The output of the Euler Characteristic algorithm. From left to right: the period $p$; the number of tau functions with period $p$; the number of escape regions of $\mathcal{S}_{p}$ with the hybrid class of $z^{2}$ (see Theorem 5.3); the Euler characteristic $\chi\left(\overline{\mathcal{S}_{p}}\right)$; and a comparison to $3^{p-1}$.

Step (1) uses the tableau rules of [BH2], as corrected in [Ki, DM]; a translation into the language of the Yoccoz tau functions was given in [DS]. The bulk of the computing time and memory usage goes into Step (1). In $\S 2$, we provide the theoretical results needed for the computation. We include the theoretical results we used for improving the speed of the algorithm; we believe that some of these are interesting in their own right.

Step (2) was implemented already in [DS], applying the results of [DP2]. Step (3) relies on the work of Branner and Hubbard in [BH2] (see also [BKM, Theorem 3.9]),
to know that the conformal class of a cubic polynomial in an escape region depends only on the class of its basin and the class of its degree 2 polynomial-like restriction. Steps (4) and (5) are explained in $\S 5$, where we relate an escape region in $\mathcal{S}_{p}$ to its quotient in the moduli space of cubic polynomials $\mathcal{M}_{3}^{c m}$. The multiplicity of an escape region is computed and depends only on the underlying tau function.
1.2. Details of the computation. An implementation of the algorithm was written with C ++ . We compiled the output in Table 1 to period $p=26$. The low periods are computed quickly, while the computation for period 26 took 9:13 hours (Intel Core 2 Quad @ 2.5 GHz on Windows 7 32-bit edition), executed on a single thread.
1.3. The growth rate of $\chi\left(\overline{\mathcal{S}_{p}}\right)$. An easy computation shows that $-\chi\left(\overline{\mathcal{S}_{p}}\right) \rightarrow \infty$ as $p \rightarrow \infty$ [Mi]. Using methods from pluripotential theory, Dujardin showed that

$$
\frac{-\chi\left(\overline{\mathcal{S}_{p}}\right)}{3^{p}} \rightarrow \infty
$$

as $p \rightarrow \infty$ [Du]. After viewing the output of this algorithm, Milnor asked whether we have

$$
\begin{equation*}
\frac{\chi\left(\overline{\mathcal{S}_{p}}\right)}{3^{p-1}}=-p+O(1) \tag{1.2}
\end{equation*}
$$

as $p \rightarrow \infty$. Or, equivalently by equation (1.1), do we have

$$
N_{p}=O\left(3^{p-1}\right) ?
$$

We include the ratio $-\chi\left(\overline{\mathcal{S}_{p}}\right) / 3^{p-1}$ in Table 1.
1.4. Acknowledgments. We would like to thank Jan Kiwi, Jack Milnor, and Kevin Pilgrim for helpful conversations and attention to the output. We would also like to thank the referee for his/her careful reading and useful suggestions, especially for the arguments in $\S 2$.

## 2. The tau functions

In this section, we define the Yoccoz tau function of a cubic polynomial and explain Step 1 of the algorithm, the procedure to compute all periodic tau functions of a given period $p$. The main theoretical result is the following:

Theorem 2.1. For each period $p \geq 1$, a tau function has period $p$ if and only if

$$
\tau(n)=n-p
$$

for all $n \geq 2 p-2$.

We show that the bound $2 p-2$ is optimal: for every $p \geq 3$, there exists a (unique) period $p$ tau function with $\tau(2 p-3) \neq p-3$. See Lemma 2.11.

As described below, it is quite easy (from a theoretical point of view) to generate the periodic tau functions, combining Theorem 2.1 with Theorem 2.4. A first approach might be to generate all admissible tau functions of length $2 p-2$ and test for equality $\tau(2 p-2)=p-2$. As witnessed by the computations of [DS], however, the number of tau functions grows exponentially with length, and only a small proportion are periodic. For example, there are 649 tau functions of period $p=10$, while there are 279,415 tau functions of length $2 p-2=18$. Much of this section is devoted to the results we apply to reduce the computation time and memory usage.
2.1. The tau function of a polynomial. Fix a cubic polynomial $f$ with disconnected Julia set, and let

$$
G_{f}(z)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} \log ^{+}\left|f^{n}(z)\right|
$$

be its escape rate. Let $c_{1}$ and $c_{2}$ be the critical points of $f$, labeled so that $G_{f}\left(c_{2}\right) \leq$ $G_{f}\left(c_{1}\right)$. Having disconnected Julia set is equivalent to the condition that $G_{f}\left(c_{1}\right)>0$. For each integer $n \geq 0$ such that $G_{f}\left(c_{2}\right)<G_{f}\left(c_{1}\right) / 3^{n-1}$, we define the critical puzzle piece $P_{n}(f)$ as the connected component of $\left\{z: G_{f}(z)<G_{f}\left(c_{1}\right) / 3^{n-1}\right\}$ containing $c_{2}$. The puzzle piece $P_{0}(f)$ contains both critical points.

The length of the polynomial $f$ is defined to be the unique integer $N$ such that

$$
G_{f}\left(c_{1}\right) / 3^{N} \leq G_{f}\left(c_{2}\right)<\frac{G_{f}\left(c_{1}\right)}{3^{N-1}}
$$

we say the length of $f$ is infinite if no such integer exists. For positive integers $n \leq N$, we set

$$
\tau_{f}(n)=\max \left\{j<n: f^{n-j}\left(c_{2}\right) \in P_{j}(f)\right\}
$$

defining a function $\tau_{f}$ from $\{1, \ldots, N\}$ (or all of $\mathbb{N}$ ) to the non-negative integers. We say also that $\tau_{f}$ has length $N$. Note that the length is finite if and only if both critical points lie in the basin of infinity $X(f)$.

The markers of a tau function $\tau=\tau_{f}$ with length $N$ are the integers

$$
\begin{equation*}
\{m \in\{1, \ldots, N-1\}: \tau(m+1)<\tau(m)+1\} \tag{2.1}
\end{equation*}
$$

The marked levels of $\tau$ are all integers in the forward orbit of a marker:

$$
\begin{equation*}
\left\{l \geq 0: l=\tau^{n}(m) \text { for marker } m \text { and } n>0\right\} \cup\{0\} \tag{2.2}
\end{equation*}
$$

we say 0 is marked even if there are no markers.
For an infinite-length tau function, the positive marked levels coincide with the lengths of the columns in the Branner-Hubbard critical tableau, defined in [BH2, §4.2]. The following lemma explains the meaning of marked levels in general. Intuitively, the marked levels are those for which the puzzle piece fails to have an order- 2 symmetry after marking the points of the critical orbit; but when both critical points escape to
infinity, we only need to consider certain types of symmetry-breaking intersections of the orbit of $c_{2}$ with the puzzle piece. For each $n \geq 0$, let $Q_{n}(f)$ be the connected component of the closed set $\left\{z: G_{f}(z) \leq G_{f}\left(c_{1}\right) / 3^{n}\right\}$ containing $c_{2}$. Then

$$
\overline{P_{n+1}(f)} \subset Q_{n}(f) \subset P_{n}(f)
$$

and both containments are strict for all $n \geq 0$.
Lemma 2.2. If markers exist for a tau function $\tau_{f}$, then a level $l \geq 0$ is marked if and only if the orbit of the critical point intersects the interior of $Q_{l}(f) \backslash P_{l+1}(f)$.

Because of this lemma, we will say that the level $l$ is marked by the integer $k$ if

$$
\begin{equation*}
f^{k}\left(c_{2}\right) \in \operatorname{Interior}\left(Q_{l}(f) \backslash P_{l+1}(f)\right) \tag{2.3}
\end{equation*}
$$

Proof. Let $\tau=\tau_{f}$. Suppose that $f^{k}\left(c_{2}\right)$ lies in the interior of $Q_{l}(f) \backslash P_{l+1}(f)$. Then we have $f^{k}\left(P_{l+k}(f)\right)=P_{l}(f)$ but $f^{k}\left(P_{l+k+1}\right) \neq P_{l+1}(f)$. Then $\tau^{i}(l+k)=l$ for some $i>0$. If $i=1$ so that $\tau(l+k)=l$ and $\tau(l+k+1)<l+1$, then $l+k$ is a marker and we are done because $l$ is marked. Suppose that $l+k$ is not a marker and neither is $\tau^{j}(l+k)$ for each $j<i$. That would imply that $\tau(l+k+1)=\tau^{j}(l+k)+1$ for each $j \leq i$, contradicting our assumption on the location of $f^{k}\left(c_{2}\right)$. Therefore level $l$ must be marked.

For the converse, let $m$ be a marker, and set $l_{n}=\tau^{n}(m)$ for each $n$. We proceed by induction to show the critical orbit intersects the interior of $Q_{l_{n}}(f) \backslash P_{l_{n}+1}(f)$ for each $n$. At level $l_{1}=\tau_{f}(m)$, we must have $f^{m-l_{1}}\left(c_{2}\right) \in \operatorname{Interior}\left(Q_{l_{1}}(f) \backslash P_{l_{1}+1}(f)\right)$, by the definition of marker. At level $l_{2}$, we consider two cases. If $l_{1}$ is a marker, then level $l_{2}$ must be marked by the integer $l_{1}-l_{2}$. If $l_{1}$ is not a marker, then $f^{l_{1}-l_{2}}\left(c_{2}\right)$ lies in $P_{l_{2}+1}(f)$, but $f^{m-l_{2}}\left(c_{2}\right)$ must be in the interior of $Q_{l_{2}}(f) \backslash P_{l_{2}+1}(f)$; that is, the level $l_{2}$ is marked by the integer $m-l_{2}$. The induction argument continues in this way: level $l_{n}$ is marked by $m-l_{n}$ or by $l_{j}-l_{n}$ for some $j<n$, and the proof is complete.

For infinite-length tau functions, Lemma 2.2 can be expressed more concisely:
Lemma 2.3. If $\tau_{f}$ has length $\infty$ and if markers exist, then a level $l \geq 0$ is marked if and only if the orbit of the critical point intersects $P_{l}(f) \backslash P_{l+1}(f)$.

Proof. The proof is identical to that of Lemma 2.2, observing that the orbit of $c_{2}$ can never intersect $P_{l}(f) \backslash \operatorname{Interior}\left(Q_{l}(f)\right)$ if it is not in the basin of infinity.
2.2. Abstractly-defined tau functions. Let $\mathbb{N}$ denote the positive integers. For any positive integer $N$, a function

$$
\tau:\{1,2,3, \ldots, N\} \rightarrow \mathbb{N} \cup\{0\}
$$

or a function

$$
\tau: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}
$$

is said to be admissible if it satisfies the following properties (A)-(E):
(A) $\tau(1)=0$
(B) $\tau(n+1) \leq \tau(n)+1$

From (A) and (B), it follows that $\tau(n)<n$ for all $n \in \mathbb{N}$; consequently, there exists a unique integer $\operatorname{ord}(n)$ such that the iterate $\tau^{\operatorname{ord}(n)}(n)=0$.
(C) If $\tau(n+1)<\tau^{k}(n)+1$ for some $0<k<\operatorname{ord}(n)$, then $\tau(n+1) \leq \tau^{k+1}(n)+1$.
(D) If $\tau(n+1)<\tau^{k}(n)+1$ for some $0<k<\operatorname{ord}(n)$, and if $\tau\left(\tau^{k}(n)+1\right)=$ $\tau^{k+1}(n)+1$, then $\tau(n+1)<\tau^{k+1}(n)+1$.
(E) If $\operatorname{ord}(n)>1$ and $\operatorname{ord}\left(\tau^{\operatorname{ord}(n)-1}(n)+1\right)=1$, then $\tau(n+1) \neq 0$.

The markers of an admissible tau function are defined by (2.1). Let $k$ be the number of markers which appear in the orbit

$$
N \mapsto \tau(N) \mapsto \ldots \mapsto \tau^{\operatorname{ord}(N)}(N)=0
$$

and label these $k$ markers by $l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{k}^{\prime}$ so that

$$
N=l_{0}^{\prime}>l_{1}^{\prime}>l_{2}^{\prime}>\cdots>l_{k}^{\prime}>0
$$

For each $0 \leq i \leq k$, let $l_{i}=\tau\left(l_{i}^{\prime}\right)$ so that

$$
\tau(N)=l_{0}>l_{1}>\cdots>l_{k} \geq 0
$$

Properties (A)-(E) imply the following:
Theorem 2.4. [DS, Theorem 2.2] Given an admissible tau function $\tau$ of length $N$, an extension to length $N+1$ is admissible if and only if

$$
\tau(N+1)=l_{i}+1 \text { for some } 0 \leq i \leq k
$$

or $\tau(N+1)=0$ if $l_{k}>0$ or $k=0$.
Note, in particular, that $\tau(N+1)=\tau(N)+1$ is always an admissible extension to length $N+1$. Thus, every finite-length admissible tau function has an infinite-length admissible extension. Further, the restriction of a tau function of length $N \leq \infty$ to one of length $<N$ is always admissible.

Remark 2.5 (Realization). The work of Branner and Hubbard [BH2, Theorem 4.1] implies that an infinite-length tau function $\tau$ is admissible if and only if $\tau=\tau_{f}$ for a cubic polynomial $f$; it is explained in the language of tau functions in [DS, Proposition 2.1]. Property (E) is another formulation of the "missing tableau rule" (M4) appearing in $[\mathrm{Ki}]$ and $[\mathrm{DM}]$. In the case of finite-length tau functions, the realization of the associated cubic polynomial can be deduced from [DP1, Proposition 5.1]. Thus, a tau function of finite length $N$ is admissible if and only if it is the tau function associated to a cubic polynomial with length $N$. In particular, the restriction or admissible extension of a given admissible tau function will be the tau function of a cubic polynomial, though necessarily a different cubic polynomial.
2.3. Periodic tau functions. For cubic polynomials with exactly one critical point in the basin of infinity, the tau function will have infinite length. An admissible tau function $\tau: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ is periodic with period $p$ if there exists $N(\tau) \in \mathbb{N}$ such that

$$
\tau(n)=n-p
$$

for all $n \geq N(\tau)$. Such tau functions correspond to cubic polynomials with one bounded critical orbit in a periodic component of the filled Julia set; $\tau$ has period $p$ if and only if the component has period exactly $p$. For computational purposes, we need a bound on $N(\tau)$ depending only on the period $p$. The bound $N(\tau) \leq 2 p-2$ is granted by Theorem 2.1, which we prove below.

Lemma 2.6. If $\tau$ has period $p$, then $\tau(n) \geq n-p$ for all $n$. Further, if $\tau\left(n_{0}\right)=n_{0}-p$ for some $n_{0}$, then $\tau(n)=n-p$ for all $n \geq n_{0}$.

Proof. This follows easily from property (B).
Lemma 2.7. If $\tau$ has period $p$, then $l \leq p-1$ for all marked levels $l$.
Proof. Let $f$ be any cubic polynomial with a given periodic tau function. Label the critical points of $f$ as in $\S 2.1$. Without loss of generality, we may assume the critical point $c_{2}$ is periodic with period exactly $p$. Let $l>0$ be a marked level. From Lemma 2.3 , there is an integer $k$ so that $f^{k}\left(c_{2}\right)$ lies in $P_{l}(f) \backslash P_{l+1}(f)$; that is, $l$ is marked by $k$, as defined in (2.3). By the periodicity of $c_{2}$, we may assume that $0<k<p$.

The first return of $P_{l}$ to the critical nest is $f^{l-\tau(l)}\left(P_{l}\right)=P_{\tau(l)}$. From Lemma 2.6, we have $l-\tau(l) \leq p$. Note that the restriction $f^{l-\tau(l)} \mid P_{l}$ has degree 2, and $P_{l+1}$ is the unique preimage of its image in $P_{\tau(l)}$ because it contains the critical point. Therefore, at most one of the points $f^{l-\tau(l)}\left(c_{2}\right)$ and $f^{k+l-\tau(l)}\left(c_{2}\right)$ may lie in $P_{\tau(l)+1}$ within $P_{\tau(l)}$, while $c_{2}$ and $f^{k}\left(c_{2}\right)$ are both in $P_{\tau(l)+1}$. Therefore $l-\tau(l)<p$. If $\tau(l)=0$, we are done. If not, we proceed to estimate $l-\tau^{2}(l)$.

First observe that $l-\tau^{2}(l) \leq p$, because $f^{p}$ must take $P_{l}$ to $P_{l-p}$, sending both $c_{2}$ and $f^{k}\left(c_{2}\right)$ into $P_{l-p+1}$; the iterate $f^{l-\tau^{2}(l)} \mid P_{l}$ would be the first opportunity to achieve this. If $l$ is a marker, then $\tau(l)$ is marked by $l-\tau(l)$. The preimage of $P_{\tau(l)+1}$ in $P_{l}$ must contain a point in the cycle of $c_{2}$; so we may assume that $k=p-(l-\tau(l))$. Consequently, in $P_{\tau^{2}(l)}$, at most one of $f^{l-\tau^{2}(l)}\left(c_{2}\right)$ and $f^{k+l-\tau^{2}(l)}\left(c_{2}\right)$ lies in $P_{\tau^{2}(l)+1}$. It follows that $l-\tau^{2}(l)<p$. If $l$ is not a marker, then $f^{l-\tau(l)}\left(c_{2}\right)$ lies in $P_{\tau(l)+1}$ while $f^{k+l-\tau(l)}\left(c_{2}\right)$ does not, and therefore at most one of $f^{l-\tau^{2}(l)}\left(c_{2}\right)$ and $f^{k+l-\tau^{2}(l)}\left(c_{2}\right)$ can be in $P_{\tau^{2}(l)+1}$. Again we conclude that $l-\tau^{2}(l)<p$.

We continue inductively. For the induction step, we begin with $l-\tau^{n}(l)<p$ and $l-\tau^{n+1}(l) \leq p$. At level $\tau^{n-1}(l)$, exactly one of $f^{l-\tau^{n-1}(l)}\left(c_{2}\right)$ and $f^{k+l-\tau^{n-1}(l)}\left(c_{2}\right)$ lies in the puzzle piece $P_{\tau^{n-1}(l)+1}$. We consider the two cases. If $\tau^{n-1}(l)$ is not a marker, then exactly one of $f^{l-\tau^{n-1}(l)}\left(c_{2}\right)$ and $f^{k+l-\tau^{n-1}(l)}\left(c_{2}\right)$ lies in $P_{\tau^{n}(l)+1}$. Passing to the next iterate of $\tau$ at level $\tau^{n+1}(l)$, we see that at most one of the image points will in $P_{\tau^{n+1}+1}$. Therefore $l-\tau^{n+1}(l)<p$. If $\tau^{n-1}(l)$ is a marker, then $\tau^{n-1}(l)$ must be
marked by $p-\left(\tau^{n-1}(l)-\tau^{n}(l)\right)$. The preimages of $c_{2}$ and of $f^{p-\left(\tau^{n-1}(l)-\tau^{n}(l)\right)}\left(c_{2}\right)$ under $f^{l-\tau^{n-1}(l)}$ (in the cycle of $c_{2}$ ) are sent to distinct points at level $\tau^{n}(l)$ under $f^{l-\tau^{n}(l)}$, because exactly one of these points will lie in $P_{\tau^{n}(l)+1}$. In particular, we could have chosen $k=p-\left(l-\tau^{n}(l)\right)$. Finally, at level $\tau^{n+1}(l)$, at most one of the image points is in $P_{\tau^{n+1}(l)+1}$, so we conclude that $l-\tau^{n+1}(l)<p$.

Continuing until $\tau^{\operatorname{ord}(l)}(l)=0$ completes the proof that $l<p$.
Lemma 2.8. If $\tau$ has period $p$, and if a level $l$ is marked by $k=p-1$, then $l \leq p-2$.
Proof. Suppose $l$ is marked by $p-1$. From Lemma 2.7, $l \leq p-1$. By periodicity, $\tau(l)=l-1$. Also, under $f: P_{l} \rightarrow P_{l-1}$, the puzzle piece $P_{l+1}$ is the unique preimage of its image, so level $l$ must be a marker. That is, level $l-1$ is marked by 1 . From the rules for admissible tau functions, the equality $\tau(l)=l-1$ implies that $\tau(n)=n-1$ for all $1 \leq n \leq l$. Consequently, level $n$ is marked by $l-n$ for all $0 \leq n \leq l-1$; in particular, level 0 is marked by $l$. Therefore $l \neq p-1$, because $p-1$ marks level $l$.

Proof of Theorem 2.1. Suppose $\tau$ is periodic with period $p$. By definition, there exists $N(\tau)$ so that $\tau(n)=n-p$ for all $n \geq N(\tau)$. From Lemma 2.7, there are no marked levels $l \geq p$. Therefore, there are no markers at levels $l \geq p+p-1=2 p-1$. Consequently, $\tau(n+1)=\tau(n)+1$ for all $n \geq 2 p-1$, and so we must have $\tau(n)=n-p$ for all $n \geq 2 p-1$. If $2 p-2$ is a marker, then $\tau(2 p-2)=p-1$, but this would imply that level $p-1$ is marked by $p-1$, violating Lemma 2.8. Therefore, $\tau(2 p-2)=p-2$.

Lemma 2.9. Suppose $\tau$ has length $N$ and $\tau(N)=N-p$. Then $\tau$ extends uniquely to a tau function of period $p$, by setting

$$
\tau(n)=n-p
$$

for all $n>N$.
Proof. The existence of the extension follows directly from Theorem 2.4; the uniqueness from property (B).

Lemma 2.10. Let $\tau$ have period $p$, and suppose $\tau\left(n_{0}\right)>n_{0}-p$ and $\tau\left(n_{0}+1\right)=$ $n_{0}+1-p$. Then there exists a marker $m<p$ so that $\tau(m)=n_{0}-p$.

Proof. By periodicity, there is some iterate $k$ so that $\tau^{k}\left(n_{0}\right)=n_{0}-p$. By assumption, $k>1$. Let $m=\tau^{k-1}\left(n_{0}\right)$. Because $\tau\left(n_{0}+1\right)=n_{0}-p+1$, we have that $n_{0}$ is a marker, so $m$ is marked. By Lemma 2.7, then, $m<p$. We need to show $m$ is also a marker. Indeed, $\tau(m+1)=\tau\left(\tau^{k-1}\left(n_{0}\right)+1\right) \neq n_{0}-p+1$ by property (D).
2.4. Examples/Exceptions. As demonstrated in Theorem 2.1, all periodic tau functions of period $p$ must satisfy $\tau(n)=n-p$ for all $n \geq 2 p-2$. In fact, most periodic tau functions of period $p$ also satisfy $\tau(n)=n-p$ for all $n \geq 2 p-5$. The
following lemmas provide a complete list of the exceptions. In the lemmas, we express the tau function as a sequence of the form

$$
\bullet \tau(1), \tau(2), \tau(3), \cdots
$$

We remark that these lemmas are not used in the algorithm for the Euler characteristic computation, but we include them for completeness.

Lemma 2.11. For each period $p \geq 3$, there is a unique periodic tau function with $\tau(n)=n-p$ for all $n \geq 2 p-2$ and $\tau(2 p-3) \neq p-3$. It is given by

- $0,1,2, \cdots, p-3,0,1,2, \cdots, p-2, p-2, p-1, p, \cdots$.

Proof. By Lemma 2.10, there is a marker $m<p$ with $\tau(m)=p-3$. Thus $m$ can only be $p-2$ or $p-1$. Consequently, the tau function must begin with $0,1,2, \ldots,(p-3)$ or with $0,0,1, \ldots,(p-3)$. In the first case, Theorem 2.4 implies that it can only be extended as $0,1,2, \ldots,(p-3), 0$ with $\tau(2 p-3)=p-2$ and $\tau(2 p-2)=p-2$. In the case of $0,0,1,2, \ldots,(p-3)$, if $p$ is even, then Theorem 2.4 implies the extension must be as $0,0,1, \ldots,(p-3), 1,2, \ldots$, with $\tau(2 p-3)=p-2$, but we cannot extend by $\tau(2 p-2)=p-2$. If $p$ is odd, then we must have $\tau(p)=0$, but then $\tau(n)=n-p$ for all $n \geq p$.

Lemma 2.12. For each period $p \geq 4$, the only periodic tau functions with $\tau(n)=n-p$ for all $n \geq 2 p-3$ and $\tau(2 p-4) \neq p-4$ are

- $0,1,2, \cdots, p-4,0,0,1,2, \cdots, p-3, p-3, p-2, p-1, \cdots$;
- $0,1,2, \cdots, p-4,0,1,2, \cdots, p-3, p-3, p-3, p-2, p-1, \cdots$
and if $p$ is odd then also
- $0,0,1,2, \cdots, p-4,1,2, \cdots, p-2, p-3, p-2, p-1, \cdots$.

Proof. By Lemma 2.7, we must have $\tau(2 p-4)=p-3$ or $p-2$ or $p-1$. Also, by Lemma 2.10, level $p-4$ is marked by a marker $m<p$.

Assume $\tau(2 p-4)=p-3$. Then $p-3$ is marked by $p-1$. Periodicity implies that $p-4$ is marked by 1 ; that is $\tau(p-3)=p-4$. The $\tau$ rules then imply that $\tau(n)=n-1$ for all $1 \leq n \leq p-3$, so our tau function begins as $0,1,2, \ldots,(p-4)$. Because $p-4$ must be marked, Theorem 2.4 implies that $\tau(p-2)=0$. Theorem 2.4 then allows for $\tau(p-1)=0$ or 1 . In either case, the tau function is then uniquely determined by Theorem 2.4 and Lemma 2.6, giving the first two possibilities stated in the Lemma.

Now assume $\tau(2 p-4)=p-2$. Then level $p-2$ is marked by $p-2$, so by periodicity, we must have $\tau(p-2)=p-3$ or $\tau(p-2)=p-4$. If $\tau(p-2)=p-3$, then the tau function begins with $0,1,2, \ldots, p-3$, but then $p-4$ cannot be marked by a marker $m<p$ (contradicting Lemma 2.10). We must have $\tau(p-2)=p-4$, and the tau function begins as $0,0,1,2, \ldots, p-4$. If $p$ is even, then we can only extend by 0 (for
$p-4$ to be marked), but then $\tau(2 p-4) \leq p-3$. If $p$ is odd, then we can extend by $\tau(p-1)=1$, and the final tau function stated in the Lemma is admissible.

The final possibility is that $\tau(2 p-4)=p-1$. The only way to mark $p-4$ by a marker $m<p$ is for $\tau(p-1)=p-4$, so the $\tau$ sequence begins with $0, \tau_{2}, \tau_{3}, 1,2, \ldots, p-4$, for some $\tau_{2}, \tau_{3} \leq 1$. Then, as $p-4$ is marked by $p-1$, we must have $\tau(p) \leq 2$ by Theorem 2.4. But then $\tau(2 p-4)<p-1$, so its $\tau$ orbit does not encounter any markers larger than 1 , and we cannot have $\tau(2 p-3)=p-3$.

Lemma 2.13. For each period $p \geq 5$, the only periodic tau functions with $\tau(n)=n-p$ for all $n \geq 2 p-4$ and $\tau(2 p-5) \neq p-5$ are

- $0,1,2, \cdots, p-5,0,1,2, \cdots, p-4, p-4, p-4, p-3, p-2, \cdots$;
- $0,1,2, \cdots, p-5,0,0,1,2, \cdots, p-4, p-4, p-4, p-3, p-2, \cdots$;
- $0,1,2, \cdots, p-5,0,0,0,1,2, \cdots, p-4, p-4, p-3, p-2, \cdots$;
- $0,1,2, \cdots, p-5,0,1,0,1,2, \cdots, p-4, p-4, p-3, p-2, \cdots$;
and if $p$ is odd, then also
- $0,0,1,2, \cdots, p-5,0,1,2, \cdots, p-3, p-4, p-3, p-2, \cdots ;$
and if $p$ is even, then also
- $0,0,1,2, \cdots, p-5,1,1,2, \cdots, p-3, p-4, p-3, p-2, \cdots ;$
and if $(p-1)$ is divisible by 3, then also
- $0,1,0,1,2, \cdots, p-5,2,3, \cdots, p-2, p-4, p-3, p-2, \cdots ;$
and if $(p-2)$ is divisible by 3, then also
- $0,0,1,1,2, \cdots, p-5,2,3, \cdots, p-2, p-4, p-3, p-2, \cdots$.

Proof. By Lemma 2.10, $p-5$ is marked by a marker $<p$. By Lemma 2.7, we must have $\tau(2 p-5)$ equal to $p-4, p-3, p-2$, or $p-1$.

Assume $\tau(2 p-5)=p-4$. Then level $p-4$ is marked by $p-1$. Periodicity implies that $\tau(p-4)=p-3$, and therefore that $\tau(n)=n-1$ for all $n \leq p-4$. Therefore, $\tau$ begins with $0,1,2, \ldots, p-5,0$. To reach $\tau(2 p-5)=p-4$, we must have $1 \leq \tau(p) \leq 3$, allowing only the first four possibilities listed in the Lemma.

Assume $\tau(2 p-5)=p-3$. We must have $\tau(p-3)$ equal to $p-4$ or $p-5$, by periodicity; for $p-5$ to be marked, we must have $\tau(p-3)=p-5$. The tau function begins with $0,0,1,2, \ldots, p-5$. If $p$ is odd, it can be continued by setting $\tau(p-2)=0$, $\ldots, \tau(2 p-5)=p-3$, and $\tau(2 p-4)=p-4$. If $p$ is even, then $\tau(p-2)=1$, so we can take $\tau(p-1)=1$ to allow for $\tau(2 p-5)=p-3$.

A similar argument handles the case of $\tau(2 p-5)=p-2$.

## 3. Generating periodic tau functions

The goal is to generate a list of all tau functions of period $p$. For the later steps in the algorithm, we need the data of the tau functions themselves, not only the total number.

There is a unique tau function of period $p=1$, given by $\tau(n)=n-1$ for all $n \geq 1$. For small periods, say period $p \leq 10$, there are few periodic tau functions. Applying Theorem 2.4, we can generate all tau functions to length $2 p-2$. From Theorem 2.1, the equality $\tau(2 p-2)=p-2$ holds if and only if this tau function extends to a sequence of period $p$; further, the extension is uniquely determined. For example, the total number of tau functions of length $8(=2 p-2$ for $p=5)$ is only 144 , so the computation time and memory usage are negligible for period $p=5$ [DS]. As the period grows, the total number of tau functions of length $2 p-2$ grows fast; it is probably larger than $4^{p-1}$. We use the Lemmas of the previous section to reduce our computational requirements.
3.1. Algorithm. The algorithm proceeds as follows. Fix $p>1$. We generate a list called Periodic containing all tau functions of period $p$. For the induction step, we generate a list called Continue.

Initialization. Generate all tau functions to length $n=p$, following Theorem 2.4. If $\tau(p)=0$, include in Periodic. If $\tau$ has no markers, then discard. Otherwise, include in Continue.

Extension to length $n+1$ and test for periodicity. Choose $\tau$ from the list Continue. Let $n$ be its length; by construction, $\tau(n)>$ $n-p$. Determine values $l_{0}, l_{1}, \ldots$ (as appearing in Theorem 2.4, setting $N=n$ ) subject to the extra condition $n-p \leq l_{i} \leq l_{0}=\tau(n)$. For each such $l_{i}$, we consider the admissible extension of $\tau$, defined by

$$
\tau(n+1)=l_{i}+1
$$

If $l_{i}=n-p$, then include the extended $\tau$ in Periodic; by Lemma 2.9, this $\tau$ uniquely determines a periodic tau function.

If $n<2 p-3$ and if $l_{i}>n-p$ and if

$$
\max \{\tau(m): m<p, \tau(m+1) \leq \tau(m)\}>n-p
$$

then include in Continue; this $\tau$ is a candidate to have a periodic extension, as it satisfies the necessary conditions of Lemmas 2.6 and 2.10 and Theorem 2.1. Otherwise, discard. Repeat the induction step until Continue is empty.
3.2. Details. In Tables 2 and 3, we include the particulars of our computation for generating all periodic tau functions of periods 10 and 20 . Following the algorithm above, we show the number of tau functions in the lists Periodic and Continue as we increase the length of the tau functions.

| Length | Periodic | Discard | Continue |
| :---: | :---: | :---: | :---: |
| 10 | 205 | 1 | 435 |
| 11 | 201 | 242 | 506 |
| 12 | 139 | 567 | 479 |
| 13 | 57 | 780 | 279 |
| 14 | 26 | 497 | 134 |
| 15 | 12 | 251 | 61 |
| 16 | 6 | 122 | 21 |
| 17 | 2 | 43 | 6 |
| 18 | 1 | 13 | 0 |

Table 2. Period 10 details: generating the 649 tau functions of period 10 from a total of 279,415 tau functions of length 18 . Final data file size $=7.8 \mathrm{~KB}$, peak disk usage $=18 \mathrm{~KB}$.

## 4. Topological conjugacy classes of basins

In this section, we describe the algorithm to compute the number $\operatorname{Top}(\tau)$ of topological conjugacy classes of basins $(f, X(f))$ with a given tau function $\tau$. It is proved in [DP2] that $\operatorname{Top}(\tau)$ can be computed as

$$
\operatorname{Top}(\tau)=\operatorname{Spines}(\tau) \cdot \operatorname{TF}(\tau)
$$

where $\operatorname{Spines}(\tau)$ is the number of pictographs (or truncated spines) associated to $\tau$ and $\mathrm{TF}(\tau)$ is the associated twist factor. We include here the steps to compute $\operatorname{Spines}(\tau)$ and $\operatorname{TF}(\tau)$. These details already appeared in [DS].

The twist factor $\operatorname{TF}(\tau)$ is denoted by $\operatorname{Top}(\mathcal{D})$ in [DP2], the number of conjugacy classes of basins with pictograph $\mathcal{D}$, for any pictograph with tau function $\tau$. Indeed, it is easy to see that any pictograph with a periodic tau function will have only finitely many marked levels, thus satisfying the hypotheses of [DP2, Theorem 9.1]; further, it is stated there that the computation of $\operatorname{Top}(\mathcal{D})$ depends only on the underlying tau function.

| Length | Periodic | Discard | Continue |
| :---: | :---: | :---: | :---: |
| 20 | 449308 | 1 | 848362 |
| 21 | 319756 | 528624 | 1055320 |
| 22 | 389254 | 1059653 | 1116657 |
| 23 | 114128 | 1523035 | 978211 |
| 24 | 41925 | 1646071 | 674730 |
| 25 | 17081 | 1299907 | 391444 |
| 26 | 8896 | 800601 | 196937 |
| 27 | 4138 | 403194 | 93346 |
| 28 | 1898 | 192799 | 44601 |
| 29 | 978 | 92478 | 20839 |
| 30 | 475 | 43078 | 9636 |
| 31 | 217 | 20028 | 4571 |
| 32 | 113 | 9623 | 2054 |
| 33 | 52 | 4309 | 932 |
| 34 | 24 | 2004 | 414 |
| 35 | 12 | 901 | 169 |
| 36 | 6 | 373 | 57 |
| 37 | 2 | 137 | 18 |
| 38 | 1 | 41 | 0 |

Table 3. Period 20 details: generating the $1,348,264$ tau functions of period $p=20$ from a total of about 1.5 trillion tau functions of length $2 p-2=38$. Final data file size $=29 \mathrm{MB}$, peak disk usage $=74 \mathrm{MB}$.
4.1. Computing the number of pictographs. Fix an admissible tau function $\tau$ of length $N$. As in $\S 2.1$, the markers of $\tau$ are the integers

$$
\{m \in\{1, \ldots, N-1\}: \tau(m+1)<\tau(m)+1\} .
$$

The marked levels of $\tau$ are all integers in the forward orbits of the markers:

$$
\left\{l \geq 0: l=\tau^{n}(m) \text { for marker } m \text { and } n>0\right\} \cup\{0\}
$$

we say 0 is marked even if there are no markers.
As in Theorem 2.4, we let $k$ be the number of markers which appear in the orbit

$$
N \mapsto \tau(N) \mapsto \ldots \mapsto \tau^{\operatorname{ord}(N)}(N)=0
$$

Label these $k$ markers by $l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{k}^{\prime}$ so that

$$
N=l_{0}^{\prime}>l_{1}^{\prime}>l_{2}^{\prime}>\cdots>l_{k}^{\prime}>0
$$

For each $0 \leq i \leq k$, let $l_{i}=\tau\left(l_{i}^{\prime}\right)$ so that

$$
\tau(N)=l_{0}>l_{1}>\cdots>l_{k} \geq 0
$$

For each $0 \leq i<k$, define $n_{i}$ by the condition that

$$
\tau^{n_{i}}\left(l_{i}\right)=l_{i+1}
$$

and define $n_{k}$ so that $\tau^{n_{k}}\left(l_{k}\right)=0$. (The $n_{i}$ are called special orders in the program.) For $0<i<j \leq k+1$, we set

$$
\delta(i, j)= \begin{cases}1 & \text { if } \tau\left(l_{i}^{\prime}+1\right)=l_{j}+1 \\ 0 & \text { otherwise }\end{cases}
$$

where by convention we take $l_{k+1}=-1$. Note that $\tau\left(l_{k}^{\prime}+1\right)=0$ for every $\tau$, so $\delta(k, k+1)=1$.

The symmetry of $\tau$ is

$$
s=\min \left\{n \geq 0: \tau^{n}\left(l_{0}\right) \text { is a marked level }\right\}
$$

Note that $s \leq n_{0}$. To each admissible choice for $\tau(N+1)$ (from Theorem 2.4) we define the $(N+1)$-th spine factor of $\tau$. If $\tau(N+1)=l_{i}+1$ with $i>0$, we set

$$
\operatorname{SF}(\tau, N+1):=2^{n_{0}-s}\left(2^{n_{1}}\left(2^{n_{2}}\left(\cdots\left(2^{n_{i-1}}-\delta(i-1, i)\right)-\cdots\right)-\delta(2, i)\right)-\delta(1, i)\right)
$$

as above, we take $l_{k+1}=-1$. If $\tau(N+1)=l_{0}+1=\tau(N)+1$, we set

$$
\mathrm{SF}(\tau, N+1)=1
$$

The number of pictographs (or equivalently, truncated spines) associated to a tau function is computed inductively on the length.

Proposition 4.1. Let $\tau$ be a periodic tau function of period $p$. The number of pictographs with tau function $\tau$ is given by

$$
\operatorname{Spines}(\tau)=\prod_{j=1}^{N} \operatorname{SF}(\tau, j)
$$

for any choice of $N$ with $\tau(N)=N-p$.
Proof. That $\operatorname{Spines}(\tau)$ is the product of spine factors is deduced in [DS]. It remains to show that the computation terminates at a finite $N$ when $\tau$ is periodic. From the definition of the spine factor, it is equal to 1 whenever $\tau(N+1)=\tau(N)+1$. For periodic taus, this will be the case for all $N$ sufficiently large. Recall from Lemma 2.6 that once we find one $N$ with $\tau(N)=N-p$, this equality will hold for all $n \geq N$.
4.2. Computing the twist factor. Fix an admissible tau function $\tau$ of length $N \in$ $\mathbb{N} \cup\{\infty\}$ with finitely many marked levels. For each $n<N$, the order of $n$ was defined in $\S 2.2$; it satisfies $\tau^{\operatorname{ord}(n)}(n)=0$. For each marked level $l>0$, compute

$$
\bmod (l)=\sum_{i=1}^{l} 2^{-\operatorname{ord}(i)}
$$

and

$$
t(l)=\min \{n>0: n \bmod (l) \in \mathbb{N}\}
$$

We define the twist period $T(\tau)$ by

$$
\begin{equation*}
T(\tau)=\max \{t(l): l \text { is a marked level }\} \tag{4.1}
\end{equation*}
$$

or set $T(\tau)=1$ if $\tau$ has no non-zero marked levels.
Let $L(\tau)$ be the number of non-zero marked levels. The twist factor is defined by

$$
\mathrm{TF}(\tau)=\frac{2^{L(\tau)}}{T(\tau)}
$$

Theorem 9.1 of [DP2] states that the number of topological conjugacy classes of basins associated to a given pictograph with tau function $\tau$ is equal to $\operatorname{TF}(\tau)$.
4.3. The significance of the twist factor. We include a few words here to explain the meaning of the values appearing in $\S 4.2$ to define the twist factor. These play a role in the explanations of $\S 5$.

The quasiconformal deformations of the basin of infinity of a polynomial $f$ have a natural decomposition into twisting and stretching factors; see [McS] or the summary in [DP2]. Let $f=f_{(a, v)}$ be a cubic polynomial with periodic tau function $\tau$. Let $G_{f}$ be its escape-rate function. Recall that $-a$ is the critical point that escapes to infinity. The fundamental annulus of $f$ is the domain

$$
A(f)=\left\{z \in \mathbb{C}: G_{f}(-a)<G_{f}(z)<3 G_{f}(-a)\right\}
$$

Viewing the basin of infinity $X(f)$ as an abstract Riemann surface, a full Dehn twist in $A(f)$ induces the hemidromy action described in [BH2]; see also [Br] for an accessible summary.

The twist period $T(\tau)$ is the least power of a full Dehn twist in the fundamental annulus that lies in the mapping class group of $f$. To compute $T(\tau)$, we determine the induced amount of twisting in any image or preimage of $A(f)$ under the action of $f$. Following the descriptions in $[\mathrm{Br}]$ and [BH2], it suffices to compute the relative moduli of these annuli lying between the two critical points; the relative modulus of an annulus $A$ is the ratio $\bmod (A) / \bmod (A(f))$. The value $\bmod (l)$ computes exactly these sums of relative moduli down to the $l$-th marked level.

The twist factor is the ingredient emphasized in [DP2]. By measuring twist periods against the total number of ways to produce basins $(f, X(f))$ from a given pictograph, the discrepancy amounts to the twist factor $\operatorname{TF}(\tau)$.

## 5. Escape regions

In this section we explain the final steps of the algorithm, incorporating the computations described in the previous section.
5.1. The moduli space. As discussed in [Mi], there is a natural involution on the space $\mathcal{P}_{3}^{c m}$, given by

$$
I(a, v)=(-a,-v)
$$

induced by the conjugation of $f_{(a, v)}$ by $z \mapsto-z$. Thus there is a degree 2 projection

$$
\mathcal{P}_{3}^{c m} \rightarrow \mathcal{P}_{3}^{c m} / I=: \mathcal{M}_{3}^{c m}
$$

to the moduli space of critically-marked cubic polynomials. The action of $I$ preserves the curve $\mathcal{S}_{p}$, defining a curve $\mathcal{S}_{p} / I \subset \mathcal{M}_{3}^{c m}$.
5.2. Escape regions and multiplicity. As introduced in [Mi] and [BKM], an escape region of $\mathcal{S}_{p}$ is a connected component of

$$
\left\{f_{(a, v)} \in \mathcal{S}_{p}: f_{(a, v)}^{n}(-a) \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

That is, it consists of maps with one periodic critical point (at $+a$ ) and one escaping critical point (at $-a$ ).

It follows from the general theory on stability that all polynomials in a given escape region $E$ are topologically conjugate on $\mathbb{C}$, as described in $[\mathrm{McS}]$. In this special setting, though, it can be seen directly from a canonical parameterization of $E$. It is shown in [Mi, Lemma 5.6] that each escape region $E$ is conformally a punctured disk, canonically identified with an $m$-fold cover of a punctured disk, for some positive integer $m=m(E)$. This number $m(E)$ is called the multiplicity of $E$.

The covering map of degree $m(E)$ is defined by the assignment

$$
(a, v) \mapsto \varphi_{(a, v)}(2 a)
$$

where $\varphi_{(a, v)}$ defines the uniformizing Böttcher coordinates near infinity for $f_{(a, v)}$, where $\varphi_{(a, v)}\left(f_{(a, v)}(z)\right)=\left(\varphi_{(a, v)}(z)\right)^{3}$, unique if chosen to satisfy $\varphi^{\prime}(\infty)=1$. The point $2 a$ is the cocritical point for $-a$, so $f_{(a, v)}(2 a)=f_{(a, v)}(-a)$. In particular, the twisting deformation on the basin of infinity induces the change in angular coordinate on $E$. In fact, the external angle of $2 a$ is increased by $\pi$ under a full Dehn twist in the fundamental annulus of $f_{(a, v)}$; thus, $2 m(E)$ full twists closes a loop in $E$.

Lemma 5.1. Fix an escape region $E$ and let $\tau$ be the tau function of any $f \in E$. The multiplicity is given by

$$
m(E)= \begin{cases}1 & \text { if } T(\tau)=1 \\ T(\tau) / 2 & \text { if } T(\tau)>1\end{cases}
$$

where $T(\tau)$ is the twist period computed in §4.2.
Proof. Each escape region $E$ projects to an escape region $E / I$ in the curve $\mathcal{S}_{p} / I \subset$ $\mathcal{M}_{3}^{c m}$. By definition of the twist period, $T(\tau)$ full twists in a fundamental annulus are required to induce a closed loop in $E / I$. But $E / I$ is doubly covered by a single escape region $E$ if and only if $f_{(a, v)}$ and $f_{(-a,-v)}$ are equivalent under a twist deformation, if and only if we have $T(\tau)=1$. In this case of $T(\tau)=1$, two full twists are required
to close a loop in $E$, corresponding to an argument increase of $2 \pi$ for the cocritical point $2 a$. Therefore $m(E)=1$. On the other hand, if $T(\tau)>1$, then each escape region $E$ projects bijectively to $E / I$; thus $2 m(E)=T(\tau)$.
5.3. Hybrid classes. For any polynomial $f$ in an escape region $E$ in $\mathcal{S}_{p}$, the associated tau function will have period $k$ for some $k$ dividing $p$. A restriction of the iterate $f^{k}$ to a certain neighborhood of $+a$ will then define a quadratic polynomial-like map. We refer to $[\mathrm{DH}]$ for background information. In this context, it is important to know that the conformal conjugacy class of $f$ is uniquely determined by the conformal conjugacy class of its basin of infinity $(f, X(f))$ and the hybrid class of its polynomial-like restriction [BH2]. See also [BKM, Theorem 3.9, Corollary 3.10].

We will use the following consequence of the general theory:
Proposition 5.2. An escape region $E / I$ in $\mathcal{S}_{p} / I$ is uniquely determined by
(1) an integer $k$ dividing $p$ with $1 \leq k \leq p$;
(2) a topological conjugacy class of basin dynamics $(f, X(f))$ with a critical end of period $k$; and
(3) a point in the Mandelbrot set corresponding to a center of period exactly $p / k$.

A center of period $n$ in the Mandelbrot set is a solution $c$ to the equation $f_{c}^{n}(0)=0$ where $f_{c}(z)=z^{2}+c$. The center $c$ has period exactly $n$ if $n$ is the smallest positive integer for which the equality $f_{c}^{n}(0)=0$ holds. The number $\nu_{2}(n)$ of centers of period exactly $n$ is easily computable by the following relation:

$$
2^{n-1}=\sum_{q \mid n, 1 \leq q \leq n} \nu_{2}(q)
$$

Combining the above results, we deduce the following:
Theorem 5.3. For any tau function $\tau$ with period $k$ dividing $p$, the number of escape regions in $\mathcal{S}_{p}$ with tau function $\tau$ is

$$
\operatorname{Ends}(\tau, p)= \begin{cases}\nu_{2}(p / k) \operatorname{Spines}(\tau) \operatorname{TF}(\tau) & \text { if } T(\tau)=1 \\ 2 \nu_{2}(p / k) \operatorname{Spines}(\tau) \operatorname{TF}(\tau) & \text { if } T(\tau)>1\end{cases}
$$

where $T(\tau)$ is the twist period, $\operatorname{Spines}(\tau)$ is the number of pictographs, and $\operatorname{TF}(\tau)$ is the twist factor of $\tau$. The total number of escape regions in $\mathcal{S}_{p}$ is therefore

$$
N_{p}=\sum_{k \mid p} \sum_{\operatorname{per}(\tau)=k} \operatorname{Ends}(\tau, p)
$$

In particular, in the case of $k=p, \operatorname{Ends}(\tau, p)$ is the number of "central ends" of $\tau$, coinciding with the number of all escape regions of $\mathcal{S}_{p}$ with tau function $\tau$ and hybrid class $z^{2}$. The sum of $\operatorname{Ends}(\tau, p)$ over all taus with period $p$ is shown in Table 1. The sum of $\operatorname{Ends}(\tau, p)$ over all taus with period dividing $p$ is the total number $N_{p}$ of escape regions in $\mathcal{S}_{p}$.

Proof. Fix $\tau$ of period $k$ dividing $p$. From the arguments of $\S 4$, there are $\operatorname{Spines}(\tau) \mathrm{TF}(\tau)$ topological conjugacy classes of basins $(f, X(f))$ of cubic polynomials with tau function $\tau$. Applying Proposition 5.2, there are consequently $\nu_{2}(p / k) \operatorname{Spines}(\tau) \operatorname{TF}(\tau)$ escape regions $E / I$ in $\mathcal{S}_{p} / I \subset \mathcal{M}_{3}^{c m}$. If $T(\tau)=1$, then exactly as in the proof of Lemma 5.1, there is a unique escape region $E$ in $\mathcal{S}_{p}$ mapped to each $E / I$. If $T(\tau)>1$, there are exactly two escape regions mapped to each $E / I$.
5.4. Testing the computation. We conclude with an explanation of the test of our computation against the degree of $\mathcal{S}_{p}$.

The multiplicity of an escape region $E$ in $\mathcal{S}_{p}$ coincides with the number of intersection points of $E$ with any line in $\mathcal{P}_{3}^{c m}$ of the form $\left\{a=a_{0}\right\}$ for any $a_{0}$ of sufficiently large modulus. Therefore, the degree $d_{p}$ of the curve $\mathcal{S}_{p}$ must satisfy

$$
d_{p}=\sum_{E} m(E),
$$

summing over all escape regions $E$ of $\mathcal{S}_{p}$. The degree $d_{p}$ is easily computed, as it satisfies:

$$
3^{p-1}=\sum_{q \mid p} d_{q}
$$

where the sum is taken over all $q$ dividing $p$ with $1 \leq q \leq p$. As established by Lemma 5.1 , the value $m(E)$ depends only on the tau function for the escape region $E$, so we may define

$$
m(\tau):=m(E)
$$

for any escape region $E$ associated to tau function $\tau$.
Our algorithm determines the value $\operatorname{Ends}(\tau, p)$ for every tau function of period $k$ dividing $p$; the ingredients are listed in Theorem 5.3. We can therefore check our computation by assuring equality of

$$
\sum_{\tau} m(\tau) \operatorname{Ends}(\tau, p)=d_{p}
$$

summing over all tau functions $\tau$ of periods dividing $p$.

## References

[BKM] A. Bonifant, J. Kiwi, and J. Milnor. Cubic polynomial maps with periodic critical orbit. II. Escape regions. Conform. Geom. Dyn. 14(2010), 68-112.
[Br] B. Branner. Cubic polynomials: turning around the connectedness locus. In Topological methods in modern mathematics (Stony Brook, NY, 1991), pages 391-427. Publish or Perish, Houston, TX, 1993.
[BH2] B. Branner and J. H. Hubbard. The iteration of cubic polynomials. II. Patterns and parapatterns. Acta Math. 169(1992), 229-325.
[DM] L. DeMarco and C. McMullen. Trees and the dynamics of polynomials. Ann. Sci. École Norm. Sup. 41(2008), 337-383.
[DP1] L. DeMarco and K. Pilgrim. Polynomial basins of infinity. Geom. Funct. Anal. 21(2011), 920-950.
[DP2] L. DeMarco and K. Pilgrim. The classification of polynomial basins of infinity. Preprint, 2011.
[DS] L. DeMarco and A. Schiff. Enumerating the basins of infinity of cubic polynomials. J. Difference Equ. Appl. 16(2010), 451-461.
[DH] A. Douady and J. H. Hubbard. On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18(1985), 287-343.
[Du] R. Dujardin. Cubic polynomials: a measurable view of parameter space. In Complex dynamics, pages 451-489. A K Peters, Wellesley, MA, 2009.
[Ki] J. Kiwi. Puiseux series polynomial dynamcs and iteration of complex cubic polynomials. Ann. Inst. Fourier (Grenoble) 56(2006), 1337-1404.
$[\mathrm{McS}]$ C. T. McMullen and D. P. Sullivan. Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135(1998), 351-395.
[Mi] J. Milnor. Cubic polynomial maps with periodic critical orbit. I. In Complex dynamics, pages 333-411. A K Peters, Wellesley, MA, 2009.

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago.

E-mail address: demarco@uic.edu

