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Fig. 1. Visualization of US Employment data highlighting the Outlying Scagnostic feature.

Abstract—We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series
and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D
distributions of orthogonal pairwise projections on a set of points in multidimensional Euclidean space. These characterizations
include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can
locate anomalous or interesting sub-series for further analysis. Our application is designed to handle the types of doubly-multivariate
data series that are often found in security, financial, social, and other sectors.

Index Terms—Scagnostics, Scatterplot matrix, High-Dimensional Visual Analytics, Multiple Time Series.

1 INTRODUCTION

Suppose we have data consisting of many time series over many vari-
ables with many time points. Suppose, further, that we want to identify
unusual events at individual time points across all the series. If there
is only one time series for each variable, the usual analytic approach
to this problem is to perform spectral modeling of cross-covariance
functions among the series. A visual analytic analog of this approach
is to plot pairs of series and highlight noteworthy features in the pairs
that appear to be substantially related. We might see, for example, one
series showing average fines for auto speeding each week in a US state
and another series showing weekly auto accidents in that state. If we
see a rise in auto speeding fines preceding by several weeks a reduc-
tion in accidents, we might conclude (with appropriate ceteris-paribus
qualification) that a rise in fines may lead to a reduction in accidents.

This traditional approach will not work if there is more than one
time series for each variable (more than one state in our example).
An alternative, of course, would be to examine all singletons or pairs
of individual series for patterns. This alternative does not scale. As-
sume we have t time points, p variables, and n series which describe
a doubly-multivariate data series. In this case, we have for each pair
of variables at each time point a 2D scatterplot of n points. In our
US economy example, we would have for a single year’s data 52 time
points (each week in a year), 10 variables (one for each economic sec-
tor), and 50 series (one for each state). In this rather small example
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(from our perspective), we have 2340 scatterplots with 50 points each
to examine. We will consider a much larger example in this paper.

If we can solve the multitude-of-scatterplots problem, we gain some
important visual-analytic insights. By looking at scatterplots instead
of individual series, we can analyze patterns that would not be evi-
dent in other types of multivariate time series visualizations. Suppose,
for instance, that we have n individuals (including some potential ter-
rorists) interacting at t time points through p different channels (web
sites, text messages, cell conversations, ...). Suppose, also, that we are
interested in recognizing time points where one or more subgroups of
these individuals begin to cluster together in a communication clique.
With the right tools, we should be able to identify scatterplots where
these clusters are apparent. Furthermore, we should be able to exam-
ine with these tools other features, such as outliers or correlations, that
characterize conspiratorial interaction.

An important aspect of our proposal is that it is firmly grounded
in time series methodology. We are not simply looking for unusual
scatterplots in a large collection of scatterplots. We are looking at
time series of aspects of scatterplots. For example, we can investigate
a time series of Clumpiness (cliques) or Outliers (rogues) or Mono-
tonicity (conspirators). We will see in our examples below that these
series have coherent behavior in real data that becomes apparent and
revealing when viewed with the right tools. It is noted that multiple
views, interactions and analytical components are particularly useful
in analyzing time-oriented data [1]. Our system, TimeSeer, not only
looks at a data abstraction through aspects of the raw data but also
provides multiple views together with filtering, searching and focus-
ing interactions.

This work is a natural extension of our work on Scagnostics [48],
an idea that allows us to characterize the “shape” of scatterplots. In
developing a working platform, however, we discovered that we had
to design custom tools to deal with the challenges posed by massive

1



time series datasets. We found some clues in related work, but most of
what we have developed is, in our understanding, new.

Our contributions in this paper are:

• We devise a framework for applying Scagnostics in the context
of time-varying data analysis. This induces data reduction which
allows for fast identification of interesting features such as out-
liers in high-dimensional data sets.

• We propose a dissimilarity measure for scatterplots based on
their Scagnostics.

• We design an interactive system for visually mining doubly-
multivariate data series using multiple visual metaphors in a
novel combination.

The paper is structured as follows: We describe related work in the
following section. We describe an overview of our interactive sys-
tem, TimeSeer, in Section 3. Section 4 illustrates TimeSeer on real
datasets. Finally, Section 5 draws conclusions and indicates future de-
velopments.

2 RELATED WORK

In reviewing related work, we must keep in mind that some approaches
that seem visually similar to ours are fundamentally different and some
approaches that seem visually quite different nevertheless provided
important guidelines for our own development. We begin with our
work on Scagnostics.

2.1 Scagnostics
In the mid 1980s, John and Paul Tukey proposed an exploratory graph-
ical method called Scagnostics. The Tukeys intended to characterize
a collection of 2D scatterplots through a small number of measures
of the pattern of points in these plots. These measures included the
area of 2D isolevel kernel density contours, the perimeter length of
these contours, a nonlinearity measure of association based on prin-
cipal curves [23], and other statistics. By using these measures, the
Tukeys aimed to detect anomalies in density, shape, association, and
other features.

We described Scagnostics in a plenary session at the 2003 Info-
Vis conference. Seo and Shneiderman followed our general descrip-
tion by using ordinary parametric statistics (mean, standard deviation,
correlation coefficient, etc.) instead of the kinds of nonparametric
measures proposed by the Tukeys [27]. Consequently, we decided
to implement the original Tukey idea through nine Scagnostics de-
fined on planar proximity graphs. We gave these measures ordinary
names (Outlying, Skewed, Clumpy, Sparse, Striated, Convex, Skinny,
Stringy, Monotonic) and presented a scalable program for computing
these new graph-theoretic measures [47]. Following this work, Fu [16]
extended Scagnostics to 3D and still others used analogs of the word to
describe feature-based descriptions for parallel coordinates and pixel
displays[14, 39].

Although the original motivation for Scagnostics was to locate in-
teresting scatterplots in a large scatterplot matrix, we soon realized
the idea had more general implications. We have argued [48] that
Scagnostics should be regarded as a type of projection that enables
us to examine features in Scagnostics space and then make inferences
about patterns that would not be apparent in the raw data space. In
other words, Scagnostics space can serve as a basis for visual analyt-
ics much as the complex plane does for spectral analytics, although
the Scagnostics projection is not invertible. Our time series platform
rests on this fundamental principle.

We now outline the Scagnostic algorithm.

2.1.1 Binning
We begin by normalizing the data to the unit interval and then use a
40 by 40 hexagonal grid [9] to aggregate the points in each scatterplot.
If there are more than 250 nonempty cells, we reduce the bin size by
half and rebin. We rebin until there are no more than 250 nonempty
cells. The choice of bin size is constrained by efficiency (too many

bins slow down calculations of the geometric graphs) and sensitivity
(too few bins obscure features in the scatterplots).

We compute all our measures on the binned points using the counts
in each bin as weights. The Scagnostics measures depend on proximity
graphs that are all subsets of the Delaunay triangulation: the convex
hull, the minimum spanning tree (MST), and the alpha complex [15].

2.1.2 Deleting Outliers
Before computing the Scagnostics, we delete outliers to improve ro-
bustness. We consider an outlier to be a vertex whose adjacent edges
in the MST all have a weight (length) greater than Finner+, where

Finner+ = q75 +1.5(q75−q25) (1)

where q75 is the 75th percentile of the MST edge lengths and the
expression in the parentheses is the interquartile range of the edge
lengths.

2.1.3 Computing Scagnostic Measures
We now present the Scagnostic measures computed on our three
geometric graphs. In the formulas below, we use H for the convex
hull, A for the alpha hull, and T for the minimum spanning tree. We
are interested in assessing three aspects of scattered points: density,
shape, and association.

DENSITY MEASURES

The following measures detect different aspects of point densi-
ties.

• Outlying

The Outlying Scagnostic measures the proportion of the total edge
length of the minimum spanning tree accounted for by the total length
of edges adjacent to outlying points (as defined above). We do this
calculation before deleting outliers for the other measures.

coutlying = length(Toutliers)/length(T ) (2)

• Skewed

We use two other density measures based on MST edge-lengths.
The first is a relatively robust measure of skewness in the distribution
of edge lengths of the MST.

qskew = (q90−q50)/(q90−q10) (3)

• Sparse

The second edge-length statistic, Sparse, measures whether points
in a 2D scatterplot are confined to a lattice or a small number of lo-
cations on the plane. This can happen, for example, when tuples are
produced by the product of categorical variables. It can also happen
when the number of points is extremely small. We choose the 90th
percentile of the distribution of edge lengths in the MST. This is the
same value we use for the α statistic.

csparse = q90 (4)

• Clumpy

An extremely skewed distribution of MST edge lengths does not
necessarily indicate clustering of points. For this, we turn to another
measure based on the MST: the RUNT statistic [22]. The runt size of
a dendrogram node is the smaller of the number of leaves of each of
the two subtrees joined at that node. Since there is an isomorphism
between a single-linkage dendrogram and the MST [19], we can asso-
ciate a runt size (r j) with each edge (e j) in the MST, as described by
[40]. The RUNT graph (R j) corresponding to each edge is the smaller
of the two subsets of edges that are still connected to each of the two
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vertices in e j after deleting edges in the MST with lengths less than
length(e j).

The RUNT-based measure responds to clusters with small max-
imum intra-cluster distance relative to the length of their nearest-
neighbor inter-cluster distance. In the formula below, j runs over all
edges in T and k runs over all edges in R j .

cclumpy = max
j

[
1−max

k
[length(ek)]/length(e j)

]
(5)

• Striated

We define coherence in a set of points as the presence of relatively
smooth paths in the minimum spanning tree. Smooth algebraic func-
tions, time series, and curves (e.g., spirals) fit this definition. So do
points arranged in flows or vector fields. Another common example
is the pattern of parallel lines of points produced by the product of
categorical and continuous variables.

We use a measure based on the number of adjacent edges in the
MST whose cosine is less than -0.75. Let V (2) ⊆ V be the set of all
vertices of degree 2 in V and let I() be an indicator function. Then

cstriate =
1
|V | ∑

v∈V (2)

I(cosθe(v,a)e(v,b) <−.75) (6)

SHAPE MEASURES

The shape of a set of scattered points is our next consideration.
We want to detect if a set of scattered points on the plane appears to
be connected, convex, and so forth. Of course, scattered points are by
definition not these things, so we need additional machinery (based on
geometric graphs) to allow us to make such inferences. In particular,
we will measure aspects of the convex hull, the alpha hull, and the
minimum spanning tree.

• Convex

Our convexity measure is based on the ratio of the area of the al-
pha hull and the area of the convex hull. This ratio will be 1 if the
nonconvex hull and the convex hull have identical areas.

cconvex = [area(A)/area(H)] (7)

• Skinny

The ratio of perimeter to area of a polygon measures, roughly, how
skinny it is. We use a corrected and normalized ratio so that a circle
yields a value of 0, a square yields 0.12 and a skinny polygon yields a
value near one.

cskinny = 1−
√

4πarea(A)/perimeter(A) (8)

• Stringy

A stringy shape is a skinny shape with no branches. We count ver-
tices of degree 2 in the minimum spanning tree and compare them
to the overall number of vertices minus the number of single-degree
vertices.

cstringy =
|V (2)|

|V |− |V (1)|
(9)

We cube the Stringy measure to adjust for negative skew in its
conditional distribution on n.

ASSOCIATION MEASURE

We are interested in a symmetric and relatively robust measure
of association.

• Monotonic

We use the squared Spearman correlation coefficient to assess
monotonicity in a scatterplot. We square the coefficient to accentu-
ate the large values and to remove the distinction between negative
and positive coefficients. We assume investigators are most interested
in strong relationships, whether negative or positive.

cmonotonic = r2
spearman (10)

This is the only coefficient not based on a subset of the Delaunay
graph.

2.2 Time Series Visualization
Visualizing time series has a long history in statistics and geography
[30, 17, 20, 6, 11]. Many of the best ideas from centuries-old hand-
drawn graphics have been incorporated in modern computer visualiza-
tions [4, 43, 44]. Noteworthy recent examples are Spiral Graph [46]
and Time Searcher [26].

2.2.1 Visualizing Multivariate Time Series
Some have developed viewers for multivariate time series. Theme
River [24] was one of the first; it employed kernel smooths of time
series, stacking them in a single display. Theme River can be quite ef-
fective for displaying up to 20 time series simultaneously, but it is not
as useful for displaying raw series. Theme River trades detail for over-
all impact. Because it smooths and stacks, the absolute levels of the
series are difficult to discern. Cleveland has discussed in more detail
the problems involved in stacking time series [12] (see also [7]). Wat-
tenberg [45] developed an applet called Name Voyager that presents
interactive stacked graphs of raw series with exploratory widgets that
allow the manipulation and visualization of multiple series in a single
stacked display. With his tool, it is easy to drill-down to an individ-
ual series to investigate details. Name Voyager continues to be one
of the more popular visualization sites on the Web, perhaps because it
is so engaging and easy to use. Other recent multivariate time series
viewers include [3, 41, 25, 34, 28, 5].

2.2.2 Time Series Pattern Search
Long time series cannot be visualized on ordinary or mega-pixel dis-
plays. There aren’t enough pixels to represent each time point in these
series. The problem is especially acute in live feeds or streaming data
sources because the feeds are effectively infinite [36]. A common rem-
edy is to pan and zoom into “interesting” segments of the series with
lensing or other widgets. How do we identify “interesting” segments,
however? One popular method is to search for motifs or anomalous
patterns in time series using statistical and data mining algorithms
[33, 8, 10, 35, 29]. Time Searcher [26] contains widgets that could
be effective when paired with these algorithms. Superimposing simi-
lar sub-series can facilitate within-series comparisons.

2.2.3 Aggregation
One way to deal with multivariate series is to aggregate across sim-
ilar series. If series are already categorized (within states, countries,
economic sectors, hospital patients, etc.), then averaging the series is
a possibility. Otherwise, one must use cluster analysis to identify clus-
ters of similar series [37, 42, 21]. Aggregation risks concealment of
important features, however. One must be sensitive to outlying series
and other anomalies that can bias the aggregation.

3 TIMESEER

TimeSeer is a platform for visualizing Scagnostic time series. As we
indicated before, our model is fundamentally different from other time
series visualizations. It is based on the recognition that synchronized
multivariate time series have multivariate point distributions at each
time point. Our data model is a multivariate generalization of the series
models employed in the papers we have reviewed. We have t time
points and p variables, resulting in p-multivariate time series. For each
variable, however, we have n series, resulting in a doubly-multivariate
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distribution. We have found no visual analytic platform capable of
handling this model.

Typical data for this model are: t months, p economic indicators,
and n countries; t minutes, p vital signs, and n patients; t trading days,
p stock indices, and n markets (exchanges); t seconds, p network pro-
tocols, and n nodes. A significant challenge for visual analytics on
data like these is scalability. We normally expect t, p, and n to be
large. It is not uncommon to find the product of these parameters to be
in the tens of thousands. Visualizing them with conventional tools is
out of the question.

We will illustrate the features of TimeSeer mainly through exam-
ples. In this section, however, we will describe the overall architecture
of the system. As we have indicated, our solution to the overall prob-
lem is to regard simultaneous time points in this multivariate system as
collections of point sets. Characterizing those point sets will allow us
to discern patterns that we could not see with conventional time series
analytics or statistics. Our system leverages juxtaposition and explicit
encoding of relationships in data (through the Scagnostics) as visual
comparison strategies [18].

The most obvious benefit of our parameterization is to reduce n to
1. That is, if we can characterize a scatterplot with a single measure
(monotonicity, clumpiness, etc.), then we can use methods designed
for ordinary multivariate time series. The tradeoff here is, of course,
that we might lose detail at a given time point. Our remedy for that
tradeoff is to devise a display that incorporates a pixel-scale scatterplot
at each time point. An additional way we ameliorate this problem is to
provide selection tools to switch easily between different Scagnostics.
Our display changes almost instantly when a different Scagnostic is
selected for analysis. This feature allows an analyst to focus on a
particular aspect of scatterplots without excluding other possibilities.

We confine our model at this point to 2D scatterplots. There is
nothing preventing us from computing most Scagnostics in higher di-
mensions, but display issues come into play as the dimensionality in-
creases. We believe that analysts are more familiar with 2D scatter-
plots than with more exotic displays, but that is a belief that requires
testing in the future.

3.1 The TimeSeer GUI
The TimeSeer GUI incorporates two major systems: Variable Selec-
tion SPLOM and Time Series Viewer. The first enables the analyst to
select Scagnostics and then variables. We employ a scatterplot ma-
trix and a novel lensing tool to navigate through the matrix and select
cells. The selections made in the SPLOM system direct the visual-
ization in the Time Series Viewer. Figure 5 shows instances of this
tool. The top panel shows an implementation of Table Lens [38], in
which a row/column is enlarged and the remaining rows/columns are
reduced. The lower two panels show our implementation, which in-
volves a smooth lens so that distant rows/columns are reduced propor-
tionally.

Figure 2 depicts the basic difference between Table Lens and our
lensing method. In Table Lens, the Degree Of Interest (DOI) of
rows/columns outside the lensing area is uniformly small. In our lens-
ing method, we implement a smooth transition in DOI proportional to
the distance of a frame to the lensing frame. This lensing technique is
similar to Cartesian Fisheye View [31].

Fig. 2. DOI function maps from cell address to interest level.

The following algorithm shows how we extend Table Lens to
achieve smooth lensing. For simplicity, we will explain the algorithm
in one dimension, say X-axis, and one side of lensing area, say on
the right of lensing area. The two-dimensional smooth lensing can

be achieved by applying the same algorithm for both sides and both
dimensions.

1. As with Table Lens, we increase the width of the lensed column
Wmax. Let k be the number of columns to the right of the lensed
column, the widths of these columns are reduced to W1 =W2 =
...=Wk =Wsmall .

2. Now we compute a lensing factor s = (Wsmall −Wmin)/((k−
1)/2) where Wsmall is the smallest width (of the farthest column)
that we want to lens.

3. The width of columns are recomputed by Wi = Wi + s((k +
1)/2− i) for i = 1, ...,k

Figure 3 shows an example of our lensing method on X-axis where
Wmax = 98, Wsmall = 34, Wmin = 10, k = 7, and s = 8. All widths are
in pixels.

Fig. 3. Horizontal lensing.

After we have selected pairs in the SPLOM system, we go to the
Time Series Viewer where time series in selected cells are expanded
in a full window as depicted in Figure 7. This main window contains
multiple Scagnostic series at the bottom and scatterplots at each time-
point. A variety of pan-and-zoom tools facilitate smooth navigation
throughout this window. As depicted in Figure 7(b) and Figure 7(c),
the same smooth lensing technique is applied on the X-axis.

Simple buttons offer alternate views and filtering. The Time Series
Viewer is discussed in greater details in Section 4.3.

We could elaborate on details in this section, but it is easier to un-
derstand the workings of this rather large application by looking at real
data examples. We will explain technical details as we cover various
capabilities of the program.

4 EXAMPLES

In this section, we use two different datasets to demonstrate the per-
formance of TimeSeer. The first is a series of US Employment data
and the second is a series of US Weather data. The US Employ-
ment data comprise monthly employment statistics for 50 states over
22 years from 1990 to 2011. The data were retrieved from http:
//www.bls.gov/. There are 25 variables in the collected data:
Total Nonfarm, Construction, Manufacturing, Non-Durable Goods,
Trade and Transportation, Wholesale Trade, Retail Trade, Transporta-
tion and Utilities, Financial Activities, Real Estate and Leasing, Pro-
fessional and Business, Scientific and Technical, Administrative and
Support, Education and Health, Educational Services, Social Assis-
tance, Leisure and Hospitality, Arts and Entertainment, Accommo-
dation and Food, Other Services, Government, Federal Government,
State Government, Local Government, and State Employment. For
these data, we have 78,600 scatterplots with 50 data points each to
examine.

The Weather data comprise hourly meteorological measurements
over a year from the Gulf of Maine in 2008. There are 17 vari-
ables represented in the dataset: current speed, current direction, tem-
perature, East Current Velocity, North Current Velocity , significant
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wave height, dominant wave period, air temperature, wind speed,
wind gust, wind direction, visibility, barometric pressure, water tem-
perature, salinity, sigma-T, and conductivity. Data and variable de-
scriptions can be found at http://gyre.umeoce.maine.edu/
buoyhome.php. For these data, we have 50,000 scatterplots with 24
data points (24 hours in a day) each to examine.

We begin with the US Employment data.

4.1 Variable Selection SPLOM
With p variables, there are p(p− 1)/2 pairs of variables. To do our
analysis, we need to: 1) select the Scagnostic of interest: Outly-
ing, Monotonic, Stringy, Skinny, Sparse, Striated, Convex, Clumpy,
Skewed, 2) select a criterion to order variables in SPLOM: mean or
variance of the Scagnostic series, and 3) select a subset of the scatter-
plots, either by picking individual frames in the scatterplot matrix or
by picking all frames corresponding to a single variable.

The mean and variance of a Scagnostic time series (a pair of vari-
ables) is computed by averaging that Scagnostic measure over time
series as shown in Equation 11 and Equation 12 where T is the num-
ber of data points in time series, p and q are two variables.

Mean(p,q) =
∑

T
i=1 Xi

T
(11)

Variance(p,q) =
∑

T
i=1(Xi−Mean(p,q))2

T
(12)

The Scagnostic mean and variance of a variable p is computed by
averaging all pairs of variables containing p as an element as shown
in Equation 13 and Equation 14 where V is the number of variables.
The mean or variance of variables (depending on which one we have
selected) is used to order variables in SPLOM.

Mean(p) =
∑

V
q=1,q 6=p Mean(p,q)

V
(13)

Variance(p) =
∑

V
q=1,q 6=p Variance(p,q)

V
(14)

We offer both mean and variance for ordering Scagnostics series
because each captures a different aspect of the Scagnostic process that
might interest an analyst. The mean selection offers the opportunity to
pick series with extremely high or low series means on a Scagnostic.
The variance selection ranks by variability, so that single peaks and
valleys in the Scagnostic time series will be more discernable in the
main time series window.

Figure 4(a) shows the scatterplot matrix for 25 variables in the US
Employment data. We have selected the Outlying measure and sorted
the variables by their means. In particular, each plot (each pair of vari-
ables) is colored by its mean of the selected Scagnostic time series;
the embedded small graph shows a thumbnail of the actual Scagnos-
tic time series. On the top of Figure 4(a) is the color legend for the
mean of Outlying Scagnostic time series. We use a Kelvin color tem-
perature scale [32] to encode the range of all possible Outlying mean
values with red corresponding to high values of means and green cor-
responding to low values of means. This range (always within the 0
and 1 interval) is different when we select a different Scagnostic fea-
ture. TimeSeer sorts the variables so that low Outlying series are at
the bottom and high Outlying series are at the top. Notice that we also
color variable names to differentiate and group them by categories and
subcategories.

Single plot selection is depicted in Figure 4(a). This mode is in-
voked by clicking on any of the panes in the scatterplot matrix. This
selection mode allows the analyst to investigate specific Scagnostic se-
ries that show interesting patterns of behavior among the two featured
variables. Single variable selection mode is depicted in Figure 4(b)
This mode is invoked by clicking on the angled variable names to the
right of the scatterplot matrix diagonal. The figure shows Total Non-
farm selected. Black rectangles are used to denote selected plots. This
selection mode allows the analyst to examine all variables paired with
a specific variable of interest.

Fig. 4. Plot selection in scatterplot matrix of 25 sorted variables in the
US Employment data.

4.2 Lensing

For many more variables, the Scagnostic time series will be difficult to
discern inside the scatterplot matrix. Consequently, we added zoom-
ing and lensing to the matrix. If one hovers over a plot the graph inside
is enlarged. There are two types of lensing. Figure 5(a) shows an im-
plementation of Table Lens; Figure 5(b) and Figure 5(c) show smooth
lensing on the top and in the corner. Unlike the standard implementa-
tion of Table Lens, our smooth lensing offers a smooth transition when
we move the mouse over different plots. Therefore, it is easier to keep
track of the whole context (SPLOM) and the focused area.

After a user has selected variables from the scatterplot, all pairwise
combinations are displayed in the controller window, as depicted in
Figure 6 (8 pairs of variables are selected). Nine other Scagnostic
measures on each pair of variables are presented on the same row as
the selected pair but they are faded. Each plot is colored by the mean
of that feature over a year. Additionally, all pairs are reordered by
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Fig. 5. Lensing in scatterplot matrix of 25 sorted variables in the US
Employment data.

the selected criterion: the mean of the selected Outlying feature. In
Figure 6, the third pair is brushed, and other features of the third pair
are highlighted. We can keep track the position of the brushing pair
in the scatterplot matrix by highlighting the graph inside this selection
display. Both views are linked. Moreover, variable names are colored
in the same as they appear in SPLOM. This helps in locating variables
in both views.

Fig. 6. Pairwise variable selecion: 8 pairs of varibables.

4.3 Time Series Viewer
After we have selected pairs, we go to the Time Series Viewer. There
are several ways to visualize multiple time series: small multiples or
multiples superimposed with or without lensing. Figure 7 is an exam-
ple. The series are built from ones we selected in the controller based
on the US Employment data. We selected Monotonic as the Scagnos-
tic for this example, and we chose 9 pairs of variables sorted by their
means. Notice the slanted orientation of the second variable in each
pair. This device helps the viewer to understand which variable is on
the X axis and which variable is on the Y axis.

Figure 7(a) shows 9 small multiples corresponding to 9 pairs. The
lensing in the Y-dimension is applied to the first three series, colored
red, green, and blue respectively; the other pairs are colored gray and
greatly reduced in size. We also employ a gradient on the lensed series
to make the profiles more discernible and to coordinate highlighting
with the scatterplots at the top of the window. The larger the series
value, the lighter the coloring (like snow on mountains). This use of
brightness also facilitates the highlighting of the scatterplots at the top.
Each scatterplot corresponds to the appropriate colored Scagnostic se-
ries directly below it, and is highlighted with the same brightness as
the point on the series.

We can change the number of pairs in the lensing area or replace
them by other pairs in the non-lensing area by a simple click and drag.
Moreover, we can resize the Y-dimension of a Scagnostic time series
(both lensing and non lensing area) by a simple mouse scroll. This
helps to accommodate different numbers of Scagnostic time series into
the fixed height of application window, as users can always go back to
the SPLOM to select different pairs of variables.

For the arrangement we have selected, we notice that the Mono-
tonic Scagnostic shows a distinct seasonal pattern with an annual cy-
cle. This is consistent with what we would expect for variables related
to farming.

In the US employment data, there are 262 data points on each
Scagnostic time series. As we can see in Figure 7(a), however, the
data point are crowded enough so that we cannot read any details in a
season. The common solution in this case is displaying a selected sea-
son or interval. One limitation of this method is that when we select a
season or interval, we lost the overall context of the time series. As a
remedy, we chose to implement smooth lensing for the X-dimension.
When we lens a season, we still can see what is going on in the other
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Fig. 7. Visualization of US Employment data: a) Small multiples Overview with lensing on Y-dimension b) Small multiples with lensing on both X
and Y-dimension c) Line graphs superimposed by plots with lensing on both X and Y-dimension
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seasons throughout the entire time series. We can simply move the
mouse to enlarge a different season. Moreover, smooth lensing allows
continuous transition as we move the mouse.

Figure 7(b) shows a lens applied to the Scagnostic series. Vertical
lensing is applied to three first pairs of variables and horizontal lensing
are applied to two seasons (highlighted in Box A). The lensing works
over the series as well as the scatterplots, so we are able to investigate
individual scatterplots to see the configuration of points that led to the
value of the Scagnostic shown in the series.

Figure 7(c) shows an alternate view of the same series. This view
superimposes scatterplots on line graphs of the Scagnostics series.
Such an arrangement allows investigation of individual scatterplots
without anchoring or reference to a row of scatterplots elsewhere in
the window. We believe this layout is useful once interesting segments
are found in the series. In any case, toggling between views can be
done in an instant.

4.4 Filtering, Brushing, and Drill-down
Information visualization systems should allow one to perform anal-
ysis tasks that largely capture people’s activities while employing in-
formation visualization tools for understanding data [2]. In the rest
of this section, we describe four basic analysis tasks implemented in
TimeSeer: filtering, brushing, drill-down, and searching.

4.4.1 Filtering
We employ a gradient on the Scagnostic series and the scatterplots at
the top to help users locate scatterplots with high Scagnostic values.
However, it is not possible for users to filter only scatterplots with
selected Scagnostic values in a specific interval (for example, with
Monotonicity from 0.6 to 0.8). The range sliders on the left of each
Scagnostic time series allow users to do that. Figure 8(c) shows an
example of filters applied to the Outlying series for the three pairs in
the lensing area. We are looking for outliers. When the user moves
a range slider, a number is displayed to show the current value on the
range slider. The filtered parts of time series are faded. In the pairwise
view area, the filtered distributions are faded so viewers can focus on
data distributions with high numbers of outliers.

4.4.2 Brushing
Looking at an interesting distribution, we may want to check out the
data point for further details. For example, we may want to see which
state is the outlier in an Outlying distribution. Or, we may ask where is
New York in the overall picture for 2001. Or, we may want to compare
Illinois and California in 2011. We implement a brushing tool allowing
users to do these things. Figure 8(d) illustrates the use of a brush.
When we brush a state (a data point in a scatterplot), the state name
is displayed in a tool tip, the same state is highlighted in other plots
and a line appears connecting adjacent plots. This reveals, in effect, a
spatial-temporal series. We can see the changes in the orientation of
the state in scatterplots over time. This kind of detail view provides
information that cannot be discerned in the original raw time series.

4.4.3 Drill-down
Figure 8 shows an additional view invoked by a simple user action.
The Scagnostic is Outlying, and the pairs of variables selected involve
State Employment against {Accommodation and Food, Leisure and
Hospitality, Education and Health, Construction, Retail Trade, and
Trade and Transportation}.

In Figure 8(a), we see a peak in several Scagnostic series. This
suggests a time point in 2005 (highlighted in Box A) in which we
would expect to see outliers in the relevant scatterplots. We lens this
region in Figure 8(b). We see that a period in the Fall has an unusually
high peak. This is the precise point where we expect to find an outlier.
In Figure 8(c), filtering out low outlying plots allows us to focus on
outliers. We now can see clearly the high outlying plots in all selected
time series in September of 2005.

We get our details on demand, as shown in Figure 8(d), by click-
ing on the red scatterplots. Subsequently, the raw series of State Em-
ployment and Accommodation and Food (which are the 1-month net

change in employment rate) are displayed in the lower graph on two
separated scales (in cyan and pink). By brushing the outlier in the
scatterplot of September of 2005, we see the actual line graph for that
brushed state in yellow. In this case, the outlier is Louisiana. Hur-
ricane Katrina wreaked havoc on their employment and productivity
figures (note the sudden drop in Louisiana employment rate and many
industries). Notice that Louisiana is also the outlier in the scatterplot
of December of 2005, even as it recovered.

In Figure 8(e), we brush another outlier of State Employment and
Accommodation and Food scatterplot which is Mississippi. Similarly,
Mississippi is also an outlier in the scatterplot of December of 2005.
However, Mississippi situation is different (Mississippi got another
even more serious drop in Accommodation and Food in December
of 2005). We can obtain that information by only looking at the scat-
terplots. Further details can be found in raw data time series.

4.5 Searching for Similar Patterns or Interesting Distribu-
tions

Upon finding an interesting distribution, one may want to look for sim-
ilar ones. For example, one may wonder if there is another month hav-
ing a similar distribution to the Katrina example in State Employment
vs. Accommodation and Food in September of 2005. Other may want
to see if other pairs of variables have similar distributions to the Ka-
trina example in State Employment vs. Accommodation and Food in
September of 2005.

TimeSeer offers several methods for discovering similar patterns in
the Scagnostic series. The dissimilarity of two scatterplot (S and P) is
computed by the following equation:

Dissimilarity(S,P) =

√√√√ 9

∑
i=1

(Si−Pi)2 (15)

where S and P are two arrays of nine Scagnostics of the two scatter-
plots.

4.5.1 Automatic Search for Similar Distributions
In Figure 9, we show the result from the user selecting a plot from
the main screen and requesting a search. TimeSeer searches and plots
the top 5 most similar scatterplots, as characterized by the selected
Scagnostic (Outlying in this case). In this example, taken from the
US employment data, we have selected a plot with a high outlier on
State Employment against Accommodation and Food in September
of 2005. In the lower panel, the first plot on the left is the plot we
selected, highlighted by a yellow rectangle. The five most similar plots
are ordered over the nine Scagnostics (the smaller the index, the more
similar). Again, the background of a plot is colored by the time series
containing that plot; saturation encodes the value of interested feature
(the brighter the shade, the more salient the Scagnostic).

We also can see the time (on the top of each plot) for when the data
distributions happen to be similar. The Scagnostics of the selected plot
and top five plots are also grouped and ordered appropriately. From
Figure 9, we note that it is interesting that Louisiana and Mississippi
are outliers in all six plots. Additionally, four out of five similar plots
are in the same month (September of 2005). This tells us that Hurri-
cane Katrina affected Louisiana employment in the selected economy
sectors.

The last similar plot is another month which has similar Scagnostics
as State Employment against Accommodation and Food in Septem-
ber of 2005. However, the situation in December of 2005 is different.
While Louisiana had recovered in both Employment Rate and Accom-
modation and Food, Mississippi was still struggling.

Figure 10 shows a similar result for the Weather data. We have
selected a plot with a high Stringy and Skinny Scagnostic value on
barometric pressure vs. air temperature and searched for similar dis-
tributions in the same time series. This is a rather fascinating exam-
ple of an unusual relation between variables that would not be evi-
dent in summary statistics such as the Pearson correlation. It is well-
known that air temperature and barometric pressure are related, but

8



Fig. 8. Details on demand: a) Overview b) Lensing in interested area c) Filtering: Outlying ≥ 0.7 d) Requested actual data plots of the first outlier
(Louisiana) e) Requested actual data plots of the second outlier (Mississippi).
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Fig. 9. US Employment data, searching for distributions which are simi-
lar to State Employment against Accommodation and Food in Septem-
ber of 2005.

these plots make clear that it is not a simple functional relationship.
By searching for Stringy Scagnostics, we see that this dynamic re-
lationship between barometric pressure and air temperature has little
error (the strings/paths are quite smooth) but is highly nonlinear (they
wind around instead of following a straight line).

Fig. 10. Weather data, searching for distributions which are similar to
barometric pressure and air temperature on day 273.

4.5.2 Manual Search for Similar Distributions

We have devised an annotation that allows a user to search for similar
plots manually. The user selects a plot from the main screen and Time-
Seer computes the Scagnostic dissimilarity of each plot compared to
the selected plot. It then displays this dissimilarity underneath the
series. Figure 11(a) shows an example. We have selected an Outly-
ing Scagnostic. We also selected the scatterplot in State Employment
against Accommodation and Food in September of 2005. The similar-
ity at each time point compared to the selected scatterplot is presented
by the saturation (in purple) of the bar under it; the higher the satura-
tion, the more similar the scatterplots. The slider at the bottom is used
to filter similarity. Above this slider is the dot histogram showing the
similarity distribution of all plots in the 6 selected time series colored
accordingly. Notably, as we have selected a high outlying plot, the
brighter plots tend to appear in the front of the slider and vice versa.

The user can filter these plots to see only the most similar ones. Fig-
ure 11(b) shows an example. All plots with a dissimilarity greater than
0.5 have been filtered (by using the slider). The user can brush on the
remaining dissimilarity purple bars or on the dot histogram to check
the dissimilarity. When the mouse is over a purple bar or a plot in
the dot histogram, a small window appears right below the purple bar.
On this window, a new scatterplot and its Scagnostics is plotted next
to the selected plot. In the example in Figure 11(b), we can see that
the distribution of State Employment against Education and Health in
September of 2005 (and its Scagnostic histogram) is similar to the dis-
tribution of State Employment against Accommodation and Food (and
its Scagnostic histogram) in the same time.

Figure 12 shows a similar result for the Weather data. We have
selected a plot with a high Striated and Skinny Scagnostic value on
temperature vs. salinity on day 64 and searched for similar distribu-
tions in the selected time series.

We should note that the time for searching similar distribution does
not depend on the number of data points. The time for comparing
two scatterplots is O(1) compared to O(n) because we are searching
on nine Scagnostics, not on individual points. Therefore, the time to
search for distributions similar to one in a selected plot is O(t ∗ p2)
instead of O(t ∗ p2 ∗n)

In a real-time application with a huge time series involving multi-
ple variables, and many data points at each time point, we can cache
Scagnostics at each time point. When we need to find plots having a
distribution similar to a target plot, we can exploit our cache. The time
saved in this approach is considerable.

5 CONCLUSIONS

TimeSeer is a visual analytic tool for analyzing a doubly-multivariate
time series. It highlights the strength of visual analytics itself because
statistical modeling of this type of series is problematic. There are no
off-the-shelf algorithms for dealing with the doubly-multivariate time
series design, even in advanced statistical packages like SAS or R and
even in existing visual analytics platforms.

It should be clear that TimeSeer is not a simple application designed
for non-technical users. To leverage its capabilities, a user needs to be-
come familiar with scatterplots, scatterplot matrices, Scagnostics, and
multivariate time series. Consequently, we have focused on giving
this relatively sophisticated class of analysts a set of tools that enables
searches for structure in very high dimensional time series spaces.
There are surely ways these tools can be improved, and a study of user
interactions can help with this task. Nevertheless, our first challenge
has been to devise an interactive platform that can handle huge multi-
variate collections like the BLS and weather datasets without running
out of memory, time, or screen resolution.

One might wonder whether data fitting in this model are rare and
whether the model itself is esoteric. We believe the opposite is true.
We have cited examples in economics, security, medicine, and other
fields that indicate how prevalent these types of data are. An ex-
ploratory tool that provides an integrated analytic environment for
these types of series can make it possible for the first time to examine
real-world datasets that arise from massive data collection systems and
sensor networks. The use of Scagnostics also provides an ordinary-
language descriptor for distinctive patterns in time series. We see the
power of this descriptive language when we compare the plots in Fig-
ure 9 and Figure 10. It is appropriate and obvious to characterize the
first as Outlying and the second as Stringy.

TimeSeer is sensitive to how data is normalized. We normalize each
variable independently to have the range 0 to 1. Variables that change
the same amount in the normalized scale even with vastly different rel-
ative values, produce scatterplots that appear similar and Scagnostics
do not help detect these changes especially if the changes in absolute
values are small.

The enormous compression we achieve by collapsing n to 1 through
the use of Scagnostics provides TimeSeer with the scalability to handle
huge datasets. Subcomponents of the system can deal with thumbnails
rather than multiple raw series.

Finally, we plan to investigate the use of TimeSeer on large security
databases to assess the gains we claim for its performance. In addition,
we expect to investigate how TimeSeer can be extended to spatial data.
Time and space have similar statistical issues when modeling [13], so
extending time series analytics to spatial analytics makes sense.
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Fig. 11. US Employment data, searching for distributions which are similar to State Employment against Accommodation and Food in September
of 2005: a) Dissimilarity index for all selected pairs b) Filter applied: dissimilarity ≤ 0.5 .
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Fig. 12. Weather data, searching for distributions which are similar to temperature vs. salinity on day 64: a) Dissimilarity index for all selected pairs
b) Filter applied: dissimilarity ≤ 0.5 .
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