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V. R Ö D L1†, M. SCHACHT7† and J. V E R S T R A Ë T E8†
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A subgraph of a hypergraph H is even if all its degrees are positive even integers, and

b-bounded if it has maximum degree at most b. Let fb(n) denote the maximum number of

edges in a linear n-vertex 3-uniform hypergraph which does not contain a b-bounded even
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subgraph. In this paper, we show that if b � 12, then

n log n

3b log log n
� fb(n) � Bn(log n)2

for some absolute constant B, thus establishing fb(n) up to polylogarithmic factors. This

leaves open the interesting case b = 2, which is the case of 2-regular subgraphs. We are

able to show for some constants c, C > 0 that

cn log n � f2(n) � Cn3/2(log n)5.

We conjecture that f2(n) = n1+o(1) as n → ∞.

1. Introduction

A k-uniform hypergraph or simply k-graph is a pair (V , E) where V is a set of vertices

and E is a set of k-subsets of V (the edges of the hypergraph). We identify a hypergraph H

with its edge set and denote by |H | its number of edges. The degree degH (v) of a vertex v

in a hypergraph is the number of edges of the hypergraph containing v. A hypergraph is

even if all of its vertices have positive even degree. A hypergraph is b-bounded if it has

maximum degree at most b and r-regular if all of its vertices have degree r. A hypergraph

is linear if every pair of its edges meet in at most one vertex. In this paper, we are

interested in the following extremal question: determine the maximum number of edges

fb(n) in a linear n-vertex 3-uniform hypergraph that does not contain a b-bounded even

subgraph. Note that fb(n) � fb−1(n) for all b.

1.1. Bounded degree even subgraphs

An elementary result in graph theory states that the extremal graphs with no even

subgraphs are trees. Given a hypergraph with more edges than vertices, the characteristic

vectors of the edges form a linear dependency over F2, which implies that the edges cor-

responding to those characteristic vectors form an even subgraph. The extremal problem

for b-bounded subgraphs can therefore also be viewed as an extremal problem involving

linear dependencies. We obtain bounds on fb(n) which are tight up to polylogarithmic

factors provided b � 12.

Theorem 1.1. Let b � 12. Then there exists an absolute constant B such that

n log n

3b log log n
� fb(n) � Bn(log n)2.

We give the proof of Theorem 1.1 in Section 5. The problem of determining fb(n) can be

viewed as an extremal problem for a ‘sparse linear dependency’. This problem is motivated

by the work of Feige [2] on certain randomized algorithms for the SAT refutation problem,

in which one of the key ingredients is determining the extremal function in hypergraphs

for an even subgraph with few edges.

1.2. Small even subgraphs

Feige [2] conjectured that for some c > 0, any 3-uniform hypergraph on n vertices with

more than (log n)cm−1/2n3/2 edges has an even subgraph of size at most m. In the language
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of linear dependencies, we are asking for the maximum size of an m-wise independent set

of vectors – no set of at most m of the vectors is linearly dependent – of Hamming weight

three in an n-dimensional vector space over F2. This question comes up naturally in coding

theory in the context of parity check matrices and the minimum distance of a code in

F
n
2. In [7], it was shown that the largest size of an m-wise independent set of vectors in a

vector space of dimension n over a finite field is n3/2+Θ(1/m) as m → ∞ by seeking a certain

type of even subgraph with at most m edges which produces field-independent linear

dependencies. One may ask for an analogue of Theorem 1.1 for small b-bounded even

subgraphs under the additional condition of linearity. Let fb(n;m) denote the maximum

number of edges in a linear 3-uniform hypergraph not containing a b-bounded even

subgraph with at most m edges. In Section 4 we prove the following.

Theorem 1.2. For any b � 4,

fb(n;m) = n3/2+Θ(1/m) as m → ∞.

The lower bound in this theorem is the standard probabilistic argument, given in [7,

Theorem 1.2], whereas the upper bound is a counting argument. This theorem would also

be implied by the truth of the following conjecture for 2-regular subgraphs.

Conjecture 1.3. For any m ∈ N, there is a constant c > 0 such that f2(n;m) = O(n3/2+c/m).

This conjecture is tight by the same probabilistic construction which gives the lower

bound in Theorem 1.2. We turn next to the case of estimating f2(n).

1.3. 2-regular subgraphs

The case of 2-regular subgraphs (namely the case b = 2 in the last section) appears to be

substantially more difficult. We are able to prove the following theorem regarding f2(n)

in linear 3-uniform hypergraphs.

Theorem 1.4. There exist constants c, C > 0 such that

cn log n � f2(n) � Cn3/2(log n)5.

We prove Theorem 1.4 in Section 3, using a ‘regularization lemma’ for hypergraphs.

We remark that if we relax the condition of linearity, then it was shown in [6] that

any n-vertex 3-uniform hypergraph with no 2-regular subgraphs has at most
(
n−1

2

)
+ O(n)

edges as n → ∞, and if k is even, it was shown that if n is large enough, then any k-uniform

n-vertex hypergraph without 2-regular subgraphs has at most
(
n−1
k−1

)
edges, with equality

only for the hypergraph consisting of all edges containing a vertex. Despite the large gap

between the upper and lower bounds for f2(n) in Theorem 1.4, we make the following

conjecture, which is supported by Theorem 1.1.

Conjecture 1.5. f2(n) = n1+o(1) as n → ∞.
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1.4. Organization

We begin with the proof of Theorem 1.4 in Section 3. Thereafter, we prove Theorem 1.2

in Section 4, and finally we prove Theorem 1.1 in Section 5. We end with some concluding

remarks on a few related results for the extremal problem of subgraphs in which all

degrees are small multiples of a prime p.

1.5. Notation

We use standard graph theory notation. In particular, for a graph G = (V , E) we denote

by δ(G) the minimum degree of G and by Δ(G) the maximum degree of G.

Throughout this paper, a hypergraph refers to a linear 3-uniform hypergraph, unless

otherwise specified. If H is a hypergraph, then V (H) denotes its vertex set. We write

degH (x) for the degree of x in H , which is the number of edges that contain x. The

minimum degree of H , denoted by δ(H), is a minimum taken over all degH (x) with

x ∈ V (H). A hypergraph H is 3-partite if we may write V (H) = X∪̇Y ∪̇Z and all edges

of H are of the form {x, y, z} with x ∈ X, y ∈ Y and z ∈ Z . We refer to X, Y , and Z as

the parts of H . We denote by H[X,Y , Z] a 3-partite hypergraph H with parts X, Y , and

Z . It will be convenient to identify (hyper)graphs with their edge sets, i.e., |H | stands for

the number of edges in the hypergraph H .

2. A regularization lemma

A 3-partite hypergraph G[X,Y , Z] is defined to be t-balanced if, for W ∈ {X,Y , Z},

max
w∈W

degG(w) � t · |G|
|W | .

The following lemma will be used to prove the upper bound in Theorem 1.4.

Lemma 2.1. Let H = H[X,Y , Z] be a (not necessarily linear) 3-partite hypergraph of

maximum degree Δ � 2, and let t = �log2 Δ�. Then H has a 2t2-balanced subgraph with

at least |H |/t3 edges.

Proof. We may assume H has no isolated vertices. For sets A ⊆ X,B ⊆ Y ,C ⊆ Z , let

HABC denote the subgraph induced by A ∪ B ∪ C . By averaging, for some a ∈ [t], the set

A = {x ∈ X : 2a−1 � degH (x) < 2a}

has the property that |HAY Z | � |H |/t. We repeat the same procedure for Y and HAY Z .

For some b ∈ [t], the set

B = {y ∈ Y : 2b−1 � degHAY Z (y) < 2b}

has the property that |HABZ | � |HAY Z |/t � |H |/t2. For some c ∈ [t], the set

C = {z ∈ Z : 2c−1 � degHABZ (z) < 2c}

has the property that |HABC | � |HABZ |/t � |HAY Z |/t2 � |H |/t3. We prove that G = HABC

is 2t2-balanced. By definition, |G| � 2c−1|C|, |G| � 2b−1|B|/t, and |G| � 2a−1|A|/t2. Since
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the maximum degrees of vertices in A,B, C are at most 2a, 2b and 2c in G, we have, for

W ∈ {A,B, C},

max
w∈W

degG(w) � 2t2 · |G|
|W | .

Therefore G is 2t2-balanced. Since |G| � |H |/t3, this completes the proof.

3. Proof of Theorem 1.4

For the upper bound in Theorem 1.4, we use a key observation of Lovász [5] that the

symmetric difference of two matchings in a hypergraph with the same vertex set gives a

2-regular subgraph, together with Lemma 2.1 from the last section.

3.1. Proof of f2(n) � Cn3/2(log n)5

Let H be a linear hypergraph on n vertices containing no 2-regular subgraphs. We shall

show |H | < 150n3/2�log2 n�5. It is well known that H contains a 3-partite subgraph F with

at least 2
9
|H | edges – for instance, the expected number of edges in a random 3-partition

is 2
9
|H |. Suppose F has maximum degree Δ and let t = �log2 Δ�. By Lemma 2.1, F has a

2t2-balanced subgraph G and

|G| � |F |
t3

� 2|H |
9t3

. (3.1)

Let X, Y , and Z be the parts of G. Set

n′ = min{|X|, |Y |, |Z |} and m =
n′

12t2
. (3.2)

For future reference, let us note that since G is linear, Δ � (n− 1)/2, and hence

n′ � |G|
Δ

>
2

n
|G|

(3.1)

� 4|H |
9nt3

. (3.3)

An m-matching in G is a set of m pairwise vertex-disjoint edges of G.

Claim 3.1. Let M denote the set of m-matchings in G. Then

|M| �
(
n′

m

)(
n

m

)2

. (3.4)

This claim is proved as follows. Suppose that |M| is larger than the bound in the

claim. Every m-matching of G intersects each part X, Y and Z in precisely m elements.

Hence the number of sets supporting some m-matching in G is at most
(
n′

m

)(
n
m

)2
. Thus, if

the inequality (3.4) does not hold then there exist m-matchings M1 �= M2 ∈ M for which

V (M1) = V (M2). Consider the symmetric difference M = M1 � M2 (of edges), which is

non-empty as M1 �= M2. Since every v ∈ V (M) is contained in either 0 or 2 edges of M,

the hypergraph M is 2-regular. This contradicts that H has no such subgraph, and proves

the claim.
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It remains to find a lower bound for |M|. The following greedy procedure renders

an m-matching in G: pick an arbitrary e0 ∈ G, and after choosing e0, e1, . . . , ej ∈ G, pick

ej+1 ∈ G which is disjoint from each ei, 0 � i � j. Let ΔX,ΔY and ΔZ be the maximum

degrees in X, Y , and Z . We claim that, provided j < m, there are at least |G|/2 choices

for ej+1. Indeed, since G is 2t2-balanced, the number of edges intersecting
⋃

1�i�j ei is at

most

j ·
(
ΔX + ΔY + ΔZ

)
< m · 2t2

(
|G|
|X| +

|G|
|Y | +

|G|
|Z |

)
� m · 2t2 · 3|G|

n′

(3.2)

� |G|
2
.

Consequently, using (3.1),

|M| � 1

m!

(
|G|
2

)m

� 1

m!

(
|H |
9t3

)m

. (3.5)

By (3.5) and (3.4),

|H | � 9t3n′
(
en

m

)2

. (3.6)

By the definition of m, and (3.3), we have

n′
(
en

m

)2

= n′
(

12t2en

n′

)2

=
(12t2ne)2

n′
(3.7)

� (12t2ne)2

4|H |/9nt3 =
(18e)2n3t7

|H | .

It follows together with (3.6) that |H | � (54e)n3/2t5 < 150n3/2�log2 n�5, as required.

3.2. Proof of f2(n) � c log n

We give a recursive construction of linear 3-partite 3-uniform hypergraphs Hi = (Vi, Ei),

where |Vi| = ni and |Ei| = mi, with vertex partition Vi = Ai∪̇Bi∪̇Ci, i � 0, satisfying

(i) |Ei| = Ω
(
ni log ni), and

(ii) Hi contains no 2-regular subgraph.

First, let H0 consist of three vertices and one edge. For i � 1, construct Hi from

Hi−1 as follows. Let H ′
i−1 be a (vertex-disjoint) copy of Hi−1 with 3-partition V ′

i−1 =

A′
i−1 ∪̇B′

i−1 ∪̇C ′
i−1. The 3-uniform hypergraph Hi will contain Hi−1 ∪H ′

i−1, together with

the following additional edges. Fix Zi−1 ∈ {Ai−1, Bi−1, Ci−1} achieving |Zi−1| � ni−1/3, and

let Z ′
i−1 denote its copy. Add a new vertex xi and all triples of the form {xi, z, z′}, where

z′ ∈ Z ′
i−1 is the copy of z ∈ Zi−1.

Clearly, Hi is linear. Observe that it is also 3-partite. Indeed, if (without loss of

generality) we assume Zi−1 = Ai−1, then a 3-partition of Hi is given by Ai = Ai−1 ∪ C ′
i−1,

Bi = Bi−1 ∪ B′
i−1 ∪ {xi}, and Ci = A′

i−1 ∪ Ci−1. Moreover, it is easy to see that Hi satisfies

property (i). Indeed, the construction of Hi implies the following recursive formulas for

i � 1:

ni = 2ni−1 + 1 and mi � 2mi−1 + ni−1

3
.
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A simple induction gives ni = 2i+2 − 1, and similarly mi � (i+ 1)2i−1, since

mi � 2mi−1 + 1
3
ni−1 � 2(i2i−2) + 1

3
(2i+1 − 1) � i2i−1 + 2i−1.

It follows as required that mi = Ω
(
ni log ni).

Now we need to verify property (ii). We proceed by induction and show, in fact, the

following stronger statement for every i � 0:

(Si) Every non-empty subgraph G ⊂ Hi with maximum degree Δ(G) � 2 is either a single

edge, or contains at least four vertices of degree one.

Clearly, 3.2 holds for i = 0, so let i � 1. Let G be a non-empty subgraph of Hi with

Δ(G) � 2, and for sake of the argument, assume that G is not just a single edge.

Let G1 ⊆ Hi−1 and G2 ⊆ H ′
i−1 denote the (possibly empty) induced subgraphs of G

contained in Hi−1 and H ′
i−1, respectively. Let �(G) denote the number of vertices of degree

one in G, and let �r = �(Gr), r = 1, 2, denote the number of vertices of degree one in Gr .

The statement 3.2 follows from a simple case analysis according to degG(xi) of xi in G.

Case 1: degG(xi) = 0. At least one of G1, G2 �= ∅. If, without loss of generality, G2 = ∅,

then �(G) = �1 � 4 (since |G1| = |G| > 1). Otherwise, �(G) = �1 + �2 � 6.

Case 2: degG(xi) = 1. At least one of G1, G2 �= ∅. If, without loss of generality, G2 = ∅, then

�(G) � (�1 − 1) + 2 � 4 (the edge of G incident to xi has two vertices of degree 1; its third

vertex may be counted by �1 = �(G1)). Otherwise, �(G) � (�1 − 1) + (�2 − 1) + 1 � 5.

Case 3: degG(xi) = 2. We show that in this case G has at least two vertices of degree one

in each of Hi−1 and H ′
i−1. Indeed, let f1, f2 be the two edges of G containing xi. Note

that by linearity f1 ∩ f2 = {xi}. If, say, G1 = ∅, then the two ends of f1 and f2 in Hi−1

are the two vertices of G of degree one. If G1 = e, then e has only one vertex in the set

of the tripartition of Hi−1 which is intersected by f1 and f2. Consequently, in Hi−1 there

are |e \ (f1 ∪ f2)| � 2 vertices of G of degree one. Finally, if |G1| � 2, then Hi−1 contains

at least �1 − 2 � 2 vertices of G of degree one.

This concludes the proof of the induction step and, therefore, (ii) and Theorem 1.4

follow.

4. Small even subgraphs

In this section, we prove Theorem 1.2. Recall that fb(n;m) is the largest number of edges

in a linear hypergraph on n vertices containing no b-bounded even subgraphs with at

most m edges. The lower bound in Theorem 1.2 is proved by taking a random hypergraph

on [n] whose edges are chosen from all 3-element sets in [n] independently and with

probability n−3/2+c/m for an appropriate constant c > 0. The details are given in [7]. We

turn now to the proof that fb(n;m) = n(3/2)+O(1/m) for b � 4. It is enough to prove this

for b = 4. We begin with a sketch of the proof. For ε > 0, let H be a linear 3-graph

with n � n0 vertices and at least n(3/2)+ε edges. Showing that H contains a (small) even

4-bounded subgraph will depend on two observations. The first is that |H | � n(3/2)+ε will

imply that H contains ‘many’ cherries , i.e., pairs of edges meeting in a single vertex, or
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equivalently, a subgraph consisting of one ‘degree 2’ vertex and four ‘degree 1’ vertices.

More strongly, H will contain many ‘short’ (of length less than 1/ε) paths of cherries,

where two adjoined cherries on such a path connect along two ‘degree 1’ vertices. The

second observation is that there will be so many of these paths that there must be a pair

of distinct paths sharing identical ends. The symmetric difference (of edges) of these two

paths will result in a 4-bounded even subgraph of H . We now give the precise details.

For a given ε > 0, define

m = �4/ε� and n0 = �(5/ε)1/(2ε)�. (4.1)

Let H be a linear 3-uniform hypergraph with n � n0 vertices and at least n(3/2)+ε edges,

where we set V to be the vertex set of H . Regarding the first observation in the sketch,

the linearity of H implies it has precisely
∑

v∈V
(

degH (v)
2

)
many cherries, which equals

1

2

(∑
v∈V

deg2
H (v) −

∑
v∈V

degH (v)

)
=

1

2

(∑
v∈V

deg2
H (v) − 3|H |

)
.

Using the Cauchy–Schwarz inequality, the number of cherries of H is at least

1

2

(
1

n

(∑
v∈V

degH (v)

)2

− 3|H |
)

=
1

2

(
9|H |2
n

− 3|H |
)
> 4n2+2ε,

where the last inequality follows from the hypothesis that |H | � n(3/2)+ε.

We now prepare for the second observation from the sketch (which corresponds to

Claim 4.1 below). Define the following auxiliary graph G to have vertex set V (G) = {uv ∈
V × V : u �= v}, consisting of all ordered pairs of distinct vertices of H , and edge set

E(G) = {{uv, xy} : ∃z ∈ V such that {u, z, y} �= {v, z, x} ∈ H}.

Note that each edge in G corresponds to a unique cherry in H (since vertices of G are

ordered pairs and H is linear). In other words, there is an injective map from the set of

cherries of H to the edge set of G. Consequently, G contains at least 4n2+2ε edges (on n2 − n

vertices). Now, delete vertices from G that have degree less than 3n2ε to form a subgraph

G′ with δ(G′) � 3n2ε and |E(G′)| � n2+2ε. As in the sketch, we consider a (hyper)path (of

cherries) in H: suppose u1v1, u2v2, . . . , ukvk is the vertex sequence of a (graph) path in G′,

where z1, z2, . . . , zk−1 satisfy that zi is the intersection point of the cherry corresponding to

the edge {uivi, ui+1vi+1} of G′. We say such a path is faithful (in G′) if

|{u1, v1, z1, . . . , uk−1, vk−1, zk−1, uk, vk}| = 3k − 1.

In other words, all these vertices are distinct (see Figure 1).

Claim 4.1. For every uv ∈ V (G′), there exists wz ∈ V (G′), {u, v} ∩ {w, z} = ∅, and faithful

paths Q1, Q2, Q1 �= Q2, of length < 1/ε, connecting uv to wz.

Before we verify Claim 4.1, we use it to finish the proof of Theorem 1.2.

Fix an arbitrary uv ∈ V (G′), and let wz, Q1, Q2 be given by Claim 4.1. Let P1,P2 ⊂ H

be the subgraphs of H corresponding to Q1, Q2, respectively, i.e., Pi is the union of the

cherries corresponding to the edges of Qi, i = 1, 2. Note that every vertex of Pi has
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Figure 1. A faithful path (u1v1, u2v2, u3v3, u4v4) of length 3 in the auxiliary graph G′ corresponds to the above

subgraph of H .

degree 2, except for u, v, z, w, which have degree 1. Then C = P1�P2 �= ∅ is a 4-bounded

even hypergraph on at most 4/ε � m edges, and so deleting the isolated vertices from C
renders the subgraph of H promised by Theorem 1.2.

Proof of Claim 4.1. Fix uv ∈ V (G′), and let S(uv, k) be the set of vertices in V (G′) that

are reachable in G′ by a faithful path of length exactly k (where S(uv, 0) = {uv}). Note

that if a path is faithful, then every subpath is also faithful. In particular, if wz ∈ S(uv, k),

k � 1, then there exists xy ∈ S(uv, k − 1) such that a faithful path from uv to xy can be

extended to a faithful path from uv to wz by adding the edge {xy, wz} ∈ E(G′). Conversely,

fix xy ∈ S(uv, k − 1) and fix a faithful path from uv to xy. We assert that all but 9(k − 1)

many wz ∈ NG′ (xy) satisfy that the fixed path from uv to xy can be extended to a faithful

path from uv to wz by adding the edge {xy, wz} ∈ E(G′).

Indeed, let uv = u1v1, u2v2, . . . , ukvk = xy be the vertices of a faithful path from uv to xy

of length k − 1 in G′. For each i = 1, . . . , k − 1, let zi be the intersection vertex of the cherry

corresponding to the edge {uivi, ui+1vi+1} of G′, and set B = {u1, v1, z1, . . . , uk−1, vk−1, zk−1}.

Note that any wz ∈ NG′(xy) belongs to S(uv, k) if {w, z} ∩ B = ∅ and if the intersection

point z′ of the cherry corresponding to {xy, wz} satisfies z′ /∈ B. Our assertion is that

at most 3|B| = 9(k − 1) vertices wz ∈ NG′(xy) violate this condition. Indeed, at most |B|
many wz ∈ NG′(xy) will not belong to S(uv, k) because their intersection point z′ belongs

to B since, by the linearity of H , xy together with z′ uniquely determine wz ∈ NG′ (xy).

On the other hand, if w ∈ B, then z′ is determined ({y, z′, w} ∈ H) and z is determined

({x, z′, z} ∈ H). A similar conclusion holds in the case z ∈ B. Consequently, at most 3|B|
vertices wz ∈ NG′ (xy) will not belong to S(uv, k), as asserted.

To conclude the proof of Claim 4.1, consider the directed bipartite graph Dk with

vertex bipartition S(uv, k − 1) ∪ S(uv, k), and arcs (xy, wz), xy ∈ S(uv, k − 1), wz ∈ S(uv, k),

whenever there is a faithful path of length k from uv to wz which uses the edge {xy, wz} ∈
G′. From the assertion above (and the minimum degree of G′), |E(Dk)| � |S(uv, k −
1)|(3n2ε − 9k). Consequently, a simple induction yields that for every k � 1, either

(i) ∃j � k and wz ∈ S(uv, j) with in-degree i.d.Dj (wz) � 2, or

(ii) |S(uv, k)| � (3n2ε − (9/ε))k � n2kε.

Case (i) would yield the conclusion of the claim, and case (ii) is impossible when k � 1/ε,

since |S(uv, k)| � |V (G)| < n2.
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5. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1, starting with 3-graphs establishing the

lower bound of Theorem 1.1.

5.1. Proof of fb(n) � n log n/(3b log log n)

To construct the hypergraphs establishing the lower bound, we will use an explicit family

of graphs constructed by Lazebnik and Ustimenko [4]. For every prime power q and

k � 3, [4] provides a q-regular bipartite graph Gq,k on 2qk vertices with girth g � k + 5.

Let X and Y be the classes of Gq,k . Since Gq,k is q-regular and bipartite, it is possible to

decompose its edge set into q disjoint perfect matchings Gq,k = M1 ∪ · · · ∪Mq .

Let q be a (large) prime power and k = bq − 1. Set n = 2qk + q and consider a 3-partite

3-graph Hn with classes X, Y , and Z = [q] constructed as follows. For each e = {u, v} ∈
Mj , j ∈ Z , let e ∪ {j} = {u, v, j} ∈ Hn. Notice that Hn is linear since the matchings Mj

are disjoint. Suppose that Hn contains a b-bounded even subgraph F with vertex set

X ′ ∪ Y ′ ∪ Z ′. Notice that

|F | � b|Z ′| � bq. (5.1)

Let F ′ ⊂ Gq,k be the shadow of F , that is, F ′ = {e \ Z ′ : e ∈ F}. Because δ(F ′) � δ(F) � 2,

the graph F ′ contains a cycle of length at most |F ′| = |F |. The girth of Gq,k then implies

that |F | � k + 5. By our choice of k, this is a contradiction with (5.1) and hence Hn does

not contain an even b-bounded subgraph. In fact, it does not contain a subgraph with all

degrees in [2, b].

Notice that |Hn| = qk+1 = q(n− q)/2 > qn/3. Moreover, q > log n
b log log n

, since otherwise

n < qk+1 < (log n)bq = n. Therefore Hn establishes the lower bound.

5.2. Proof of fb(n) � Bn(log n)2

In the rest of this section, for convenience we use log to denote log2. For a sufficiently

large integer n0, let H be a linear hypergraph on n � n0 vertices with at least 1000n(log n)2

edges. We show that H contains a 12-bounded even subgraph, and begin by introducing

some notation. Let V be the vertex set of H . Set

ψn(x) =
log x

log n
.

For a set S ⊆ V , define

∂H (S) = {e ∈ H : e ∩ S �= ∅}.

Let I = I(H) ⊂ [n] be the set of all numbers s > 1 such that there exists a set S ⊆ V with

|S | = s satisfying

|∂H (S)| � ψn(s) · |H |.

Clearly, I �= ∅ since n ∈ I . Denote by r the smallest element from I . Let R ⊆ V correspond

to r, that is, |R| = r and |∂H (R)| � ψn(r) · |H |. It is not difficult to see that r � 2000 log n.
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Indeed, since H is linear, its maximum degree is at most (n− 1)/2, and so

|∂H (R)| �
∑
v∈R

degH (v) � rn

2
.

On the other hand, by definition, |∂H (R)| � |H | log r/ log n, and so

r

log r
� 2|H |
n log n

� 2000 log n.

Now, let G0 = (V0, E0) be a graph with V0 ⊆ V obtained from the edges in ∂H (R) by

removing from each hyperedge f an arbitrary vertex contained in f ∩ R. The edges of G0

are then naturally R-coloured by the mapping χ : E0 → R, where {u, v, χ(uv)} ∈ ∂H (R) for

all uv ∈ E0. Since H is linear, |E0| = |∂H (R)| and χ is a proper edge-colouring of G0.

The proof of Theorem 1.1 will rest on the upcoming Claim 5.1, for which we need the

following definition.

Definition. We say a subgraph F ⊂ G0 is 2-nice, if F is 4-bounded and even, and if no

colour of χ : E0 → R appears on more than two edges of F .

We may now state Claim 5.1.

Claim 5.1. For some � � r/15, the graph G0 contains at least (|H |/n)�/6 2-nice subgraphs

on � edges.

Our proof of Claim 5.1 is unfortunately quite technical, so we postpone it for a minute

in favour of concluding the proof of Theorem 1.1.

Indeed, Claim 5.1 ensures there are at least (|H |/n)�/6 2-nice subgraphs F ⊂ G0 of

size � � r/15. For each such F , let χF denote the multi-set of colours on the edges of F ,

where we recall that a colour may appear at most twice in χF . The number of multi-sets

from R of size �, where each element has multiplicity at most 2, is at most
(

2r
�

)
. Since

(
2r

�

)
�

(
2er

�

)�

� (30e)� �
(

|H |
n

)�/6

,

there exist 2-nice subgraphs F ′ �= F ′′ ⊂ G0 with χF ′ = χF ′′ . Consider F∗ = F ′�F ′′ �= ∅. Since

F ′, F ′′ are 4-bounded and even, F∗ is 8-bounded and even, and the colours on the edges

of F∗ appear either 2 or 4 times. Hence, the corresponding 3-uniform hypergraph H∗ =

{{u, v, χ(uv)} ∈ H : uv ∈ E(F∗)} is 12-bounded and even. Indeed, a vertex v ∈ V (H∗) \ R
has degH∗(v) = degF∗(v), while a vertex v ∈ V (H∗) ∩ R has degH∗ (v) = degF∗ (v) + |{e ∈
H : χ(e) = v}| ∈ {0, 2, 4, 6, 8, 10, 12}. Removing the isolated vertices from H∗ gives the

12-bounded even subgraph of H promised by Theorem 1.1.

5.3. Proof of Claim 5.1

Our proof of Claim 5.1 consists largely of iteratively applying the following further claim.
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Claim 5.2. Suppose G ⊂ G0 and z ∈ N satisfy δ(G) � z � 1000 log n. Then for some � ∈[
z
25
, z

25
+ 2 log n+ 2

]
, the graph G contains at least z0.9� 2-nice connected subgraphs F ⊆ G

with |E(F)| = �.

We prove Claim 5.2 after we use it to complete the proof of Claim 5.1. We will also

need the following fact (which will allow us to apply Claim 5.2 in the context of proving

Claim 5.1).

Fact 5.3. Suppose S ⊂ V0 and X ⊂ R satisfy s′ = |S ∪X| < r. Then the graph G1 =

(V1, E1) with V1 = V0 \ (S ∪X) and E1 = {e ∈ E0 : e ⊆ V1 and χ(e) /∈ X} contains at least

ψn(r/s
′)|H | edges.

Proof of Fact 5.3. Every e ∈ E0 \ E1 satisfies f = e ∪ {χ(e)} ∈ H and f ∩ (S ∪X) �=
∅, which means f ∈ ∂H (S ∪X). Since |S ∪X| < r, the minimality assumption on R

yields |∂H (S ∪X)| < ψn(s
′)|H |. In particular, |E0 \ E1| � |∂H (S ∪X)| < ψn(s

′)|H |. By the

choice of R and by the definition of G0, |E0| = |∂H (R)| � ψn(r)|H |. Thus, |E1| �
(
ψn(r) −

ψn(s
′)
)
|H | = ψn(r/s

′)|H |.

Now, to prove Claim 5.1, set

z =
|H |
n log n

� 1000 log n and t =

⌈
2r

z

⌉
. (5.2)

We assert that, by repeated applications of Claim 5.2, we can obtain at least zzt/30 sequences

of vertex-disjoint connected 2-nice subgraphs F1, . . . , Ft, satisfying |E(F1)|, . . . , |E(Ft)| ∈
[ z

25
, z

25
+ 2 log n+ 2] and χ(E(Fi)) ∩ χ(E(Fj)) = ∅ for all 1 � i < j � t. Indeed, since every

graph contains a subgraph whose minimum degree is at least half of the average, we start

with a subgraph G0
∗ ⊂ G0 with

δ(G0
∗) � |E0|

|V0| � ∂H (R)

n
� |H | log r

n log n
� |H |
n log n

= z � 1000 log n,

and apply Claim 5.2, which yields a 2-nice connected graph F1. Suppose now that Fi has

been obtained for every i < j, with j � 2. Let Sj =
⋃
i<j V (Fi) and Xj =

⋃
i<j χ(E(Fi)).

Define Gj = (V j, Ej) with V j = V0 \ (Sj ∪Xj) and Ej = {e ∈ E0 : e ⊆ V j and χ(e) /∈
Xj}. Since, for all 1 � i < j � t,

|V (Fi)|, |χ(E(Fi))| � |E(Fi)| � z

25
+ 2 log n+ 2 <

z

20
,

it follows by our choice of t (see (5.2)) that

|Sj |, |Xj | � (j − 1)
z

20
� (t− 1)

z

20
<

r

10
.

From Fact 5.3, we conclude that for every j,

|Ej | � log(r/|Sj ∪Xj |)
log n

|H | � log 5

log n
|H | � 2|H |

log n
= 2zn,

and therefore there exists a subgraph G
j
∗ ⊂ Gj with δ(Gj∗) � z � 1000 log n. We apply

Claim 5.2 to G
j
∗ to obtain at least z0.9�j graphs Fj ⊂ G

j
∗ ⊂ Gj , for some �j ∈

[
z
25
, z

25
+
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2 log n+ 2
]
. In particular, we always obtain at least zz/30 possible graphs Fj , and it

follows from the construction that all those Fj are vertex-disjoint from (the earlier fixed)

F1, . . . , Fj−1, and also that χ(E(Fi)) ∩ χ(E(Fj)) = ∅ for all i < j. Thus, the number of distinct

(ordered) sequences F1, . . . , Ft obtained by this process is at least zzt/30.

To complete the proof of Claim 5.1, consider the set of all unions F = F1 ∪ F2 ∪ · · · ∪ Ft
obtained from the sequences above. Note that any such union

⋃t
j=1 Fj is a 2-nice but

disconnected graph. We now estimate the number of unions F . Since each Fj is connected

and vertex-disjoint from the other Fi, a graph F may be represented by at most t! such

sequences. Thus, the number of such F is at least

zzt/30/t! � (zz/30/t)t > (zz/30/n)t > zzt/50.

Every graph F obtained satisfies

r

15

(5.2)

� tz

25
� |E(F)| � t

(
z

25
+ 2 log n+ 2

)
< t

z

20
.

Therefore, there exists some � with r/15 � � � tz/20 such that there are at least

zzt/50

tz/20
� zzt/60 � z�/3

(5.2)
=

(
|H |
n log n

)�/3

�
(

|H |
n

)�/6

2-nice graphs of size � in G0. All that remains is to prove Claim 5.2.

Proof of Claim 5.2. Let v ∈ V (G) be arbitrary. Our first goal is to inductively construct

a tree T rooted in v with the property that every vertex of the tree is connected to

the root by a rainbow path (that is, by a path whose edges are coloured with distinct

colours). To that end, set T0 = ({v}, ∅). For i � 0, and from an inductively constructed Ti,

we construct Ti+1 as follows. Let Li denote the set of leaves of Ti at depth i, where we

set L0 = {v}. For every u ∈ Li, let Nu denote the set of w ∈ V (G) \ V (Ti) for which the

(rainbow) path in Ti connecting v to u can be extended to a rainbow path connecting v to

w by adding the edge uw ∈ E(G). We define Ti+1 by adding, for each w ∈
⋃
u∈Li Nu, some

edge uw, where w ∈ Nu and u ∈ Li. (If there is more than one u for which w ∈ Nu, choose

arbitrarily.) Note that Ti+1 satisfies that Li+1 =
⋃
u∈Li Nu. To define the promised tree T ,

it remains to define the last iteration i we perform in the process above.

Observe that every u ∈ Li has the property that all but (at most) i of its neighbours in

G are contained in V (Ti+1) = V (Ti) ∪ Li+1. Indeed, a neighbour w of u ∈ Li which fails

to be in V (Ti+1) must be such that the edge uw has the same colour as an edge of the

rainbow path (of length i) connecting v to u in Ti. Since χ is a proper edge-colouring,

at most i such edges are incident to u. (Note that all the other neighbours are either

already in the tree Ti or will be included in the tree Ti+1.) Let k be the smallest index for

which |Lk+1| < 2|Lk|. Finally, set T = Tk+1.

The discussion above implies that the number M of edges of G[V (T )] incident to Lk is

M = eG(Lk, V (Tk) \ Lk) + eG(Lk) + eG(Lk, Lk+1)
(5.3)

� δ(G)

2
|Lk| − k|Lk| �

[
z

2
− k

]
|Lk|.
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Figure 2. The dashed path corresponds to P2 ∪ P3 ⊂ E(T ) and the continuous path corresponds to

P1 ⊂ E
(
G[V (T )]

)
\ E(T ).

Observe that |E(G[V (T )])| � M, and that |V (T )| equals

|L0| + · · · + |Lk| + |Lk+1| < (2−k + 2−k+1 + · · · + 1)|Lk| + 2|Lk| < 4|Lk|.

Hence, the average degree in G[V (T )] is at least 2M/(4|Lk|) � z/4 − k/2, and the average

degree of G[V (T )] \ E(T ) is therefore at least z/4 − k/2 − 2. Since |Li| � 2i for every i =

0, 1, . . . , k, we have k � log n, and so z � 1000 log n � 1000k. Consequently, z/4 − k/2 −
2 � z/5 (with n sufficiently large). Thus, there exists a subgraph G′ = (V ′, E ′) of G[V (T )] \
E(T ) with minimum degree δ(G′) � z/10.

We need the following consideration to conclude the proof of Claim 5.2. Let x �= v ∈
V (G′) be fixed, and let P0 denote the rainbow T -path connecting v to x. Let P1 be a

G′-path (importantly, not T -path) from x to some vertex y such that P0 ∪ P1 is a rainbow

path from v to y. (Below, we estimate how many such paths P1 will exist.) Let w be the

first common ancestor of both x and y in T . Let P2 ⊂ P0 be the T -path from w to x,

and let P3 be the T -path from w to y (see Figure 2). By construction, both paths P2 ∪ P1

and P3 are edge-disjoint rainbow paths with the same end vertices w and y. Hence, the

union F = P1 ∪ P2 ∪ P3 is a connected 2-nice graph. We bound the number of graphs F

which can be thus created.

The number N of rainbow paths extending P0 from x by a path P1 ⊂ G′ of length z/25

is at least

z/25∏
j=1

(
δ(G′) − 2(k + j)

)
�

(
z/10 − 2(k + z/25)

)z/25 � (z/50)z/25.

Every such P1 yields a distinct graph F = P1 ∪ P2 ∪ P3 with

z/25 + 1 � |E(F)| � z/25 + 2(k + 1)

(these graphs F are distinct since P1 ⊂ G′ ⊂ G \ E(T ) and P2 ∪ P3 ⊂ E(T )). By averaging,

there exists some �, z/25 + 1 � � � z/25 + 2(k + 1), such that the number of graphs F of

size � is at least

N

2(k + 1)
� (z/50)z/25

2 log n+ 2
� z0.9�

for n sufficiently large. This concludes the proof of Claim 5.2.
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6. Concluding remarks

6.1. Even subgraphs of r-graphs

We have mainly studied extremal problems for subgraphs with small even degrees in linear

3-uniform hypergraphs. It is possible to ask similar questions for r-uniform hypergraphs

with r > 3. Let frb(n) denote the maximum number of edges in a linear n-vertex r-graph

with no b-bounded even subgraphs. Theorem 1.4 can be extended to r-graphs by repeating

the matching counting proof given here. One can show that fr2(n) = O(n2−1/(r−1)(log n)O(r))

using that proof. It is likely to be very difficult to determine the correct order of

magnitude of fr2(n) for any r > 2, and in particular we conjectured f3
2(n) = f2(n) = n1+o(1).

The problem of finding small even subgraphs of r-graphs was studied in [7].

6.2. Degrees in residue classes

More generally, one can consider subgraphs in which the degrees are multiples of an

integer p. If p is prime, then Alon, Friedland and Kalai [1] showed that any graph of

average degree more than 2p− 2 contains a non-empty subgraph in which the degrees

are zero modulo p. Using this result, Pyber, Rödl and Szemerédi [8] showed that the

maximum number of edges in an n-vertex graph with no p-regular subgraph is O(n log n).

The proof of the result of Alon, Friedland and Kalai uses the Chevalley–Warning theorem,

and extends to r-graphs easily: in an r-graph of average degree more than r(p− 1), there

is a non-empty subgraph in which all the degrees are zero modulo p. The question of

determining fp(n), the maximum number of edges in a linear n-vertex 3-graph with no

p-regular subgraph, appears to be very difficult. In fact, it appears difficult to show that

every sufficiently large Steiner triple system contains a 3-regular subgraph, so we leave it

as an open problem to show f3(n) = o(n2).
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