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Abstract

We show that the tensor rank of tensor product of two three-qubit W states is

not less than eight. Combining this result with the recent result of M. Chri-

standl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product

of two three-qubit W states is at most eight, we deduce that the tensor rank

of tensor product of two three-qubit W states is eight. We also construct the

upper bound of the tensor rank of tensor product of many three-qubit W states.
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1. Introduction

Let H be an n-dimensional Hilbert space. We denote by a bold letter x

an element in H. For compactness of the exposition we adopt the following

terminology. A nonzero vector x is called a state, while a normalized state is

a vector x of norm one. For a positive integer d > 1 a d-partite state is the5

Hilbert space H = H1 ⊗ · · · ⊗Hd, where dim Hi = ni for i ∈ [d] = {1, . . . , d}.
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We denote ⊗d
i=1Hi = H. In the case H1 = . . . = Hd we denote H by ⊗dH1. An

unentangled state is a rank one tensor x1 ⊗ · · · ⊗ xd, where xi 6= 0, i ∈ [d]. We

denote by a calligraphic letter X an element of ⊗d
i=1Hi. The rank of a state X ,

denoted by rank X , is the minimal number r in the decomposition of X as a sum10

of unentangled states X =
∑r

j=1⊗d
i=1xi,j . Thus rank X is a measurement of

entanglement of a state. There are other measure of entanglement of normalized

states, as geometrical measure of entanglement [1, 2] or the nuclear norm of X

[3].

The entanglement of bipartite states, i.e. d = 2, is well understood, since15

H1 ⊗ H2 can be identified with the space of dim H1 × dim H2 matrices. In

this case rank X is the rank of the corresponding matrix, and the maximal

value of this rank is min(dim H1,dim H2). To emphasize that we are dealing

with bipartite states, i.e. matrices, we will usualy denote by X the matrix

representing the bipartite state. The first interesting case is the 3-qubit states:20

d = 3,dim H1 = dim H2 = dim H3 = 2. There are two kinds of entangled

states which can not be decomposed as a product of an unentangled state with

a two qubit entangled state: the GHZ and W states whose ranks are 2 and 3

respectively. The closure of the orbit of GHZ under the action of GL(C2) ×

GL(C2)×GL(C2) is ⊗3H1, and its rank is two. The W state has the maximum25

rank three. We will usually denote the W state by the tensor W.

We now consider another d′ partite state Hilbert space H′ = ⊗d′

i′=1H
′
i′ , where

dim H′i′ = n′i′ , i
′ ∈ [d′]. We define two different tensor products of H and H′.

The first product is the tensor product H ⊗H′. It has the following physical

interpretation. The d and d′ partite tensor products H and H′ correspond to

two sets of parties {P1, . . . , Pd} and {Q1, . . . , Qd′}. Then H ⊗H′ corresponds

to d+ d′ party {P1, . . . , Pd, Q1, . . . , Qd′}. The second tensor product, which we

call the Kronecker product, is defined as follows. Assume that d ≤ d′. (We can

always achieve this by permuting the factors H and H′.) Then

H⊗K H′ = (⊗d
i=1(Hi ⊗H′i))⊗ (⊗d′

i′=d+1H
′
i′).

(If d′ = d the second tensor product is omitted.) The physical interpretation of
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the Kronecker product is as follows. The d and d′ partite tensor products H and

H′ correspond to two sets of parties {P1, . . . , Pd} and {P1, . . . , Pd′} respectively.

Then H⊗K H′ corresponds to the party{P1, . . . , Pd′} where each person Pi has30

the space Hi ⊗ H′i for i ∈ [d]. For i′ > d the person Pi′ has the space H′i′ .

Note that for d = d′ = 2 H ⊗K H′ corresponds to the Kronecker product two

matrix spaces. Suppose that H′ = H. Then ⊗pH = H⊗p is pd partite system

corresponding to p tensor products of H. Furthermore, ⊗p
KH = ⊗d

i=1(⊗pHi).

Assume that X ∈ H,Y ∈ H′ are two states. That is, the parties {P1, . . . , Pd}35

and {Q1, . . . , Qd′} each share the state X and Y respectively. Then the two

parties together share the state X ⊗ Y. The rank of X ⊗ Y is rank X ⊗ Y.

Clearly, rank X ⊗ Y ≤ (rank X )(rank Y). The tensor X ⊗K Y ∈ H⊗K H′ has

the following physical interpretation. In the party {P1, . . . , Pd′} the person Pi

has part i of X and Y for i ∈ [d], while the person Pi′ has only part i′ of Y40

for i′ > d. It is straightforward to show that rank X ⊗ Y ≥ rank X ⊗K Y. In

particular, rank X ⊗K Y ≤ (rank X )(rankY).

Assume that H = H′. Then ⊗pX = X⊗p ∈ ⊗pH and ⊗p
KX ∈ ⊗

p
KH. Thus

we have the inequalities

rank X⊗KY ≤ rank X⊗Y ≤ (rank X )(rank Y), rank⊗p
KX ≤ rank⊗pX ≤ (rank X )p.

(1)

These notions and operations have been applied to various problems in

quantum information theory such as the conversion of multipartite state [?

],[4],[5],[6]. In these papers the authors consider the rank of tensors under the

Kronecker product, (which they call the rank of the tensor product). It is shown

in [? ] that

rank W ⊗K W ≤ 8 < (rank W)2 = 9.

That is, unlike for tensor product of matrices, the tensor rank is not mul-

tiplicative under the tensor Kronecker product. In [4],[5] it is shown that

rank W ⊗K W = 7. Very recently it has been proved that the tensor rank45

is also not multiplicative under the tensor product [7]. In particular, authors in

[7] have shown that the tensor product of two three-qubit W states has tensor
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rank at most eight. In this note we show that it is exactly eight.

The rest of this paper is organized as follows. In Section 2 we explain our

notations and recall some well known results for the rank of 3-tensors. First we50

recall Kruskal’s theorem which gives a sufficient condition for uniqueness of rank

decomposition of 3-tensor [8]. Second we recall Strassen’s direct sum conjecture

[9]. A special case of this conjecture was proven by Ja’Ja’-Takche [10]. We state

a restricted version of Strassen’s conjecture and prove it in special cases using

the results of [10]. Our main result of this section is Theorem 5 where we prove55

the equality rank X⊗KW = 6 for a 2×2 matrix X of rank two. Theorem 5 has

been independently obtained in [7, version 2]. In Section 3 we prove our main

result: rank W ⊗W = 8, (Theorem 10). Its proof follows from Proposition 9

which analyze the rank six decomposition of X ⊗K W, where rank X = 2, and

is based on the substitution method. We investigate the rank ofW⊗n in Section60

4. In Section 5 we list open problems related to our paper.

2. Preliminary results

Let H be an n-dimensional Hilbert space with the inner product 〈x,y〉

and the norm ‖x‖ =
√
〈x,x〉. Choose an orthonormal basis e1, . . . , en in H.

Then x =
∑n

i=1 xiei and we can identify H with Cn, where x corresponds to

(x1, . . . , xn)> ∈ Cn. We denote x = (x1, . . . , xn)>, and identify the inner prod-

uct in H with the standard inner product y∗x in Cn, where y∗ = (ȳ1, . . . , ȳn).

Let Hi be Hilbert space of dimension ni for i ∈ [d]. We identify ⊗d
i=1Hi with

⊗d
i=1Cni . Denoting the standard orthonormal basis of Cni by e1,i, . . . , eni,i, we

obtain the elements of the standard basis of ⊗d
i=1Cni : ⊗d

i=1eji,i, where ji ∈ [ni]

and i ∈ [d]. Let X ∈ ⊗d
i=1Cni . Then

X =
∑

ji∈[ni],i∈[d]

xj1,...,jd ⊗d
i=1 eji,i.

Thus X is represented by d-multiarray [xj1,...,jd ]. The space of the multiarrays is

denoted by Cn = Cn1×···×nd , where n = (n1, . . . , nd). We will identify ⊗d
i=1Cni

with Cn. Assume that n1 = · · · = nd = n. A tensor X = [xj1,...,jd ] ∈ ⊗dCn
65
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is called symmetric if xj1,...,jd = xjσ(1),...,jσ(d) for any permutation σ of the set

[d]. We denote by Sd,n ⊂ ⊗dCn the space of symmetric d-tensors on Cn. Recall

that the spaces ⊗dC2 ⊃ Sd,2 are called the spaces of d-qubits and d-symmetric

qubits respectively.

Let GL(Cn) be the general linear group acting on Cn. Denote GL(n) =70

GL(Cn1)× · · · ×GL(Cnd). Then GL(n) acts on the space Cn as the following

subgroup of GL(CN ), where N = n1 · · ·nd. Namely, ⊗d
i=1Ai = A1 ⊗ · · · ⊗Ad ∈

GL(n) acts on rank one tensor as follows: (⊗d
i=1Ai)⊗d

i=1xi = ⊗d
i=1(Aixi). Two

tensors X ,Y ∈ Cn are called equivalent if Y = (⊗d
i=1Ai)X . If n1 = · · · = nd

and Ai = A for i ∈ [d] we denote ⊗d
i=1Ai by ⊗dA = A⊗d. Note that if X ∈ Sd,n

75

then (⊗dA)X ∈ Sd,n.

We first recall the well known characterization of the rank X for a d-tensor

X ∈ Cn. See for example Proposition 2.1 in [11] for the case d = 3.

Lemma 1. Let X ∈ ⊗d
i=1Cni . Write X =

∑n1

j=1 ej,1⊗Xj, where Xj ∈ ⊗d
i=2Cni .

Denote by W the subspace spanned by X1, . . . ,Xn1
in ⊗d

i=2Cni . Then rank X is80

the dimension of a minimal subspace of ⊗d
i=2Cni spanned by rank one tensors

that contains W. In particular, rank X ≥ dimW.

Note that by changing the factor Cni with Cn1 we can apply Lemma 1 to

any d− 1 factors: (⊗i−1
j=1Cnj )⊗ (⊗d

j=i+1Cnj ).

We next recall Kruskal’s theorem for 3-tensors [8]. Let x1, . . . ,xp ∈ Cq.

Then the Kruskal rank of {x1, . . . ,xp}, denoted krank(x1, . . . ,xp), is the maxi-

mal number k such that any k vectors in {x1, . . . ,xp} are linearly independent.

Assume that X ∈ Cl ⊗ Cm ⊗ Cn, and we are given its decomposiiton in terms

of rank one tensors:

X =

r∑
i=1

xi ⊗ yi ⊗ zi. (2)

Suppose that

krank(x1, . . . ,xr) + krank(y1, . . . ,yr) + krank(z1, . . . , zr) ≥ 2r + 2. (3)

The r = rank X and the decomposition (2) is unique. That is, the rank one85

tensors xi ⊗ yi ⊗ zi, i ∈ [r] are unique and linearly independent. (One can
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change the order of the summation in (3).) It is possible to generalize Kruskal’s

theorem to d-partite tensors for d > 3 by looking at these tensors as 3-partite

tensors as in [12].

We now state Strassen’s direct sum conjecture [9]. Assume that S ∈ Cm, T ∈

Cn, where m = (m1, . . . ,md),n = (n1, . . . , nd). Then S ⊕ T is viewed as a

tensor in Cm+n. Clearly, rank (S ⊕ T ) ≤ rank S + rank T . Strassen’s direct

sum conjecture states

rank (S ⊕ T ) = rank S + rank T . (4)

For d = 2 (matrices) (4) holds. For d = 3 equality holds if either 2 ∈ {m1,m2,m3}90

or 2 ∈ {n1, n2, n3}, see [10].

Otherwise, the conjecture is widely open. Note that (4) fails for the border

rank. See A. Schönhage counterexample in Example 4.5.2. of [13]. Observe

that S ⊗K T is an element of Cm◦n, where m ◦ n = (m1n1, . . . ,mdnd).

Denote by⊕kT the direct sum of k-copies T ∈ Cn. Then restricted Strassen’s

k-direct sum conjecture is

rank(⊕kT ) = k · rankT . (5)

Clearly, if rank (⊕`T ) < `rank T then rank (⊕kT ) < k · rank T for each k ≥ `.95

Denote G(k, d) =
∑k

i=1⊗dei ∈ ⊗dCk, where e1, . . . , ek is the standard basis

in Ck. Clearly, rank G(k, d) = k. (For d ≥ 3 one can use Kruskal’s theorem by

viewing G(k, d) as a 3-tensor as in [12].) Note that G(2, 3) is the GHZ state.

The following lemma is deduced straightforward.

Lemma 2. Let T ∈ Cn. Then (5) holds if and only if

rank (G(k, d)⊗K T ) = (rank G(k, d))(rank T ) = k · rank T . (6)

Furthermore, if the above equality holds then

rank(G(k, d)⊗ T ) = k · rankT . (7)

The result of JaJa-Takche [10] applied recursively to (⊕p
j=1Tj) ⊕ Tp+1, (1)100

and the above observations yield:
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Corollary 3. Assume that T1, · · · , , Tm ∈ Cn, where n = (n1, n2, n3). Suppose

that 2 ∈ {n1, n2, n3} and e1, . . . , em is the standard basis in Cm. Then

rank

( m∑
j=1

(⊗3ej)⊗ Tj
)

= rank

( m∑
j=1

(⊗3ej)⊗K Tj
)

=

m∑
j=1

rank Tj . (8)

In particular, assume that T ∈ Cn, where n = (n1, n2, n3) and 2 ∈ {n1, n2, n3}.

Then

rank (G(m, 3)⊗ T ) = rank (G(m, 3)⊗K T ) = m · rank T . (9)

Recall Strassen’s algorithm [14], which states that the product of 2 × 2

matrices can be performed in 7 mulitplications. It is known that the product of

2× 2 matrices can’t be performed in 6 multiplications [15, 16]. It is well known

that the optimality of Strassen’s algorithm follows from the fact that the rank

of the corresponding 3-tensor A = [ap,q,r] ∈ ⊗3C4 is 7. The 64 entriies of ap,q,r

are either 0 or 1. Furthermore there are 8 entries which are equal to 1. It is

easier to present A using the Dirac notation bra-ket. View C2⊗C2 as the space

of 2×2 matrices C2×2. The standard basis in this space is ei⊗ej , corresponding

the matrices eie
>
j for i, j ∈ [2]. In the bra-ket notation ei ⊗ ej corresponds to

|(i− 1)(j − 1)〉. To make transition to C4 we make the identification

|00〉 = |0〉, |01〉 = |1〉, |10〉 = |2〉, |11〉 = |3〉. (10)

Hence |b〉, where b + 1 ∈ [4], represents an element in the basis |st〉, where

s, t ∈ {0, 1}. Thus, ap,q,r = 1 if and only if the product if (eie
>
j )(ei′e

>
j′) = eĩe

>
j̃

,

that is i′ = j, ĩ = i, j̃ = j′. Thus in bra-ket notation we have that A =∑1
i,j,k=0 |ij〉|jk〉|ik〉. By considering the isomorphism |ik〉 7→ |ki〉 of C2⊗C2 we105

deduce that rank A = rank B = 7, where

B =

1∑
i,j,k=0

|ij〉|jk〉|ki〉

= |000〉+ |012〉+ |120〉+ |201〉+ |321〉+ |213〉+ |132〉+ |333〉. (11)

Lemma 4. Let T ∈ C2 ⊗ C2 ⊗ C4 be the following tensor in Dirac’s bra-ket

notation T = |000〉+ |012〉+ |101〉+ |113〉. Then rank T = 4. Furthermore

rank(G(2, 2)⊗K T ) = rank

(
(|00〉+ |11〉)⊗K T

)
= 7. (12)
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Proof. Write T =
∑3

i=0 Ti ⊗ |i〉, where Ti ∈ C2 ⊗C2. As Ti−1, i ∈ [4] is a rank

one basis of C2 ⊗ C2, Lemma 1 yields that rank T = 4. Observe next that

(|00〉+ |11〉)⊗K T = (|00〉+ |11〉)⊗K (|000〉+ |012〉+ |101〉+ |113〉) =

|000〉+ |012〉+ |101〉+ |113〉+ |220〉+ |232〉+ |321〉+ |333〉 = C.

Let ψ : C4 → C4 will be the isomorphism induced by

φ(|0〉) = |0〉, φ(|1〉) = |2〉, φ(|2〉) = |1〉, φ(|4〉) = |4〉.

Denote by ψ̃ : ⊗3C4 the isomorphism induced by φ̃(x⊗ y ⊗ z) = φ(x)⊗ y ⊗ z.

Observe that ψ̃ preserves the rank of tensors in ⊗3C4. Clearly, ψ̃(C) = B. So110

(12) follows from the fact that rank B = 7.

Theorem 5. Let W ∈ ⊗3C2 be the state given by Dirac’s notation |001〉 +

|010〉+ |100〉. Then

rank G(k, 2)⊗K W = rank G(k, 2)⊗W = 3k. (13)

Proof. Let X ∈ C2k ⊗ C2k ⊗ C2. Write X = X1 ⊗ |0〉 + X2 ⊗ |1〉, where

X1, X2 ∈ C(2k)×(2k). The fundamental result of [17] yields that the rank of

X can be determined completely by the Kronecker canonical form of the pair

(X1, X2). In particular, rank X ≤ 3k. Assume that the span of X1, X2 is two115

dimensional with a basis A0, A1 ∈ C4×4. (Here by C4×4 = C4 ⊗ C4 we denote

the space for 4×4 complex matrices.) Suppose furthermore that A0 is invertible.

Then rank X = 3k if and only if the Jordan canonical form of A−10 A1 consists

of k identical 2× 2 Jordan blocks.

Let X = G(k, 2)⊗K W. Clearly,

rank G(k, 2)⊗K W ≤ rank G(k, 2)⊗W ≤ (rank G(k, 2))(rank W) = 3k.

Hence it is enough to show that rank X = 3k. Note that X ∈ C2k ⊗ C2k ⊗ C2.120

Observe next we can identify G(k, 2) with the k × k identity matrix Ik.

G(2, 2)⊗K W = Ik ⊗K (|001〉+ |010〉+ |100〉) = (Ik ⊗K (|01〉+ |10〉)⊗ |0〉+ (Ik ⊗K |00〉)⊗ |1〉 = A0 ⊗ |0〉+A1|1〉.
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Here

A0 = Ik ⊗K B0, A1 = Ik ⊗K B1, B0 =

 0 1

1 0

 , B1 =

 1 0

0 0

 .
Note that B2

0 = I2 and B0B1 = J =

 0 0

1 0

. Hence A−10 = Ik ⊗K B0

and A0A1 = Ik ⊗K J . Thus the Jordan canonical form of A0A1 consists of k

idientical Jordan blocks J . Hence rank X = 3k.

3. The rank of W ⊗W125

Let φ : Cm → C be a nonzero linear transformation. Then φ extends to two

linear transformations φ̃ : Cm × Cn → Cn, φ̂ : Cn × Cm → Cn as follows:

φ̃(X ⊗ Y) = φ(X )Y, φ̂(Y ⊗ X ) = φ(X )Y, for all X ∈ Cm,Y ∈ Cn.

Lemma 6. Let X ∈ Cm be a rank one d-tensor, and Y ∈ Cn be a d′-partitie

state. Then rank (X ⊗ Y) = rank Y = r. Assume furthermore that X ⊗ Y =∑r
i=1Zi, where Zi ∈ Cm ⊗ Cn is a rank one tensor. Then Zi = X ⊗ Yi, where

Yi ∈ Cn is a rank one tensor, and
∑r

i=1 Yi = Y.

Proof. Using induction, it is enough to show the case where d = 1, i.e. m =

(m), m > 1 and X = x is a nonzero vector in Cm. Assume that r = rank Y, r′ =

rank x⊗ Y. Clearly, r′ ≤ r. Then x⊗ Y =
∑r′

i=1 xi ⊗ Yi, where xi and Yi are

rank one tensors. Let φ : Cm → C be a linear functional such that φ(x) = 1.

Thus

φ̃(x⊗ Y) = φ(x)Y = Y =

r′∑
i=1

φ(xi)Yi.

As rank Y = r it follows that r = r′. Furthermore, φ(xi) 6= 0 for i ∈ [r]. Assume130

that xi is not proportional to x. Then there exists φ such that φ(x) = 1 and

φ(xi) = 0. This will contradict the assumption that rank Y = r. Without loss

of generality we can assume that xi = x for each i ∈ [m].

Lemma 7. Let T = a1,1 ⊗ · · · ⊗ ad,1 + a1,2 ⊗ · · · ⊗ ad,2 = b1,1 ⊗ · · · ⊗ bd,1 +

b1,2 ⊗ · · · ⊗ bd,2 be a nonzero d-tensor, where d ≥ 3.135
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(i) If T has rank two then aj,1 ∝ aj,2 if and only if bj,1 ∝ bj,2 if and only

if aj,1 ∝ aj,2 ∝ bj,1 ∝ bj,2.

(ii) If T has rank two, aj,1 and aj,2 are linearly independent for j ∈ S ⊆ [d]

and |S| > 2, then span{a1,1 ⊗ · · · ⊗ ad,1,a2,2 ⊗ · · · ⊗ ad,2} = span{b1,1 ⊗ · · · ⊗

bd,1,b1,2 ⊗ · · · ⊗ bd,2}.140

(iii) If T has rank one, aj,i,bj,i are all nonzero, then aj,1 ∝ aj,2 and bk,1 ∝

bk,2 for j ∈ S ⊂ [d], k ∈ T ⊂ [d], and aj,1 ∝ aj,2 ∝ bj,1 ∝ bj,2 for j ∈ S ∩ T

and |S| = |T | = d− 1.

Proof. (i) Assume that rank X = 2 and aj,1 ∝ aj,2. By permuting the factors

of the tensor products, we can assume that j = 1. Then Lemma 6 yields that145

b1,1 and b1,2 are nonzero vectors proportional to a1,1 and a1,2.

(ii) Without loss fo generality we can assume that aj,1 and aj,2 are lin-

early independent for j = 1, 2, 3. View T as a 3-tensor T ′ on the tensor product

Cn1⊗Cn2⊗Cm, where Cm = ⊗d
i=3Cni . Set a′3,j = ⊗d

i=3ai,j ,b
′
3,j = ⊗d

i=3bi,j , for

j = 1, 2. As rank T = 2, and the pairs a3,1,a3,2 and b3,1,b3,2 are linearly inde-150

pendent it follows that the pairs a′3,1,a
′
3,2 and b′3,1,b

′
3,2 are linearly independent.

Use Kruskal’s theorem for T ′ to deduce that {a1,1⊗· · ·⊗ad,1,a2,2⊗· · ·⊗ad,2} =

{b1,1 ⊗ · · · ⊗ bd,1,b1,2 ⊗ · · · ⊗ bd,2}.

(iii) We first discuss the equality T = a1,1 ⊗ · · · ⊗ ad,1 + a1,2 ⊗ · · · ⊗ ad,2,

the assumption that rank T = 1 and all ai,1,ai,2 are nonzero. Use Kruskal’s155

theorem, as in the proof of part (ii), to deduce that at most two pairs of vectors

aj,1,aj,2 are linearly independent. Without loss of generality we can assume

that aj,1 = aj,2 for j > 3. Use Lemma 6 to deduce that 1 = rank T is the

rank of the matrix a1,1 ⊗ a2,1 + a1,2 ⊗ a2,2. Clearly this matrix has rank one

iff and only a1,1 ⊗ a2,1 6= −a1,2 ⊗ a2,2, and either a1,1 ∝ a1,2 or a2,1 ∝ a2,2.160

In particular, there exists S ⊂ [d], |S| = d − 1 such that ai,1 ∝ ai,2 for i ∈ S.

Similarly, there exists T ⊂ [d], |T | = d−1 such that bi,1 ∝ bi,2 for i ∈ T . Hence

aj,1 ∝ aj,2 ∝ bj,1 ∝ bj,2 for j ∈ S ∩ T .

Lemma 8. (i) If two symmetric d-qubit tensors X and Y are equivalent, then

there exists A ∈ GL(C2) such A⊗dX = Y.165
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(ii) Suppose a,b, c,d are pairwise linearly independent vectors in C2. If a⊗a+

b⊗ b = c⊗ c + d⊗ d then c = αa + βb and d = ±(βa− αb), where α, β are

nonzero complex numbers such that α2 + β2 = 1.

(iii) Suppose a,b ∈ C2, and x, y are two complex numbers. Then the 3-tensor

Z := xa⊗3 + yb⊗3 + (a + b)⊗3 is equivalent to the tensor W if and only if a170

and b are linearly independent, xy 6= 0 and 4xy = (x+ y + xy)2.

Proof. (i) is proved in [18].

(ii) Let A ∈ GL(C2) such that Aa = c, Ab = d. Then A is a complex

orthogonal matrix.

(iii) The result [19] yields that Z is equivalent to W state if and only if

rank Z = 3. If Z has rank 3 then a and b are linearly independent and xy 6= 0.

Assume that this is the case. Let A ∈ GL(C2) such that Aa = |0〉, Ab = |1〉.

Then Z ′ = A⊗3Z = x|0〉⊗3+y|1〉⊗3+(|0〉+|1〉)⊗3. Write Z ′ as Z1⊗|0〉+Z2⊗|1〉,

where

Z1 =

 x+ 1 1

1 1

 , Z2 =

 1 1

1 1 + y

 .
Observe next that Z1−Z2 is a diagonal invertible matrix. A well known result,175

e.g. [17], claims that rank Z = rank Z ′ = 3 if and only if the Jordan canonical

form of Z := (Z1 − Z2)−1(Z1 + Z2) has one Jordan block. That is Z has a

double eigenvalue and Z is not diagonizable. The assumption that Z has a

double eigenvalue is equivalent to the condition 4xy = (x + y + xy)2. If Z

was diagonazible then Z = λI2, where I2 is the identity matrix. As Z has180

nonzero off-diagonal entries it follows that the Jordan canonical form of Z has

one Jordan block if xy 6= 0 and 4xy = (x+ y+xy)2. Hence Z has rank 3 if and

only if a and b are linearly independent, xy 6= 0 and 4xy = (x+ y + xy)2.

Proposition 9. Let X ∈ C2×2 and Y ∈ ⊗3C2, where rank X = 2 and rank Y =

3. Then185

1. rank(X ⊗ Y) = 6.
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2. Assume that

X ⊗ Y =

6∑
j=1

⊗5
i=1cj,i. (14)

Then {c1,1⊗c1,2⊗c1,i, . . . , c6,1⊗c6,2⊗c6,i} are linearly dependent for i =

3, 4, 5, and {c1,p⊗c1,q⊗c1,r, . . . , c6,p⊗c6,q⊗c6,r} are linearly independent

for p = 1, 2 and 3 ≤ q < r ≤ 5.

Proof. 1 Clearly, X is equivalent to G(2, 2) and it is well known that Y is190

equivalent to W. Hence X⊗Y is equivalent to G(2, 2)⊗W. Theorem (5) yields

that rank G(2, 2)⊗W = 6. Hence rank(X ⊗ Y) = 6.

2 Without loss of generality we may assume that X = G(2, 2) and Y = W.

Let φ : C2 → C be a nonzero linear functional. A straightforward calculation

shows that φ̃(G(2, 2)) 6= 0 and φ̃(W) 6= 0. Furthermore, rank φ̃(W) = 1 if and195

only if φ(|0〉) = 0.

Next we observe that the set {c1,i . . . , c6,i} contain two independent vectors

for each i ∈ [5]. Suppose to the contrary that c1,1 ∝ · · · ∝ c6,1. Then there exists

a nonzero linear functional φ : C2 → C such that φ(cj,1) = 0 for j ∈ [6]. This

would imply that φ̃(G(2, 2))⊗W = 0. Hence φ̃(G(2, 2)) = 0, which is impossible.200

Therefore {c1,1 . . . , c6,1} contains two independent vectors. View X ⊗Y as a 5-

tensor on ⊗5
i=1Ui, where each Ui = C2. Iinterchange the two factors U1 and U2

to deduce that {c1,2 . . . , c6,2} contains two independent vectors. By considering

Y ⊗ G(2, 2) and using the fact that φ̃(W) 6= 0 for any nonzero functional φ we

deduce that {c1,3 . . . , c6,3} contain two independent vectors. By interchanging205

U3 with Ui for i = 4, 5 we deduce that {c1,i . . . , c6,i} contain two independent

vectors for i = 4, 5. Thus we showed that the set {c1,i . . . , c6,i} contains two

independent vectors for each i ∈ [5].

Next we observe that the set {c1,4⊗ c1,5, . . . , c6,4⊗ c6,5} contains 3-linearly

independent rank one matrices. Assume to the contrary that there are two210

linearly independent rank one matrices u⊗v and x⊗y in C2⊗C2 whose span

contains {c1,4 ⊗ c1,5, . . . , c6,4 ⊗ c6,5}. Let ψ : C2 ⊗ C2 → C be a nonzero linear

functional such that ψ(u ⊗ v) = ψ(x ⊗ y) = 0. Hence ψ̃(W) ⊗ G(2, 2) = 0,

which implies that ψ̃(W) = 0. This condition is equivalent to ψ(|01〉+ |10〉) =

12



ψ(|00〉) = 0. Since ψ was any nonzero linear functiona that vanishes on u ⊗ v215

and x ⊗ y, it follows that the two matrices |01〉 + |10〉 and |00〉 are linear

combinations of u ⊗ v and x ⊗ y. Lemma 1 yields that rank W ≤ 2 which is

false. Hence {c1,4⊗c1,5, . . . , c6,4⊗c6,5} contain three linearly independent rank

one matrices. By permuting accordingly the factors U3, U4 and U5 we deduce

that {c1,q ⊗ c1,r, . . . , c6,q ⊗ c6,r} contain three linearly independent rank one220

matrices for p 6= r and p, r ∈ {4, 3, 5}.

We now show that the six 3-tensors {c1,1⊗ c1,2⊗ c1,3, . . . , c6,1⊗ c6,2⊗ c6,3}

are linearly dependent. View the tensor G(2, 2)⊗W as an 8× 4 matrix,denoted

by Z, by grouping the first three factors and the last 2 factors: (U1 ⊗ U2 ⊗

U3)⊗ (U4 ⊗U5). Then

G(2, 2)⊗W = G(2, 2)⊗(|001〉+|010〉+|100〉) = (G(2, 2)⊗|0〉)⊗(|01〉+|10〉)++(G(2, 2)⊗|1〉)⊗|00〉.

Hence rank Z = 2. On the other hand (14) states Z =
∑6

j=1(cj,1⊗cj,2⊗cj,3)⊗

(cj,4⊗ cj,5). Assume to the contrary that the six 3-tensors cj,1⊗ cj.2⊗ cj,3, j =

1, . . . , 6 are linearly independent. Then the span of the row space of Z is the span

of the six matrices cj,4 ⊗ cj,5, j = 1, . . . , 6, which is at least three dimensional.225

Hence rank Z ≥ 3, which contradicts the previous equality rank Z = 2.

We now show that the six 3-tensors {c1,2⊗ c1,4⊗ c1,5, . . . , c6,2⊗ c6,4⊗ c6,5}

are linearly independent. Let T = [tp,q,r] ∈ C4 ⊗ C4 ⊗ C2 be given by T =∑6
j=1(cj,1 ⊗ cj,3)⊗ (cj,2 ⊗ cj,4)⊗ cj,5. Theorem 5 yields that rank T = 6. Let

Tp = [tp,q,r]4,2q=r=1 ∈ C4×2, p ∈ [4] be the four frontal sections of T . Lemma 1230

yields that the rank of T is dimension of the minimal subspace in C4×2 spanned

by rank one matrices that contains T1, . . . , T4. Clearly, the subspace spanned

by six rank one matrices (cj,2 ⊗ cj,4) ⊗ cj,5, j ∈ [6] contains T1, . . . , T4. Since

rank T = 6 it follows these six rank one matrices are linearly independent.

By permuting the factors U1,U2 and U3,U4,U5 we deduce that {c1,p⊗ c1,q ⊗235

c1,r, . . . , c6,p⊗c6,q⊗c6,r} are linearly independent for p = 1, 2 and 3 ≤ q < r ≤ 5.

This completes the proof of the proposition.

Theorem 10. The 6-tensor W ⊗W ∈ U1 ⊗U2 ⊗U3 ⊗U4 ⊗U5 ⊗U6, where

Ui = C2 for i ∈ [6], has rank eight.
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Proof. Consider the tensorW⊗KW, which is a 3-vector in (U1⊗U4)⊗ (U2⊗240

U5)⊗ (U3⊗U6). Then rankW⊗KW = 7 [4, 5]. So the 6-vector W⊗2 has rank

at least seven. On the other hand W ⊗W has rank at most eight [7]. So the

assertion holds if we can disprove that W ⊗W has rank seven.

Assume to the contrary that

W ⊗W =

7∑
j=1

⊗6
i=1aj,i. (15)

We claim that for each j ∈ [7] either aj,1 ∝ aj,2 ∝ aj,3 ∝ |0〉 or aj,4 ∝ aj,5 ∝

aj,6 ∝ |0〉. Assume that this claim does not hold. Then by rearranging the seven

summands in (15) and permuting the factors U1,U2,U3 and U4,U5,U6 we can

assume that neither a7,1 nor a7,4 are proportional to |0〉. Let φi : C2 → C be

a nonzero linear functional such that φi(a7,i) = 0 for i ∈ [6]. Hence φ̃1(W) and

φ̃4(W) are rank two matrices. The equality (15) yields

φ̃1(W)⊗W =

6∑
j=1

φ1(aj,1)⊗6
i=2 aj,i.

Since φ̃1(W ) has rank two, Proposition 9 yields the following facts. First,

rank φ̃1(W) ⊗ W = 6. Hence φ1(aj,1) 6= 0 for j ∈ [6]. Second, the six rank

one tensors aj,3 ⊗ aj,5 ⊗ aj,6 are linearly independent for j ∈ [6]. (This choice

correspond to the choice p = 2, q = 4, r = 5 in Proposition 9.) Swap the factors

Ui with Ui+3 for i ∈ [3] in (15) to deduce

W ⊗W =
7∑

j=1

(⊗6
i=4aj,i)⊗ (⊗3

i=1aj,i).

Therefore

φ̃4(W)⊗W =

7∑
j=1

(φ4(aj,4)⊗6
i=5 aj,i)⊗ (⊗3

i=1aj,i).

As φ̃4(W ) has rank two, Proposition 9 yields the following facts. First, φ4(aj,4) 6=

0 for j ∈ [6]. Second the six rank one tensors aj,5 ⊗ aj,6 ⊗ aj,3, j ∈ [6] are lin-245

early dependent. (This choice corresponds the choice i = 5 in Proposition 9.)

Therefore the six rank one tensors aj,3 ⊗ aj,5 ⊗ aj,6, j ∈ [6] are linearly de-

pendent. This contradicts the previous claim that the six rank one tensors
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aj,3 ⊗ aj,5 ⊗ aj,6 are linearly independent for j ∈ [6]. Hence for each j ∈ [7]

either aj,1 ∝ aj,2 ∝ aj,3 ∝ |0〉 or aj,4 ∝ aj,5 ∝ aj,6 ∝ |0〉.250

Clearly, we can’t have that aj,1 ∝ aj,2 ∝ aj,3 ∝ |0〉 for j ∈ [7]. Otherwise

W⊗W = (⊗3|0〉)⊗A for some A ∈ ⊗3C2. Lemma 6 yields that rank ((⊗3|0〉)⊗

A) = rank A ≤ 3 which contradicts the inequality rank W ⊗W ≥ 7. Similarly,

we can’t have that aj,4 ∝ aj,5 ∝ aj,6 ∝ |0〉 for j ∈ [7]. Therefore W ⊗W =

(⊗3|0〉)⊗A+ B ⊗ (⊗3|0〉), where B ∈ ⊗3C2. Hence

rank W ⊗W ≤ rank ((⊗3|0〉)⊗A) + rank (B ⊗ (⊗3|0〉) ≤ 6.

This contradict the inequality rank W ⊗W ≥ 7. Hence rank W ⊗W = 8.

4. Estimating the rank of W⊗n

In this section we estimate the rank of W⊗n with n > 2. It was shown by

Zuiddam [20] that rank ⊗3
K W = 16. Hence rank W⊗3 ≥ 16. It has been

mentioned in [7, Remark 14] that rank W⊗3 ≤ 21. The following theorem255

improves on the above upper bound:

Theorem 11.

16 ≤ rank W⊗3 ≤ 20. (16)

We first recall well known characterization [17]:

Lemma 12. Let T ∈ ⊗3C2. Assume that e1 = (1, 0)> = |0〉, e2 = (0, 1)> = |1〉

is a standard basis in C2. Set T = e1 ⊗ T1 + e2 ⊗ T2, where T1, T2 ∈ C2×2.

Then rank T = 3 if and only if span(T1, T2) is two dimensional and spanned by260

A,B ∈ C2×2, where A is invertible and A−1B is a nondiagonizable matrix.

Lemma 13. Let B ∈ ⊗3C2 be a rank one tensor. Consider the one parameter

family of tensors W + tB for t ∈ C. Then for a random choice of B the rank of

W + tB is two unless t ∈ {0, t1}. (For t = 0 and t = t1 6= 0 the rank of W + tB

is three.) In particular265

1. For B = e1 ⊗ e2 ⊗ e2 the rank of W + tB is two for t 6= 0.
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2. For B = e1 ⊗ e1 ⊗ e1 the rank of W + tB is three for all t ∈ C.

3. For B ∈ {e1 ⊗ e1 ⊗ e2, e1 ⊗ e2 ⊗ e1} the rank of W + tB is three for all

t 6= −1. The rank of W −B is two.

4. For B = e2 ⊗ x ⊗ y,x = (x1, x2)> 6= 0,y = (y1, y2)>, the tensor W + tB270

has rank two for t 6∈ {0, t1}, except in the following cases:

(a) If x1x2y1y2 6= 0 and x2y1 + x1y2 = 0 then W + tB has rank two for

t 6= 0.

(b) If x1 = y1y2 = 0 then W + tB has rank two for t 6= 0.

(c) x2 = 0. If y2 6= 0 then W + tB has rank two for t 6= 0. If y2 = 0 then275

W + tB has rank three for t 6= t1.

(d) If y1 = x1x2 = 0 then W + tB has rank two for t 6= 0.

(e) y2 = 0. If x2 6= 0 then W+ tB has rank two for t 6= 0. If x2 = 0 then

W + tB has rank three for t 6= t1.

Proof. Let

W = e1 ⊗W1 + e2 ⊗W2, W1 =

 0 1

1 0

 ,W2 =

 1 0

0 0

 .
Assume that B = u⊗x⊗y where u = (u1, u2)> and x,y as above. SoW+tB =

e1 ⊗W1(t) + e2 ⊗W2(t), where W1(t) = W1 + tu1xy
>,W2(t) = W2 + tu2xy

>.

Assume that u1u2 6= 0. Then

W3 := u2W1−u1W2 = u2W1(t)−u1W2(t) =

 −u1 u2

u2 0

 ,W−13 = u−22

 0 u2

u2 u1

 .
Assume that t 6= 0 and let s = 1

t . Define

W4(s) =
u22
t
W−13 W2(t) =

 x′1y1 x′1y2

su2 + x′2y1 x′2y2

 , (x′1, x′2)> = u22W
−1
3 x.

The condition that W4(s) has a double eigenvalue is (trace W4(s))2 = 4det W4.280

For B chosen at random, this will give a linear equaition in s whose solution is
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s 6= 0. So t1 = 1
s . As for random B x′1y2 6= 0 it follows that W + t1B has rank 3

and for t 6∈ {0, t1} the tensor W + tB has rank two. Other claims of the lemma

follow straightforward using Lemma 12 and the above arguments.

Corollary 14. Assume that B ∈ ⊗3C2 is a rank one tensor proportional to one285

of the tensors e2⊗e2⊗e2, e2⊗e2⊗e1, e2⊗e1⊗e2, e1⊗e2⊗e2. Then W + tB

has rank two for t 6= 0.

Proof of Theorem 11.

Proof. Let B1,B2,B3 be rank one 3-tensors of the form given by Corollary 14.

Set Xi =W −Bi for i ∈ [3]. Then rank Xi = 2 for i ∈ [3]. Observe next that290

W⊗3 = ⊗3
i=1(Xi + Bi) = = X1 ⊗ (X2 + yB2)⊗ (X3 +

1

y
B3)

+ B1 ⊗ (X2 + zB2)⊗ (X3 +
1

z
B3)

+

(
(1− 1

y
)X1 + (1− 1

z
)B1
)
⊗X2 ⊗ B3

+

(
(1− y)X1 + (1− z)B1

)
⊗ B2 ⊗X3, (17)

where the complex numbers y, z 6= 0, 1, y 6= z, So the four terms in (17) respec-

tively have rank 8, 4, 4 and 4. The lower bound in (16) follows from [20]. We

have proved our theorem.

Using Theorems 10 and 11 we obtain that

rank W⊗3m ≤ 20m, (18)

rank W⊗(3m+1) ≤ 3 · 20m, (19)

rank W⊗(3m+2) ≤ 8 · 20m, (20)

for any positive integer m. These equations give the upper bound of W⊗n for

any positive integer n. On the other hand, a lower bound of rank⊗nW is known

as rank ⊗n
K W ≥ 2n+1 − 1 [6, Theorem 8]. It has been proved in the proof of

Proposition 12 in [7] that rank W⊗n ≤ (2n+ 1)2n. This upper bound is worse

than (18)-(20) for n ∈ {3, . . . , 9} and better than (18)-(20) for n ≥ 10. Using
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the above results we deduce that

2(2n+ 1)
1
n ≥ (rank ⊗nW)

1
n ≥ (rank⊗n

K W)
1
n ≥ (2n+1 − 1)

1
n .

Letting n→∞ we obtain

lim
n→∞

(rank ⊗nW)1/n = lim
n→∞

(rank ⊗n
K W)1/n = 2. (21)

In particular, the asymptotic rank is bounded above by border rank. This result295

has been also derived in [21].

Theorem 11 shows that 8 = rank ⊗2 W > rank ⊗2
K W = 7. Hence it is

possible to assume that rank ⊗3W > rank ⊗3
K W = 16. The following lemma

implies the above conjectured inequality under the following condition’:

Lemma 15. If the 8-tensor G(2, 2)⊗W⊗2 has rank 16, then rank W⊗3 > 16.300

Proof. Assume by contradiction that

W⊗3 =

16∑
j=1

⊗9
i=1aj,i, aj,i ∈ C2 for j ∈ [16], i ∈ [9].

Clearly, it is impossible that all aj,1 are proportional to e2. Without loss of

generality we can assume that a16,1 6∝ e2. Let φ : C2 → C be nonzero linear

functional such that φ(a16,1) = 0. Let φk : ⊗kC2 → ⊗k−1C be the linear

transformations induced by φ for k = 3, 9. Recall that rank φ3(W) = 2. So

φ3(W) is equivalent to the matrix G(2, 2). Thus we obtain

φ3(W)⊗W⊗2 =

15∑
j=1

φ(aj,1)⊗9
i=2 aj,i.

This equality contradicts our assumption that rank G(2, 2)⊗W⊗2 = 16.

5. Open problems

It seems that many known results as rank ⊗2
KW = 7, rank ⊗3

KW = 16 and

Theorem 5 follow from the fact that we have a good number of results on the

rank of 3-tensors. In fact, the proof of Theorem 10 follows from Theorem 5. In305

the following set of open problems we ask a number of open problems which are

basically related to extension of our or known results we used.
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Open Problems 16. 1. Let e1 = (1, 0)> = |0〉, e2 = (0, 1)> = |1〉 be a

standard basis in C2. Denote by Wn =
∑n

i=1⊗i−1e1 ⊗ e2 ⊗n−i e1 be a

symmetric tensor in ⊗nC2. (It is known that rank Wn = n [6, Theorem310

3].) Is it true that rank G(k, d)⊗K Wn = kn?

2. View W ⊗W as a 6-tensor in ⊗6
i=1Ui. Let X ∈ C4 ⊗ (⊗4C2) and Y ∈

(⊗2C4)⊗(⊗2C2) be W⊗W viewed as tensor on (U1⊗U4)⊗(⊗j=3,5,6Uj)

and (U1 ⊗U4)⊗ (U2 ⊗U5)⊗U3 ⊗U6 respectively. Hence

8 = rank W ⊗W ≥ rank X ≥ rank Y ≥ rankW ⊗K W = 7.

Is it true that rank Y = 8?

3. Is it true that rank G(2, 2)⊗W ⊗W = 16?

4. Let d be an integer greater than three. One can easily generalize Kruskal’s

theorem to d-tensors by viewing d-tensor as 3-tensors by grouping the fac-315

tors in ⊗d
i=1Cni . See for example [12]. Do there exists better generaliza-

tions?

5. Can one have good generalizations of (17) for W⊗n for n > 3?
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