
Under consideration for publication in Knowledge and Information
Systems

Periodic Subgraph Mining in Dynamic
Networks

Mayank Lahiri and Tanya Y. Berger-Wolf

Department of Computer Science, University of Illinois at Chicago, Chicago IL, USA

Abstract. In systems of interacting entities like social networks, interactions that oc-
cur regularly typically correspond to significant, yet often infrequent and hard to detect,
interaction patterns. To identify such regular behavior in streams of dynamic interac-
tion data, we propose a new mining problem of finding a minimal set of periodically
recurring subgraphs to capture all periodic behavior in a dynamic network. We analyze
the computational complexity of the problem and show that it is polynomial, unlike
many related subgraph or itemset mining problems. We propose an efficient and scal-
able algorithm to mine all periodic subgraphs in a dynamic network. The algorithm
makes a single pass over the data and is also capable of accommodating imperfect
periodicity. We demonstrate the applicability of our approach on several real-world
networks and extract interesting and insightful periodic interaction patterns. We also
show that periodic subgraphs can be an effective way to uncover and characterize the
natural periodicities in a system.

Keywords: Graph mining; dynamic social networks; periodic patterns; frequent closed
subgraphs; parsimony

1. Introduction

Many natural and artificial systems can be described as a set of individual actors
or entities interacting among themselves. Network analysis is the study of the
structural and dynamic aspects of interaction patterns, in an effort to better
understand the nature of the underlying system. In this paper, we deal with the
detection of a specific type of predictable behavior, namely periodically recurring
interaction patterns in networks that change over time. We would like to detect
periodic behavior even if it persists only for a short period of time, because such
locally periodic behavior often holds a special meaning in real-world systems.
As the simplest form of predictable behavior, periodic interaction patterns can
indicate interesting relationships between the individuals involved in the inter-
actions. The periodicities of the interaction patterns can be informative as well,
shedding some insight into the dynamics of the system being observed. We define

2 M. Lahiri and T.Y. Berger-Wolf

the periodic pattern mining problem for dynamic networks as a step towards this
goal, and describe an efficient algorithm to mine all such patterns from a stream
of dynamic interaction data.

It is now possible to collect streams of interaction data in very diverse set-
tings, which makes efficient automated methods for detecting periodic patterns
imperative. Although the best known example of network analysis is probably
social network analysis [35], network analysis has more recently been used in a
variety of fields to analyze systems as diverse as the Internet [15], animal be-
havior [16, 33], corporate e-mail habits [7, 11], cellular phone usage patterns [27],
and co-authorship patterns in research publications [3, 28]. There is also a rec-
ognized need to analyze the dynamic aspect of interaction data. For example,
ecologists often tag wild animals with GPS or proximity sensors to study be-
havioral and social association patterns of the animals [16, 22, 33]. This results
in a continuous stream of interaction data, where periodically recurring pat-
terns might correspond to seasonal or other recurrent association patterns. The
same methodology has been used in human experiments, with location-aware
cellphones replacing tracking collars [12]. In such cases, analyzing the periodic-
ities present in the dataset present opportunities for scientific research as well
as applications like recommender systems. Interactions between individuals can
also be partially approximated from e-mail headers, and the public release of
large datasets has spurred research in this area [7, 11].

Our definition of the periodic pattern mining problem is specifically tailored
for the analysis of dynamic networks. It differs from earlier work in periodic
pattern mining primarily in the use of two related concepts: (a) the concept of
closed subgraphs, and (b) the principle of parsimony. Closed subgraph mining
has been extensively explored in the related problem of frequent pattern mining;
it draws from the areas of formal concept analysis and lattice theory to reduce
redundancy in the definition of a frequent pattern [6, 30]. The principle of par-
simony is also commonly known as Occam’s Razor, and is a widely practiced
guideline that suggests selecting the simplest hypothesis that explains a phe-
nomenon. Combining these two concepts allows us to define periodic patterns
in a way that avoids any redundant information, is more amenable to analysis
and allows the development of a provably efficient, online mining algorithm. Fur-
thermore, all information encompassed by earlier definitions of periodic pattern
mining is contained in ours in a more compact form, i.e. the output of earlier
algorithms can be deterministically generated from the output of our algorithm,
but such a process would only add redundant information to the output.

We demonstrate the usefulness of mining periodic patterns on four diverse
real-world datasets. Mirroring the increasing diversity of network analysis do-
mains, we examine datasets of wild Zebra association patterns, geographical
movement patterns of university students, and the sightings of celebrities asso-
ciated with the entertainment industry, among others. In addition to demon-
strating the practical efficiency of our algorithm, we find that analyzing the
collective periodicities of all mined patterns can be a particularly useful tool for
gaining insight into the dynamics of the system being studied. We also found a
number of interesting patterns which are intriguing because of a combination of
their composition and periodicity, and which might not have stood out had only
their frequency of occurrence been considered, as is the case in frequent pattern
mining.

Periodic Subgraph Mining in Dynamic Networks 3

1 56

2 34

1 5

8

6

2

7

3

9
13

1 5

12

6

2

10

3

11

14

9
12

10

11

14

1 56

3

Fig. 1. An example of a dynamic network with five timesteps.

This paper is organized as follows.1 In the next section, we present some pre-
liminary definitions related to dynamic networks, as well as some graph theoretic
properties that are key to the inherent complexity of the problem. In Section 3,
we formally define the mining problem, which incorporates the concepts of closed
subgraphs and parsimony. This is followed by a discussion of related literature
in Section 4. In Section 5, we analyze the inherent complexity of the problem
and derive an exact upper bound on the maximum number of possible periodic
subgraphs in any dynamic network. We show that the mining problem is in the
computational complexity class P (polynomial), in contrast to the closely related
frequent pattern mining problem. The complexity analysis of the problem is then
used in Section 6 to build an efficient, online mining algorithm. The results of our
experimental evaluation are presented in Section 7, followed by some concluding
remarks and possible future research directions.

2. Preliminaries

Dynamic networks are a representation for a time series of interactions between
a set of unique entities. Let V ∈ N represent this set of entities. Interactions
between entities can be either directed or undirected, and are assumed to have
been recorded over a period of T discrete timesteps. The question of how much
real time should constitute a timestep is beyond the scope of this paper; we
use natural quantizations specific to each of our datasets, such as one day per
timestep. The only requirement is that a timestep should correspond to a mean-
ingful amount of real time, as the periodicities of mined subgraphs will be in
multiples of the chosen timestep.

Definition 1. (Dynamic network) A dynamic network G = 〈G1, ..., GT 〉 is a
time-series of graphs, where Gt = (Vt, Et) is a simple graph of interactions Et

observed at timestep t among the subset of entities Vt ⊆ V observed at timestep
t.

Figure 1 is an example of a dynamic network with five timesteps. Definition 1
implies a convenient graph theoretic property that reduces the high computa-
tional complexity of many algorithmic tasks on graphs: since a vertex represents
a unique entity, each vertex v in a particular timestep’s graph Gt has a unique
vertex label. This constitutes a class of graphs that can be represented as sets of
integers, resulting in a reduction to quadratic computational complexity (in the

1 A shorter version of this paper appeared as [25]. The major additions to this version are as
follows: (a) we formally describe the framework of mining parsimonious periodic patterns, (b)
we describe and prove the correctness of a more efficient version of the algorithm in [25], (c)
we use smoothing instead of jitter to handle noise, since the former is better defined, and (d)
we evaluate the performance of our algorithm compared to the SMCA algorithm [20].

4 M. Lahiri and T.Y. Berger-Wolf

G =2
1

3

4 5

Vtx. 1 : 1

Vtx. 2 : 2

Vtx. 3 : 3

Vtx. 4 : 4

Vtx. 5 : 5

<1,2> : 6

<1,3> : 7

<1,4> : 8

<1,5> : 9

1

2 3

4

G =1

1

3

4

MCS =

R = {1, 2, 3, 4, 6, 7, 8}

R = {1, 3, 4, 5, 8, 9}

MCS = {1, 3, 4, 8}

2

1

Fig. 2. The correspondence between graph and set representations for graphs with unique
vertex labels. The example demonstrates the computation of the maximal common subgraph
of two graphs using set representation.

number of vertices) for certain hard graph problems, such as maximal common
subgraph and subgraph isomorphism [10, 24, 25].

Property 1. (Set Representation) For a graph G = (V, E) with unique
vertex labels, the set representation R for G is formed by mapping each vertex
and edge to a unique element in R, where R ∈ N.

Since each vertex is uniquely identifiable by its label, it follows that each
edge is also uniquely identifiable by its endpoints. This allows each vertex and
edge to be coded as a unique integer, even across different graphs over the same
vertex set. It can trivially be shown that two graphs (or timesteps) will result in
the same set R if and only if they have identical vertex and edge sets. Although
connectivity information is lost in the set representation, it is a useful transfor-
mation for the following algorithmic tasks, which are key to the development of
our algorithm.

Property 2. (Subgraph Testing) For two graphs G1 and G2 with unique
vertex labels, testing whether G1 is a subgraph of G2 or vice versa can be done
by checking if the corresponding set representations R1 and R2 are subsets of
each other. For this reason, we use the subset operator ⊆ to denote a subgraph
relationship between G1 and G2.

Property 3. (Maximal Common Subgraph) The maximal common subgraph
(MCS) for a set of graphs with unique vertex labels is obtained by taking the
intersection of their set representations. For a set of graphs G1, ..., GT , a vertex
or an edge is part of the maximal common subgraph if it exists in every Gt. As a
result, the maximal common subgraph always exists, is unique and well-defined,
but could possibly be the empty graph with no vertices or edges. We use the
intersection operator ∩ to denote the maximal common subgraph of two or more
graphs.

Property 4. (Hashing) Since the set representation R has a global ordering
by virtue of R ∈ N, a graph can be hashed like a sequence or a string.

Figure 2 demonstrates the use of Property 1 to calculate the maximal common
subgraph of two graphs using set representation. A further implication of the set
representation is that a dynamic network can be represented as a transaction
database (also known as ‘market-basket’ data [1]) for certain data mining tasks

Periodic Subgraph Mining in Dynamic Networks 5

like frequent subgraph mining2 [21, 23]. Although mining for periodic patterns
in time-ordered transaction databases has been studied in different contexts [18–
20, 29, 38], one of the main advantages of our framework is the ability to handle
structured data like dynamic networks (with connectivity information) while also
being applicable to unstructured data like transaction databases.

We now introduce some terminology from the frequent pattern mining prob-
lem to be used in our problem definition and analysis.

Definition 2. (Support) Given a dynamic network G of T timesteps and an
arbitrary graph F = (V, E), the support set S(F) of F in G is the set of all
timesteps t in G where F is a subgraph of Gt, which we denote F ⊆ Gt. The
support of F is the cardinality of its support set S(F).

S(F) = {ti, ..., tj} such that ∀t (t ∈ S(F)↔ F ⊆ Gt)

F is frequent if its support exceeds a user-defined minimum support threshold
σ ≤ T .

Definition 2 is the basis of the well known frequent pattern mining problem,
which deals with the extraction of all subgraphs F where S(F) ≥ σ. An im-
plication of the näıve definition of a frequent subgraph is the downward closure
property, which states that every subgraph of a frequent subgraph F is itself fre-
quent. This serves as the underpinning of Agrawal and Srikant’s classic Apriori
algorithm, which searches for large frequent patterns by iteratively concatenat-
ing the smaller, frequent sub-patterns implied by the downward closure, relying
on the sparsity of larger frequent patterns [1]. The downward closure is what
makes a principled, incremental search through pattern space tractable, but is
also a double-edged sword. Although many improvements have been made to
the classic Apriori algorithm [8, 18], any mining algorithm required to explic-
itly enumerate every frequent pattern in a dataset would, in doing so, have to
enumerate the exponential number of subgraphs of every frequent subgraph, a
redundant and resource expensive process. The cornerstone of a solution to this
problem is the use of closed subgraphs [6, 18, 30].

Definition 3. (Closed subgraph) Given a dynamic network G of T timesteps
and an arbitrary graph F = (V, E), F is closed if it is maximal for its support
set. In other words, no vertex or edge can be added to F while maintaining its
support.

Mining frequent closed subgraphs is an elegant solution to the redundancy of
the general frequent pattern mining problem, since it captures all the information
of the more general formulation, but can result in output that is exponentially
smaller in size without any loss of information. We therefore adopt it as an
integral part of our problem definition, which is described in the next section.

3. Problem Definition

We formally define the periodic subgraph mining for dynamic networks as a
special case of frequent closed pattern mining with important computational

2 Since connectivity information is lost in the set representation, frequent connected subgraphs
and subgraphs with other specific graph-theoretic properties cannot be extracted from the set
representation.

6 M. Lahiri and T.Y. Berger-Wolf

properties. These properties allow the development of efficient mining algorithms
and justify an independent treatment of the problem, rather than an approach
that would, for example, push constraints into a conventional frequent pattern
mining algorithm [17, 31, 32, 41]. The relation to frequent pattern mining also
highlights the fact that we are searching for locally periodic patterns, i.e. those
that exhibit periodic behavior in a contiguous subsequence of the entire data
stream. These are also known as partially periodic patterns [19, 20, 26]. We begin
with a basic formulation of the problem and then develop it into a parsimonious
formulation. We end this section by describing mechanisms to rank periodic
patterns and handle imperfect periodicity in real-world datasets.

3.1. Basic Formulation

Definition 4. (Periodic support set) Given a dynamic network G and an
arbitrary subgraph F = (V, E), a periodic support set of F in G, denoted SP =
(i, p, s), is a maximal, ordered set of s timesteps starting at ti and repeating
every p timesteps.

SP = (i, p, s) = 〈ti, ti+p, ..., ti+p(s−1)〉

subject to the following constraints:

1. Existence in G: F must exist at all timesteps in SP , i.e. ∀t (t ∈ SP →
F ⊆ Gt). Note that the implication in the constraint is only in the forward
direction, unlike Definition 2.

2. Minimum size: A periodic support set has to have at least two elements,
i.e. |SP | = s ≥ 2.

3. Temporal maximality: The support set cannot be extended in time to con-
tain F and still be periodic, i.e. F �⊆ Gt(i−p)

and F �⊆ Gt(i+p·s)
.

The phase offset of a periodic support set is defined as m = (ti−1) mod p, since
indices start from 1. Thus, 0 ≤ m < p.

A key difference in the definition of a support set for frequent pattern mining
and periodic pattern mining is that a single graph F can have multiple periodic
support sets to allow for multiple, disjoint, or overlapping periodic behavior.
Thus, we require the extraction of all periodic subgraph embeddings, rather than
just the periodic subgraphs themselves. This is encompassed in the following
definition.

Definition 5. (Periodic subgraph embedding) Given a dynamic network G,
a periodic subgraph embedding (PSE) is a pair 〈F, SP 〉, where F is an arbitrary
graph that is closed over a periodic support set SP with |SP | ≥ σ. The following
list summarizes the properties of a PSE:

1. Minimum support: |SP | ≥ σ ≥ 2, from Definition 4.

2. Structural maximality: F is maximal over SP , i.e. F is the maximal com-
mon subgraph of SP , from Definition 3.

3. Temporal maximality: SP is temporally maximal for F , from Definition 4.

Figure 3 shows an example of a dynamic network with two PSEs at σ = 3.
The first is the subgraph {〈1, 4〉, 〈1, 5〉} with a period of 2 and support set of
〈1, 3, 5〉, and the second is the singleton vertex {1} with a period of 1 and a

Periodic Subgraph Mining in Dynamic Networks 7

Fig. 3. An example of a dynamic network with 2 PSEs at σ = 3.

support set of 〈3, 4, 5〉. Note that the subgraph {〈1, 2〉, 〈1, 3〉} is frequent but not
periodic at σ = 3.

3.2. Parsimonious Formulation

We now address the issue of redundant information in the output. If we think of a
PSE from Definition 5 as communicating a set of timesteps at which a particular
subgraph exhibits periodic behavior, a PSE which communicates information
that is already contained in another PSE is redundant. For example, a subgraph
F of period 2 with adequate support will also be output as a subgraph of period
4, and so on. This will continue for a fixed number of multiples of the base period,
depending on the support of the pattern and the minimum support, in spite of
the fact that the higher multiples communicate no new information about the
subgraph in question. Furthermore, when analyzing periodic behavior in terms
of the periodicities of mined patterns, there is no justifiable reason prima facie
(or in keeping with Occam’s Razor) to count multiples of a base pattern’s period,
unless those multiples extend beyond the support of the base pattern.

Although the use of closed subgraphs reduces much of the redundancy asso-
ciated with the output of an Apriori style algorithm, the basic definition of a
PSE still retains some. To eliminate all such redundancy, we pose our problem
as that of mining a minimal set of patterns to cover all periodic occurrences
of all periodic subgraphs. Keeping in line with the principle of parsimony, this
eliminates patterns with periods that are multiples of a base period, unless they
convey some new information about a periodic occurrence. In order to describe
this concept formally, we first define the notion of subsumption of PSEs.

Proposition 1. (Subsumption) For two periodic subgraphs F1 and F2 with re-
spective periodic support sets SP,1 = (i1, p1, s1) and SP,2 = (i2, p2, s2), 〈F1, SP,1〉
completely contains or subsumes 〈F2, SP,2〉 if all of the following conditions hold:

1. F2 ⊆ F1

2. ti2 ≥ ti1
3. ti2+p2·(s2−1) ≤ ti1+p1·(s1−1)

4. p2 = k · p1 for some integer k > 0

5. ti,2 = ti,1 + l · p1 for some integer l ≥ 0

Proof. We prove that all conditions listed above are necessary for subsumption.
Condition 1 is trivially required to ensure that no information is lost. Let f1(l) =
ti,1 + l ·p1 and f2(l) = ti,2 + l ·p2 be the lth occurrence of F1 and F2 respectively,
for some integer l. For subsumption, we require that the support set SP,2 is
completely contained within the support set SP,1. Conditions 2 and 3 require

8 M. Lahiri and T.Y. Berger-Wolf

that the support set of of F2 is contained within the bounds of the support set
of F1, although they could be of different phase offsets and not overlapping at
all, or partially overlapping but of different periods. Condition 4 requires that
the period of F ′ is an integer multiple of F , and condition 5 requires that F1

and F2 have compatible phase offsets, which ensures that they overlap. This is
handled by requiring that the first occurrence of F2 overlap with any occurrence
of F1. Thus, ti,2 = f1(l), which yields the final condition ti,2 = ti,1 + l · p1.

Definition 6. (Parsimonious PSE) A PSE that is not subsumed by any an-
other PSE is a parsimonious periodic subgraph embedding (PPSE).

As an example to motivate the mining of PPSEs, consider a system in which
all the nodes only interact periodically with either period 2 or 4, starting at
arbitrary times and continuing for an arbitrary number of repetitions. Suppose
that we want to discover these unknown periodicities by observing the system
for a period of time. With non-parsimonious PSEs, duplicates of each true peri-
odic pattern would be reported for a fixed number of multiples of either 2 or 4,
depending the specific pattern. If we were to plot a histogram of the periodicities
of all mined patterns, we would see various artifacts from the higher order pe-
riodicities, which could obscure the true periodicities. On the other hand, with
parsimonious PSEs and enough data, the true periodicities of 2 and 4 would,
with high probability, be the most prominent peaks.

Definition 7 (Periodic Subgraph Mining Problem). Given a dynamic net-
work G and a minimum support threshold σ ≥ 2, the Periodic Subgraph

Mining problem is to list all parsimonious periodic subgraphs embeddings in G
that satisfy the minimum support.

3.3. Practical Considerations

3.3.1. Handling noise by smoothing

Since real-world networks are unlikely to always contain perfectly periodic pat-
terns, we use smoothing as a mechanism for accommodating imperfect periodic-
ity. Given a user-defined smoothing parameter S ≥ 1, we transform the dynamic
network by considering a sliding window over its timesteps. In other words, we
transform the dynamic network G in the following manner3, where Gi ∈ G:

G′ = 〈G1 ∪ ... ∪GS , G2 ∪ ... ∪GS+1, ...〉

In addition, the following two conditions handle the removal of artifacts intro-
duced by the smoothing process.

1. The minimum period Pmin is set to S.

2. PSEs of the same subgraph that share the same period and differ in their
starting positions by at most S − 1 timesteps are merged. In other words, the
PSE with the highest support is retained. This can be done as a post-processing
step or incorporated into the mining algorithm itself.

3 Blank timesteps are appended to the beginning and end of the dynamic network as necessary
to handle boundary conditions.

Periodic Subgraph Mining in Dynamic Networks 9

Fig. 4. A periodic subgraph embedding (bold) with non-periodic occurrences. The purity of

this periodic subgraph is 3/5, whereas its average purity is 1

2
(3

5
+ 3

7
) ∼ 0.51.

By introducing this smoothing mechanism, we allow a window of timesteps
within which the order of events does not matter. No smoothing is performed at
S = 1, and at higher smoothing levels, any periodic pattern with period p will
still be reported as a periodic pattern as long as the smoothing window size is
less than the pattern’s period.

3.3.2. Purity: a measure for ranking periodic subgraphs

A periodically recurring subgraph is not necessarily representative of an inter-
action pattern that occurs only periodically, as shown in Figure 4. The purity
measure expresses how likely it is that a periodic subgraph embedding occurs
only periodically over its support set.

Definition 8. Given a periodic subgraph embedding 〈F, SP 〉 with period p,
starting at timestep ti and with support s = |〈ti, ..., tj〉|, the purity of F is
the ratio of its periodic support to its total support in the timestep range [ti, tj].

purity(F) =
s

|{t : F ⊆ Gt, ti ≤ t ≤ tj}|

It is sometimes advantageous to define the purity of a subgraph as the average
purity of its edges. Doing so is more representative of the temporal characteristics
of the entire subgraph. We use the term ‘purity’ to refer to average purity for
the remainder of this paper. Figure 4 shows an example of the purity measure.

Definition 9. The average purity of a subgraph F = (V, E) is the average purity
of all of its edges.

avgPurity(F) =
1

|E|

∑
e∈E

purity(e)

4. Related Work

Searching for periodicity and periodic patterns have appeared in different con-
texts in data mining. In this section, we review relevant literature concerning
periodic pattern mining, as well as the closely related problem of frequent pat-
tern mining. We omit certain earlier antecedents to this line of research, such as
mining cyclic association rules [29] and frequent sequential patterns [2], as they
are not directly relevant. Also omitted for the same reason are periodic pattern
mining approaches that require or assume that the entire input is at least approx-
imately periodic, including techniques that use Fast Fourier Transforms [13, 14].

Most algorithms for mining periodic patterns deal with unstructured data
such as a sequence or multiple, aligned sequences. In the most general formulation

10 M. Lahiri and T.Y. Berger-Wolf

of the problem, the input consists of a sequence of symbols sets S = 〈a1, ..., aT 〉,
where each symbol set ai is drawn from a finite universal set L. A pattern is a
sequence P = 〈b1, ..., bp〉 of length p, where p is the period of the pattern and
each bi ⊆ L∪{∗}. The ‘*’ character is a wild card that matches any symbol. Less
general versions consider only a single sequence as the input, so each ai ∈ L and
bi ∈ L∪{∗}. The pattern mining problem is to extract all such patterns from the
input sequence, subject to constraints such as a minimum support. Algorithms
for this task are generally variants of the classic Apriori algorithm of Agrawal and
Srikant [1], in which larger patterns are iteratively built from smaller ones. Note
that the definition of a periodic pattern in this line of research is essentially
a sequence with wildcards, whereas our definition is closer to concepts from
frequent pattern mining.

Han et al. introduced one of the first algorithms to mine partial periodic pat-
terns in multidimensional sequences [19]. They adopt an Apriori-inspired search
through pattern space using a novel prefix-based data structure called a max-
subpattern tree. Ma and Hellerstein [26] propose a similar, Apriori-inspired ap-
proach consisting of two level-wise algorithms for mining periodic patterns in the
presence of both partial periodicity as well as imperfect periodicity. They also
propose an interesting statistical (as opposed to combinatorial) foundation for
defining periodicity.

Yang et al. [38, 39] proposed another level-wise mining algorithm for detecting
‘surprising’ periodic patterns, i.e. those judged to be interesting based on devi-
ation from their expected frequency. This is intended to overcome limitations
of using the support of a pattern as the sole measure of its worth. They devise
two variants of information gain as measures of interest: bounded information
gain [38] and generalized information gain [39], the second of which obeys the
triangle inequality. However, a number of independence assumptions are made,
such as the probability of occurrence of an event being the same at any point in
time, and these might not hold in dynamic networks.

Yang et al. [40] propose a level-wise mining algorithm that allows imperfect
(or ‘asynchronous’) periodic patterns to be discovered. They do this by introduc-
ing two user-defined parameters into the mining process to specify the minimum
number of repetitions of a pattern and the maximum amount of disruption al-
lowed. Huang and Chang [20] build on this in their description of SMCA, a suite
of four algorithms for mining periodic patterns [20]. The fundamental idea is still
to conduct a level-wise search through pattern space, but augmented with more
efficient data structures and algorithms than earlier approaches. Each algorithm
enumerates more complex patterns from the output of an earlier stage.

Finally, our work is inspired by frequent pattern mining, which is concerned
with the discovery of patterns that occur more frequently than a user-defined
threshold. A relatively young offshoot of this line of research is frequent subgraph
mining [21, 23], which was originally devised to search for common structures in
databases of chemical compounds represented as graphs. A detailed overview of
this field is beyond the scope of this paper, but may be found in [18] and [8]. There
are, however, a number of recent complexity results for frequent pattern mining
that are relevant. Specifically, given a set of maximal frequent itemsets, Boros
et al. [4] show that it is NP-complete to decide if there is a further maximal
frequent itemset. Yang [37] shows that different variants of maximal frequent
pattern mining, including itemsets and subgraphs with unique vertex labels, are
either #P-hard or #P-complete in terms of counting the number of satisfying

Periodic Subgraph Mining in Dynamic Networks 11

solutions. Thus, many variants of frequent pattern mining are computationally
intractable in the worst case.

5. Complexity Analysis of the Mining Problem

We now analyze the computational complexity of the mining problem as defined
in Section 3. In order to do this, we derive an exact upper bound on the number
of PSEs that can exist in any dynamic network of T timesteps. We prove that
this upper bound is a polynomial function of the number of timesteps and the
minimum support value, and show how such a ‘worst-case’ dynamic network can
be constructed.4 The proof leads to the conclusion that mining all closed PSEs
can be done in polynomial time in the size of the input, proving that the mining
(enumeration) problem is in the complexity class P, when the graphs have unique
vertex labels. This is in contrast to the more general frequent subgraph mining
problem, which is NP-hard for enumeration and #P-complete for counting, even
with unique vertex labels [4, 37]. We take advantage of the intrinsic polynomial
complexity of the problem to design an efficient single-pass mining algorithm in
Section 6. We do not include smoothing in the following analysis, and purely
algebraic manipulations are omitted for brevity.

Theorem 1. Periodic Subgraph Mining in dynamic networks is in P.

To prove Theorem 1, we first construct a class of worst-case dynamic networks
and show that any member of this class has the maximum possible number of
PSEs. We utilize the concept of a projection of a discrete time sequence to count
the maximum number of PSEs in this class of dynamic networks [13].5

Definition 10. Given a dynamic network G, a projection πm,p of G is a sub-
sequence of graphs

πm,p = 〈G1+m, G1+m+p, G1+m+2p, ...〉,

where p is the period of the projection and 0 ≤ m < p is the phase offset.

It should be clear from the definitions of periodicity and projection that any
periodic support set at minimum support σ is embedded in at least σ consecutive
positions of some projection πm,p.

Proposition 2. Let F be the maximal common subgraph F of any s ≥ σ
consecutive positions of any projection πm,p. If F is not empty, then it is a
periodic subgraph and the s consecutive timesteps from πm,p are part of a PSE
for F .

Proof. A non-empty maximal common subgraph F of any s ≥ σ consecutive
positions implies that F is maximal over a support set of at least σ periodic
timesteps, which in turn might or might not be temporally maximal for F .
However, in either case, the s timesteps are part of some valid periodic support
set of size at least σ. This is a sufficient condition to satisfy Definition 5, and
thus F is a periodic subgraph.

4 An alternate version of this proof in terms of maximal subgraphs, but with the same outcome,
can be found in [25].
5 In principle, any combinatorial technique can be used to count the number of PSEs. Projec-
tions are convenient for Definition 5 and some extensions to it.

12 M. Lahiri and T.Y. Berger-Wolf

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

Fig. 5. An example of a worst case dynamic network for mining PSEs at σ = 3.

Corollary 1. In the worst computational complexity case for mining periodic
subgraph embeddings in a dynamic network, the maximal common subgraph of
every s ≥ σ consecutive positions of every projection is not empty and contains
a unique PSE.

Proof. Clearly, if every periodic subset of s ≥ σ timesteps of the dynamic net-
work contains a unique maximal common subgraph, then they all need to be
enumerated by any mining algorithm and it is indeed the worst case input for a
periodic subgraph mining problem. We now show that it is attainable using an
explicit construction. We place a different edge in each s ≥ σ consecutive posi-
tions of every projection to ensure that each edge is part of a unique periodic
subgraph embedding. Let edge e be created in this way with support set SP in
some πm,p. Considering only SP , we know that it is temporally maximal for the
edge e because e does not exist in any other timesteps. Furthermore, the maxi-
mal common subgraph of SP is non-empty because it contains at least the edge
e. Thus, each edge is part of a unique PSE whose support set is SP . Since a dif-
ferent edge was placed in every s ≥ σ consecutive positions of every projection,
the number of PSEs is equal to the number of edges created. No additional PSEs
can be created since every permissible support set, i.e. with support greater than
σ, is already part of a unique PSE. Therefore, the described structure is a worst
case instance for its size.

Figure 5 shows an example construction of such a worst-case dynamic network
with 12 PSEs at σ = 3. The next step is to explicitly calculate the upper bound
on the number of PSEs in the worst-case network instances. Following from
Corollary 1, we only need to count the number of s ≥ σ consecutive positions
of every projection to derive this bound. In order to do this, we first state the
bounds on several other parameters.

Proposition 3. In a dynamic network with T timesteps, the maximum period
of any periodic subgraph with support at least σ is P = �(T − 1)/(σ − 1)�.

Proposition 4. In a dynamic network with T timesteps, the length of any pro-
jection is |πm,p| = �(T −m)/p�.

The proofs of the Propositions 3 and 4 are straightforward and similar to
those in [13]. Given the above expressions, we now derive an exact bound by
construction.

Theorem 2. In a dynamic network with T timesteps, there are at most
O(T 2 ln T

σ
) closed PSEs at minimum support σ.

Proof. From Corollary 1, the maximum number of PSEs possible in a dynamic
network at minimum support σ is equal to the number of s ≥ σ length windows

Periodic Subgraph Mining in Dynamic Networks 13

over all possible projections of the network. For a given projection πm,p and
value of s, it is clear that the number of length-s windows over the projection is
|πm,p|−s+1, where |πm,p| is the length of the projection defined in Proposition 4.
Thus, for a given value of s, the number of length-s windows over all projections
can be obtained by substituting the expressions from Propositions 3 and 4:

�T−1
s−1 �∑
p=1

p−1∑
m=0

(⌈
T −m

p

⌉
− s + 1

)

We have replaced σ with s in the expression for the maximum period of a
pattern from Proposition 3, since we only want projections which contain at
least one length-s window for any s. This constitutes the outer summation; the
inner summation is over all possible phase offset values m for a given period p.
Finally, the term inside the summation is the number of length-s windows in any
projection, where |πm,p| has been substituted from Proposition 4. We now sum
this expression over all possible values of s, which run from σ to T , and relax
the floor and ceiling expressions for an asymptotic closed form approximation.

T∑
s=σ

�T−1
s−1 �∑
p=1

p−1∑
m=0

(⌈
T −m

p

⌉
− s + 1

)
(1)

∼
T∑

s=σ

T−1
s−1∑
p=1

p−1∑
m=0

(
T −m + p

p
− s + 1

)
(2)

Expression 2 algebraically simplifies to an expression that is O(T 2 ·H(T−1
σ−1)),

where H(n) =
∑n

k=1
1
k

is the nth harmonic number, asymptotically approxi-
mated by lnn. Thus, the number of PSEs at minimum support σ is bounded
asymptotically by O(T 2 ln T

σ
) (and exactly by Equation 1).

Proof of Theorem 1 To finally prove Theorem 1, consider an algorithm that out-
puts the maximal common subgraph of every σ length window of every projec-
tion. Since the maximal common subgraph of a set of graphs with unique vertex
labels can be found in time O(V + E) [10], in the worst case, this results in
O(T 2 ln T

σ
) periodic ‘fragments’ computed in Θ((V + E)T 2 ln T

σ
) time. Every

pair of periodic fragments is then compared and merged if they represent over-
lapping embeddings of the same periodic subgraph, in time O((V +E)(T 2 ln T

σ
)2),

resulting in all PSEs. Another run over pairs of PSEs can eliminate all non par-
simonious PSEs, resulting in an overall time complexity of O((V +E)T 4(ln T

σ
)2).

Thus, the mining problem is in P, and the exact bound on the number of closed
PSEs is given in summation form in Theorem 2.

6. The Algorithm

We now present PSEMiner
6, our algorithm for mining all parsimonious periodic

subgraph embeddings (PPSEs) in a dynamic network. We start by describing the
most basic form of the algorithm, which mines closed (not just parsimonious)

6 Periodic Subgraph Embedding Miner

14 M. Lahiri and T.Y. Berger-Wolf

periodic subgraph embeddings, and proving its correctness and complexity. We
then describe some simple optimizations to the basic algorithm that allow it to
output only PPSEs and also improve its efficiency in practice.

PSEMiner is based on the following idea: as each timestep of the dynamic
network is read, we maintain a list of all periodic subgraph embeddings seen up
to timestep t. This list is maintained in a simple data structure called a pattern
tree, which also tracks subgraphs that might become periodic at some point in
the future. Once PSEs cease to be periodic, they are flushed from the tree and
written to the output stream if they satisfy certain conditions like the minimum
support. As each timestep Gt is read from the data stream, the pattern tree is
updated with the new information, which could involve modifying, adding and
deleting tree nodes. The complexity analysis in Section 5 allows us to prove
worst-case computational time and space bounds that are polynomial in the size
of the input. We describe the algorithm, its parameters, data structures and a
proof of correctness in the following five sections. In Section 6.6, we describe
optimizations that complete the description of the algorithm.

6.1. Parameters

Our algorithm is a single-pass, polynomial time and space algorithm for min-
ing all closed periodic subgraph embeddings in a dynamic network. It does not
require any parameters, but optionally accepts the following:

1. Minimum support threshold σ ≥ 2 (default: 2).

2. Minimum period Pmin (default: 1).

3. Maximum period Pmax (default: unrestricted).

4. Smoothing timesteps S ≥ 1 (default: 1).

When the Pmax parameter is restricted, our algorithm functions as an online
algorithm, retaining only the parts of the dataset in memory that it requires to
calculate periodicities. There is a natural bound on the maximum period of mined
patterns if the number of timesteps T is finite and known (see Proposition 3).
However, in many situations this information is not available or relevant, such
as in streaming sensor data. In such cases, an unrestricted maximum period
value places a large computational burden on the algorithm, and requires that
the entire dataset be retained in memory. This is because at any timestep t,
any previously observed timestep t′ < t could contain the initial occurrence
of a periodic subgraph whose second occurrence is at timestep t. Testing for
this situation requires all previously seen timesteps to be retained in memory,
either explicitly or in some compressed form. The optional Pmax parameter limits
the maximum period of mined patterns, and thus eliminates the need to retain
previously seen timesteps beyond a certain history.

The default parameters mine a complete set of periodic subgraphs without
any smoothing, although in practice, only σ values of 3 or more are meaningful.
The output of the algorithm is a set of closed parsimonious periodic subgraphs
embeddings that satisfy the minimum support. Each embedding is written to
the output stream as soon as the last possible occurrence of the subgraph has
been encountered, or when the input stream has been exhausted.

Periodic Subgraph Mining in Dynamic Networks 15

6.2. Data Structures

As the algorithm scans the input stream, it maintains three primary data struc-
tures to track PSEs: a pattern tree, a subgraph hash map, and an optional timeline
list to increase efficiency. An auxiliary data structure, called a descriptor, is used
as a compact representation of a periodic support set. We refer to nodes in the
pattern tree as treenodes to distinguish them from nodes (vertices) in the dy-
namic network or in a periodic subgraph. Each treenode N is associated with a
single periodic subgraph F and a set of descriptors that represent PSEs of F .
We use the notation ‘treenode N/F ’ to refer to a treenode N that represents
subgraph F .

6.2.1. Pattern Tree, Subgraph Hash Map and Timeline List

The tree structure represents a subgraph relationship between periodic sub-
graphs. The structure of the pattern tree is subject to a single constraint: with
the exception of the special root node, all descendants of a treenode N/F are
associated with proper subgraphs of F , but not all subgraphs of F are necessar-
ily its descendants in the tree. This property allows efficient traversal of the tree
by the mining algorithm, and also allows the tree to be built and manipulated
quickly and represented using very little space.7 It also allows efficient traversal
by virtue of the fact that if F is not observed at a given timestep for treenode
N/F , then neither are the subgraphs represented by N ’s descendants (except for
the root node). Random access to treenodes is also required, which is achieved
by using a hash map to associate periodic subgraphs with their corresponding
treenode. This can be done efficiently, as described in Property 4 of the set repre-
sentation of dynamic networks. The timeline list is an optional component that
links treenodes to the future timesteps at which they are expected to appear. Its
use is discussed in Section 6.6.

6.2.2. Treenodes

Each treenode N/F contains a list of descriptors {D1, ..., Dn}, one for each ob-
served PSE of F . In addition, each treenode maintains a list of periods and
phases of all live descriptors, which is used by the tree update algorithm. Query-
ing, adding to, and removing descriptors from this list are the primary operations
on a treenode.

6.2.3. Descriptors

A descriptor D is the abbreviated representation of a periodic support set. It is
associated with a treenode N/F and defines a unique PSE for F . It is formally
described as a triple, since it represents a periodic support set SP = (i, p, s).
The last element in the support set is defined as tj = ti + p · (s − 1) and the
next expected timestep as tn = tj + p. Since descriptors are created, updated,
and deleted as the input stream is read, the following definition describes the
different states that a descriptor could be in at any given time.

7 An alternative to the tree representation would be to construct a full subgraph lattice [6],
with a corresponding increase in time and space complexity. Whether lattices are more efficient
given the typical sparsity of dynamic networks is a question for future research.

16 M. Lahiri and T.Y. Berger-Wolf

Definition 11. (Descriptor states) At timestep t, a descriptor D for a sub-
graph F is live if tn > t or if tn = t and F is present at Gt. A descriptor that is not
live is not currently exhibiting periodic behavior; it cannot change state again
once it is not live. A descriptor where ti = tj is a special case called an anchor
descriptor, as it does not represent a periodic support set but could potentially
become one if the associated subgraph F is observed at a future timestep. An
anchor descriptor is defined to have a period of 0. An anchor descriptor is always
live, unless Pmax is defined and t− ti > Pmax, in which case the anchor can never
lead to a valid PSE with period at most Pmax, and is no longer needed.

6.3. Tree Update Algorithm

We now describe the update algorithm for the pattern tree, which is the core of
the mining process. It is called once for each timestep that is read from the input.
Starting with an initial pattern tree with an empty root treenode, at timestep t
the algorithm traverses the pattern tree in a breadth-first search (BFS) to update
treenodes with the new information contained in Gt. For each Gt, we are only
interested in treenodes which might be affected by the new information. This
excludes any subgraph F which has an empty maximal common subgraph with
Gt. In most cases, this process eliminates some branches of the pattern tree from
the BFS traversal. At each treenode N/F where F has some part in common
with Gt, we update descriptors at N in a manner described below. We end each
tree update by ensuring that a treenode for Gt in its entirety exists in the tree
with an anchor descriptor for timestep t. This accounts for the possibility that
Gt in its entirety is the first occurrence of a (future) periodic subgraph. If such
a treenode does not exist, it is created at a location which does not violate the
subgraph property of the tree, such as the root.

During the breadth-first traversal of the tree, one of the following three con-
ditions holds at each treenode N/F . Let C = F ∩ Gt be the maximal common
subgraph of Gt and F .

1. Update descriptors If F ⊆ Gt, i.e. if F = C, then F has appeared in its
entirety at timestep t. Let D be any descriptor in N and tn = tj + p be the
next expected timestep for D.

(a) If tn = t, then D has appeared where it was expected. Timestep t is added
to D’s support to ensure temporal maximality.

(b) If tn < t, then D has not appeared when expected and is thus no longer
live. It is written to the output stream if its support is greater than or
equal to σ, and removed from the tree.

(c) If tn > t, then nothing is done.

(d) If p = 0, then D is an anchor descriptor. Given that timestep t is the second
occurrence of F , a new descriptor D′ is spawned with period p′ = t−ti and
phase offset m′ = (ti − 1) mod p′. If N does not contain a live descriptor
with the same period and phase offset, D′ is added to the list of descriptors
at N .

2. Propagate descriptors If C �= ∅ and the condition above does not hold,
then a subgraph C of F is present at timestep t, instead of F in its entirety.
This happens, for example, when a formerly periodic subgraph F fractures
into a smaller subgraph C that continues F ’s periodic behavior. If a treenode

Periodic Subgraph Mining in Dynamic Networks 17

for C does not already exist in the tree, determined using the subgraph hash
map, it is created as a child of N (to satisfy the subgraph relationship). Let
D be any descriptor at N . If tn = t, then D represents a PSE which subgraph
C must inherit and continue. The treenode for C receives a copy of D, if a
live descriptor of the same period and phase offset does not already exist. The
pattern < F, D > is written to the output stream if the support of D is greater
than or equal to σ, and then D is removed from treenode N .

3. Dead subtree If C = ∅, then Gt and F have no common subgraph, and no
descriptors at N are directly affected by the observation of Gt. Furthermore,
no treenode that is a descendant of N will have any common subgraph with Gt

either, since they are all subgraphs of F . The subtree rooted at N is therefore
eliminated from the rest of the tree traversal.

Algorithm 1 UpdateTree(Gt)

Require: Gt is the graph of timestep t
1: Q ← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: C ← Gt ∩N
5: if C is not empty then
6: if N ⊆ Gt then
7: UpdateDescriptors(N)
8: else
9: W ← FindNode(N) or NewNode(N, C)

10: PropagateDescriptors(N, W)
11: end if
12: push(Q, children(N))
13: end if
14: end while
15: W ← FindNode(Gt) or NewNode(root, Gt)
16: Add anchor descriptor for Gt to W .

Figure 6 shows the pattern tree at each timestep during the execution of
the algorithm on the network from Figure 3. For clarity, we have described a
very basic version of the algorithm. Two notable aspects of this algorithm are
(1) that it outputs all PSEs, which are a superset of all PPSEs, and (2) it
can dynamically calculate the purity measure. Non-parsimonious PSEs can be
post-processed out of the output, but in Section 6.6, we show how this can be
accomplished dynamically.

6.4. Correctness

The pattern tree is intended to hold all PSEs seen up to timestep t. We prove by
induction that this consistent state holds at any point during the execution of
the algorithm. We define a consistent state for the pattern tree as the following
four conditions.

Definition 12. (Pattern Tree Consistency Conditions) The pattern tree
is in a consistent state if the following four conditions are met:

18 M. Lahiri and T.Y. Berger-Wolf

Fig. 6. The pattern tree at each timestep for the dynamic network shown in Figure 3, consid-
ering only edges for brevity.

1. The subgraph property of the pattern tree holds, i.e. all descendants of a
treenode N/subgraph F contain subgraphs that are proper subgraphs of F .

2. All descriptors in the pattern tree are unique, i.e. no two descriptors D1 and
D2 anywhere in the tree share the same subgraph and the same support set.

3. All PSEs with support SP ≥ 2 encountered in the data stream so far have a
descriptor (and thus a treenode) in the tree.

4. All non-anchor descriptors represent PSEs that are closed up to timestep t,
i.e. for a descriptor D in a treenode N/subgraph F , F is the maximal common
subgraph of the support set described by D, and the support set is temporally
maximal at timestep t as per Definition 4.

If the tree is in a consistent state at timestep t, then the remaining output
up to timestep t can be obtained by traversing the tree once and writing every
subgraph/descriptor pair where the support of the PSE is |SP | ≥ σ. The tree is
initially empty except for a dummy root node. It is therefore consistent because
the four consistency conditions are vacuously true. For the inductive hypothesis,
assume that the pattern tree is consistent after processing timestep Gt−1. Then
after processing Gt, we show below that the tree is still in a consistent state,
thus proving that the tree is in a consistent state during and at the end of the
execution of the mining algorithm. The following is the statement and proof of
the inductive step.

Theorem 3. If the pattern tree is consistent after processing Gt−1, then the
pattern tree is also consistent after using Algorithm 1 to process Gt.

Proof. On reading Gt from the input stream, the first two consistency conditions
are not violated because no new subgraphs or descriptors have been added to the
tree. Conditions 3 and 4, on the other hand, might be violated because Gt could
potentially contain a previously unseen PSE, violating condition 3, or require
that an existing one have its support set extended to include t, violating condi-
tion 4. Therefore, we start by focusing on events that would violate the latter two
consistency conditions, while showing that the first two remain satisfied during
processing. We describe each event in turn and how the consistency of the tree
is violated, as well as the correctness of the actions taken to restore consistency.
The following is an exhaustive list of such events, along with the action that the
algorithm takes:

Case 1: Gt contains the first occurrence of a new PSE, violating condition 3;

Periodic Subgraph Mining in Dynamic Networks 19

an anchor descriptor starting at timestep t is added to a treenode for Gt in its
entirety.

Case 2: Gt contains the nth occurrence of a new PSE, where n > 1 and prior
occurrences were contained within some other PSE, violating condition 3; the
PropagateDescriptors function is called. When n = 1, we have case 1
above.

Case 3: Gt contains the nth occurrence of an already existing PSE, where n > 1,
violating condition 4; the UpdateDescriptors function is called. Timestep
t cannot be the first occurrence for an existing PSE, by definition.

Case 1:
The first possibility is that Gt could contain the first occurrence of a new PSE.
Since we have no way of knowing the future, we always assume that the entire
graph Gt is going to become a periodic subgraph in the future with timestep t as
its first timestep.8 In Algorithm 1, a treenode W is added for Gt at the root if one
does not already exist in the tree, and an anchor descriptor starting at t is added
to W . Adding W at the root is a simple way to ensure that condition 1 is never
violated. The descriptor is guaranteed to be unique, because no other PSE of Gt

will have started at timestep t prior to Gt having been observed, and therefore
condition 2 is not violated. If we are correct about the assumption that timestep
t is the first occurrence of a new PSE for Gt, then we have ‘presciently’ added a
descriptor and treenode for it at the correct time, and ensured that condition 3 is
not violated. On the other hand, if Gt never occurs again, then its treenode will
only contain an anchor descriptor, which is exempt from condition 4. Therefore,
case 1 is handled and is no longer causes the tree to be inconsistent.

Case 2:
Case 2 is that Gt is the nth occurrence of a new PSE, for n > 1. This happens
when a subgraph stops exhibiting periodic behavior, but a smaller portion of
it continues to do so. The treenode for the smaller subgraph might therefore
need to ‘inherit’ some descriptors from the treenode of the larger subgraph. For
each treenode N/F , case 2 arises when F ∩ Gt �= ∅ except when F ⊆ Gt (this
exception is handled in the next case). Let C = F ∩ Gt, the maximal common
subgraph of F and Gt. Let W be the treenode for C, which is created in the tree
(at a position that does not violate condition 1) if it does not already exist.

We now need to copy descriptors where tj + p = t from N to W , since these
descriptors would have been updated if F had been observed in its entirety. Let
D be one such descriptor. D is now no longer live for N/F because it has failed
to appear in its entirety at timestep t. The propagation process transfers D to W
if W does not already have a live descriptor of the same period and phase offset
D and an earlier starting position. Since treenodes N and W represent different
subgraphs, copying D from N to W does not violate condition 2. Furthermore,
since D was temporally maximal before, it is again temporally maximal with the
addition of t to its support set. This handles conditions 4 and 3, and case 2 no
longer causes the tree to be inconsistent.

Case 3:
Finally, we handle the case that Gt is the nth occurrence of an existing PSE, for

8 Incidentally, there is at least one dynamic network where each timestep contains the first
occurrence of a new PSE – the worst-case construction from Section 5.

20 M. Lahiri and T.Y. Berger-Wolf

n > 1. This happens when a treenode N/F has F ⊆ Gt, which means that F
has appeared in its entirety and its descriptors need to be updated. The update
process scans each descriptor D in treenode N . If D is next expected at timestep
t, then t is added to its support set by setting tj = t. This satisfied consistency
condition 4. If D is no longer exhibiting periodic behavior, i.e. if tj + p < t, then
D is flushed to the output stream if appropriate and then deleted. The other
conditions are not violated. The final case is therefore handled correctly, and the
pattern tree is again consistent.

We have inductively shown that Algorithm 1 results in a consistent tree after
processing each timestep Gt in increasing order of t. This proves the correctness
of the algorithm.

6.5. Time and Space Complexity

Given that the tree consistency conditions hold, the number of descriptors (and
therefore nodes) in the tree at timestep T is bounded by Theorem 2 at σ =
2. As each timestep is read, the tree is traversed once. When descriptors are
created or propagated, we ensure that at most one live descriptor exists at each
treenode for a given period and phase offset. If the list of periods and phase offsets
of live descriptors in the treenode are represented as sparse two-dimensional
arrays, then lookup can be performed efficiently in constant time with O(P 2

max) or
O(T 2) space complexity to hold the arrays. Thus, the worst-case time complexity
of the algorithm involves traversing each descriptor in the tree once for each
timestep and calculating the maximal common subgraph at each treenode. From
Property 1, the maximal common subgraph of two graphs can be calculated in
time O(V + E). This yields a total time complexity of O((V + E)T 3 lnT) when
Pmax is not specified. When Pmax is specified, the range of allowable periods
is bounded in Theorem 2 and the maximum number of patterns can drop very
significantly. The worst-case space complexity of our algorithm is O((V + E +
P 2

max)T
2 lnT) when Pmax is specified. In practice, however, the tree size is usually

several orders of magnitude smaller than the worst-case, as we will demonstrate.

6.6. Extensions to the Basic Algorithm

We have described a basic version of the mining algorithm in Section 6.3. A
number of algorithmic refinements are possible to increase efficiency, but at the
cost of conceptual simplicity. We briefly describe some of these refinements below.

6.6.1. Mining Parsimonious PSEs

The most important enhancement is to make the algorithm dynamically output
only parsimonious PSEs. Recall the subsumption conditions from Definition 1.
A simple way to modify Algorithm 1 to only output parsimonious PSEs is by
adding an indicator bit to each descriptor to indicate subsumption. This bit is
initially cleared when the descriptor is created. When any descriptor D from
treenode N/F is flushed, its subsumed bit is first checked. If it is cleared, then
D is compared to all other live descriptors at N . If D is subsumed by another
descriptor, it is not written to the output. On the other hand, if D subsumes (as
of timestep t) some other descriptor D′, it sets the subsumed bit for D′. If the

Periodic Subgraph Mining in Dynamic Networks 21

support of D′ increases in the future, its subsumed bit is cleared since Condition
3 from Definition 1 is no longer true. However, if its support does not increase,
then all the conditions from Definition 1 hold and D′ is not parsimonious. It will
not be flushed when the cessation of its periodic behavior is finally confirmed.

6.6.2. Sorted Descriptor List

The list of descriptors at each node can be stored sorted by the next expected
timestep of each descriptor. At timestep t, only descriptors which are expected
at or before t will be examined, in addition to at most one descriptor that is
expected after timestep t. This cuts down on the number of descriptors that need
to be examined during each tree update, at the computational cost of having to
sort the list of descriptors after each update. Since the number of descriptors per
treenode is generally not very large, the computational overhead is minimal in
practice.

6.6.3. Lazy Tree Updates

In practice, the algorithm spends most of its running time calculating intersec-
tions of integer sets (line 7 in Algorithm 1). This turns out to be the case because
real-world dynamic networks tend to be large and sparse. Although the maxi-
mum common subgraph of two graphs is calculated in time linear in the number
of vertices and edges, the size of the graphs results in a relatively expensive in-
tersection computation, and the sparsity of the network generally results in a
relatively small number of treenodes. Thus, to improve the practical efficiency
of the algorithm, we can delay calculating intersections until it is absolutely
necessary. This results in the lazy-intersection tree update algorithm shown in
Algorithm 2. The tradeoff is that the total support of patterns, and therefore
the purity measure, cannot be dynamically calculated.

6.6.4. Using a Timeline to Trim the Tree

The timeline associates each future timestep with a list of treenodes that have
at least one descriptor expected at that timestep. It can be dynamically updated
at an insignificant cost during the treenode update operations and stored in
space linear in the number of treenodes. After the tree update for timestep t,
all treenodes that are still associated with timestep t are guaranteed not to have
been visited during the tree update, and have at least one descriptor which is no
longer periodic. These treenodes can then be visited and the invalid descriptors
removed, in time proportional to the number of descriptors to be removed. Thus,
at the end of each tree update operation, the treenode only contains descriptors
that are live at the next timestep. This ensures that the pattern tree contains a
minimal number of descriptors and treenodes at any given timestep.

7. Experimental Evaluation

We use four real-world dynamic social networks to evaluate our algorithm as
well as some characteristics and applications of periodic subgraph mining. We
also use artificial data to compare the performance of our algorithm with that

22 M. Lahiri and T.Y. Berger-Wolf

Algorithm 2 LazyUpdateTree(Gt)

Require: Gt is the graph of timestep t
1: Q ← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: lazy ← true
5: while lazy = true do
6: D ← next descriptor at N
7: next ← last(D) + period(D)
8: if D is an anchor or next = T then
9: lazy ← false

10: else
11: if next < T then
12: flush D to output and delete
13: else
14: break
15: end if
16: end if
17: end while
18: if lazy = false then
19: C ← Gt ∩N
20: if C is not empty then
21: if N ⊆ Gt then
22: UpdateDescriptors(N)
23: else
24: W ← FindNode(N) or NewNode(N, C)
25: PropagateDescriptors(N, W)
26: end if
27: push(Q, children(N))
28: end if
29: else
30: push(Q, children(N))
31: end if
32: end while
33: W ← FindNode(Gt) or NewNode(root, Gt)
34: Add anchor descriptor for Gt to W .

of SMCA [20], a periodic pattern mining algorithm that generates periodic pat-
terns in a level-wise search similar to Apriori and without closed or parsimonious
considerations. SMCA is a four-phase algorithm and we only use the first two
phases (SPMiner and MPMiner), since their combined functionality is compara-
ble to our algorithm.9 We first report results on the comparison with SMCA on
synthetic data, before moving on to evaluating our algorithm on real dynamic
networks.

We implemented our algorithm in C++, incorporating all the optimizations

9 The functionality is comparable in terms of the stated goal of the algorithm only, which is to
mine periodic ‘multiple event 1-patterns’. SMCA suffers from the fact that it does not generate
closed or parsimonious output, thus increasing its computation time and output size relative
to our algorithm, without adding any extra information.

Periodic Subgraph Mining in Dynamic Networks 23

Dataset Vertices Timesteps Avg. density S Pmax

Enron 82,614 2,588 0.028 ± 0.064 3 40
IMDB (full) 29,257 13,987 0.097 ± 0.21 3 400
Plains Zebra 313 1,276 0.31 ± 0.27 6 400
Reality Mining 100 2,940 0.23 ± 0.17 2 60
Server Log 1 (days) 111,108 783 0.024 ± 0.019 2 40
Server Log 2 (hours) 111,108 18,807 0.24 ± 0.3 2 960

Table 1. Dataset characteristics, and smoothing (S) and maximum period (Pmax) values used
for experimental evaluation.

described in Section 6.6. The subgraph hash map was implemented using the
Google dense_hash_map library10, which is optimized for speed over memory
usage. The experiments with synthetic data were run on a dual-core Intel Pen-
tium D system running at 3.2 GHz with 3 GB of RAM and Linux kernel 2.6.28.
The experiments with real data were run on a quad-core Intel Xeon server run-
ning at 2.6 GHz with 24 GB of RAM and Linux kernel 2.6.22. In all cases,
computation time is reported as the sum of the user (computation) and kernel
(I/O) time reported by the Linux getrusage() system call. Memory usage is the
maximum resident set size reported by the Linux proc filesystem. The SPMiner
and MPMiner components of the SMCA algorithm were implemented in C++
according to the pseudocode in [20], and use the same timing mechanism as our
algorithm.11

7.1. Datasets

We used dynamic networks collected from a variety of sources and covering a
range of interaction dynamics. These networks are described below.

Enron E-mails The Enron e-mail corpus is a publicly available database of
e-mails sent by and to employees of the now defunct Enron corporation.12

Timestamps, senders and lists of recipients were extracted from message head-
ers for each e-mail on file. We chose a day as the quantization timestep, with
a directed interaction present if at least one e-mail was sent between two in-
dividuals on a particular day.

Plains Zebra Ecologists are interested in studying the association patterns of
wild Plains Zebras (Equus burchelli) in their natural habitat. For this dataset,
social interactions between animals were recorded in a nature reserve in Kenya
by behavioral ecologists from Princeton University, based on direct visual ob-
servations made in a large nature reserve [16, 22, 33]. Zebras are uniquely iden-
tifiable by the pattern of stripes on various parts of their bodies. The data was
collected by ecologists making visual scans of the herds, typically once a day
over periods of several months. Each entity in the dynamic network is a unique

10 http://code.google.com/p/google-sparsehash/, version 1.4.
11 A misprint in the pseudocode for SPMiner in [20, (Fig 3., line 12)] was corrected. For
MPMiner, we used the Time-Based Enumeration (TBE) scheme, since the Segment-Based
Enumeration (SBE) scheme exhausted all available system memory for the datasets we tried.
12 Available at http://www.cs.cmu.edu/~enron/

24 M. Lahiri and T.Y. Berger-Wolf

Plains zebra and an interaction represents social association, as determined by
spatial proximity and the domain knowledge of ecologists.

Reality Mining Cellphones with proximity tracking technology were distributed
to 100 students at the Massachusetts Institute of Technology over the course
of an academic year [12]. The timestep quantization was chosen as 4 hours [9].

IMDB Celebrities The Internet Movie Database (IMDB)13 maintains a large
archive of tagged and dated photographs of individuals associated with the
production of commercial entertainment, including actors, directors and mu-
sicians. One might reasonably assert that a degree of social association exists
between people photographed together by the popular press. Thus, similar
to the methodology of the Plains Zebra sightings, we collected metadata on
193,707 photos14 which collectively represents a partial structure of the social
and professional network of people associated with the entertainment industry.
The quantization period was one day.

Server Logs We used the HTTP access logs from an Apache web server hosting
organization and personal pages for the Laboratory of Computational Popula-
tion Biology at the University of Illinois at Chicago.15 Each vertex is either an
IP address on the Internet or a file hosted on the web server. A directed edge
from an IP address to a file indicates that the file was successfully accessed by
a host at the IP address. The log data runs from April 2007 to May 2009. We
used two different quantizations of one day and one hour per timestep.

7.2. Results on Natural Data

7.2.1. Algorithm Performance

We first ran a series of experiments on our algorithm with σ = 3 and no smooth-
ing, i.e. mining only perfectly repeating patterns. We then ran a second set of
experiments with Pmax set to restricted values, and a third set of experiments
with σ = 3 and variable amounts of smoothing per dataset. Table 1 summarizes
the Pmax and smoothing values used for each dataset, based intuitively on typical
periodicities and how much noise we would expect in each dataset. The second
and third set of experiments demonstrate the performance of the algorithm in
online and noisy situations, respectively.

Figure 7 shows the running time and memory usage of our algorithm under
different circumstances. The black column shows the case when no smoothing
is used and the maximum period is unrestricted. This might be considered a
typical ‘offline’ analysis scenario. An interesting point to note is that Reality
Mining takes much more time to complete mining than the much larger Enron
dataset, most likely due to the density of periodic patterns in it. In the typical
online analysis scenario with a restricted Pmax, the algorithm took less than 30
seconds to execute and used less than 40 MB of memory in all cases. As expected,
restricting the maximum period has a very significant effect on the performance
of the algorithm.

13 http://www.imdb.com
14 In [25], we only used photos with two or more people, which is the reason for the dataset
size discrepancy. For this dataset, it is informative to also represent singleton vertices.
15 http://compbio.cs.uic.edu/

Periodic Subgraph Mining in Dynamic Networks 25

Unrestricted Pmax, no smoothing
Unrestricted Pmax with smoothing
Restricted Pmax, no smoothing
Restricted Pmax with smoothing

 1

 10

 100

 1,000

 10,000

 100,000

Enron IMDB Zebra Reality Log 1 Log 2

T
im

e
(s

)

Dataset

(a) Mining time

Unrestricted Pmax, no smoothing
Unrestricted Pmax with smoothing
Restricted Pmax, no smoothing
Restricted Pmax with smoothing

 1

 10

 100

 1,000

 10,000

Enron IMDB Zebra Reality Log 1 Log 2

M
em

or
y

(M
B

)

Dataset

(b) Memory usage

Fig. 7. Performance of the periodic subgraph mining algorithm at σ = 3, shown with an
exponential y-axis.

10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

0 500 1000 1500 2000 2500

D
e
s
c
ri
p
to

rs
 i
n
 t
re

e

Timesteps

Theoretical bound

Smooth = 3

Normal

Pmax = 40

(a) Enron

10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

0 500 1000 1500 2000 2500

D
e

s
c
ri
p

to
rs

 i
n

 t
re

e

Timesteps

Theoretical bound

Pmax = 60

Normal

Smooth = 2

(b) Reality Mining

Fig. 8. Number of pattern tree descriptors with no smoothing or restrictions on period (‘nor-
mal’), and for various smoothing and Pmax values, compared to the theoretical bound.

Figure 8 shows the size of the pattern tree at each timestep for the Enron and
Reality Mining datasets. It can be seen that the actual tree size is a small frac-
tion of the theoretical upper bound. Furthermore, limiting the maximum period
of mined patterns has a large impact on reducing the tree size, as expected. The
Enron plot dips dramatically after about timestep 2,000 because most timesteps
after that are empty. A large number of descriptors are flushed from the pattern
tree when the empty timesteps are encountered. No such dip occurs in the Re-
ality Mining dataset, which is densely periodic and continues to exhibit periodic
behavior right up to the very end of the observation period.

7.2.2. Characterizing Inherent Periodicity

In addition to investigating specific periodic interaction patterns, a second goal
for mining parsimonious PSEs is to analyze global periodicities in the system. In
the context of dynamic networks, the goal would be to characterize the gross dy-
namics of the individuals in the system. Figure 9 shows histograms of the periods
of patterns mined from the Enron, IMDB, Server Log and Plains Zebra datasets.
For Enron, we restrict our attention to patterns with a high average purity, i.e.

26 M. Lahiri and T.Y. Berger-Wolf

0

200

400

600

800

1000

1200

1400

0 5 10 15 20

N
u
m

b
e
r

o
f
p
a
tt
e
rn

s

Period (days)

1 week

(a) Enron, avgPurity ≥ 0.7

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
p
a
tt
e
rn

s

Period (days)

364 days

(b) IMDB

0

50

100

150

200

0 50 100 150 200

N
u
m

b
e
r

o
f
p
a
tt
e
rn

s

Period (hours)

1 day

2 days

3 days

1 week

(c) Server Log 2, avgPurity ≥ 0.5

0

20

40

60

80

100

0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

p
a

tt
e

rn
s

Period (days)

3−6 weeks

(d) Plains Zebra

Fig. 9. Number of patterns at each period.

patterns which are likely to capture truly periodic behavior. Daily interaction
patterns are the most prevalent periodic patterns16, followed by weekly patterns,
as manifested by the clear peak at p = 7. For the IMDB dataset, we notice a
similar peak at about p = 364. This can be explained by celebrity sightings at
annual events – awards shows, for example. Thus, we are able to capture and
characterize plausible natural periodicities in human interactions with no prior
knowledge about the datasets. The hour-quantized Server Log dataset shows a
number of interesting peaks at about 24, 48 and 168 hours (the last one cor-
responding to a periodicity of one week). Inspecting patterns at these periods
revealed the activity of various search engine crawlers, confirmed by checking
ownership of IP netblocks and User-Agent strings in the HTTP requests. The
Plains Zebra dataset showed a wide range of periodicities, as one might expect
of animal behavior, with no strongly discernible peaks.

Figures 9(a) and 9(c) are histograms of the periods of patterns that are above
a minimum purity threshold. Clearly, changing this threshold could result in a
different picture, as patterns of lower purity get included. Figure 10 shows a
two-dimensional view of the histograms as a density plot. Each row represents
a histogram as in Figure 9, but thresholded by the value of the y-axis. Darker
cells represent a higher concentration of patterns at that period (relative to the

16 Too much importance should not be attached to patterns of period 1 in plots thresholded
by purity, since all patterns of period 1 necessarily have purity 1.

Periodic Subgraph Mining in Dynamic Networks 27

1 7 14 21 28 35 42

0

1

0.5

Period (days)

M
in

im
u
m

 p
u
ri

ty

(a) Enron

M
in

im
u
m

 p
u
ri

ty

0

1

0.5

Period (hours)

4 24 48 72 96 120 144 168

(b) Reality Mining

M
in

im
u
m

 p
u
ri

ty

0

1

0.5

Period (days)

1 5 10 15 20 25 30 35 40

(c) Plains Zebra

Fig. 10. Pattern density at each minimum purity threshold. Each row shows the distribution
of pattern periods for patterns with purity at or greater than the y-axis value. Darker cells
indicate more patterns.

most concentrated cell in the row), and correspond to the peaks in Figure 9.
The top-most row is the distribution of the periods of patterns that only occur
periodically, i.e. never in-between periodic occurrences, whereas the lowest row
places no constraints and shows the period distribution of all mined patterns. In
Figure 10(a), for example, the row corresponding to a y-value of 0.7 represents
the histogram in Figure 9(a).

The Enron and Reality Mining datasets show strong daily and weekly pe-
riodicities, as might be expected from human interactions. This commonality
is interesting because the interactions occur by different mechanisms in each
dataset – by e-mail in the Enron dataset, and by physical proximity in the Real-
ity Mining dataset. The Plains Zebra dataset, while not showing periodicities as
strong as the human datasets, seem to contain relatively dense region at periods
between 25 and 38. It is currently unclear whether this region indicates behavior
that is ecologically meaningful, or is an artifact of the data.

28 M. Lahiri and T.Y. Berger-Wolf

7.2.3. Qualitative Analysis

We now turn our attention to some qualitatively interesting periodic subgraphs
discovered by our algorithm illustrating a range of periodic behavior. Figure 11(a)
illustrates a somewhat complex pattern from the IMDB photo database that re-
peated approximately every week. Although the support is relatively low, what
is interesting about this subgraph is the repeated non-trivial grouping of people,
all of whom turned out to be contestants on a weekly ‘reality television’ show.
Figure 11(b) is also from the IMDB database and is an approximately annually
repeating pattern. The three individuals in the clique are actresses in a popular
(circa 2004) television show, while the fourth vertex is the spouse (as of 2008) of
one of the actresses. Given this context, the low average purity of the pattern is
to be expected as the three actresses are very likely to have appeared together
in between what are likely to be award shows. The nontrivial links in such pat-
terns are particularly interesting and are indicative of the show’s progression or
relationships other than co-starring.

The subgraph shown in Figure 11(c) has the highest periodic support in the
Enron dataset, repeating every day for 84 consecutive days, including weekends.
This is representative of a large number of similar periodic patterns in Enron,
in which one person emails a group of people with periods ranging from 1 to
14 days. As shown earlier in Figure 9, weekly emails seem to be particularly
popular in a corporate setting such as this, and could be used to infer functional
communities within the corporation.

Finally, we turn to the Plains Zebra dataset and to one of the most intriguing
patterns shown in Figure 11(d). Although it is quite likely that the period of 7
days is an artifact of the manner in which the population was sampled, the high
purity of the pattern indicates that this is a relatively stable grouping. It is also
by far the largest and most repetitive such pattern, parts of which are periodic
at other times as well. In contrast, the subgraphs that repeat over multiple
months are shown in Figures 11(e) and 11(f). Although the support of the latter
two patterns is relatively low, the high purity of Figure 11(f) stands out and is
representative of a large number of small but highly periodic patterns. Moreover,
all the patterns are of interactions of stallion male Zebras and correspond to their
harems grouping for a period of time. Such groupings are indeed considered more
stable for short periods of time than bachelor associations [16].

7.3. Comparison to SMCA

We generated relatively small synthetic datasets with different characteristics to
compare the performance of our algorithm with the SMCA algorithm on simple
interaction data. Starting with a population of 30 individuals, we generated a
single graph of density d. The edges of this graph were then sampled indepen-
dently at random for each of T timesteps. Although this is not intended to be a
realistic model of a social network, it allows us to control two parameters crucial
to the mining process – the overall density of the dynamic network, and the
number of timesteps. Since real social networks are generally sparse, we used
two values for d: 0.1 and 0.15. For each of these values, T was varied from 100
to 1000 in steps of 100.

Ten random dynamic networks were generated for each combination of T
and d and converted to their set representations. Both algorithms were run on

Periodic Subgraph Mining in Dynamic Networks 29

BillyRayCyrus

JoeyFatone

HeatherMills

ApoloOhno

LailaAli

JohnRatzenberger

(a) IMDB: period 7 ± 2, support
3, avg. purity 1

FelicityHuffman

EvaLongoriaParker

NicolletteSheridanWilliamH.Macy

(b) IMDB: period 364, support 3,
avg. purity 0.4

al@friedwire.com

kevin.cline eric.saibi seung-taek.oh ryan.williams juan.padron

(c) Enron: period 1, support 84, avg. purity 1. Bold circles rep-
resent @enron.com e-mail addresses.

287

354

659

027

472

602

717

531

791

1132

050

626

649

139

587

051

191

402

1056

121

131

(d) Plains: period 7, support 4, avg. purity 0.94.

295 744

641

485 727 1143

(e) Plains: period 61±6,
support 3, avg. purity 0.71

667

162

(f) Plains: period
81±6, support 4, avg.
purity 1

Fig. 11. Examples of some interesting periodic subgraphs.

the same set of networks with a minimum support value of σ = 3 and the
maximum period unrestricted, calculated using Proposition 3 for each value of T .
All algorithms were limited to 8 GB of disk space for storing their output, which
can be considered reasonable given the very small size of the input networks.

Figure 12 shows the performance of SMCA compared to our algorithm. The
computation time used by both algorithms is comparable for d = 0.1, although
SMCA does not scale as well as our algorithm. For a slightly higher density of

30 M. Lahiri and T.Y. Berger-Wolf

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

M
in

in
g

tim
e

(s
)

Timesteps

SMCA
PSEMiner

(a) Mining time: d = 0.1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900 1000

M
in

in
g

tim
e

(s
)

Timesteps

SMCA
PSEMiner

(b) Mining time: d = 0.15

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 p

at
te

rn
s

Timesteps

SMCA
PSEMiner

(c) # Patterns: d = 0.1

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 p

at
te

rn
s

Timesteps

SMCA
PSEMiner

(d) # Patterns: d = 0.15

Fig. 12. The performance of SMCA compared to our algorithm.

d = 0.15, the number of periodic patterns is expected to increase as well. The
computation times are no longer comparable between algorithms, as shown in
Figure 12(b). This is partly caused by the fact that SMCA does not output
closed or parsimonious patterns, which is evident in Figures 12(c) and 12(d).
In Figures 12(b) and 12(d), there are no data points for SMCA beyond T =
500 since the algorithm reached the maximum output size of 8 GB prior to
completion.

Thus, our algorithm scales much better than SMCA. The number of patterns
generated by SMCA is generally about three orders of magnitude larger than the
number of parsimonious patterns output by our algorithm. The intractability of
non-parsimonious periodic pattern mining is one of the main reasons we could
not use SMCA on the larger natural datasets, where the number of vertices,
timesteps, and the average timestep density are much higher than the values
used here.

8. Conclusion

We have proposed and formalized the periodic subgraph mining problem for dy-
namic networks and analyzed the computational complexity of enumerating all
periodic subgraphs. We have shown that there are at most O(T 2 ln T

σ
) closed

periodic subgraphs at minimum support σ in a dynamic network of T timesteps.
Furthermore, we have described a polynomial time, online algorithm to mine

Periodic Subgraph Mining in Dynamic Networks 31

all periodic subgraphs, including a smoothing mechanism for mining subgraphs
that are not perfectly periodic. We have also proposed a new measure, purity,
for ranking mined subgraphs according to how perfectly periodic a subgraph is.
We have demonstrated our algorithm on four real-world dynamic social networks,
spanning interactions between corporate executives, college students, wild Zebra,
and Hollywood celebrities. Our algorithm efficiently mines all periodic patterns,
is provably tractable, and is a meaningful alternative to using frequent subgraph
mining to look for interesting patterns in dynamic networks. We have also shown
that periodic subgraphs can be used as an effective characterization of the dy-
namics of various systems. Our technique was able to discover plausible natural
periodicities in many of the systems we examined, and shows promise as a tool
for exploratory analysis of interaction dynamics.

There are a number of interesting avenues for future research. One such di-
rection is to incorporate probabilistic models of periodicity instead of strictly
combinatorial ones. Yang et al. [39] and Ma and Hellerstein [26] are two ex-
amples of such attempts; it would be interesting to see how well they perform
in dynamic networks. Along the lines of various studies on assessing the inter-
estingness of frequent patterns [5, 34, 36], a method for assessing the statistical
significance of mined patterns under different statistical models would be valu-
able in dynamic networks, especially in inter-disciplinary research. A number of
extensions can also be made to the algorithm we have presented in this paper.
These include an extension to mine complex periodic patterns, similar to the
types of patterns mined in [19, 20, 26, 40], and different algorithms or heuristics
for manipulating the structure of the pattern tree to increase efficiency. The con-
cept of noise could also be extended to discover noisy subgraphs instead of just
noisy periodicities. Finally, we believe that the capabilities of the method, espe-
cially in an inter-disciplinary context, can only be fully explored if the results
of the mining process are presented or visualized in a succinct but insightful
manner. This is a challenging and open question.

9. Acknowledgements

Our work is supported by NSF grants IIS-0705822 and CAREER IIS-0747369.
We are grateful to Dan Rubenstein, Ilya Fischhoff, and Siva Sundaresan of the
Department of Ecology and Evolutionary Biology at Princeton University for
sharing the Plains Zebra data. Their work was supported by the NSF grants
CNS-025214 and IOB-9874523. We would also like to thank Dr. Kuo-Yu Huang
and Dr. Chia-Hui Chang, the authors of [20], for their assistance with the SMCA
algorithm.

References

[1] Agrawal, R., and Srikant, R. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the 20th International Conference on Very Large Data Bases
(San Francisco, CA, 1994), Morgan Kaufmann Publishers Inc., pp. 487–499.

[2] Agrawal, R., and Srikant, R. Mining sequential patterns. In Proceedings of the Eleventh
International Conference on Data Engineering (Washington, DC, USA, 1995), IEEE Com-
puter Society, pp. 3–14.

[3] Barabási, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., and Vicsek, T. Evo-
lution of the social network of scientific collaborations. Physica A: Statistical Mechanics
and its Applications 311, 3–4 (2002), 590–614.

32 M. Lahiri and T.Y. Berger-Wolf

[4] Boros, E., Gurvich, V., Khachiyan, L., and Makino, K. On the complexity of generating
maximal frequent and minimal infrequent sets. In Proceedings of the 19th Annual Sympo-
sium on Theoretical Aspects of Computer Science (London, UK, 2002), Springer-Verlag,
pp. 133–141.

[5] Bringmann, B., and Zimmermann, A. One in a million: picking the right patterns. Knowl-
edge and Information Systems 18, 1 (2009), 61–81.

[6] Carpineto, C., and Romano, G. Concept Data Analysis: Theory and Applications. John
Wiley & Sons, 2004.

[7] Chapanond, A., Krishnamoorthy, M. S., and Yener, B. Graph theoretic and spectral
analysis of Enron email data. Comput. Math. Organ. Theory 11, 3 (2005), 265–281.

[8] Cheng, J., Ke, Y., and Ng, W. A survey on algorithms for mining frequent itemsets over
data streams. Knowledge and Information Systems 16, 1 (2008), 1–27.

[9] Clauset, A., and Eagle, N. Persistence and Periodicity in a Dynamic Proximity Net-
work. DIMACS/DyDAn Workshop on Computational Methods for Dynamic Interaction
Networks, 2007.

[10]Dickinson, P. J., Bunke, H., Dadej, A., and Kraetzl, M. On graphs with unique node
labels. 409–437.

[11]Diesner, J., and Carley, K. M. Exploration of Communication Networks from the
Enron Email Corpus. In Proceedings of the 2005 SIAM Workshop on Link Analysis,
Counterterrorism and Security (2005), pp. 3–14.

[12]Eagle, N., and Pentland, A. Reality mining: sensing complex social systems. Personal
and Ubiquitous Computing 10, 4 (2006), 255–268.

[13]Elfeky, M. G., Aref, W. G., and Elmagarmid, A. K. Periodicity detection in time
series databases. IEEE Transactions on Knowledge and Data Engineering 17, 7 (2005),
875–887.

[14]Elfeky, M. G., Aref, W. G., and Elmagarmid, A. K. WARP: Time warping for pe-
riodicity detection. In Proceedings of the Fifth IEEE International Conference on Data
Mining (Washington, DC, USA, 2005), IEEE Computer Society, pp. 138–145.

[15]Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships of the
internet topology. In Proceedings of the conference on Applications, technologies, architec-
tures, and protocols for computer communication (New York, NY, 1999), ACM, pp. 251–
262.

[16]Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., Larkin, H. M., Sellier, M.-J.,

and Rubenstein, D. I. Social relationships and reproductive state influence leadership roles
in movements of plains zebra, Equus burchellii. Animal Behaviour 73, 5 (2007), 825–831.

[17]Garofalakis, M., Rastogi, R., and Shim, K. SPIRIT: Sequential pattern mining with
regular expression constraints. In Proceedings of the international conference on very large
data bases (1999), pp. 223–234.

[18]Han, J., Cheng, H., Xin, D., and Yan, X. Frequent pattern mining: Current status and
future directions. Data Mining and Knowledge Discovery 15, 1 (2007), 55–86.

[19]Han, J., Yin, Y., and Dong, G. Efficient mining of partial periodic patterns in time series
database. In Proceedings of the 15th International Conference on Data Engineering (Los
Alamitos, CA, 1999), IEEE Computer Society, pp. 106–115.

[20]Huang, K.-Y., and Chang, C.-H. SMCA: A general model for mining asynchronous
periodic patterns in temporal databases. IEEE Transactions on Knowledge and Data
Engineering 17, 6 (2005), 774–785.

[21]Inokuchi, A., Washio, T., and Motoda, H. An apriori-based algorithm for mining fre-
quent substructures from graph data. In Proceedings of the 4th European Conference on
Principles of Data Mining and Knowledge Discovery (2000), pp. 13–23.

[22]Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D. I.

Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with
ZebraNet. ACM SIGPLAN Notices 37, 10 (2002), 96–107.

[23]Kuramochi, M., and Karypis, G. Frequent subgraph discovery. In Proceedings of the
2001 IEEE International Conference on Data Mining (2001), pp. 313–320.

[24]Lahiri, M., and Berger-Wolf, T. Y. Structure prediction in temporal networks using
frequent subgraphs. In Proceedings of IEEE Symposium on Computational Intelligence
and Data Mining (2007), pp. 35–42.

[25]Lahiri, M., and Berger-Wolf, T. Y. Mining periodic behavior in dynamic social net-
works. In Proceedings of the IEEE International Conference on Data Mining (ICDM)
(2008), pp. 373–382.

[26]Ma, S., and Hellerstein, J. L. Mining partially periodic event patterns with unknown

Periodic Subgraph Mining in Dynamic Networks 33

periods. In Proceedings of the 17th International Conference on Data Engineering (Wash-
ington, DC, USA, 2001), IEEE Computer Society, pp. 205–214.

[27]Nanavati, A. A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukher-

jea, S., and Joshi, A. On the structural properties of massive telecom call graphs: findings
and implications. In Proceedings of the 15th ACM international conference on Information
and knowledge management (New York, NY, USA, 2006), ACM, pp. 435–444.

[28]Newman, M. E. J. From the Cover: The structure of scientific collaboration networks.
Proceedings of the National Academy of Science 98 (Jan. 2001), 404–409.

[29]Özden, B., Ramaswamy, S., and Silberschatz, A. Cyclic association rules. In Proceedings
of the Fourteenth International Conference on Data Engineering (Washington, DC, USA,
1998), IEEE Computer Society, pp. 412–421.

[30]Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. Efficient mining of association
rules using closed itemset lattices. Information Systems 24, 1 (1999), 25–46.

[31]Pei, J., and Han, J. Can we push more constraints into frequent pattern mining? In
Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining (2000), ACM New York, NY, USA, pp. 350–354.

[32]Pei, J., Han, J., and Wang, W. Mining sequential patterns with constraints in large
databases. In Proceedings of the eleventh international conference on Information and
knowledge management (2002), ACM New York, NY, USA, pp. 18–25.

[33]Sundaresan, S. R., Fischhoff, I. R., Dushoff, J., and Rubenstein, D. I. Network
metrics reveal differences in social organization between two fission–fusion species, Grevys
zebra and onager. Oecologia 151, 1 (2007), 140–149.

[34]Tatti, N. Maximum entropy based significance of itemsets. Knowledge and Information
Systems 17, 1 (2008), 57–77.

[35]Wasserman, S., and Faust, K. Social Network Analysis: Methods and Applications. Cam-
bridge University Press, 1994.

[36]Yan, X., Cheng, H., Han, J., and Yu, P. S. Mining significant graph patterns by leap
search. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data (New York, NY, USA, 2008), ACM, pp. 433–444.

[37]Yang, G. The complexity of mining maximal frequent itemsets and maximal frequent
patterns. In Proceedings of the tenth ACM SIGKDD international conference on knowledge
discovery and data mining (New York, NY, 2004), ACM, pp. 344–353.

[38]Yang, J., Wang, W., and Yu, P. S. InfoMiner: mining surprising periodic patterns. In
Proceedings of the 7th ACM SIGKDD international conference on Knowledge discovery
and data mining (New York, NY, 2001), ACM, pp. 395–400.

[39]Yang, J., Wang, W., and Yu, P. S. InfoMiner+: Mining partial periodic patterns with
gap penalties. In Proceedings of the 2002 IEEE International Conference on Data Mining
(Washington, DC, 2002), IEEE Computer Society, p. 725.

[40]Yang, J., Wang, W., and Yu, P. S. Mining asynchronous periodic patterns in time series
data. IEEE Transactions on Knowledge and Data Engineering 15, 3 (2003), 613–628.

[41]Zhu, F., Yan, X., Han, J., and Yu, P. S. gPrune: a constraint pushing framework for
graph pattern mining. Lecture Notes in Computer Science 4426 (2007), 388.

