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Abstract. Richardson varieties play an important role in intersection theory and in the geometric

interpretation of the Littlewood-Richardson Rule for flag varieties. We discuss three natural generaliza-
tions of Richardson varieties which we call projection varieties, intersection varieties, and rank varieties.

In many ways, these varieties are more fundamental than Richardson varieties and are more easily

amenable to inductive geometric constructions. In this paper, we study the singularities of each type
of generalization. Like Richardson varieties, projection varieties are normal with rational singularities.

We also study in detail the singular loci of projection varieties in Type A Grassmannians. We use

Kleiman’s Transversality Theorem to determine the singular locus of any intersection variety in terms of
the singular loci of Schubert varieties. This is a generalization of a criterion for any Richardson variety

to be smooth in terms of the nonvanishing of certain cohomology classes which has been known by some
experts in the field, but we don’t believe has been published previously.
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1. Introduction

A Richardson variety is the scheme theoretic intersection of two Schubert varieties
in general position in a homogeneous variety G/P . Their cohomology classes encode
information that plays a significant role in algebraic geometry, representation theory and
combinatorics [20, 21, 38, 41]. In recent years, the study of the singularities of Richardson
varieties has received a lot of interest. We refer the reader to [7] for general results about
the singularities of Richardson varieties and to [36] for a detailed study of the singularities
of Richardson varieties in Type A Grassmannians.

In this paper, we study three natural generalizations of Richardson varieties called
intersection varieties, projection varieties and rank varieties. We extend several of the
results of [36] pertaining to smoothness criteria, singular loci and multiplicities to these
varieties in G/P for arbitrary semi-simple algebraic groups G and parabolic subgroups
P . However, it is important to note that while in [36] the authors work over algebraically
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closed fields of arbitrary characteristic, we require the ground field to have characteristic
zero.

The first generalization of Richardson varieties that we discuss is the intersection va-
rieties. These varieties are simply the scheme theoretic intersection of any finite number
of general translates of Schubert varieties and they appear throughout the literature on
Schubert calculus. We recall how Kleiman’s Transversality Theorem [29] determines the
singular locus of any intersection variety in terms of the singular loci of Schubert varieties.
In Corollary 2.9, we characterize the smooth Richardson varieties in terms of vanishing
conditions on certain products of cohomology classes for Schubert varieties. As an appli-
cation, we show that a Richardson variety in the Grassmannian variety G(k, n) is smooth
if and only if it is a Segre product of Grassmannians (see Corollary 2.13).

The second generalization of Richardson varieties that we discuss is the projection
varieties. Given G/P as above, let Q ⊂ G be another parabolic subgroup containing P .
Thus, we have the natural projection

πQ : G/P → G/Q.

A projection variety is the image of a Richardson variety under a projection πQ with its
reduced induced structure. Projection varieties naturally arise in inductive constructions
such as the Bott-Samelson resolutions. For example, they are related to the stratifications
used by Lusztig, Postnikov and Rietsch in the theory of total positivity [39, 44, 47] and
Brown-Goodearl-Yakimov [10] in Poisson geometry. They generalize the (closed) positroid
varieties defined by Knutson, Lam and Speyer in [30, Section 5.4] and they play a crucial
role in the positive geometric Littlewood-Richardson rule for Type A flag varieties in [14]
(see also [1]). Since the set of projection varieties is closed under the projection maps
among flag varieties, projection varieties form a more fundamental class of varieties than
Richardson varieties. Our first theorem about the singularities of projection varieties is
the following, generalizing [30, Cor. 7.9 and Cor. 7.10].

Theorem 1.1. 1 Let G be a complex simply connected algebraic group and Q be a para-
bolic subgroup of G. Then all projection varieties in G/Q are normal and have rational
singularities.

In fact, we will prove a much more general statement (Theorem 3.3) about the restric-
tion of Mori contractions to subvarieties satisfying certain cohomological properties. In
particular, we do not need to restrict ourselves to homogeneous varieties or Richardson
varieties. Since Richardson varieties satisfy these cohomological properties, it will follow
that projections of Richardson varieties have rational singularities proving the theorem.
By [35, Theorem 3], this implies that projection varieties are Cohen-Macaulay.

To define the third family of varieties related to Richardson varieties, we specialize to
Type A (G = GL(n)) Grassmannian projection varieties. In this case, we consider G/P
to be the partial flag variety Fl(k1, . . . , km;n) consisting of partial flags

V1 ⊂ · · · ⊂ Vm,

1Shortly after this paper was posted, Knutson, Lam and Speyer posted a preprint [31] independently proving Theorem 1.1

using Frobenius splitting techniques and a fairly intricate degeneration argument. Our proof only uses standard statements
about vanishing of higher cohomology, hence is more widely applicable.
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where each Vi is a complex vector space of dimension ki. Let G(k, n) be the Grassmannian
variety of k-dimensional subspaces in an n-dimensional complex vector space V . We can
realize G(k, n) as G/Q where Q is a maximal parabolic subgroup of G. Let

π : Fl(k1, . . . , km;n) −→ G(km, n)

denote the natural projection morphism defined by π(V1, . . . , Vm) = Vm.

Schubert varieties Xu in Fl(k1, . . . , km;n) are parameterized by permutations u with
at most m descents at the places k1, . . . , km. Let R(u, v) denote a Richardson variety
obtained by intersecting two Schubert varieties Xu and Xv in general position. A Grass-
mannian projection variety in G(km, n) is the image π(R(u, v)) of a Richardson variety
R(u, v) ⊂ Fl(k1, . . . , km;n) with its reduced induced structure. It is convenient to have a
characterization of Grassmannian projection varieties without referring to the projection
of a particular Richardson variety. We introduce rank sets and rank varieties to obtain
such a characterization.

Fix an ordered basis e1, . . . , en of V . If W is a vector space spanned by a consecutive set
of basis elements ei, ei+1, . . . , ej, let l(W ) = i and r(W ) = j. A rank set M for G(k, n) is
a set of k vector spaces M = {W1, . . . ,Wk}, where each vector space is the span of (non-
empty) consecutive sequences of basis elements and l(Wi) 6= l(Wj) and r(Wi) 6= r(Wj) for
i 6= j. Observe that the number of vector spaces k is equal to the dimension of subspaces
parameterized by G(k, n). Two rank sets M1 and M2 are equivalent if they are defined
with respect to the same ordered basis of V and consist of the same set of vector spaces.

Given a rank set M , we can define an irreducible subvariety X(M) of G(k, n) associated
to M as follows. The rank variety X(M) is the subvariety of G(k, n) defined by the
Zariski closure of the set of k-planes in V that have a basis b1, . . . , bk such that bi ∈ Wi

for Wi ∈M . For example, G(k, n) is itself a rank variety corresponding with the rank set
M = {W1, . . . ,Wk} where each Wi =< ei, . . . , en−k+i >.

In Theorem 4.8, we prove that X ⊂ G(k, n) is a projection variety if and only if X is
a rank variety. In particular, the Richardson varieties in G(k, n) are rank varieties. The
singular loci of rank varieties or equivalently of Grassmannian projection varieties can be
characterized as follows.

Theorem 1.2. Let X be a rank variety in G(km, n).

(1) There exists a partial flag variety F (k1, . . . , km;n) and a Richardson variety

R(u, v) ⊂ F (k1, . . . , km;n)

such that

π|R(u,v) : R(u, v) −→ X

is a birational morphism onto X.
(2) The singular locus of X is the set of points x ∈ X such that either π−1|R(u,v)(x) ∈

R(u, v) is singular or π−1|R(u,v)(x) is positive dimensional:

Xsing = {x ∈ X | dim(π−1|R(u,v)(x)) > 0 or π−1|R(u,v)(x) ∈ R(u, v)sing}.

(3) The singular locus of a projection variety is an explicitly determined union of pro-
jection varieties.
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In Lemma 4.16, we give a simple formula for the dimension of a rank variety. In
Corollary 4.29, we relate the enumeration of rank varieties by dimension to a q-analog of
the Stirling numbers of the second kind.

The organization of this paper is as follows. In Section 2, we will introduce our notation
and study the singular loci of Richardson varieties and other intersection varieties in
homogeneous varieties. We recall Kleiman’s Transversality Theorem. This allows us to
completely characterize the singular loci of intersection varieties in terms of the singular
loci of Schubert varieties in Proposition 2.8. An example in the Grassmannian G(3, 8)
is given showing that Richardson varieties can be singular at every T -fixed point. As
corollaries, we discuss some special properties of intersection varieties in Grassmannians.
In Section 3, we will prove a general theorem about the singularities of the image of a
subvariety satisfying certain cohomological properties under a Mori contraction. This will
immediately imply Theorem 1.1. In Section 4, we will undertake a detailed analysis of
the singularities of Grassmannian projection varieties and rank varieties. In particular,
the proof of Theorem 1.2 follows directly from Corollary 4.21.

Acknowledgments: We would like to thank Dave Anderson, Lawrence Ein, Sánow
Kovács, Max Lieblich, Stephen Mitchell, and Lauren Williams for helpful and stimulating
discussions. We are grateful to the American Mathematics Institute where this project
was started, for providing a stimulating work environment, and to the organizers of the
Localization Techniques in Equivariant Cohomology Workshop, namely William Fulton,
Rebecca Goldin, and Julianna Tymoczko.

2. The singularities of intersection varieties and Richardson varieties

In this section, we review the necessary notation and background for this article. In
particular, we recall Kleiman’s Transversality Theorem and review its application to the
singular loci of Richardson varieties and intersection varieties. For the convenience of the
reader, we included the proofs of results such as Theorem 2.6 and Corollary 2.9 when
our formulation differed from what is commonly available in the literature. For further
background, we recommend [7, 22, 24, 25, 27, 49].

Given a projective variety X and a point p ∈ X, let TpX denote the Zariski tangent
space to X at p. Then, p is a singular point of X if dimTpX > dimX, and p is smooth
if dimTpX = dimX. Let Xsing denote the set of all singular points in X. In this section,
when we refer to the intersection of varieties or schemes, we always mean the scheme
theoretic intersection.

Let G denote a simply connected, semi-simple algebraic group over the complex num-
bers C. Fix a maximal torus T and a Borel subgroup B containing T . Let P denote
a parabolic subgroup of G containing B. Let W = N(T )/T denote the Weyl group of
G, and let WP denote the Weyl group of P . We will abuse notation by considering any
element u ∈ W to also represent a choice of element in the coset uT ⊂ G. In particular,
we consider W ⊂ G via this choice. Let eu = uP , since T ⊂ P this point is well defined
in G/P . The points {eu : u ∈ W/WP} are the T -fixed points in G/P . We will always
represent a coset in W/WP by the unique element in that coset of minimal length. Thus,
the length function and Bruhat order on W/WP are inherited from the length function
and Bruhat order on W on the minimal length coset representatives.
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For an element u ∈ W/WP , the Schubert variety Xu is the Zariski closure of the B-orbit
of eu = uP in G/P . Thus, Xu is the union of B-orbits Bet for t ≤ u in the Bruhat order
on W/WP . Since we are working over C, the (complex) dimension of Xu is the length of
u as an element of W . By abuse of notation, we will also call any translate of Xu by a
group element a Schubert variety.

The singular locus of Xu is also a B-stable subvariety of G/P , hence it is a union of
Schubert varieties. The typical way of studying the singularities of Schubert varieties is
in terms of the T -fixed points. In particular, p ∈ Xu is a smooth point if and only if there
exists a t ∈ W/WP such that p ∈ Bet and et is a smooth point of Xu. There are many
effective tools for determining if et is a smooth point in Xu and exactly which elements of
W/WP index the Schubert varieties which form the irreducible components of the singular
locus of Xu, see [4, 5, 11, 12, 28, 37, 40, 43].

Let w0 be the unique longest element in W . For v ∈ W/WP , define the opposite
Schubert variety, denoted Xv, as the Schubert variety w0Xv. We caution the reader that
some authors use Xv to denote the Schubert variety in the Poincaré dual class. The
Richardson variety R(u, v) ∈ G/P is defined as the intersection of the two Schubert
varieties Xu and Xv. R(u, v) is empty unless u ≥ w0v in the Bruhat order, in which case
the dimension of R(u, v) is l(u)− l(w0v).

For much of the discussion, there is no reason to restrict to Richardson varieties. Inter-
section varieties provide a more natural set of varieties to consider. Let gXu denote the
translate of the Schubert variety Xu under the action of g ∈ G by left multiplication on
G/P .

Definition 2.1. Let u1, . . . , ur ∈ W/WP , and let g• = (g1, . . . , gr) be a general r-tuple of
elements in Gr. The intersection variety R(u1, . . . , ur; g•) is defined as the intersection of
the translated Schubert varieties giXui

in G/P :

R(u1, . . . , ur; g•) = g1Xu1 ∩ · · · ∩ grXur .

Remark 2.2. Richardson varieties are the special case of intersection varieties when r = 2.
Let B− = w0Bw0 be the opposite Borel subgroup of G defined by the property that
B ∩ B− = T . The G-orbit of (B,B−) is a dense open orbit under the action of G on
G/B×G/B−. Consequently, for any choice of a pair (g1, g2) in this orbit, the intersection
of two translated Schubert varieties defined with respect to the pair is isomorphic. Hence,
for r = 2, the generality condition simply means that (g1, g2) should belong to the dense
open orbit. In particular, R(u1, u2; g•) is isomorphic to R(u1, u2) for general g• = (g1, g2).

Remark 2.3. When r > 2, it is hard to characterize the g• that are sufficiently general.
Two general intersection varieties R(u1, . . . , ur; g•) and R(u1, . . . , ur; g

′
•) are not neces-

sarily isomorphic or even birational to each other. For example, let u ∈ W/WP be the
element indexing the divisor class for the Grassmannian G(2, 5). Then R(u, u, u, u, u; g•)
is an elliptic curve. As g• varies, all j-invariants occur in this family of elliptic curves.
Since two elliptic curves with different j-invariants are not birational to each other, we
get examples of intersection varieties R(u, u, u, u, u; g•) and R(u, u, u, u, u; g′•) in G(2, 5)
that are not isomorphic (or even birational) to each other, see [13].
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It is well-known that Richardson varieties are reduced and irreducible [46]. However, for
r > 2 the intersection varieties may be reducible. For example, if

∑
l(ui) = dim(G/Q),

then the intersection variety R(u1, . . . , ur, g•) consists of finitely many points, where the
number of points is given by the intersection number

∏r
i=1[Xui

] of the Schubert classes.
Nevertheless, every connected component of an intersection variety is normal and has
rational singularities [7, Lemma 4.1.2].

Kleiman’s Transversality Theorem [29] is the key tool for characterizing the singular loci
of intersection varieties. We recall the original statement of the theorem for the reader’s
convenience.

Theorem 2.4 (Kleiman, [29]). Let X be an integral algebraic scheme with a transitive
action of the integral algebraic group G. Let f : Y → X and g : Z → X be two maps of
integral algebraic schemes. For any point s ∈ G, let sY denote the X-scheme given by
the map y 7→ sf(y).

(i) There exists a dense Zariski open subset U of G such that for s ∈ U , the fibered
product sY ×X Z is either empty or equi-dimensional of dimension dim(Y ) +
dim(Z)− dim(X).

(ii) Assume the characteristic of the ground field is zero. If Y and Z are smooth, then
there exists a dense open subset V of G such that for s ∈ V , the fibered product
(sY )×X Z is smooth.

Remark 2.5. The proof of part (ii) in Kleiman’s Theorem uses generic smoothness. This
is the main reason why we are working over C. Kleiman gives a specific example where
(ii) fails if the ground field has positive characteristic and X is a Grassmannian variety
[29, 9.Example].

There exist many variations of Kleiman’s Theorem in the original paper and in the
literature. Below we spell out the variation we need for Richardson varieties and inter-
section varieties in general. This variation is similar to the statement in [25, Theorem
17.22].

Theorem 2.6. Let G be an algebraic group acting transitively on a smooth projective
variety X. Let Y and Z be two subvarieties of X. Then for any general translate gY of
Y , we have

(gY ∩ Z)sing = ((gY )sing ∩ Z) ∪ ((gY ) ∩ Zsing).

Proof. Since Y and Z are subvarieties of X, both map into X by inclusion. Furthermore,
for any g ∈ G the fibered product

(gY )×X Z = gY ∩ Z.
Applying part (ii) of Kleiman’s Transversality Theorem to the smooth loci

(gY )sm = gY − (gY )sing

Zsm = Z − Zsing

we conclude that (gY )sm ∩ Zsm is smooth, provided g is sufficiently general. Therefore,
(gY ∩ Z)sing ⊂ ((gY )sing ∩ Z) ∪ (gY ∩ Zsing).
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Conversely, by part (i) of Kleiman’s Transversality Theorem, Z intersects a general
translate gY of Y properly, so we can assume

dim((gY ) ∩ Z) = dim(gY ) + dim(Z)− dim(X).

We claim that a proper (scheme theoretic) intersection of two varieties cannot be smooth
at a point where one of the varieties is singular. This claim is verified by the following
computation. Let p ∈ Zsing. Then Lemma 2.7 below implies that

dim(Tp(gY ∩ Z)) = dim(Tp(gY ) ∩ Tp(Z))

≥ dim(Tp(gY )) + dim(Tp(Z))− dim(X) (since X is smooth)

> dim(gY ) + dim(Z)− dim(X) (since p ∈ Zsing)

= dim(gY ∩ Z).

Therefore, p ∈ (gY ∩Z)sing. Similarly, p ∈ (gY )sing implies p ∈ (gY ∩Z)sing. This proves
((gY )sing ∩ Z) ∪ (gY ∩ Zsing) ⊂ (gY ∩ Z)sing. Hence, we conclude

(gY ∩ Z)sing = ((gY )sing ∩ Z) ∪ ((gY ) ∩ Zsing).

�

Lemma 2.7. Let Y and Z be two subvarieties of a smooth projective variety X and let
p ∈ Y ∩ Z be a point of the scheme theoretic intersection. Then Tp(Y ∩ Z) = TpY ∩ TpZ
in TpX.

Proof. Since this is a local question, we may assume that X is affine space and Y and Z
are affine varieties. Let I(Y ) and I(Z) denote the ideals of Y and Z, respectively. Then
I(Y ∩Z) = I(Y )+I(Z). Let f1, . . . , fn be generators of I(Y ) and g1, . . . , gm be generators
of I(Z). Then f1, . . . , fn, g1, . . . , gm generate I(Y ) + I(Z). The Zariski tangent spaces
Tp(Y ), Tp(Z) and Tp(Y ∩ Z) are the kernels of the matrices

M =

(
∂fi
∂tj

(p)

)
, N =

(
∂gi
∂tj

(p)

)
, L =

(
M
N

)
,

respectively, where tj denote the coordinates on affine space. It is now clear that the
kernel of L is the intersection of the kernels of M and N . �

In the next proposition, we specialize Theorem 2.6, to X = G/P . Given a variety Y in
G/P , let [Y ] denote the cohomology class of Y in H∗(G/P,Z).

Proposition 2.8. For sufficiently general g•, the singular locus of the intersection variety
R(u1, . . . , ur; g•) is

r⋃
i=1

(
giX

sing
ui
∩R(u1, . . . , ur; g•)

)
=

r⋃
i=1

(
giX

sing
ui
∩

r⋂
j=1

gjXuj

)
.

Hence, the singular locus of an intersection variety is a union of intersection varieties.
Furthermore, R(u1, . . . , ur; g•) is smooth if and only if

[Xsing
ui

] ·
∏
j 6=i

[Xuj
] = 0
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for every 1 ≤ i ≤ r.

Proof. Applying Theorem 2.6 and induction on r to g1X1 ∩ · · · ∩ grXr, it follows that

(g1X1 ∩ · · · ∩ grXr)
sing =

r⋃
i=1

(
(giXi)

sing ∩
r⋂
j=1

gjXj

)
provided that the tuple (g1, . . . , gr) is general in the sense of Kleiman’s Transversality
Theorem. In particular, taking Xi to be the Schubert variety Xui

∈ X = G/P we recover
the first statement in Proposition 2.8.

Since the singular locus of a Schubert variety is a union of Schubert varieties corre-
sponding to certain smaller dimensional B-orbits, we conclude that the singular locus
of a Richardson variety is a union of Richardson varieties. In particular, by part (i) of
Kleiman’s Transversality Theorem, we may assume that all the intersections

giX
sing
ui
∩
⋂
j 6=i

gjXuj

are dimensionally proper. The cohomology class of this intersection is the cup product
of the cohomology classes of each of the Schubert varieties. Hence, this intersection is
empty if and only if its cohomology class is zero. We conclude that the singular locus of an
intersection variety is empty if and only if the cohomology classes [Xsing

ui
] ·
∏

j 6=i[Xuj
] = 0

for all 1 ≤ i ≤ r. This concludes the proof of Proposition 2.8. �

Specializing to the case r = 2, we obtain the following characterization of the singular
loci of Richardson varieties.

Corollary 2.9. Let R(u, v) = Xu ∩ Xv be a non-empty Richardson variety in G/P .
Let Xsing

u and Xv
sing denote the singular loci of the two Schubert varieties Xu and Xv,

respectively. Then the singular locus of R(u, v) is a union of Richardson varieties

R(u, v)sing = (Xsing
u ∩Xv) ∪ (Xu ∩Xv

sing).

In particular, R(u, v) is smooth if and only if the cohomology classes [Xsing
u ] · [Xv] = 0

and [Xu] · [Xv
sing] = 0 in the cohomology ring H∗(G/P,Z).

Remark 2.10. Checking the vanishing conditions in Corollary 2.9 is very easy once the
singular locus is determined since these conditions require only the product of pairs of
Schubert classes to vanish. This is equivalent to testing the relations between pairs of
elements in Bruhat order. However, in general for r > 2, checking the vanishing condi-
tions in Proposition 2.8 is a hard problem which requires computing Schubert structure
constants. There are many techniques for doing these computations; see for example
[2, 3, 7, 14, 16, 17, 18, 21, 34] and references within those. It is an interesting open
problem to efficiently characterize all triples u, v, w ∈ W/WP such that [Xu][Xv][Xw] = 0.
Purbhoo has given some necessary conditions for vanishing in [45].
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Recall, that the typical way of studying the singularities of Schubert varieties in the
literature relies on tests for the T -fixed points of the Schubert variety. Even for Richardson
varieties R(u, v) in the Grassmannian, there may not be any torus fixed points in the
smooth locus of R(u, v). Below we give an example.

Example 2.11. Consider the Grassmannian variety G(3, 8) of 3-planes in C8. Fix a ba-
sis e1, . . . , e8 of V . The T -fixed points in G(3, 8) are the subspaces spanned by three
distinct basis elements {ew1 , ew2 , ew3}. These points are indexed by permutations w =
[w1, . . . , w8] ∈ S8 such that w1 < w2 < w3 and w4 < · · · < w8. Such permutations could
be denoted simply by (w1, w2, w3). Furthermore, these permutations are in bijection with
partitions that fit in a 3 × (8 − 3) rectangle. So, u = (4, 6, 8) = [4, 6, 8, 1, 2, 3, 5, 7] is a
T -fixed point of G(3, 8) and it corresponds with the partition (2, 1, 0). See [21] for more
detail.

Let both u and v be the permutation u = (4, 6, 8), or equivalently the partition (2, 1, 0)
so that Xu is isomorphic to Xv but in opposite position. Consider R(u, v) ⊂ G(3, 8)
defined in terms of flags F• = (F1, . . . , F8) and G• = (G1, . . . , G8) where Fi is the span of
the first i basis elements and Gi is the span of the last i basis elements. The Schubert
variety Xu is the set of 3-dimensional subspaces that intersect F4, F6 and F8 in subspaces
of dimensions at least 1, 2 and 3, respectively. Similarly, Xv is the set of 3-dimensional
subspaces that intersect G4, G6 and G8 in subspaces of dimensions at least 1, 2 and 3,
respectively.

The singular locus of Xu ⊂ G(k, n) is the union of Schubert varieties indexed by all the
partitions obtained from the partition corresponding with u by adding a maximal hook
in a way that the remaining shape is still a partition [4, Thm 9.3.1]. Thus, Xsing

(4,6,8) =

X(3,4,8) ∪ X(4,5,6). In terms of flags, Λ ∈ Xu is a singular point if dim(Λ ∩ F4) ≥ 2 or
dim(Λ ∩ F6) = 3. Similarly, Λ is singular for Xv if dim(Λ ∩G4) ≥ 2 or dim(Λ ∩G6) = 3.

The T -fixed points of R(u, v) consist of subspaces that are spanned by ei1 ∈ F4, ei2 ∈
F6 ∩ G6 and ei3 ∈ G4. We claim that each of these T -fixed points is singular in either
Xu or Xv, so by Corollary 2.9 they are all singular in R(u, v). The claim holds since any
basis vector in F6 ∩G6 is also contained in either F4 or G4. We conclude that the smooth
locus of R(u, v) does not contain any torus fixed points.

In Remark 4.19, we will characterize the Richardson varieties in the Grassmannian that
contain a torus fixed smooth point.

More generally, when G/P is the Grassmannian G(k, n), Corollary 2.9 implies a nice,
geometric characterization of the smooth Richardson varieties. This characterization is
essentially proved but not explicitly stated in [36].

Definition 2.12. A Segre product of r GrassmanniansG(k1, n1)×· · ·×G(kr, nr) inG(
∑
ki, n),

with n ≥
∑
ni, is the image under the direct sum map

(W1, . . . ,Wr) 7→ (W1 ⊕ · · · ⊕Wr).

A Segre product of Grassmannians is a Richardson variety in G(k, n). Specifically, the
Segre product G(k1, n1)× · · · ×G(kr, nr) is the intersection of the two opposite Schubert
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varieties Xu ∩Xv where

u = (n1 − k1 + 1, n1 − k1 + 2, . . . , n1, . . . ,

r∑
i=1

ni − kr + 1, . . . ,
r∑
i=1

ni)

and

v = (n−
r−1∑
i=1

ni − kr + 1, n−
r−1∑
i=1

ni − kr + 2, . . . , n−
r−1∑
i=1

ni, . . . , n− k1 + 1, . . . , n− 1, n).

This Richardson variety can also be realized as the intersection of two Schubert varieties
with respect to partial flags. Let Fj = V1⊕· · ·⊕Vj, where Vi is the ni dimensional vector
space defining G(ki, ni). Let E be a vector subspace of V complementary to Fr. Let
Gj = E ⊕ Vr ⊕ · · · ⊕ Vr−j+1. Then we have

Xu = {W ∈ G(k, n) | dim(W ∩ Fj) ≥
j∑
i=1

ki}

and

Xv = {W ∈ G(k, n) | dim(W ∩Gj) ≥
r∑

i=r−j+1

ki},

Corollary 2.13. A Richardson variety in G(k, n) is smooth if and only if it is a Segre
product of Grassmannians.

Remark 2.14. By taking Xv to equal G(k, n), we see that Corollary 2.13 generalizes the
well-known fact that a Schubert variety Xu in G(k, n) is smooth if and only if Xu is a
sub-Grassmannian [15, Corollary 2.4]. In fact, the proof will use this fact.

Proof. A Segre product of Grassmannians is clearly smooth since it is the Segre embedding
of the product of Grassmannians G(k1, n1)×· · ·×G(kr, nr) in G(k, n) with k =

∑
ki and

n ≥
∑
ni. Conversely, suppose that R(u, v) is a smooth Richardson variety in G(k, n).

Observe that Xsing
u ∩ Xv = ∅ if and only if ui + vn−i ≤ n for every 1 ≤ i ≤ k for which

ui+1 6= ui+ 1. Similarly, Xu∩Xv
sing = ∅ if and only if vi+un−i ≤ n for every 1 ≤ i ≤ k for

which vi+1 6= vi+1. Suppose first that ui+1 = ui+1 for all 1 ≤ i ≤ k−1. Then the Schubert
variety Xu is isomorphic to the Grassmannian G(k, uk). Consequently, the intersection of
Xv with Xu is isomorphic to a Schubert variety in G(k, uk). Hence, the Richardson variety
is isomorphic to a Schubert variety and is smooth if and only if it is a Grassmannian.
The corollary now is immediate by induction on the number of times ui+1 6= ui + 1.
Suppose uj+1 6= uj + 1. Then uj + vn−j ≤ n. In particular, the two flag elements Fuj

and Gvn−j
have trivial intersection. Since every k-dimensional space parameterized by

the Richardson variety R(u, v) has a j-dimensional subspace contained in Fuj
and an

(n − j)-dimensional subspace contained in Gvn−j
and these have trivial intersection, the

k-dimensional subspace must be the span of these two subspaces. Consequently, the
Richardson variety is a product of two Richardson varieties in G(j, Fuj

)×G(n− j,Gvn−j
)

and is smooth if and only if each factor is smooth. �
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Remark 2.15. Finally, we note that the proof given in [36, Remark 7.6.6] for determining
the multiplicities of Richardson varieties in minuscule partial flag varieties generalizes by
induction to intersection varieties. Let R(u1, . . . , ur; g•) be an intersection variety in a
minuscule partial flag variety. Then

multp
(
R(u1, . . . , ur; g•)

)
=

r∏
i=1

multp(giXui
).

3. Projection Varieties

In this section, we prove that projection varieties have rational singularities. This claim
follows from a general fact, which we prove below, about the images of certain subvarieties
under Mori contractions. We refer the reader to [33] for more detail about Mori theory
and rational singularities.

Definition 3.1. A variety X has rational singularities if there exists a resolution of singu-
larities f : Y → X such that f∗OY = OX and Rif∗OY = 0 for i > 0.

Remark 3.2. A variety with rational singularities is normal. Moreover, for every resolution
g : Z → X, we have g∗OZ = OX and Rig∗OZ = 0 for i > 0 (see [33]).

The map πQ : G/P → G/Q is a Mori contraction. To deduce Theorem 1.1 we will
apply the following general theorem.

Theorem 3.3. Let X be a smooth, projective variety. Let π : X → Y be a Mori con-
traction defined by the line bundle M = π∗L, where L is an ample line bundle on Y . Let
Z ⊂ X be a normal, projective subvariety of X with rational singularities. Assume that

(1) H i(Z,M⊗n|Z) = 0 for all i > 0 and all n ≥ 0.
(2) The natural restriction map H0(X,M⊗n) → H0(Z,M⊗n|Z) is surjective for all

n ≥ 0.

Then W = π(Z), with its reduced induced structure, is normal and has rational singular-
ities.

Proof. Denote the restriction of the map π to Z also by π. To simplify notation, we will
denote the restriction of the line bundles M to Z and L to W again by M and L.

Step 1. We first show that Riπ∗OZ = 0 for i > 0. Since L is ample on W , by Serre’s The-
orem, Riπ∗OZ ⊗L⊗n is generated by global sections for n >> 0 ([26], II.5.17). Therefore,
to show that Riπ∗OZ = 0, it suffices to show that H0(W,Riπ∗OZ ⊗L⊗n) = 0 for n >> 0.
Similarly, by Serre’s Theorem, Hj(W,Riπ∗OZ ⊗ L⊗n) = 0 for all j > 0 and all n >> 0
([26], III.5.2). Since only finitely many sheaves Riπ∗OZ are non-zero, we may choose a
number N such that for all n ≥ N , Riπ∗OZ⊗L⊗n is globally generated and has no higher
cohomology for all i.

Given a coherent sheaf F on Z, the Leray spectral sequence expresses the cohomology
of F in terms of the cohomology of the higher direct image sheaves Riπ∗F on W . More
precisely, the spectral sequence has Ep,q

2 = Hp(W,Rqπ∗F) and abuts to Hp+q(Z,F).
We apply the spectral sequence to F = M⊗n for n ≥ N . Since M = π∗L, by the
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projection formula, Riπ∗M
⊗n = Riπ∗OZ⊗L⊗n. Since n is chosen so that Hp(W,Rqπ∗OZ⊗

L⊗n) = 0 for p > 0, we conclude that the spectral sequence degenerates at the E2 term.
Consequently, H0(W,Riπ∗OZ⊗L⊗n) ∼= H i(Z,M⊗n). Since by assumption, H i(Z,M⊗n) =
0 for i > 0 and n > 0, we conclude that H0(W,Riπ∗OZ ⊗ L⊗n) = 0 for i > 0 and n ≥ N .
Therefore, Riπ∗OZ = 0 for i > 0.

Step 2. We next show that π∗OZ = OW . In particular, this implies that the Stein
factorization of the map π : Z → W is trivial ([26], III.11.5). Therefore, the fibers of the
map π are connected and W is normal. Let F be the cokernel of the natural injection
from OW to π∗OZ . We thus obtain the exact sequence

(∗) 0→ OW → π∗OZ → F → 0.

We want to show that F = 0. Since L is ample, F⊗L⊗n is globally generated for n >> 0.
Hence, it suffices to show H0(W,F ⊗L⊗n) = 0 for n >> 0. Using the long exact sequence
of cohomology associated to the exact sequence (∗) and the fact that H1(W,L⊗n) = 0 for
n >> 0, to conclude that F = 0, it suffices to show that h0(W,L⊗n) = h0(W,π∗OZ⊗L⊗n)
for n >> 0.

Consider the exact sequence

0→ IW → OY → OW → 0.

Tensoring the exact sequence by L⊗n for n >> 0, we get that the restriction map
H0(Y, L⊗n)→ H0(W,L⊗n) is surjective. Since the map π : X → Y is a Mori contraction,
π∗OX = OY . Consequently, by the projection formula

H0(Y, L⊗n) = H0(Y, π∗OX ⊗ L⊗n) = H0(X,M⊗n).

The inclusion of Z in X and W in Y gives rise to the commutative diagram

H0(Y, L⊗n) = H0(Y, π∗OX ⊗ Ln) = H0(X,M⊗n)

↓ ↙
H0(W,L⊗n) H0(Z,M⊗n)

↓ ↙
H0(W,π∗OZ ⊗ L⊗n)

By assumption, the restriction map H0(X,M⊗n) → H0(Z,M⊗n) is surjective for all
n ≥ 0. H0(Z,M⊗n) ∼= H0(W,π∗OZ ⊗ L⊗n). In particular, it follows that H0(Y, L⊗n) →
H0(W,π∗OZ⊗L⊗n) is surjective. Therefore, the map H0(W,L⊗n)→ H0(W,π∗OZ⊗L⊗n)
must be surjective. Since by the exact sequence (∗), it is also injective, we conclude that
h0(W,L⊗n) = h0(W,π∗OZ ⊗L⊗n) for n >> 0. This concludes the proof that OW ∼= π∗OZ
and that W is normal.

Step 3. Finally, to conclude that W has rational singularities, we simply apply a theorem
of Kollár. First, observe that since Z has rational singularities by assumption, for any
desingularization ρ : U → Z, we have that ρ∗OU ∼= OZ and Riρ∗OU = 0 for i > 0. Hence,
considering φ = π ◦ ρ : U → W , we have that φ∗OU = π∗(ρ∗OU) = OW and Riφ∗OU = 0
for i > 0. In particular, the Stein factorization of φ is trivial and the geometric generic
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fiber of φ is connected. Kollár’s Theorem 7.1 in [32] then guarantees that W has rational
singularities. This concludes the proof. �

Remark 3.4. The proof of Theorem 3.3 does not use the full strength of the hypotheses. In
assumptions (1) and (2), it is not necessary to require the vanishing of higher cohomology
and the surjectivity of the restriction map for all n ≥ 0. It suffices to assume these only
for sufficiently large n.

Theorem 3.3 reduces understanding singularities of certain subvarieties of flag varieties
to the vanishing of cohomology. The higher cohomology groups of the restriction of
NEF line bundles on flag varieties to Schubert or Richardson varieties vanish. We refer
the reader to [6], [7], [8] and [9] for more information about higher cohomology of line
bundles on Richardson varieties. Hence, Theorem 3.3 is a very useful tool in the context
of Schubert geometry. For instance, Theorem 3.3 immediately implies Theorem 1.1.

Proof of Theorem 1.1. Let Q ⊂ G be a parabolic subgroup containing P . Let Pi, i =
1, . . . , j, be the maximal parabolic subgroups containing Q. Let πQ : G/P → G/Q and
πPi

: G/Q→ G/Pi denote the natural projections. In Theorem 3.3 take

X = G/P and Y = G/Q.

Let L be the ample line bundle on Y defined by L = Li1⊗Li2⊗· · ·⊗Lij , where Lis is the
pull-back of the ample generator of the Picard group of G/Pi under the natural projection
map πPi

. Let M = π∗QL. Then M is NEF and defines the projection πQ : X → Y. Let Z
be the Richardson variety R(u, v). It is well-known that Richardson varieties are normal
with rational singularities ([7] Theorem 4.1.1). Furthermore, the higher cohomology of
the restriction of a NEF line bundle on the flag variety to a Richardson variety vanishes
and the restriction map on global sections is surjective [7] Theorem 4.2.1 (ii) and Remark
4.2.2. Hence, all the assumptions of Theorem 3.3 are satisfied. We conclude that the
projection variety πQ(Z) is normal and has rational singularities. �

4. Singularities of Grassmannian projection varieties

In this section, we discuss the singularities of projection varieties in Type A Grassmanni-
ans. We first characterize projection varieties in G(k, n) without reference to a projection
from a flag variety. Given a projection variety, we then exhibit a minimal Richardson
variety projecting to it. This Richardson variety is birational to the projection variety
and the projection map does not contract any divisors. This description allows us to
characterize the singular loci of projection varieties. We first begin by introducing some
notation.

Notation 4.1. Let 0 < k1 < k2 < · · · < km < n be an increasing sequence of positive
integers less than n. We set k0 = 0 and km+1 = n. Let Fl(k1, . . . , km;n) denote the
partial flag variety parameterizing partial flags (V1 ⊂ · · · ⊂ Vm) of length m in V such
that Vi has dimension ki.

The cohomology of Fl(k1, . . . , km;n) admits a Z-basis generated by the classes of Schu-
bert varieties. Schubert varieties in F (k1, . . . , km;n) are parameterized by permutations
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in Sn with at most m descents at positions k1, k2, . . . , km. We record these permutations
as a list of km distinct positive integers u = (u1, u2, · · · , ukm) less than or equal to n such
that uj < uj+1 unless j = ki for some 1 ≤ i ≤ m. The sequence u records the images
of the first km numbers under the permutation. Since there are no further descents, u
completely determines the permutation.

Given an entry ui in the permutation, there exists a unique l such that kl−1 < i ≤ kl.
We say that the color ci of the entry ui is l. Geometrically, the entries of the permutation
record the dimensions of the elements in the flag F• = (F1, . . . , Fn) defining the Schubert
variety Xu where a jump in dimension occurs and the corresponding color records the
minimal j for which the dimension of Vj is required to increase:

Xu(F•) = {(V1, . . . , Vm) ∈ Fl(k1, . . . , km;n) | dim(Vj ∩ Fui
) ≥ #{ul ≤ ui | cl ≤ j}}.

It is convenient to assign a multi-index Iu(i) = (si1, . . . , s
i
m) to each entry in a permutation

by letting

sij = #{ul ≤ ui | cl ≤ j}.
In particular, using the multi-indices, the definition of a Schubert variety can be expressed
more compactly:

Xu(F•) = {(V1, . . . , Vm) ∈ Fl(k1, . . . , km;n) | dim(Vj ∩ Fui
) ≥ sij}.

Example 4.2. Let u = (1, 4, 8, 3, 9, 2, 7) be a permutation for F (3, 5, 7; 9). Then the color
of the entries 1, 4, 8 is 1, the color of the entries 3, 9 is 2 and the color of the entries
2, 7 is 3. The multi-indices are Iu(1) = (1, 1, 1), Iu(2) = (2, 3, 4), Iu(3) = (3, 4, 6), Iu(4) =
(1, 2, 3), Iu(5) = (3, 5, 7), Iu(6) = (1, 1, 2), Iu(7) = (2, 3, 5). The corresponding Schubert
variety parameterizes flags (V1, V2, V3) such that V3 is required to intersect F1, F2, F3, F4,
F7, F8, F9 in subspaces of dimension at least 1, 2, 3, 4, 5, 6, 7, respectively. V2 is required
to intersect F1, F3, F4, F8, F9 in subspaces of dimension at least 1, 2, 3, 4, 5, respectively.
Finally, V1 is required to intersect F1, F4, F8 in subspaces of dimension at least 1, 2, 3,
respectively.

Recall that a Grassmannian projection variety is the projection of a Richardson variety
R(u, v) in Fl(k1, . . . , km;n) to G(km, n) under the natural projection map.

Remark 4.3. There may be many different ways of realizing the same projection variety as
projections of different Richardson varieties. For example, take two successive projections
of flag varieties

F1 = Fl(k1, k2, k3;n)
π1−→ F2 = Fl(k2, k3;n)

π2−→ G(k3, n).

Given a Richardson variety R(u, v) ⊂ F2, π−1
1 (R(u, v)) = R(u′, v′) is a Richardson variety

in F1. Hence, the projection variety π2(R(u, v)) may also be realized as the projection
variety π2 ◦ π1(R(u′, v′)). In particular, the Grassmannian projection varieties all come
from projections of Richardson varieties in the complete flag variety. This proves that
rank varieties are examples of the (closed) positroid varieties defined in [30, Section 5].
Note that R(u′, v′) in F1 is typically not birational to R(u, v) since π1 may have positive
dimensional fibers over R(u, v).
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It is convenient to have a characterization the projection varieties without referring
to the projection of a Richardson variety. Such a characterization can be obtained in
terms of rank varieties. We recall the following notation from Section 1. Let V be an
n-dimensional vector space. Fix an ordered basis e1, . . . , en of V . Let W = [ei, ej] be the
vector space spanned by a consecutive set of basis elements ei, ei+1, . . . , ej. Let l(W ) = i
and r(W ) = j be the smallest and largest index of the basis elements contained in W,
respectively.

Definition 4.4. A rank set M for G(k, n) is a set of k vector spaces M = {W1, . . . ,Wk},
where each vector space is the span of (non-empty) consecutive sequences of basis elements
and l(Wi) 6= l(Wj) and r(Wi) 6= r(Wj) for i 6= j. Given a rank set M , the rank variety
X(M) associated to M is the subvariety of G(k, n) defined by the Zariski closure of the
set of k-planes in V that have a basis b1, . . . , bk such that bi ∈ Wi for Wi ∈ M . A rank
variety X is a subvariety of G(k, n) for which there exists a rank set M with respect to
some choice of ordered basis such that X(M) = X.

Remark 4.5. Alternatively, one can define a rank variety X(M) as the variety of k-planes
that intersect any vector space W spanned by the ordered basis in a subspace of dimension
at least the number of Wi ∈M contained in W

X(M) = {Λ ∈ G(k, n) | dim(Λ ∩W ) ≥ #{Wi ∈M | Wi ⊂ W}
for every W =< ei1 , . . . , eis >}.

These rank equations give rise to the terminology. By upper semicontinuity, it is clear
that any k-plane Λ parameterized by X(M) has to satisfy the inequalities

dim(Λ ∩W ) ≥ #{Wi ∈M | Wi ⊂ W}.
Conversely, let W1,W2 be two vector spaces. Let v1 and v2 be two independent vectors
such that v1 ∈ W1 ∩W2 and v2 is contained in the span of W1 and W2 but not contained
in either. In particular, we can express v2 = w1 + w2 with wi ∈ Wi. The vector space
spanned by v1 and v2 is in the closure of the vector spaces that have a basis t1, t2 with
t1 ∈ W1 and t2 ∈ W2. To see this, simply let t1(s) = w1 + sv1 and t2(s) = w2 − sv2

and take the flat limit as s goes to zero. Using this observation and induction on the
number of vector spaces in the rank set, one can show that any k-plane satisfying all the
inequalities is contained in the rank variety. Since we will not need this fact, we leave the
verification to the reader.

Example 4.6. The Grassmannian G(k, n) can be realized as the rank variety associated
to the rank set

{Wi = [ei, en−k+i], 1 ≤ i ≤ k}.
The Schubert variety Xu in G(k, n) can be realized as the rank variety associated to the
rank set

{Wi = [ei, eui
], 1 ≤ i ≤ k}.

We will shortly see that the Richardson variety R(u, v) in G(k, n) can be realized as the
rank variety associated to the rank set

{Wi = [en−vk−i+1+1, eui
], 1 ≤ i ≤ k}.
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Rank varieties are more general than Richardson varieties. For example, the rank variety
X(M) in G(3, 8) associated to the rank set {[e1, e6], [e3, e5], [e4, e8]} is not a Richardson
variety in G(3, 8). The reader can verify this by calculating the cohomology class of
X(M).

Remark 4.7. Algorithm 3.12 of [14] gives a geometric Littlewood-Richardson rule for
computing the cohomology classes of rank varieties in terms of Schubert classes.

We can characterize projection varieties in G(k, n) as rank varieties.

Theorem 4.8. X ⊂ G(k, n) is a projection variety if and only if X is a rank variety.

We will prove Theorem 4.8 in several steps. We begin by giving two algorithms. The
first algorithm associates a Richardson variety R(u, v)(M) to every rank variety X(M)
in G(k, n) in a minimal way such that the projection of R(u, v)(M) is X(M). Given a
Grassmannian projection variety, the second algorithm associates to it a rank set with
the corresponding rank variety being equal to the original projection variety.

Throughout this proof, we fix two opposite flags F• = (F1, . . . , Fn) andG• = (G1, . . . , Gn)
where Fi is the span of the first i basis elements e1, . . . , ei and Gi in G• is the span of the
last i basis elements en, . . . , en−i+1. Then Xu = Xu(F•) and Xv = Xv(G•).

Algorithm 4.9. [Associating a Richardson variety to a rank variety.] In this algo-
rithm, given a rank set M = {W1, . . . ,Wk} and its rank variety X(M) in G(km, n), we will
associate a Richardson variety R(u, v)(M) in an appropriate flag variety F (k1, . . . , km;n)
such that the projection of R(u, v) is X(M).

Step 1: Associate a color to each vector space Wi. Let m be the length of a longest
chain of subspaces

Wj1 ) Wj2 ) · · · ) Wjm ,

where each Wjs ∈M . For a vector space Wi ∈M , let mi be the length of a longest chain

Wj1 ) Wj2 ) · · · ) Wjmi
= Wi,

where Wjs ∈ M . Assign Wi the color ci = m − mi + 1. From now on we decorate the
vector spaces in the rank set with their color W ci

i .

Step 2: Define two opposite Schubert varieties. Let kj be the number of vector
spaces in the rank set that are assigned a color less than or equal to j. We define two
Schubert varieties in F (k1, . . . , km;n). Recall that r(Wi) is the index of the basis element
with the largest index in Wi. Let u be the permutation defined by the numbers r(Wi)
listed so that those corresponding to vector spaces of color c all occur before those of
color c + 1 and among those of the same color the numbers are increasing. Similarly,
recall that l(Wi) is the index of the basis element with the smallest index in Wi. Let v be
the permutation defined by the numbers n− l(Wi) + 1 listed so that those corresponding
to vector spaces of color c all occur before those of color c + 1 and among those of the
same color the numbers are increasing. Let the minimal Richardson variety R(u, v)(M)
associated to the rank set M be the Richardson variety Xu ∩Xv = Xu(F•) ∩Xv(G•) in
F (k1, . . . , km;n).
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Remark 4.10. The requirement that r(Wi) 6= r(Wj) (respectively, l(Wi) 6= l(Wj)) for i 6= j
guarantees that the numbers r(Wi) (respectively, n − l(Wi) + 1) are all distinct. More-
over, both permutations have at most m descents at places k1, . . . , km by construction.
Therefore, Algorithm 4.9 produces well-defined permutations u and v for F (k1, . . . , km;n).

Remark 4.11. Let M be the rank set

M = {Wi = [en−vk−i+1+1, eui
], 1 ≤ i ≤ k}.

Then the rank variety X(M) = R(u, v). As expected, the Algorithm 4.9 associates to M
the Richardson variety R(u, v).

Algorithm 4.12. [Associating a rank set to a Richardson variety.] Let R(u, v) =
Xu∩Xv = Xu(F•)∩Xv(G•) be a Richardson variety in F (k1, . . . , km;n). In this algorithm,
we associate a rank set M(R(u, v)) to R(u, v) such that the projection of R(u, v) to
G(km, n) is the rank variety X(M(R(u, v))).

Step 0. Recall that each ui in the permutation u is assigned a color ci, where ci = l if
kl−1 < i ≤ kl, and a multi-index Iu(i) = (si1, . . . , s

i
m), where sij = #{ul ≤ ui | cl ≤ j}.

Similarly, each vi in the permutation v is assigned a color di and a multi-index Iv(i) =
(ti1, . . . , t

i
m). Given an entry uj in a permutation, recall u−1(uj) = j denotes the index of

the entry. The color, index and multi-index are assigned to ui or vi in a permutation for
once and for all and do NOT vary during the algorithm.

Step 1. Let Ukm = {ui : 1 ≤ i ≤ km} be the initial set of entries in the permutation u
and let Vkm = {vi : 1 ≤ i ≤ km} be the analogous the set of entries for v. Let M0 be the
empty set. At each stage, we will remove an element from each of Ukm and Vkm and add
a vector space to M0 until we exhaust Ukm and Vkm .

Initial Step. Let

α = min
ui∈Ukm

(ui).

Let c = cu−1(α) be the color of the entry α. For each d ≥ c, let

βd = max
vi∈Vkm s.t. di≤d

(vi).

Let β be the minimum βd over all d ≥ c. Let W1 = Fα ∩ Gβ, where F• and G• are
the two flags defining the Schubert varieties Xu and Xv, respectively as always. Set
Ukm−1 = Ukm − {α}, Vkm−1 = Vkm − {β} and M1 = {W1}.

The Inductive Step. Suppose we have defined Mt and are left with two subsets Ukm−t

and Vkm−t of the entries from the permutations u and v. Let

α = min
ui∈Ukm−t

(ui).

Let c = cu−1(α) as above. For each d ≥ c, let

βd = max
vi∈Vkm−t s.t. di≤d

(vi).
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Let β be the minimum βd over all d ≥ c for which t
v−1(βd)
d ≥ kd − su

−1(α)
d + 1. Since the

inequality t
v−1(βm)
m ≥ km − su

−1(α)
m + 1 is satisfied, such a β must exist. Let

Wt+1 = Fα ∩Gβ.

Set

Ukm−t−1 = Ukm−t − {α},

Vkm−t−1 = Vkm−t − {β}
and Mt+1 = Mt ∪ {Wt+1}.

Step 2. The inductive loop in Step 1 terminates when t = km. The rank set associated
to the Richardson variety R(u, v) is M(R(u, v)) = Mkm .

Remark 4.13. Every vector space Wi formed during the algorithm occurs as Fα ∩ Gβ.
Hence, Wi is the span of the consecutive set of basis elements en−β+1, . . . , eα. Since each
α and each β occur only once during the algorithm, l(Wi) 6= l(Wj) and r(Wi) 6= r(Wj)
for i 6= j. Therefore, M(R(u, v)) is a rank set.

Before proceeding to prove Theorem 4.8, we give some examples of Algorithm 4.9 and
Algorithm 4.12.

Example 4.14. Let M be the rank set W1 = [e1, e7],W2 = [e2, e6],W3 = [e3, e4],W4 =
[e4, e5],W5 = [e6, e8] so X(M) ⊂ G(5, 8). Then (m1, . . . ,m5) = (1, 2, 3, 3, 1) so the colors
of the vector spaces are W 3

1 ,W
2
2 ,W

1
3 ,W

1
4 ,W

3
5 as indicated by the superscripts. Hence, the

corresponding minimal Richardson variety is contained in Fl(2, 3, 5; 8) and has defining
permutations u = (4, 5, 6, 7, 8) and v = (5, 6, 7, 3, 8).

Conversely, suppose we begin with the Richardson variety associated to the permuta-
tions u = (4, 5, 6, 7, 8) and v = (5, 6, 7, 3, 8) in Fl(2, 3, 5; 8). Construct the following tables
of associated data:

i ui ci Iu(i)
1 4 1 (1, 1, 1)
2 5 1 (2, 2, 2)
3 6 2 (2, 3, 3)
4 7 3 (2, 3, 4)
5 8 3 (2, 3, 5)

i vi di Iv(i)
1 5 1 (1, 1, 2)
2 6 1 (2, 2, 3)
3 7 2 (2, 3, 4)
4 3 3 (0, 0, 1)
5 8 3 (2, 3, 5).

In Algorithm 4.12, the vector spaces that are formed are W1 = F4 ∩ G6 = [e3, e4], W2 =
F5 ∩G5 = [e4, e5], W3 = F6 ∩G7 = [e2, e6], W4 = F7 ∩G8 = [e1, e7] and W5 = F8 ∩G3 =
[e6, e8]. We elaborate on the computation of W2. For t = 2, we have α = 5 and c = 1,
so β1 = 5, β2 = 7, β3 = 8. The minimum among the βd’s is 5 with d = 1. The tricky
condition

t
v−1(βd)
d ≥ kd − su

−1(α)
d + 1

is satisfied since 1 = t11 < k1 − s2
1 + 1 = 2 − 2 + 1 = 1, hence β = 5. Observe that we

recover the initial rank set.
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Example 4.15. Let R(u, v) be the Richardson variety in F (2, 4; 7) associated to the permu-
tations u = (4, 6, 2, 7) and let v = (2, 7, 3, 5). Construct the following tables of associated
data:

i ui ci Iu(i)
1 4 1 (1, 2)
2 6 1 (2, 3)
3 2 2 (0, 1)
4 7 2 (2, 4)

i vi di Iv(i)
1 2 1 (1, 1)
2 7 1 (2, 4)
3 3 2 (1, 2)
4 5 2 (1, 3).

In Algorithm 4.12, the vector spaces that are formed when computing M(R(u, v)) are
W1 = F2 ∩ G7 = [e1, e2], W2 = F4 ∩ G5 = [e3, e4], W3 = F6 ∩ G2 = [e6], and W4 =
F7 ∩G3 = [e5, e7].

If we begin with the rank set M = {W1 = [e1, e2],W2 = [e3, e4],W3 = [e6],W4 =
[e5, e7]}, then the colors of the vector spaces assigned in the Algorithm 4.9 areW 2

1 ,W
2
2 ,W

1
3 ,W

2
4 .

Hence, Algorithm 4.9 assigns the Richardson variety R(u′, v′) in F (1, 4; 7), where u′ =
(6, 2, 4, 7) and v′ = (2, 3, 5, 7). Observe that R(u′, v′) is different from R(u, v). In
fact, they are not subvarieties of the same flag variety. The projection of R(u, v) to
X(M(R(u, v))) has positive dimensional fibers, where as the projection map from R(u′, v′)
to X(M(R(u, v))) is birational.

We are now ready to start the proof of Theorem 4.8. We first determine the dimension
of rank varieties.

Lemma 4.16. The rank variety X(M) associated to a rank set M is an irreducible sub-
variety of G(k, n) of dimension

dim(X(M)) =
k∑
i=1

dim(Wi)−
k∑
i=1

#{Wj ∈M | Wj ⊆ Wi}.

Proof. This is a special case of Lemma 3.29 in [14] and follows easily by induction on k.
When k = 1, the rank variety is a projective space (PW1) of dimension dim(W1) − 1, as
claimed in the lemma. Let W1 be the vector space with minimal l(Wi) in M . Omitting
W1 gives rise to a rank variety X(M ′) in G(k − 1, n). Let U be the dense open set in
X(M) parameterizing k-planes that have a basis t1, . . . , tk with ti ∈ Wi such that t1 is
not contained in any Wi other than W1. Then intersecting a k-plane parameterized by U
with the span of the vector spaces W2, . . . ,Wk gives rise to a dominant morphism from
U to X(M ′). The fibers over a point Λ ∈ X(M ′) in the image correspond to a choice of
a vector in W1 independent from Λ. Hence, the fibers are open subsets in a projective
space of dimension

dim(W1)−#{Wi ∈M | Wi ⊆ W1}.
The lemma follows by induction. �

Next we show that the projection of R(u, v) is X(M(R(u, v))).

Lemma 4.17. Let R(u, v) be a Richardson variety in F (k1, . . . , km;n). Let π denote the
projection to G(km, n). Then π(R(u, v)) = X(M(R(u, v))).
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Proof. Let (V1, . . . , Vm) ∈ R(u, v). We first prove that π(R(u, v)) ⊂ X(M(R(u, v))). It
suffices to check that Vm satisfies all the rank conditions imposed by M(R(u, v)). The
basic linear algebra fact is that

dim(Vr ∩ Fui
∩Gvj

) ≥ sir + tjr − kr

since Vr intersects Fui
and Gvj

in subspaces of dimension at least sir and tjr, respectively.
Furthermore, since Vr ⊂ Vm, we conclude that

dim(Vm ∩ Fui
∩Gvj

) ≥ max
1≤r≤m

sir + tjr − kr.

Now notice that M(R(u, v)) is constructed so that dim(Vm ∩ Fui
∩ Gvj

) precisely equals
max1≤r≤m s

i
r + tjr − kr. Hence, the rank conditions imposed by M(R(u, v)) are satisfied

by Vm for (V1, . . . , Vm) ∈ R(u, v).

Next, we show that the projection of R(u, v) is onto X(M(R(u, v))). Since R(u, v) is
a projective variety and π is a morphism, the image π(R(u, v)) is a projective variety.
Hence, it suffices to show that a general point of X(M(R(u, v))) is in the image of π.
There is a dense open set of X(M(R(u, v))) consisting of k-planes Λ such that

dim(Λ ∩Wi) = #{Wj ∈M | Wj ⊆ Wi}

for every i and

dim(Λ ∩Wi ∩Wj) = #{Wt ∈M | Wt ⊂ Wi ∩Wj}

for every i, j. Fix such a k-plane Λ that has a basis (b1, . . . , bk) with bi ∈ Wi. Let τsu be
the truncation of the permutation u obtained by taking the first ks numbers (u1, . . . , uks)
in the permutation u. Similarly, let τsv be the corresponding truncation of v. For every
1 ≤ s < m, construct a sequence of vector spaces W s

1 , . . . ,W
s
ks

by running the Algorithm
4.12 with the permutations τsu and τsv for the flag variety F (k1, . . . , ks;n). Inductively,
we define a point of the Richardson variety R(u, v) as follows. Let Vm = Λ. For every
Wm−1
i let bm−1

i =
∑

bj∈Wm−1
i

bj. Let Vm−1 be the span of the vectors bm−1
i . Continuing

by descending induction, let bsi =
∑

bs+1
j ∈W s

i
bs+1
j . Let V s be the vector space spanned by

the vectors bsi . In this way, we obtain a partial flag (V1, . . . , Vm). By construction, it is
easy to see that this partial flag lies in both Schubert varieties Xu and Xv, hence in the
Richardson variety R(u, v). Furthermore, π((V1, . . . , Vm)) = Λ. We conclude that π is
surjective. This concludes the proof. �

Lemma 4.18. Let M0 be a rank set for G(k, n). Let R(u, v)(M0) be the associated min-
imal Richardson variety assigned by Algorithm 4.9. Let M(R(u, v)(M0)) be the rank set
associated to R(u, v)(M0) by Algorithm 4.12. Then M(R(u, v)(M0)) = M0.

Proof. This is clear, hence left to the reader. �

Proof of Theorem 4.8. We are now ready to prove Theorem 4.8. By Lemma 4.17, every
projection variety is a rank variety. By Lemma 4.18, every rank variety arises as a
projection variety. These statements together imply that rank varieties are projection
varieties and vice versa. �
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Remark 4.19. As a first application, we can determine the torus fixed points in the smooth
locus of a Richardson variety in G(k, n). The rank set M associated to a Richardson vari-
ety consists of k vector spaces W1, . . . ,Wk such that they all have color one (equivalently,
there are no containment relations among different vector spaces Wi and Wj). We can
assume that these vector spaces are ordered in increasing order by l(Wi). Equivalently,
we can order the vector spaces Wi by r(Wi) in increasing order. Since Wi 6⊂ Wj for i 6= j,
this leads to the same order. The torus fixed points are k-dimensional subspaces that are
spanned by k distinct basis elements ei1 , . . . , eik with i1 < i2 < · · · < ik. For a particular
torus fixed point to be contained in the rank variety, we must have eij ∈ Wj. To see this,
note that

(1) dim(Span(ei1 , . . . , eik) ∩ Span(W1,W2, . . . ,Wj)) ≥ j

and
(2) dim(Span(ei1 , . . . , eik) ∩ Span(Wk,Wk−1, . . . ,Wj)) ≥ k − j + 1.

If eij 6∈ Wj, then either ei1 , . . . , eij ∈ [e1, el(Wj)−1] or eij , . . . , eik ∈ [er(Wj)+1, en]. The first
case contradicts the second inequality and the second case contradicts the first inequality.
Now we are ready to characterize the torus fixed points in the smooth locus of X(M).
They are spanned by ei1 , . . . , eik with i1 < i2 < · · · < ik and eij ∈ Wj such that:

(1) If l(Wj+1) > l(Wj) + 1, then eij 6∈ Wj+1; and
(2) If r(Wj−1) < r(Wj)− 1, then eij 6∈ Wj−1

To see that these are necessary and sufficient conditions, simply use Corollary 2.9 and
the description of singularities of Schubert varieties in Grassmannians. In particular, if
ui+1 > ui + 1 for 1 ≤ i < k and vi+1 > vi + 1 for 1 ≤ i < k, then the Richardson variety
R(u, v) has a torus fixed point in its smooth locus if and only if every vector space Wj in
the corresponding rank set contains a basis element eij which is not contained in any of
the other vector spaces in the rank set.

Theorem 4.20. Let M be a rank set for G(k, n). Let R(u, v)(M) be the Richardson
variety associated to M by Algorithm 4.9. Let

π : R(u, v)(M) −→ X(M)

be the corresponding projection morphism. Then R(u, v)(M) is birational to X(M) under
π and the exceptional locus of π has codimension at least 2.

Proof. Let [Λ] ∈ X(M) be a k-dimensional subspace such that

dim(Λ ∩Wi) = #{Ws | Ws ⊆ Wi}
for every i and

dim(Λ ∩Wi ∩Wj) = #{Ws ∈M | Ws ⊂ Wi ∩Wj}
for every i and j. The set of such Λ form a dense, Zariski open subset U of X(M). To
see that U is not empty take a vector space Λ spanned by vectors

∑
ej∈Wi

αijej, where the

collection of coefficients αij are algebraically independent over Q. Then it is clear that Λ
is in U . The inverse of π can be defined over U as follows. Let Wis , 1 ≤ s ≤ ki − ki−1,
be the vector spaces in M that are assigned the color i. Let Λi be the span of the vector
spaces Λ ∩ Wis with 1 ≤ s ≤ ki − ki−1. Note that by construction Λi is a subspace
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of Λ of dimension ki containing Λi−1 and contained in Λi+1. It follows that the partial
flag (Λ1, . . . ,Λk = Λ) is the inverse image of Λ under the projection map π. Hence π is
birational.

We now bound the dimension of the exceptional locus. Note that the fiber dimension
of π is positive if and only if at least one of the vector spaces Vj intersects W ci

i with ci < j
in a subspace of dimension greater than #{Ws ∈ M | Ws ⊆ Wi}. We can stratify the
rank variety into loci where such intersections happen and compare the decrease in the
dimension of the image of π with the increase in the dimension of the fibers of π. In
fact, by stratifying the rank variety successively, it suffices to carry out the calculation
when j = c+ 1 and ci = c. Let Wi and Wj be two vector spaces with colors c and c+ 1,
respectively, such that Wi ∩Wj 6= ∅. Define a new rank set M ′(Wi,Wj) as follows.

Step 1. Let W ′
j = Wj ∩Wi. List all the vector spaces W1,W2, . . . ,Wr of color c + 1

in M that contain W ′
j ordered so that l(W1) < l(W2) < · · · < l(Wr). Form a new

collection of vector spaces M ′ by replacing W1, . . . ,Wr in M with W ′
j and the spans

W1W2,W2W3, · · · ,Wr−1Wr. Note that M ′ is not necessarily a rank set since two of the
vector spaces may coincide or the least or largest index basis elements in two of the vector
spaces may coincide.

Step 2. Let W − er(W ) (respectively, W − el(W )) denote the vector space spanned by
the set of all the basis elements in W but er(W ) (respectively, el(W )). As long as there are
two vector spaces W1 ⊆ W2 in M ′ with r(W1) = r(W2), replace W2 in M ′ with the vector
space W2−er(W2) keeping its label the same and relabel the new collection of vector spaces
M ′. If there are no such vector spaces, as long as there are vector spaces W1 ⊆ W2 in
M ′ with l(W1) = l(W2), replace W2 in M ′ with the vector space W2 − el(W2) and relabel
the new collection of vector spaces M ′. The procedure terminates when M ′ is a rank set
or when one of the vector spaces consists only of the zero vector. In the former case,
set M ′(Wi,Wj) = M ′. In the latter case, set M ′(Wi,Wj) = ∅. We call this process the
normalization of the set of vector spaces M ′.

Observe that Step 2 leads to isomorphic subvarieties (see [14] for a discussion of the
normalization algorithm). We include it in order to apply the dimension formula in Lemma
4.16 without modification. The generic fiber of π over M ′(Wi,Wj) has dimension one.
Note that the locus where π has higher dimensional fibers can be obtained by repeated
applications of Steps 1 and 2. In order to estimate the dimension of the exceptional
locus, it suffices to compare the dimension of X(M) to X(M ′(Wi,Wj)). There are two
cases to consider. If Wi ⊂ Wj, then dim(Wi) ≤ dim(Wj) − 2 since Wi does not contain
l(Wj) and r(Wj). Using the dimension formula given in Lemma 4.16 and the fact that
Step 2 can only decrease the value of the expression, we see that dim(X(M ′(Wi,Wj))) ≤
dim(X(M)) − r − 2. In particular, this dimension is at least three less. Hence, the
exceptional locus has codimension at least two.

If Wi 6⊂ Wj, then we may assume that l(Wj) < l(Wi) and r(Wj) < r(Wi). By the
algorithm assigning colors, we know that there exists Wt of color c + 1 containing Wi

such that l(Wj) < l(Wt) < l(Wi). We conclude that dim(Wj ∩ Wi) ≤ dim(Wj) − 2.
By the dimension formula given in Lemma 4.16, it follows that dim(X(M ′(Wi,Wj))) ≤
dim(X(M)) − r − 2. In particular, this dimension is at least three less. Hence, the
exceptional locus has codimension at least two.
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This concludes the discussion that the exceptional locus has codimension at least two.
�

The following corollary states a more precise version of Theorem 1.2.

Corollary 4.21. Let X(M) be a rank variety. Let π : R(u, v)(M) → X(M) be the
projection from the minimal Richardson variety associated to M . Then the singular locus
of X(M) is given by

X(M)sing = {x ∈ X | π−1(x) ∈ R(u, v)sing or dim(π−1(x)) ≥ 1}.

In particular, the singular locus of X(M) is a union of projection varieties.

Remark 4.22. More generally, the singular locus of any projection variety in an arbitrary
G/P is a union of projection varieties. However, it is more complicated to determine the
singular locus as above. It is an interesting open problem to find an explicit characteri-
zation in general.

The basic observation that allows us to characterize the singular loci of projection
varieties is the following.

Lemma 4.23. Let f : X → Y be a birational morphism of normal, projective vari-
eties such that the exceptional locus E of f (i.e., the locus in X where f fails to be an
isomorphism) has codimension at least two. Then Y sing = f(Xsing ∪ E).

Proof. The map f gives an isomorphism between X − E and Y − f(E). Hence, (Y −
f(E))sing = f((X−E)sing). Consequently, the content of the lemma is that f(E) ⊂ Y sing.
It is well-known that Y is badly singular along f(E). For example, Y cannot even be
Q-factorial along f(E). To see this, note that by Zariski’s Main Theorem, the fibers of f
over the points of f(E) ⊂ Y are positive dimensional. Let C be a curve in the fiber of f
over y. Let D be a divisor on X associated to a section of a very ample line bundle A.
Since the exceptional locus of f has codimension at least 2, f(D) is a Weil-divisor on Y
containing y. Suppose f(D) were Q-Cartier at y. Then mf(D) would be the class of a
line bundle M for some m > 0. Being a pull-back from Y , the degree of f ∗(M) is zero on
the curve C. This contradicts that D has positive degree on C. We conclude that f(D)
cannot be Q-Cartier at y. This concludes the proof of the lemma. �

Proof of Corollary 4.21. Consider the map π : R(u, v) → X(M). Since X(M) is normal
and the map is birational, by Zariski’s Main Theorem, π is an isomorphism over the locus

U = {x ∈ X(M) | dim(π−1(x)) = 0}.

Since the exceptional locus of π has codimension at least two, by the previous lemma,
X(M) is singular along X(M) − U . Since over U the map π is an isomorphism, x ∈ U
is singular if and only if π−1(x) is singular in R(u, v). This concludes the proof of the
Corollary. �

Note that Corollary 2.9 and Corollary 4.21 explicitly determine the irreducible compo-
nents of the singular locus of projection varieties.
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Example 4.24. We give a simple example in G(4, 10) showing how to find the singular
locus of a projection variety. Let M be the rank set

W1 = [e1, e6],W2 = [e3, e4],W3 = [e5, e10],W4 = [e7, e8].

Let M1 be the rank set

W 1
1 = [e3],W 1

2 = [e4],W 1
3 = [e5, e10],W 1

4 = [e7, e8].

Let M2 be the rank set

W 2
1 = [e1, e6],W 2

2 = [e3, e4],W 2
3 = [e7],W 2

4 = [e8].

Then X(M1) and X(M2) are the loci over which π has positive dimensional fibers. Let
M3 be the rank set

W 3
1 = [e1, e5],W 3

2 = [e3, e4],W 3
3 = [e5, e6],W 3

4 = [e7, e8].

Let M4 be the rank set

W 4
1 = [e3, e4],W 4

2 = [e5, e6],W 4
3 = [e6, e10], w4

4 = [e7, e8].

By Corollary 2.9, X(M3) and X(M4) are the loci where π−1 is singular. We conclude that
X(M) is singular along

⋃4
i=1X(Mi).

Finally, we obtain a generalization of Corollary 2.13.

Definition 4.25. Let j ≤ k and let m ≤ n−k+ j. Let V be an n-dimensional vector space
and let T and U be m and (k − j)-dimensional subspaces of V such that T ∩ U = {0}.
A linearly embedded sub-Grassmannian G(j,m) in G(k, n) is the image of φ : G(j, T ) ↪→
G(k, V ) under the map φ : W 7→ W ⊕ U . A Segre product of linearly embedded sub-
Grassmannians is a product of linearly embedded sub-Grassmannians followed by the
Segre embedding

G(j1,m1)× · · ·G(jr,mr) ↪→ G(k1, n1)× · · · ×G(kr, nr) ↪→ G(
∑

ki, n).

as described in Definition 2.12.

Remark 4.26. A linearly embedded sub-Grassmannian G(j,m) ⊂ G(k, n) is a smooth
Schubert variety corresponding to the permutation (1, 2, . . . , k − j,m− j + 1, . . . ,m). In
fact, every smooth Schubert variety in G(k, n) is a linearly embedded sub-Grassmannian
[15, Corollary 2.4].

Corollary 4.27. Let X be a rank variety with rank set M . The following are equivalent.

(1) X is smooth.
(2) X is a Segre product of linearly embedded sub-Grassmannians.
(3) M is a union of 1-dimensional subspaces and rank sets on disjoint intervals which

correspond with sub-Grassmannians after quotienting out by the 1-dimensional sub-
spaces.

For example, G(2, 4) is the smooth rank variety with rank set {[e1, e3], [e2, e4]}. In
G(7, 12), the rank set

M = {[e1, e5], [e2, e6], [e3, e7], [e4], [e8, e10], [e9, e11], [e12]}
corresponds with a smooth rank variety isomorphic to the product of G(3, 6)×G(2, 4).
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Proof. Let X be a Segre product of linearly embedded sub-Grassmannians

G(j1,m1)× · · · ×G(js,ms) ↪→ G(k1, n1)× · · · ×G(ks, ns) ↪→ G(k, n).

Then X is smooth. We need to show that we can realize X as a rank variety. The
Segre product of rank varieties X(Mi) is a rank variety corresponding to the concate-
nation of the corresponding rank set. A Schubert variety in G(ki, ni) is a rank variety
since it is a Richardson variety in the Grassmannian. Since a linearly embedded sub-
Grassmannian is a Schubert variety, we conclude that a Segre product of linearly embed-
ded sub-Grassmannians is a smooth rank variety.

Conversely, suppose that X is a smooth rank variety. We show that X has to be
a Segre product of linearly embedded sub-Grassmannians. Consider the corresponding
rank set M . If M contains only one vector space, then X(M) is a projective space and
the corollary holds. If the color of all the vector spaces in the rank set is one, then X(M)
is a Richardson variety in the Grassmannian and the corollary holds by Corollary 2.13.
Now we will do induction on the number of vector spaces defining M . We may assume
that there are some vector spaces in M assigned a color larger than one. Let W be a
subspace in the rank set that is assigned the color 1. If dim(W ) = 1, then we can replace
every vector space Wi in the rank set M containing W by Wi/W keeping all the others
unchanged. We obtain a new rank set M ′ for G(k − 1, n − 1) with one fewer vector
space. The map f : X(M ′) → X(M) sending Λ ∈ X(M ′) to the span of Λ and W is
an isomorphism between X(M ′) and X(M). By induction, X(M ′) is a Segre product
of linearly embedded sub-Grassmannians. It follows that X(M) is a Segre product of
linearly embedded Grassmannians. If dim(W ) > 1, we show that X(M) is singular. Take
a vector space W ′ of color two containing W . Define a new set of vector spaces M ′ by
replacing W ′ and W with the two vector spaces [el(W ), er(W )−1], [el(W )+1, er(W )]. If M ′ is
a rank set, stop. The fiber of π over this locus is positive dimensional. Hence, X(M) is
singular. If M ′ is not a rank set, normalize the set of vectors to obtain a rank set M ′′.
Note that M ′′ is non-empty and the fiber of π over X(M ′′) is positive dimensional. Hence,
X(M) is singular. This concludes the proof.

The equivalence of (2) and (3) follows from the fact that G(k, n) is itself a rank variety
corresponding with M = {W1, . . . ,Wk} where each Wi = [ei, en−k+i].

�

There is a nice way to enumerate all the rank varieties in G(k, n) using the Stirling num-
bers of the second kind. In fact, if we q-count the rank varieties according to dimension,
we get a well known q-analog of the Stirling numbers [19, 23, 42, 48].

Define the generating function

g[k, n] =
∑
M

qdim(X(M))

where the sum is over all rank sets M for G(k, n). Set g[k, n] = 0 for k > n, g[0, n] = 0
for n > 0 and g[0, 0] = 1. Let [k] = 1 + q + · · ·+ qk−1.

Lemma 4.28. The polynomials g[k, n] satisfy the recurrence

g[k, n] = g[k, n− 1] + [n− k + 1] · g[k − 1, n− 1]
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for 1 ≤ k ≤ n.

Proof. Every rank set M in G(k, n) is either a rank set in G(k, n − 1) or it contains a
subspace of the form [ei, en]. In the latter case removing this subspace leaves a rank set
M ′ in G(k−1, n−1) which does not include a subspace whose left endpoint is i. Observe
that dim(X(M))− dim(X(M ′)) equals n− i minus the number of subspaces in M ′ with
left endpoint larger than i. Furthermore, for each 0 ≤ d ≤ n− k, we can add a subspace
with right endpoint n to M ′ to get a rank set in G(k, n) of dimension d + dim(X(M ′))
by choosing the left endpoint to be the (d+ 1)-st largest value in {1, 2, . . . , n} − {l(W ) :
W ∈M ′}. �

Recall that the Stirling numbers of the second kind S(n, k) count the number of set
partitions of {1, . . . , n} into k nonempty blocks. Let S[n, k] be the q-analog of S(n, k)
defined by the recurrence

S[n, k] = qk−1S[n− 1, k − 1] + [k]S[n− 1, k]

with initial conditions S[0, 0] = 1, S[n, 0] = 0 for n > 0, and S[n, k] = 0 for k > n. One

can show that S[n, k] is divisible by q(
k
2 ). Then, simple algebraic manipulations prove

the following corollary to Lemma 4.28.

Corollary 4.29. For 1 ≤ k ≤ n, we have g[k, n] = S[n+ 1, n− k + 1] · q−(n−k+1
2 ).

Below are the 25 rank sets for G(2, 4) listed by dimension. Thus g[2, 4] = 6 + 8q +
7q2 + 3q3 + q4). Here (34, 123) means the rank set consisting of two subspaces spanned
by < e3, e4 > and < e1, e2, e3 >.

dim rank sets
0 : (2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)
1 : (23, 1), (34, 1), (3, 12), (4, 12), (2, 123), (34, 2), (4, 23), (3, 234)
2 : (234, 1), (23, 12), (34, 12), (4, 123), (2, 1234), (3, 1234), (34, 23)
3 : (234, 12), (34, 123), (23, 1234)
4 : (234, 123)
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[17] H. Duan, Multiplicative rule of Schubert classes, Invent. Math., 159 (2005), pp. 407–436.

[18] H. Duan and X. Zhao, Erratum: Multiplicative rule of Schubert classes, Invent. Math., 177 (2009), pp. 683–684.
[19] R. Ehrenborg and M. Readdy, Juggling and applications to q-analogues, in Proceedings of the 6th Conference on

Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), vol. 157, 1996, pp. 107–125.
[20] W. Fulton, Intersection Theory, Springer-Verlag, New York, 1984.

[21] W. Fulton, Young Tableaux; With Applications To Representation Theory And Geometry, vol. 35 of London Mathe-

matical Society Student Texts, Cambridge University Press, New York, 1997.
[22] W. Fulton and J. Harris, Representation Theory, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New

York, 1991. A first course, Readings in Mathematics.

[23] A. M. Garsia and J. B. Remmel, Q-counting rook configurations and a formula of Frobenius, J. Combin. Theory
Ser. A, 41 (1986), pp. 246–275.

[24] N. Gonciulea and V.Lakshmibai, Flag Varieties, Hermann-Acutalities Mathematiques, 2001.

[25] J. Harris, Algebraic geometry, vol. 133 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995. A first
course, Corrected reprint of the 1992 original.

[26] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.

[27] J. E. Humphreys, Linear Algebraic Groups, vol. 21 of Graduate texts in mathematics, Springer-Verlag, New York,
1975.

[28] C. Kassel, A. Lascoux, and C. Reutenauer, The singular locus of a Schubert variety, J. Algebra, 269 (2003),
pp. 74–108.

[29] S. L. Kleiman, The transversality of a general translate, Compositio Math., 28 (1974), pp. 287–297.

[30] A. Knutson, T. Lam, and D. E. Speyer, Positroid varieties I: juggling and geometry, ArXiv e-prints, (2009).
[31] A. Knutson, T. Lam, and D. E. Speyer, Projections of Richardson varieties, ArXiv e-prints, (2010).

[32] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2), 123 (1986), pp. 11–42.

[33] J. Kollár and S. Mori, Birational geometry of algebraic varieties, vol. 134 of Cambridge Tracts in Mathematics,
Cambridge University Press, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998

Japanese original.

[34] B. Kostant and S. Kumar, The Nil Hecke Ring and Cohomology of G/P for a Kac-Moody Group G∗, Advances in
Math., 62 (1986), pp. 187–237.
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