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Protein Secondary Structure 
Prediction Using Deep 
Convolutional Neural Fields
Sheng Wang1,2, Jian Peng3, Jianzhu Ma1 & Jinbo Xu1

Protein secondary structure (SS) prediction is important for studying protein structure and function. 
When only the sequence (profile) information is used as input feature, currently the best predictors can 
obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF 
(Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension 
of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and 
shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by 
a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much 
more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, 
~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly 
outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict 
other protein structure properties such as contact number, disorder regions, and solvent accessibility.

The 3D structure of a protein is determined largely by its amino acid sequence1. However it is extremely challeng-
ing to predict protein structure from sequence alone2. Since protein structure is critical to analysis of its function 
and many applications like drug and/or enzyme design3–5, understanding the complex sequence-structure rela-
tionship is one of the greatest challenges in computational biology6–8. Accurate protein structure and function 
prediction relies, in part, on the accuracy of secondary structure prediction9–12.

Protein secondary structure (SS) refers to the local conformation of the polypeptide backbone of proteins. 
There are two regular SS states: alpha-helix (H) and beta-strand (E), as suggested by Pauling13 more than 60 
years ago, and one irregular SS type: coil region (C). Sander14 developed a DSSP algorithm to classify SS into 
8 fine-grained states. In particular, DSSP assigns 3 types for helix (G for 310 helix, H for alpha-helix, and I for 
pi-helix), 2 types for strand (E for beta-strand and B for beta-bridge), and 3 types for coil (T for beta-turn, S for 
high curvature loop, and L for irregular). Overall, protein secondary structure can be regarded as a bridge that 
links the primary sequence and tertiary structure and thus, is used by many structure and functional analysis 
tools15–18.

Protein SS prediction has been extensively studied10–12,19–35. Many computational methods have been devel-
oped to predict both 3-state SS and a few to predict 8-state SS. Meanwhile, 8-state prediction may provide more 
detailed local structure information33,34,36. Holley & Karplus19 and Qian & Sejnowski20 may be the first that used 
neural networks (NN) to predict SS, which have been followed by a few others19,21,23,24,37. The most significant 
improvement in SS prediction was achieved by Rost & Sander23 and Zvelebil et al.35 by making use of sequence 
profile derived from multiple sequence alignment38–40. Jones et al.24 developed a 2-stage neural network method 
PSIPRED, which takes PSI-BLAST sequence profile41 as input and obtains ~80% accuracy for 3-state SS predic-
tion. Other machine learning methods include bidirectional recurrent neural networks26,34,37 (which can capture 
spatial dependency), probabilistic graphical models25,29,42, support vector machines27,28,30,43 and hidden Markov 
models22,31.

Very recently Baldi et al.34 presented a template-based method for SS prediction, which can yield much better 
accuracy by making use of solved structures as templates. However, when close templates are not available, Baldi’s 
method performs slightly worse than PSIPRED. Cheng et al.44 proposed a deep learning approach to 3-state SS 
prediction using a typical deep belief network model, in which each layer is a restricted Boltzmann machine 
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(RBM)45 and trained by contrastive divergence46 in an unsupervised manner. Zhou & Troyanskaya36 reported 
another deep learning approach to 8-state SS prediction using a supervised generative stochastic network, which 
to our best knowledge may be the best 8-state predictor. However, neither Cheng nor Zhou reported a better than 
80% accuracy for 3-state prediction.

SS prediction is usually evaluated by Q3 or Q8 accuracy, which measures the percent of residues for which 
3-state or 8-state secondary structure is correctly predicted44. So far the best Q3 accuracy for ab initio prediction 
(i.e., templates are not allowed) is ~80% obtained by PSIPRED and a few other state-of-the-art approaches such as 
JPRED47,48. It is very challenging to develop a method that can break this long-lasting record. This may be because 
the relatively shallow architectures of existing methods cannot model well the complex sequence-structure rela-
tionship. Alternatively, 3-state SS prediction could also be measured by segment of overlap (SOV) score, which 
can be interpreted as SS segment-based accuracy. SOV allows for small wrong predictions at SS segment ends, but 
penalizes more on wrong predictions in the middle region of a SS segment49.

In this paper we present a machine learning method DeepCNF (Deep Convolutional Neural Fields) for both 
3-state and 8-state SS prediction. DeepCNF combines the advantages of both conditional neural fields (CNF)50 
and deep convolutional neural networks (DCNN)51, which captures not only complex sequence-structure rela-
tionship, but also models SS label correlation among adjacent residues. DeepCNF is similar to conditional ran-
dom fields (CRF)52 and CNF33 in modeling interdependency among adjacent SS labels. However, DeepCNF uses 
DCNN to replace the shallow neural networks used in CNF so that it can capture very complex relationship 
between input features and output labels. This DCNN can also include longer-range sequence information (see 
Figs 1 and 2).

Figure 1.  A typical deep neural network (A) vs. a convolutional deep neural network (B). A convolutional deep 
neural network can capture longer-range sequence information than a typical deep neural network when both 
use the same window size.

Figure 2.  The architecture of DeepCNF, where i is the residue index and Xi the associated input features, 
Hk represents the k-th hidden layer, and Y is the output label. All the layers from the 1st to the top layer form 
a deep convolutional neural network (DCNN) with parameter = , , …,W k K{ 1 2 }k . The top layer and the label 
layer form a conditional random field (CRF) with U and T being the model parameters. U is the parameter used 
to connect the top layer to the label layer, and T is used to model correlation among adjacent residues.
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Our DeepCNF method differs from Cheng’s method44 in that the latter uses a typical deep belief network  
(see Fig. 1A) while we use a deep convolutional network (see Fig. 1B). As such, our method can capture 
longer-range sequence information than Cheng’s method. Our method also differs from Cheng’s method in that 
the latter does not explicitly model SS interdependency among adjacent residues. Our method differs from Zhou’s 
deep learning method (denoted as ICML2014)36 in the following aspects: (1) our method places only input fea-
tures in a visible layer and treats the SS labels as hidden states while Zhou’s method places both the input fea-
tures and SS labels in a visible layer; (2) our method explicitly models the SS label interdependency while Zhou’s 
method does not; (3) our method directly calculates the conditional probability of SS labels on input features 
while Zhou’s method uses sampling; (4) our method trains the model parameter simultaneously from the input 
to output layer while Zhou’s method trains the model parameters layer-by-layer; and (5) more importantly, our 
method demonstrated a significantly improved Q3 accuracy and SOV score while Zhou’s method did not.

Our experiments show that our method greatly outperforms the state-of-the-art methods, especially on those 
structure types which are more challenging to predict, such as high curvature regions (S), beta loop (T), and 
irregular loop (L).

Results
Dataset.  We used five publicly available datasets: (1) CullPDB53 of 6125 proteins, (2) CB513 of 513 pro-
teins, (3) CASP1054 and (4) CASP1155 datasets containing 123 and 105 domain sequences, respectively, and (5) 
CAMEO (http://www.cameo3d.org/sp/6-months/) test proteins in the past 6 months (from 2014-12-05 to 2015-
05-29). Meanwhile, datasets (2–5) are only used for test. The CullPDB dataset was constructed before CASP10 
(i.e., May 2012) and any two proteins in this set share less than 25% sequence identity with each other. Following 
the same procedure in36, we divided CullPDB into two subsets for training and test, respectively, such that the 
training proteins share no more than 25% sequence identity with our test sets (2–4). Our training set consists of 
~5600 CullPDB proteins and the remaining ~500 PDB proteins are used as the test data. In total there are 403 
CAMEO test targets in the past 6 months and 179 proteins are kept for test after removing those sharing more 
than 25% sequence identity with the training set. The native SS labels of all the training and test proteins are 
generated by DSSP14.

An alternative way to select non-redundant proteins for training and test is to pick one representative from 
each protein superfamily defined by CATH56 or SCOP57. By using test proteins in different superfamilies than 
the training proteins, we can reduce the bias incurred by the sequence profile similarity between the training and 
test proteins. To fulfill this, we use the publically available JPRED training and test data47 (http://www.compbio.
dundee.ac.uk/jpred4/about.shtml), which has 1338 training and 149 test proteins, respectively, each of which 
belongs to a different superfamily.

Programs to compare.  We compare our method DeepCNF-SS (abbreviated as DeepCNF) with the fol-
lowing programs: SSpro34, RaptorX-SS833, ICML201436 for 8-state SS prediction; and SSpro, RaptorX-SS8, 
PSIPRED24, SPINE-X12, JPRED47, for 3-state SS prediction. The SSpro package uses two prediction strategies: 
without template and with template (i.e., using a solved structure in PDB as template). All the other test methods 
do not make use of template information at all. All the programs are run with their parameters set according 
to their respective papers. The program derived from the ICML2014 method is not publicly available, so we 
cannot evaluate its performance on CASP10, CASP11 and CAMEO test sets. We cannot test Cheng’s deep learn-
ing method either because it is not publicly available. However, only minor improvement in Q3 accuracy over 
PSIPRED was reported by Cheng’s paper44.

Performance metric.  We measure the prediction results in terms of Q3 and Q8 accuracy. The Q3 (Q8) accu-
racy is defined as the percentage of residues for which the predicted secondary structures are correct32. For 3-state 
SS prediction, we also calculate the SOV (Segment of OVerlap) score49, which measures how well the observed 
and the predicted SS segments match. In particular, the SOV measure assigns a lower score to the prediction devi-
ating from observed SS segment length distribution even if it has high Q3 accuracy (i.e., per-residue accuracy)31. 
A wrong prediction in the middle region of a SS segment results in a lower SOV score than a wrong prediction at 
the terminal regions. A detailed definition of SOV is described in32, and also in our Supplemental File.

Determining the regularization factor by cross validation.  Our DeepCNF has only a 
hyper-parameter, i.e., the regularization factor, which is used to avoid overfitting. Once it is fixed, we can estimate 
all the model parameters by solving the optimization problem in Eq. (10). To choose the right regularization fac-
tor and examine the stability of our DeepCNF model, we conduct a five-fold cross-validation test. In particular, 
we randomly divide the training set (containing 5600 CullPDB proteins) into 5 subsets and then use 4 subsets 
as training and one as validation. Figure 3 shows the Q8 accuracy of our DeepCNF model with respect to the 
regularization factor. The optimal regularization factor is around 50, which yields 73.2% Q8 accuracy on average. 
At this point, the Q8 accuracy difference of all the models is less than 1%, consistent with the previous report33.

Determining the DeepCNF architecture.  The architecture of our DeepCNF model is mainly determined 
by the following 3 factors (see Fig. 2): (i) the number of hidden layers; (ii) the number of different neurons at 
each layer; and (iii) the window size at each layer. We fix the window size to 11 because the average length of an 
alpha helix is around eleven residues58 and that of a beta strand is around six59. To show the relationship between 
the performance and the number of hidden layers, we trained four different DeepCNF models with 1, 3, 5, and 7 
layers, respectively. All the models use the same window size (i.e., 11) and the same number (i.e., 100) of different 
neurons at each layer. In total these four models have ~50 K, ~270 K, ~500 K, and ~700 K parameters, respectively. 
We trained the models with different regularization factors. As shown in Fig. 4A, when only one hidden layer is 
used, DeepCNF becomes CNF50 and its performance is quite similar to RaptorX-SS8 (single model) as shown in 

http://www.cameo3d.org/sp/6-months/
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Table 1. When more layers are applied, the Q8 accuracy gradually improves. To balance the model complexity 
and performance, by default we set window size to 11 and use 5 hidden layers, each with 100 different neurons.

To show that it is the deep convolutional structure but not the number of model parameters that mainly 
contributes to performance improvement, we trained four models with ~500 K model parameters but 4 different 
numbers of layers: 1, 3, 5 and 7. We still use the same window size at 11 and for each model all the layers have the 
same number of neurons. That is, for the 1-, 3-, 5- and 7-layer models, we use 1000, 140, 100, and 85 neurons for 
each layer, respectively. As shown in Fig. 4B, the models with more layers have better Q8 accuracy, although they 
have the same number of model parameters. Since the 7-layer model is only slightly better than the 5-layer model, 
to reduce computational complexity, in the following experimental results we use a DeepCNF model of 5 hidden 
layers and 100 neurons for each layer. The window size at each layer is set to 11.

Overall performances.  Tables 1, 2 and 3 show the Q8, Q3 accuracy, and SOV score of our method 
DeepCNF and the others on the five datasets. As listed in these tables, when templates are not used, our method 
significantly outperforms the others, including the popular PSIPRED, our old method RaptorX-SS833, SPINE-X 
and the recent deep learning method ICML201436. SSpro with template obtains very good accuracy on CullPDB, 

Figure 3.  Five-fold cross-validation results of Q8 accuracy on the CullPDB training set with different 
regularization factors. 

Figure 4.  The Q8 accuracy on CB513 by the models of different number of layers of 1, 3, 5, and 7 (the 
same window size is used). (A) Each layer of the 4 models has 100 neurons for a position. The total parameter 
number of the 4 models is different. (B) Each layer of the models has different neurons for a position. The total 
parameter number of the 4 models is similar.

Methods

Q8 (%)

CullPDB CB513 CASP10 CASP11 CAMEO

SSpro (without template) 66.6 63.5 64.9 65.6 63.5

SSpro (with template) 85.1 89.9 75.9 66.7 65.7

ICML2014 72.1 66.4 — —

RaptorX-SS8 69.7 64.9 64.8 65.1 66.2

DeepCNF-SS 75.2 68.3 71.8 72.3 72.1

Table 1.   Q8 accuracy of the tested methods on 5 datasets: CullPDB, CB513, CASP10, CASP11 and 
CAMEO. The program for ICML2014 is not publicly available. Its result is taken from its paper.
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CB513 and CASP10, but not on CASP11 and CAMEO. This is because SSpro uses a template database built in 
2013, covering only the former three sets but not CASP11 or CAMEO. Most CASP11 and CAMEO test proteins 
share < 25% sequence identity with any template databases created before 2014. In terms of Q3 accuracy on 
CASP10, DeepCNF obtains 84.4%, even slightly outperforming SSpro with template (84.2%). In terms of both 
Q3 and Q8 accuracy on CASP11, DeepCNF obtains 83.8% and 71.9%, respectively, significantly outperforming 
SSpro with template (78.4% and 66.7%, respectively). The same trend is also observed on 179 CAMEO targets, 
where DeepCNF obtains 84.4% Q3 and 72.1% Q8 accuracy, respectively, much better than SSpro with template 
(78.9% and 65.7%, respectively).

When only 85 CASP10 and CASP11 hard targets are evaluated, DeepCNF, PSIPRED, SPINE-X, JPRED, 
RaptorX-SS8, SSpro (with template) and SSpro (without template) have Q3 accuracy 82.2%, 77.9%, 77.1%, 78.5%, 
76.2%, 76.9 and 75.4%, respectively, and SOV score 83.0%, 78.1%, 77.2%, 79.8%, 77.9%, 75.3% and 73.6%, respec-
tively. All the methods have lower Q3 accuracy on these hard targets than on the whole datasets since all the 
test methods use sequence profiles as input features and a hard target usually has sparse sequence profile that 
carries little evolutionary information. In addition, the hard targets do not have good structure homologs in 
the training set, so a predictor cannot copy SS labels from the training data as prediction. However, our method 
even has a slightly larger advantage over the others on the CASP hard targets than on the whole CASP sets. This 
implies that our method is slightly better than the others in dealing with sparse sequence profiles and learning 
sequence-structure relationship from the training data. Similar results are observed on the 86 CAMEO hard tar-
gets, on which DeepCNF, PSIPRED, SPINE-X, JPRED, RaptorX-SS8, SSpro (with template) and SSpro (without 
template) have Q3 accuracy 82.1%, 78.0%, 77.6%, 77.7%, 76.8%, 77.0%, and 76.5%, respectively, and SOV score 
81.7%, 77.1%, 74.8%, 78.2%, 73.7% , 72.6%, and 72.5%, respectively.

The SOV score tolerates on small wrong predictions at the terminal regions of a segment while penalizes 
more on the erroneous predictions in the middle region of a segment49. As shown in Table 3, in terms of SOV 
score on all the five datasets, DeepCNF obtains 86.2%, 84.8%, 85.6%, 85.8%, and 84.5%, respectively, significantly 
outperforming all the other predictors including SSpro with template. These results show that DeepCNF could 
yield more meaningful SS predictions. This is mainly because our deep convolutional neural networks are better 
in predicting beta turn (T), high curvature loop (S), and irregular loop (L) states, which appear more often at 
the boundary of a helix or sheet segment. The other reason is that the conditional random fields in our method 
models the interdependency among adjacent residues in a SS segment, which helps reduce erroneous predictions 
in the middle region of a segment.

Recall and precision.  Table 4 shows the recall and precision on each of the 8 states obtained by our method 
DeepCNF and the second best method ICML201436 on the CullPDB test set. Both methods fail on state I since it 
is too rare to even appear in the test set. The result of the ICML 2014 method is taken from its paper. Overall, our 
method obtains better recall and precision for each state, especially those non-ordinary states such as G, S and T. 
For the high curvature loop (S), our method has recall and precision 0.323 and 0.543, respectively, while ICML2014 
obtains 0.159 and 0.423. For beta turn (T), our method obtains recall and precision 0.594 and 0.613, respectively, 
while ICML2014 obtains 0.506 and 0.548, respectively. DeepCNF also outperforms ICML2014 for the loop (L) state. 

Methods

Q3 (%)

CullPDB CB513 CASP10 CASP11 CAMEO

SSpro (without template) 79.5 78.5 78.5 77.6 77.5

SSpro (with template) 88.7 90.7 84.2 78.4 78.9

SPINE-X 81.7 78.9 80.7 79.3 80.0

PSIPRED 82.5 79.2 81.2 80.7 80.1

JPRED 82.9 81.7 81.6 80.4 79.7

RaptorX-SS8 81.2 78.3 78.9 79.1 79.4

DeepCNF-SS 85.4 82.3 84.4 84.7 84.5

Table 2.   Q3 accuracy of the tested methods on 5 datasets: CullPDB, CB513, CASP10, CASP11 and 
CAMEO.

Methods

SOV score (%)

CullPDB CB513 CASP10 CASP11 CAMEO

SSpro (without template) 77.4 77.2 75.9 77.3 75.4

SSpro (with template) 81.3 79.4 80.7 77.4 76.3

SPINE-X 79.1 78.7 78.7 79.3 79.4

PSIPRED 81.8 81.0 80.9 81.4 80.1

JPRED 82.5 83.3 82.4 82.0 80.7

RaptorX-SS8 80.9 79.5 80.2 81.1 78.1

DeepCNF-SS 86.7 84.8 85.7 86.5 85.5

Table 3.   SOV score of the tested methods on 5 datasets: CullPDB, CB513, CASP10, CASP11 and CAMEO.
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This result could be due to the fact that S, T, and L state may be impacted by medium-range information on the pro-
tein sequence36 and our method is better than the others in modeling this kind of information. Our DeepCNF has 
a similar performance trend on the CB513 test set (see Table 5). DeepCNF outperforms ICML2014, especially on 
those non-ordinary states, as well as the ordinary beta sheet state. The largest advantage lies in predicting curvature 
loop (S) and 310 helix (G). We cannot do a detailed comparison between our method and the ICML2014 method on 
the other test sets since the program derived from the ICML2014 method is not publicly available.

Prediction accuracy with respect to homologous information.  We further examine the performance 
of DeepCNF with respect to the amount of homologous information measured by Neff 33. The Neff of a protein 
measures the average number of effective amino acids across all the residues, ranging from 1 to 20 since there are 
only 20 amino acids in nature. A small Neff indicates that the protein has a sparse sequence profile. By contrast, 
a large Neff implies that the protein may have a large amount of homologous information. Figure 5 shows the Q3 
accuracy of the five tested methods on the CB513 and the two CASP datasets with respect to Neff. When Neff ≤  2, 
DeepCNF performs slightly better than the others. However, when Neff  >  2, DeepCNF greatly outperforms the 
others.

SS8 label

Recall Precision

DeepCNF ICML2014 DeepCNF ICML2014

L 0.707 0.633 0.615 0.541

B 0.046 0.001 0.638 0.5

E 0.867 0.823 0.814 0.748

G 0.302 0.133 0.535 0.496

I 0.0 0.0 0.0 0.0

H 0.937 0.935 0.878 0.828

S 0.323 0.159 0.543 0.423

T 0.594 0.506 0.613 0.548

Table 4.   Recall and precision of DeepCNF and ICML2014 on the CullPDB test set.

SS8 label

Recall Precision

DeepCNF ICML2014 DeepCNF ICML2014

L 0.657 0.655 0.571 0.518

B 0.026 0.0 0.433 0.0

E 0.833 0.797 0.748 0.717

G 0.26 0.131 0.49 0.45

I 0.0 0.0 0.0 0.0

H 0.904 0.9 0.849 0.831

S 0.255 0.14 0.487 0.444

T 0.528 0.503 0.53 0.496

Table 5.   Recall and precision of DeepCNF and ICML2014 on the CB513 dataset.

Figure 5.  Q3 accuracy on CB513 and two CASP (CASP10-11) test sets with respect to Neff. Each point 
represents the average Q3 accuracy on those proteins falling into an Neff interval.
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Where is the improvement from?  We used 25% sequence identity as cutoff to remove redundancy 
between the training and test sets. Although the training and test proteins may not have similar primary 
sequences, their sequence profiles may be still similar, so one may wonder if our improvement is due to the 
sequence profile similarity between the test and training proteins. We conducted one stricter experiment to study 
this problem. In particular, we retrained our DeepCNF models using the 1338 JPRED training proteins and 
tested the resultant models on the 149 JPRED test proteins47. All the test and training proteins belong to different 
superfamilies. That is, it is unlikely that one test protein shares similar sequence profile with one training protein. 
The sequence profiles of these JPRED training and test proteins are generated from an NR database dated in 2012-
10-26. We divided the training set into 7 groups according to the JPRED cross-validation sets (available at http://
www.compbio.dundee.ac.uk/jpred4/about.shtml) and then trained 7 DeepCNF models separately. Each model is 
trained by the proteins in 6 groups. Tested on the 149 JPRED test proteins, the resultant 7 DeepCNF models have 
an average Q3 accuracy of 84.9% (see Supplemental Table 1), far better than what can be obtained by the other 
methods. For example, on this test set, JPRED, which is one of the best SS predictors, has Q3 accuracy 82.1%.

This experimental result indicates that the improvement mainly comes from the DeepCNF model itself 
instead of the profile similarity between the test and training proteins. In fact, as shown in previous sections, our 
method also greatly outperforms the others on the CASP11 and CAMEO hard targets (which do not have similar 
profiles as our training proteins), which further confirms this conclusion.

Conclusion and Future Work
We have presented a new sequence labeling method, called DeepCNF (Deep Convolutional Neural Fields), 
for protein secondary structure prediction. This new method can not only model complex sequence-structure 
relationship by a deep hierarchical architecture, but also exploit interdependency between adjacent SS labels. 
The overall performance of DeepCNF is significantly better than the state-of-the-art methods, breaking the 
long-lasting ~80% Q3 accuracy34. DeepCNF is even better than the other methods in terms of SOV score. In par-
ticular, DeepCNF performs much better on the SS types which are challenging to predict, such as high curvature 
region (state S), beta loop (state T), and irregular loop (state L). DeepCNF also performs reasonably well on pro-
teins without any good homologs in PDB, better than the other methods. However, DeepCNF has no significant 
advantage over the others when a protein under prediction has very sparse sequence profile (i.e., Neff ≤  2). That 
is, it is still challenging to predict SS structure from primary sequence instead of sequence profile.

In addition to secondary structure prediction, DeepCNF can be directly applied to many sequence label-
ling problems50,60–62. For example, DeepCNF can be used to predict solvent accessibility34,63,64, contact number65, 
structural alphabet66–69 and order/disorder regions70–72, which are useful for other purposes such as protein 
threading, remote homology detection73–75, and protein model quality assessment76,77.

Method
DeepCNF model.  As shown in Fig. 2, DeepCNF consists of two modules: (a) the Conditional Random Fields 
(CRF) module consisting of the top layer and the label layer, and (b) the deep convolutional neural network 
(DCNN) module covering the input to the top layer. When only one hidden layer is used, this DeepCNF becomes 
Conditional Neural Fields (CNF), a probabilistic graphical model described in50.

Conditional Random Field (CRF).  Given a protein sequence of length L, let = ( , …, )Y Y Y L1  denote its SS 
where Yi is the SS type at residue i. Let = ( , …, )X X X L1  denote the input feature where Xi is a column vector 
representing the input feature for residue i. Using DeepCNF, we calculate the conditional probability of Y on the 
input X as follows,

( )∑( ) = Ψ( , , ) + Φ( , , ) / ( ) ( )=Y X Y X Y X XP i i Zexp [ ] 1i
L

1

where Ψ( , , )Y X i  is the potential function quantifying correlation among adjacent SS types at around position i, 
Φ( , , )Y X i  is the potential function modeling relationship between Yi and input features for position i, and Z(X) 
is the partition function. Formally, Ψ () and Φ () are defined as follows,

∑ δ δΨ( , , ) = ( = ) ( = ) ( ), , +Y X i T Y a Y b 2a b a b i i 1

∑ ∑ δΦ( , , ) = ( , , ) ( = ) ( ),Y X Xi U H i W Y a 3a m a m m i

where a and b represent secondary structure states, δ() is an indicator function, Hm(X, i, W) is a neural network 
function for the m-th neuron at position i of the top layer, and W, U, and T are the model parameters to be 
trained. Specifically, W is the parameter for the neural network, U is the parameter connecting the top layer to 
the label layer, and T is for label correlation. Below see the details of the deep convolutional neural network for 
Hm(X, i, W).

Deep convolutional neural network (DCNN).  Figure 6 shows two adjacent layers. Let Mk be the number 
of neurons for a single position at the k-th layer. Let Xi(m) be the m-th feature at the input layer for residue i and 
( )H mi

k  denote the output value of the m-th neuron of position i at layer k. When k =  1, Hk is actually the input 
feature X. Otherwise, Hk is a matrix of dimension L ×  Mk. Let 2 Nk +  1 be the window size at the k-th layer. 
Mathematically, ( )H mi

k  is defined as follows.

http://www.compbio.dundee.ac.uk/jpred4/about.shtml
http://www.compbio.dundee.ac.uk/jpred4/about.shtml


www.nature.com/scientificreports/

8Scientific Reports | 6:18962 | DOI: 10.1038/srep18962

( )∑ ∑

( ) = ( ), =

( ) = ( ′) ∗ ( , ′) , <

( , , ) = ( ) = ( )

+
=− ′= +

X

H m X m k

H m h H m W m m k K

H i W H m k K

if 1

[ ] if

if 4

i
k

i

i
k

n N
N

m
M

i n
k

n
k

m i
k

1
1k

k k

Meanwhile, h() is the activation function, either the sigmoid (i.e., 1/(1 +  exp(− x))) or the tanh (i.e., 
(1 −  exp(− 2x))/(1 +  exp(− 2x))) function. Wn

k where (− Nk ≤  n ≤  Nk) is a 2D weight matrix for the connections 
between the neurons of position i +  n at layer k and the neurons of position i at layer k +  1. ( , ′)W m mn

k  is shared 
by all the positions in the same layer, so it is position-independent. Here m′  and m index two neurons at the k-th 
and (k +  1)-th layers, respectively.

Training method.  Similar to CRF52, we train the model parameters by maximum-likelihood. The 
log-likelihood is as follows.

∑( ) = Ψ( , , ) + Φ( , , ) − ( ) ( )=Y X Y X Y X XP i i Zlog [ ] log 5i
L

1

To train the model parameters, we need to calculate the gradient with respect to each parameter. We calculate 
the gradient first for CRF and then for DCNN. The gradient of the log-likelihood with respect to the parameters 
T and U is given by,

∑ ∑δ δ δ δ∇ = 


( = ) ( = )

− 

 ( = ) ( = ) ( )ι= + ( , , , ) = +
∼

,
 Y a Y b EXP Y a Y b 6YT i
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L

i m P W U T i
L
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where EXP is the expectation function and can be calculated efficiently using the forward-backward algorithm50,52.
As shown in Fig. 7, we can calculate the neuron error values at the k-th layer in a back-propagation mode as 

follows.

∑

∑ ∑
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Figure 6.  The feed-forward connection between two adjacent layers in the deep convolutional neural network. 

Figure 7.  Illustration of calculating the gradient of deep convolutional neural network from layer k + 1 to 
layer k. 
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where g() is the derivative of the activation function; it is g(x) =  (1 −  x)x and g(x) =  1 −  x2 for the sigmoid and 
tanh function, respectively. Ek is the neuron error value matrix at the k-th layer, with dimension L ×  Mk. Ei(a) is 
the error of the log-likelihood function with respect to the label at the i-th position and can be calculated by the 
forward-backward algorithm. Finally, the gradient of the parameter W at the k-th layer is:

∑∇ = ( ) ∗ ( ′) ( )( , ′) =
+

+E m H m[ ] 9W m m i
L

i
k

i n
k

1
1

n
k

L2 regularization and L-BFGS.  To reduce over-fitting, the log-likelihood objective function is penalized 
with a L2-norm of the model parameters. Thus, our final objective function is as follows.

λ θ( ) − ( )θ θ Y XPmax log 102

where θ is the set of model parameters and λ is the regularization factor used to avoid overfitting. Although 
DeepCNF has a large number of model parameters, by setting the regularization factor large enough, we can 
make the L2-norm of the model parameters small and thus, restrict the search space of the model parameter and 
avoid overfitting. However, a very large regularization factor (e.g., infinity) may restrict the model parameter into 
too small a search space and the resultant model may not learn enough from the training data (i.e., under-fitting). 
We will determine the regularization factor by cross-validation.

Since the log-likelihood function is not convex, usually we can only solve the objective function to a local 
instead of global optimum. Although a typical way to train a deep network is to do it layer-by-layer, in our imple-
mentation we train all the model parameters simultaneously. We use the L-BFGS78 to search for the optimal 
model parameters, which has also been successfully used to train CRF and CNF50,52. In addition to learning the 
model parameters simultaneously, we can also train them layer-by-layer in a supervised mode. Starting from 
the first layer (i.e., input feature), we train the model parameter W1 by removing the third to the K-th layers but 
keeping the label layer. After W1 is trained, we generate the neuron output values for the second layer and use 
them as input to train the model parameter W2 by removing the fourth to the K-th layers but keeping the label 
layer. We repeat this procedure until all the parameters are trained, and finally we fine-tune these parameters by 
simultaneous training.

Input Features.  We used the input features described in36. In particular, for each protein sequence, we ran 
PSI-BLAST41 with E-value threshold 0.001 and 3 iterations to search UniRef9079 to generate the position specific 
scoring matrix (PSSM). We then transform PSSM by the sigmoid function 1/(1 +  exp(− x)) where x is a PSSM 
entry. We also use a binary vector of 21 elements to indicate the amino acid type at position i. We use 21 since 
there might be some unknown amino acids in a protein sequence. In total there are 42 input features for each 
residue, 21 from PSSM and the other 21 from the primary sequence. Note that besides using PSSM generated by 
3 iterations, we could also add the PSSM generated by 5 iterations into the input features.

Availability.  DeepCNF is available at http://raptorx.uchicago.edu/download/.
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