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Abstract. A matchbox manifold is a generalized lamination, which is a continuum whose arc-

components define the leaves of a foliation of the space. The main result of this paper implies that
a matchbox manifold which is manifold-like must be homeomorphic to a weak solenoid.

1. Introduction

A continuum is a compact, connected, and non-empty metrizable space. The notion of a manifold-
like continuum is derived from the notion of an ε-map, which was introduced by Alexandroff [5]:

DEFINITION 1.1. Let X be a metric space, Y a topological space and ε > 0 a constant. Then
a map f : X → Y is said to be an ε-map if f is a continuous surjection and for each point y ∈ Y ,
the inverse image f−1(y) has diameter less than ε. A metric space X is said to be Y –like, for some
topological space Y , if for every ε > 0, there is an ε-map fε : X → Y .

For example, a space X is circle-like if it is Y -like, where Y = S1 is the circle. More generally, let

(1) M(n) = {M |M is a closed connected manifold of dimension n }.

DEFINITION 1.2. A continuum X is said to be manifold-like, if there exists n ≥ 1 such that for
every ε > 0, there exists Mε ∈M(n) and an ε-map fε : X →Mε.

The study of the properties of ε-maps and manifold-like continua has a long history in the study of
the topology of spaces. Eilenberg showed in [19] that an ε-map, for ε > 0 sufficiently small, admits
a left approximate inverse. Ganea studied the properties of compact, locally connected manifold-
like ANR’s of dimension n in [20], and showed that such a space has the homotopy type of a closed
n-manifold. Deleanu [12, 13] showed that an n-dimensional connected polyhedron which is manifold-
like is a closed pseudo-manifold. Bob Edwards gave in his 1978 ICM address [18] an overview of the
further applications of ε-approximations and homeomorphisms.

Mardešić and Segal [26, 27] studied the properties of manifold-like connected polyhedron, and gave
conditions under which such spaces must be a topological manifold. These authors used a technique
of approximation of the given continuum by an inverse limit of spaces, and noted that their results
do not apply to a continuum which is not locally connected, such as the dyadic solenoid.

The goal of this work is to characterize a class of manifold-like continua for which the Mardešić and
Segal results do not apply. These are the matchbox manifolds as studied by the authors in [9, 10, 11],
and discussed below. Our study of matchbox manifolds in these works was inspired by a result of
Bing in [6]. Recall that a topological space X is homogeneous if for every x, y ∈ X, there exists a
homeomorphism h : X → X such that h(x) = y.

THEOREM 1.3. Let X be a homogeneous, circle-like continuum that contains an arc. Then either
X is homeomorphic to the circle S1, or to an inverse limit of coverings of S1.

This results inspired the subsequent works by McCord [29], Thomas [33], Hagopian [22], Mislove
and Rogers [30], and Aarts, Hagopian and Oversteegen [3], all for 1-dimensional flow spaces.
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In this work, we give extensions of Theorem 1.3 to continua with higher dimensional arc-components.
We first recall two notions which are required to formulate our results. A weak solenoid SP is the
inverse limit space of a sequence of covering maps of finite degree greater than one,

(2) P = {p`+1 : M`+1 →M` | ` ≥ 0},

where M` is a compact connected manifold without boundary. The collection of maps P is called
a presentation for SP . A weak solenoid SP is regular if the presentation P can be chosen so that
for each ` ≥ 0, the composition p0` ≡ p1 ◦ · · · p` : M` → M0 is a regular covering map; that is, the
fundamental group of M` injects onto a normal subgroup of the fundamental group of M0 under
the map induced by the covering projection p0` . A weak solenoid which is not regular is said to be
irregular. A Vietoris solenoid [34, 36] is a 1-dimensional regular solenoid, where each M` is a circle,
as arises in the conclusion of Theorem 1.3.

A matchbox manifold M is a continuum equipped with a decomposition F into leaves of constant
dimension, so that the pair (M,F) is a foliated space in the sense of [31], for which the local
transversals to the foliation are totally disconnected. In particular, the leaves of F are the path
connected components of M. A matchbox manifold with 2-dimensional leaves is a lamination by
surfaces in the sense of Ghys [21] and Lyubich and Minsky [25], while Sullivan called them “solenoidal
spaces” in [32, 35]. The terminology “matchbox manifold” follows the usage introduced in [1, 2, 4].
A Vietoris solenoid is a 1-dimensional matchbox manifold, and more generally, McCord showed in
[29] that n-dimensional solenoids are examples of n-dimensional matchbox manifolds.

Next, recall a result of the first two authors. A matchbox manifold is said to be equicontinuous if the
holonomy pseudogroup GF associated to the foliation F (see Section 3) defines an equicontinuous
action on its transversal space, as defined in Definition 3.3.

THEOREM 1.4. [9, Theorems 1.2 and 1.4] Let M be an equicontinuous matchbox manifold. Then
M is homeomorphic to a weak solenoid, and in particular is manifold-like. Moreover, if M is
homogeneous, then M is homeomorphic to a regular solenoid.

The main result of this paper, as follows, yields a generalization of Theorem 1.3 to higher dimensional
matchbox manifolds.

THEOREM 1.5. A manifold-like matchbox manifold M is equicontinuous.

Theorems 1.4 and 1.5 then yield the following partial converse to Theorem 1.4:

COROLLARY 1.6. A manifold-like matchbox manifold M is homeomorphic to a weak solenoid.

The hypothesis that a matchbox manifold M is manifold-like does not imply that M is homogeneous,
as the “discriminant obstruction” to homogeneity for a weak solenoid is supported in arbitrarily small
open neighborhoods of points in M . The discriminant invariant was introduced and studied in the
works in [15, 16, 17, 24].

The remainder of this paper is organized as follows. In Section 2 we recall the definitions of foliated
spaces and matchbox manifolds, and give some of their basic properties. Particular care is taken to
introduce various metric estimates related to the geometry of the leaves of the foliation, and to its
dynamical properties. In Section 3 we recall the construction of the holonomy along leafwise paths.

In Section 4, we prove Theorem 1.5, using the path lifting property for ε-maps from a matchbox
manifold to a compact manifold. This is the key technical tool, which is used to show that the
foliation F on M must be equicontinuous.

The Appendix A contains the proof of a technical result, Proposition 4.1 below. The proof of this
result does not appear to be in the literature, and may even have a simpler proof than is given here.
However, the result is essential for the proof of Theorem 1.5, so is included for completeness.
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2. Foliated spaces and matchbox manifolds

We recall some background concepts used in the proof of our main theorems.

2.1. Matchbox manifolds. We first recall the definition of a matchbox manifold.

DEFINITION 2.1. A matchbox manifold of dimension n is a continuum M, such that there exists
a compact, separable, totally disconnected metric space X, and for each x ∈ M there is a compact
subset Tx ⊂ X, an open subset Ux ⊂M, and a homeomorphism ϕx : Ux → [−1, 1]n × Tx defined on
the closure Ux in M, such that ϕx(x) = (0, wx) where wx ∈ int(Tx). Moreover, it is assumed that

each ϕx admits an extension to a foliated homeomorphism ϕ̂x : Ûx → (−2, 2)n × Tx where Ûx ⊂M

is an open subset such that Ux ⊂ Ûx. The space Tx is called the local transverse model at x.

The assumption that the transversals Tx are totally disconnected implies that the local charts ϕx
satisfy the compatibility axioms of foliation charts for a foliated space, as in [8, 9, 31].

Let πx : Ux → Tx denote the composition of ϕx with projection onto the second factor.

Also introduce the transversal maps τx : Tx → Tx ⊂ M, defined for w ∈ Tx by τx(w) = ϕ−1x (0, w).
The subspace Tx is given the metric dTx which is the restriction of the metric dM.

For w ∈ Tx the set Px(w) = π−1x (w) ⊂ Ux is called a plaque for the coordinate chart ϕx. We adopt
the notation, for z ∈ Ux, that Px(z) = Px(πx(z)), so that z ∈ Px(z). Note that each plaque Px(w)
is given the topology so that the restriction ϕx : Px(w)→ [−1, 1]n×{w} is a homeomorphism. Then
int(Px(w)) = ϕ−1x ((−1, 1)n × {w}).

Let Ux = int(Ux) = ϕ−1x ((−1, 1)n× int(Tx)). Note that if z ∈ Ux∩Uy, then int(Px(z))∩ int(Py(z))
is an open subset of both Px(z) and Py(z). The collection of sets

V = {ϕ−1x (V × {w}) | x ∈M , w ∈ Tx , V ⊂ (−1, 1)n open}
forms the basis for the fine topology of M. The connected components of the fine topology are called
leaves, and define the foliation F of M. In particular, the leaves of the foliation F of M are the
path-connected components of M. For x ∈M, let Lx ⊂M denote the leaf of F containing x.

DEFINITION 2.2. A smooth matchbox manifold is a space M as above, such that there exists
a choice of local charts ϕx : Ux → [−1, 1]n × Tx such that for all x, y ∈ M with z ∈ Ux ∩ Uy, there
exists an open set z ∈ Vz ⊂ Ux ∩ Uy such that Px(z) ∩ Vz and Py(z) ∩ Vz are connected open sets,
and the composition

ψx,y;z ≡ ϕy ◦ ϕ−1x : ϕx(Px(z) ∩ Vz)→ ϕy(Py(z) ∩ Vz)
is a smooth map, where ϕx(Px(z) ∩ Vz) ⊂ Rn × {w} ∼= Rn and ϕy(Py(z) ∩ Vz) ⊂ Rn × {w′} ∼= Rn.
The leafwise transition maps ψx,y;z are assumed to depend continuously on z in the C∞-topology.

A map f : M → R is said to be smooth if for each flow box ϕx : Ux → [−1, 1]n × Tx and w ∈ Tx
the composition y 7→ f ◦ ϕ−1x (y, w) is a smooth function of y ∈ (−1, 1)n, and depends continuously
on w in the C∞-topology on maps of the plaque coordinates y. As noted in [31] and [8, Chapter
11], this allows one to define smooth partitions of unity, vector bundles, and tensors for smooth
foliated spaces. In particular, one can define leafwise Riemannian metrics. We recall a standard
result, whose proof for foliated spaces can be found in [8, Theorem 11.4.3].

THEOREM 2.3. Let M be a smooth matchbox manifold. Then there exists a leafwise Riemannian
metric for F , such that for each x ∈M, the leaf Lx inherits the structure of a complete Riemannian
manifold with bounded geometry, and the Riemannian metric and its covariant derivatives depend
continuously on x .

Bounded geometry implies, for example, that for each x ∈ M, there is a leafwise exponential map
expFx : TxF → Lx which is a surjection, and the composition expFx : TxF → Lx ⊂ M depends
continuously on x in the compact-open topology on maps. All matchbox manifolds are assumed to
be smooth with a given leafwise Riemannian metric, and with a fixed choice of metric dM on M.
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2.2. Metric estimates. We formulate some relations between the metric properties of a matchbox
manifold M and the metric properties of the leaves of F . These technical conditions are used in
studying the dynamics and geometry of these spaces.

For x ∈ M and ε > 0, let DM(x, ε) = {y ∈ M | dM(x, y) ≤ ε} be the closed ε-ball about x in M,
and BM(x, ε) = {y ∈M | dM(x, y) < ε} the open ε-ball about x.

Let dX denote the metric on the space X in Definition 2.1. For w ∈ X and ε > 0, let DX(w, ε) = {w′ ∈
X | dX(w,w′) ≤ ε} be the closed ε-ball about w in X, and let BX(w, ε) = {w′ ∈ X | dX(w,w′) < ε}
be the open ε-ball about w.

Each leaf L ⊂M has a complete path-length metric, induced from the leafwise Riemannian metric:

dF (x, y) = inf
{
‖γ‖ | γ : [0, 1]→ L is piecewise C1 , γ(0) = x , γ(1) = y , γ(t) ∈ L ∀ 0 ≤ t ≤ 1

}
where ‖γ‖ denotes the path-length of the piecewise C1-curve γ(t). If x, y ∈M are not on the same
leaf, then set dF (x, y) =∞.

For each x ∈M and r > 0, let DF (x, r) = {y ∈ Lx | dF (x, y) ≤ r}.

For each x ∈M, the Gauss Lemma implies that there exists λx > 0 such that DF (x, λx) is a strongly
convex subset for the metric dF . That is, for any pair of points y, y′ ∈ DF (x, λx) there is a unique
shortest geodesic segment in Lx joining y and y′ and contained in DF (x, λx). This standard concept
of Riemannian geometry is discussed in detail in [7], and in [14, Chapter 3, Proposition 4.2]. Then for
all 0 < λ < λx the disk DF (x, λ) is also strongly convex. The leafwise metrics for F constructed in
the proof of Theorem 2.3 have uniformly bounded geometry, and the first and second order covariant
derivatives of the metrics depend continuously on the point x ∈M, so by the compactness of M, we
obtain:

LEMMA 2.4. There exists λF > 0 such that for all x ∈M, DF (x, λF ) is strongly convex.

2.3. Regular coverings. We next formulate the definition of a regular covering of a matchbox
manifold M. It follows from standard considerations (see [9]) that a matchbox manifold admits a
covering by foliation charts which satisfies additional regularity conditions.

PROPOSITION 2.5. [9] For a smooth foliated space M, given εM > 0, there exist λF > 0 and a
choice of local charts ϕx : Ux → [−1, 1]n × Tx with the following properties: For each x ∈M,

(1) Ux ≡ int(Ux) = ϕ−1x ((−1, 1)n × Tx), with Ux ⊂ BM(x, εM).
(2) The plaques of ϕx are strongly convex for the metric dF with diameter less than λF .

By a standard argument, there exists a finite collection {x1, . . . , xν} ⊂M where ϕxi(xi) = (0, wxi)
for wxi ∈ X, and regular foliation charts ϕxi : Uxi → [−1, 1]n × Txi satisfying the conditions of
Proposition 2.5, which form an open covering of M. Relabel the various maps and spaces accordingly,
so that U i = Uxi and ϕi = ϕxi . Accordingly, label the transverse spaces Ti = Txi and the projection
maps πi = πxi : U i → Xi. Then the image πi(Ui ∩ Uj) = Ti,j ⊂ Ti is a clopen subset for all
1 ≤ i, j ≤ ν.

We also then have the transversal mappings τi : Ti → Ti ⊂M for 1 ≤ i ≤ ν.

A regular covering of M is a finite covering U = {U1, . . . , Uν} such that for each 1 ≤ i ≤ ν there
is a foliated coordinate map ϕi : Ui → (−1, 1)n × Ti which satisfies the regularity conditions in
Proposition 2.5. We assume in the following that a regular foliated covering of M has been chosen.

2.4. More metric estimates. We introduce lower and upper bounds on the diameters of balls in
the leaves of F with respect to the ambient metric dM on M. To assist with the notation, we use
the convention that λ > 0 will denote a small leafwise distance, and ε will denote a small distance
in M. Later when we introduce the target manifold M , we let δ denote a small distance in M .



MANIFOLD–LIKE MATCHBOX MANIFOLDS 5

For x ∈ M and ε > 0, let DF (dM, x, ε) ⊂ Lx denote the connected component containing x of the
intersection Lx ∩DM(x, ε). Define the continuous functions

ρ(dF , dM, x, ε) = max {dF (x′, x) | x′ ∈ DF (dM, x, ε)}(3)

ρ(dM, dF , x, λ) = max {dM(x′, x) | x′ ∈ DF (x, λ)} .(4)

Then for all x ∈M, ε > 0 and λ > 0, we have

(5) DF (dM, x, ε) ⊂ DF (x, ρ(dF , dM, x, ε)) and DF (x, λ) ⊂ DM(x, ρ(dM, dF , x, λ)) .

As M is compact, we can then define the increasing functions of ε > 0 and λ > 0,

ρ(dF , dM, ε) = max {ρ(dF , dM, x, ε) | x ∈M}(6)

ρ(dM, dF , λ) = max {ρ(dM, dF , x, λ) | x ∈M} .(7)

Moreover, for 0 < λ′ < λ ≤ λF we have the strict inclusion BF (x, λ′) ⊂ BF (x, λ), and thus the
function ρ(dM, dF , λ) is strictly increasing for 0 < λ < λF .

Let ε∗F = max {ε | ρ(dF , dM, ε) ≤ λF}, so that DF (dM, x, ε
∗
F ) ⊂ DF (x, λF ) for all x ∈M.

Introduce the continuous function λF (ε) which is the inverse of ρ(dM, dF , λ), for 0 < λ ≤ λF . Thus,
λF (ε) is the largest radius λ ≤ λF such that the disk DF (x, λ) in the leafwise metric is contained in
the ball BM(x, ε) for all x ∈M. Combining the above definitions, we obtain that for all x ∈M,

(8) DF (x, λF (ε)) ⊂ DF (dM, x, ε) ⊂ DF (x, λF ) ∩DM(x, ε) .

Choose ε0 > 0 so that ρ(dF , dM, ε0) ≤ λF/2, and set λ0 = λF (ε0). Then by the definition of
ρ(dF , dM, ε0) and the inclusions (8), for all x ∈M we have the inclusions

(9) DF (x, λ0) ⊂ DF (dM, x, ε0) ⊂ DF (x, λF/2) ∩BM(x, ε0) .

Next, choose ε1 > 0 so that ρ(dF , dM, ε1) ≤ λ0/10, and let λ1 = λF (ε1). Then for all x ∈M,

(10) DF (x, λ1) ⊂ DF (dM, x, ε1) ⊂ DF (x, λ0/10) ∩BM(x, ε1) .

This choice of ε1 will be recalled in Section 4 and Appendix A.

A matchbox manifold M is minimal if every leaf of F is dense.

3. Holonomy

The holonomy pseudogroup of a smooth foliated manifold (M,F) generalizes the induced dynamical
systems associated to a section of a flow. The holonomy pseudogroup for a matchbox manifold
(M,F) is defined analogously to the smooth case.

3.1. The foliation pseudo-star group. Let U = {ϕi : U i → [−1, 1]n × Ti | 1 ≤ i ≤ ν} be
a regular covering of M as in Section 2.3. A pair of indices (i, j), 1 ≤ i, j ≤ ν, is said to be
admissible if the open coordinate charts satisfy Ui ∩ Uj 6= ∅. For (i, j) admissible, define clopen
subsets Di,j = πi(Ui ∩Uj) ⊂ Ti ⊂ X. The convexity of foliation charts imply that plaques are either
disjoint, or have connected intersection. This implies that there is a well-defined homeomorphism
hj,i : Di,j → Dj,i with domain D(hj,i) = Di,j and range R(hj,i) = Dj,i.

The maps G(1)F = {hj,i | (i, j) admissible} are the transverse change of coordinates defined by the

foliation charts. By definition they satisfy hi,i = Id, h−1i,j = hj,i, and if Ui ∩ Uj ∩ Uk 6= ∅ then
hk,j ◦ hj,i = hk,i on their common domain of definition. The holonomy pseudogroup GF of F is the

topological pseudogroup modeled on X generated by the elements of G(1)F . The elements of GF have
a standard description in terms of the “holonomy along paths”, which we next describe.

A sequence I = (i0, i1, . . . , iα) is admissible, if each pair (i`−1, i`) is admissible for 1 ≤ ` ≤ α, and
the composition

(11) hI = hiα,iα−1
◦ · · · ◦ hi1,i0
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has non-empty domain. The domain DI of hI is the maximal clopen subset of Di0 ⊂ Ti0 for which
the compositions are defined.

For the study of the dynamical properties of F , it is necessary to introduce the collection of maps
G∗F ⊂ GF , defined as follows. Given any open subset U ⊂ DI we obtain a new element hI |U ∈ GF
by restriction. Then set

(12) G∗F = {hI |U | I admissible & U ⊂ DI} ⊂ GF .

That is, G∗F consists of all possible restrictions of homeomorphisms of the form (11) to open subsets
of their domains. However, in the definition of G∗F one does not allow arbitrary unions of local
homeomorphisms, unless such homeomorphisms can be obtained by restrictions to open subsets of
maximal domains of words in the elements in G0. The collection of maps G∗F is closed under the op-
erations of compositions, taking inverses, and restrictions to open sets, and is called a pseudo?group
in the literature [28].

For g ∈ G∗F denote its domain by D(g) ⊂ X, then its range is the clopen set R(g) = g(D(g)) ⊂ X.

3.2. Admissible chains. Given an admissible sequence I = (i0, i1, . . . , iα) and any 0 ≤ ` ≤ α,
the truncated sequence I` = (i0, i1, . . . , i`) is again admissible, and we introduce the holonomy map
defined by the composition of the first ` generators appearing in hI ,

(13) hI` = hi`,i`−1
◦ · · · ◦ hi1,i0 .

Given w ∈ D(hI) we adopt the notation w` = hI`(w) ∈ Ti` . So w0 = w and hI(w) = wα.

Given w ∈ D(hI), let x0 = τi0(w0) ∈ Lx0 . Introduce the plaque chain

(14) PI(w) = {Pi0(w0),Pi1(w1), . . . ,Piα(wα)} .

For each 1 ≤ i ≤ ν, define Ti = ϕ−1i (0,Ti) ⊂ U i ⊂M which is a compact local transversal to F .

Intuitively, a plaque chain PI(w) is a sequence of successively overlapping convex “tiles” in L0

starting at x0 = τi0(w0), ending at xα = τiα(wα), and with each Pi`(w`) “centered” on the point
x` = τi`(w`). Recall that Pi`(x`) = Pi`(w`), so we also adopt the notation PI(x) ≡ PI(w).

A leafwise path is a continuous map γ : [0, 1]→M such that there is a leaf L of F for which γ(t) ∈ L
for all 0 ≤ t ≤ 1. In the following, we will assume that all paths are piecewise differentiable.

Let γ be a leafwise path, and I be an admissible sequence. For w ∈ D(hI), we say that (I, w) covers
γ, if the domain of γ admits a partition 0 = s0 < s1 < · · · < sα = 1 such that the plaque chain
PI(w0) = {Pi0(w0),Pi1(w1), . . . ,Piα(wα)} satisfies

(15) γ([s`, s`+1]) ⊂ int(Pi`(w`)) , 0 ≤ ` < α, & γ(1) ∈ int(Piα(wα)).

The map hI is said to define the holonomy of F along the path γ, and satisfies hI(w0) = πiα(γ(1)).

Given two admissible sequences, I = (i0, i1, . . . , iα) and J = (j0, j1, . . . , jβ), such that both (I, w0)
and (J , v0) cover the leafwise path γ : [0, 1]→M, then

γ(0) ∈ int(Pi0(w0)) ∩ int(Pj0(v0)) , γ(1) ∈ int(Piα(wα)) ∩ int(Pjβ (vβ))

Thus both (i0, j0) and (iα, jβ) are admissible, and v0 = hj0,i0(w0), wα = hiα,jβ (vβ).

The proof of the following standard observation can be found in [9].

PROPOSITION 3.1. [9] The maps hI and hiα,jβ ◦ hJ ◦ hj0,i0 agree on their common domains.

Two leafwise paths γ, γ′ : [0, 1] → M are homotopic if there exists a family of leafwise paths
γs : [0, 1] → M with γ0 = γ and γ1 = γ′. We are most interested in the special case when
γ(0) = γ′(0) = x and γ(1) = γ′(1) = y. Then γ and γ′ are homotopic relative endpoints, or
endpoint-homotopic, if they are homotopic with γs(0) = x for all 0 ≤ s ≤ 1, and similarly γs(1) = y
for all 0 ≤ s ≤ 1. Thus, the family of curves {γs(t) | 0 ≤ s ≤ 1} are all contained in a common leaf
Lx. We then have the following result.
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LEMMA 3.2. [9] Let γ, γ′ : [0, 1]→M be endpoint-homotopic leafwise paths. Then their holonomy
maps hγ and hγ′ agree on some open subset U ⊂ D(hγ) ∩D(hγ′) ⊂ T∗.

Finally, we recall the definition of an equicontinuous pseudogroup.

DEFINITION 3.3. The action of the pseudogroup GF on X is equicontinuous if for all ε > 0, there
exists δ > 0 such that for all g ∈ G∗F , if w,w′ ∈ D(g) and dX(w,w′) < δ, then dX(g(w), g(w′)) < ε.
Thus, G∗F is equicontinuous as a family of local group actions.

Further properties of the pseudogroup GF for a matchbox manifold are discussed in [9, 10, 23].

4. Equicontinuous holonomy

In this section, we give the proof of Theorem 1.5. A key point in the proof is based on the path lifting
property for ε-maps between a matchbox manifold M and a target manifold M . The philosophy of
path lifting is folklore, as observed by Bob Edwards in his 1978 ICM address on ε-approximations and
homeomorphisms [18, Section 4]. We develop this technique in the context of matchbox manifolds,
making use of standards results for ε-maps along with properties of the holonomy maps.

Let M be a manifold-like matchbox manifold. Let U = {ϕi : U i → [−1, 1]n × Ti | 1 ≤ i ≤ ν} be
a regular covering of M as in Section 2.3. Let G∗F be the pseudo?group associated to the regular
covering U as in Section 3.1. We must show that the conditions of Definition 3.3 are satisfied: given
ε > 0, we must show there exists δ > 0 such that for each admissible chain I with holonomy hI , if
w,w′ ∈ D(hI) ⊂ X and dX(w,w′) < δ, then dX(hI(w), hI(w′)) < ε.

Recall that εU > 0 denotes a Lebesgue number for the covering U of M. That is, for each x ∈ M,
there exists some index 1 ≤ i ≤ ν such that BM(x, εU ) ⊂ Ui.

Since U i is compact for each 1 ≤ i ≤ ν, there exists a uniform modulus of continuity function
ρU (ε) > 0 for the projections πi: let ε > 0, then ρU (ε) is the largest value such that

(16) BM(x, ρU (ε)) ∩ U i ⊂ π−1i (BXi(πi(x), ε)) for all x ∈ U i .

For ε1 as defined in Section 2.2, define εF by

(17) 0 < εF = min {ρU (ε), ε1/2, εU/4} .

4.1. Continuity estimates. Choose an εF -map f : M→M onto the compact topological manifold
M , where for simplicity we omit the subscript εF in the notation for f . Let dM be a metric on M .
For w ∈ M and δ > 0, let BM (w, δ) = {w′ ∈ M | dM (w′, w) < δ} denote the open disk in M of
radius δ, and DM (w, δ) = {w′ ∈M | dM (w′, w) ≤ δ} denote the closed disk in M of radius δ.

Assume that dM is chosen so that there exists a constant δM > 0 such that for all w ∈ M and
0 < δ ≤ δM , the disk DM (w, δ) is homeomorphic to a disk in Rn. For example, if M is a smooth
Riemannian manifold, then let δM > 0 be such that each disk DM (w, δM ) is strongly convex.

Since M is compact, there exists a uniform modulus of continuity function εf (δ) > 0 for f : for δ > 0,
the constant εf (δ) is the largest value such that

(18) BM(x, εf (δ)) ⊂ f−1(BM (f(x), δ)) for all x ∈M .

Let δ∗f > 0 be the largest radius such that εf (δ) ≤ εF for all 0 < δ ≤ δ∗f .

Set λF,f (δ) = λF (εf (δ)), which is well-defined for 0 < δ ≤ δ∗f . Recall from Section 2.4 that λF,f (δ)

is then the largest radius λ ≤ λF such that the disk DF (x, λ) in the leafwise metric is contained in
the ball BM(x, εf (δ)) for all x ∈M.

Combining (8) and (18) we obtain a leafwise modulus of continuity for f :

(19) DF (x, λF,f (δ)) ⊂ BM(x, εf (δ)) ⊂ f−1(BM (f(x), δ)) for all 0 < δ ≤ δ∗f , x ∈M .
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As f is an εF -map, we have that f−1(f(x)) ⊂ BM(x, εF ) for all x ∈ M. As M is compact and
f−1(f(x)) is a compact set with diameter at most εF for all x ∈M, there exists 0 < δ1 ≤ δM/10 so
that for all x ∈M, we have

(20) f−1(DM (f(x), δ1)) ⊂ BM(x, 2εF ) = BM(x, ε1) .

Let λ2 = λF,f (δ1); that is, λ2 is then is the largest radius λ ≤ λF such that the disk DF (x, λ) in
the leafwise metric is contained in the ball BM(x, δ1) for all x ∈M.

Then for all x ∈M, by (19), (10), and the choice of δ1 we have

(21) DF (x, λ2) ⊂ f−1(DM (f(x), δ1)) ∩DF (x, λF ) ⊂ DM(x, ε1) ∩DF (x, λF ) ⊂ DF (x, λ0/10) .

Finally, we require a basic result concerning ε-maps on matchbox manifolds, which is a type of
converse to the inclusions in (21), and whose proof is in the spirit of the work by Eilenberg [19]. The
proof of the following is deferred to Appendix A.

PROPOSITION 4.1. Let M be a matchbox manifold with leafwise Riemannian metric on F .
Then there exists εF > 0 such that, if f : M→M is an εF -map to a compact manifold M , then for
x0 ∈M with w0 = f(x0), we have BM (w0, δ1) ⊂ f(DF (x0, λF/2)).

4.2. Local lifting property. We next establish a technical result used in the proof of Theorem 1.5.
For δ1 as chosen above so that (20) holds, set ε′1 = εf (δ1).

LEMMA 4.2. Let f : M → M be an εF -map. Let x0 ∈M and suppose that BM(x0, εU ) ⊂ Ui for
some 1 ≤ i ≤ ν. Then for z ∈ BM(x0, ε

′
1) and y ∈ DF (x, λ2) ⊂ Pi(x), we have f−1(f(y))∩Pi(z) 6= ∅.

Proof. Set w0 = f(x0) ∈M , then by (18) we have that BM(x0, ε
′
1) ⊂ f−1(BM (w0, δ1)) ⊂ Ui so that

f(z) ∈ BM (w0, δ1). Moreover, by Proposition 4.1, we have that BM (w0, δ1) ⊂ f(DF (x0, λF/2)).
Then choose xz ∈ DF (x0, λF/2) with f(xz) = f(z).

Let γy : [0, 1]→ Pi(x0) be the geodesic path in Pi(x0) with γy(0) = xz and γy(1) = y.

Let 0 ≤ s∗ ≤ 1 be the largest value such that

f−1(f((γy(s))) ∩ Pi(z) 6= ∅ for all 0 ≤ s ≤ s∗ .
We claim that s∗ = 1. Suppose that s∗ < 1, then we show this yields a contradiction.

Set x∗ = γy(s∗) and w∗ = f(x∗). Then there exists z∗ ∈ f−1(w∗) ∩ Pi(z) by the definition of
s∗. Note that x∗ ∈ BM(x0, εF ) ⊂ BM(x0, εU/4) by the choice of λ2 and the fact that DF (x0, λ2)
is strongly convex. By the choice of f and εF in (17), we have dM(x∗, z∗) < εF < εU/4. Thus
dM(x0, z∗) < εU/2 and hence BM(z∗, εF ) ⊂ BM(x0, εU ) ⊂ Ui. It then follows from the choice of λ2
and the above observations that

(22) DF (z∗, λ2) ⊂ BM(z∗, εF ) ⊂ Ui .

The value of εF > 0 is less than or equal to the choice ε1/2 for this constant in the proof of
Proposition 4.1 in Appendix A, and thus BM (w∗, δ1) ⊂ f(DF (z∗, λF/2)). The assumption that
s∗ < 1 implies that for s∗ ≤ s < 1 sufficiently small so that f(γz(s)) ∈ BM (w∗, δ1), we have that

Pi(z) ∩ f−1(f(γz(s))) = DF (z∗, λF/2) ∩ f−1(f(γz(s))) 6= ∅
which contradicts the choice of s∗. �

We next extend the conclusion of Lemma 4.2 from paths contained in a coordinate chart, to leafwise
paths defined by a plaque chain of arbitrary length.

Let I = (i0, i1, . . . , iα) be an admissible chain with associated holonomy map hI ∈ G∗F and
w0 ∈ D(hI). As in Section 3.2, we associate to the pair (I, w0) the plaque chain PI(w0) =
{Pi0(w0),Pi1(w1), . . . ,Piα(wα)} given in (14).

Next introduce a plaque chain J = (j0, j1, . . . , jβ) which is a refinement of I at w0 and is chosen
with respect to the leaf distance constant λ2 > 0 which was defined so that the inclusions in (21)
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hold. By Proposition 3.1, its associated holonomy map hJ at w0 agrees with the holonomy map hI
at w0 on their common domains.

Let γ : [0, α] → Lx0 ⊂M be the leafwise piecewise geodesic associated to the plaque chain PI(x0).
That is, γ : [0, α]→ Lx0 is the concatenation of geodesic segments {γ` | 0 ≤ ` ≤ α−1} in the plaques
of the covering U , where γ` : [`, `+ 1]→ Pi`(w`) satisfies

γ`(`) = x` = τi`(w`) ∈ Ti` , γ`(`+ 1) = x`+1 = τi`+1
(wi`+1

) ∈ Ti`+1
.

Introduce a subdivision of the interval [0, α], given by 0 = s0 < s1 < s2 < · · · < sβ = α, where there
is an increasing subsequence {` | 0 ≤ ` ≤ α = sβ}. For notational convenience, set s−1 = s0 = 0
and sβ+1 = sβ = α. Then set ξ` = γ(s`) for −1 ≤ ` ≤ β + 1, and we choose the subdivision so that
for each 0 ≤ ` ≤ β,

(23) dF (γ(s), ξ`) < λ2 for s`−1 ≤ s ≤ s`+1 .

For each 0 ≤ ` ≤ β, choose an index 1 ≤ j` ≤ ν so that BM(ξ`, εU ) ⊂ Uj` . It then follows by the
choice of εF , λ2 and (21) that for each 0 ≤ ` ≤ β, we have

(24) γ(s) ∈ DF (ξ`, λ2) ⊂ BM(ξ`, εF ) ⊂ BM(ξ`, εU/4) for all s`−1 ≤ s ≤ s`+1 .

Moreover, dF (ξ`, ξ`+1) < λ2 implies that

(25) ξ`+1 ∈ DF (ξ`, λ2) ∩DF (ξ`+1, λ2) ⊂ Pj`(ξ`) ∩ Pj`+1
(ξ`+1) .

Thus J = (j0, j1, . . . , jβ) is an admissible sequence, and PJ (w0) = {Pj0(ξ0),Pj1(ξ1), . . . ,Pjβ (ξβ)}
defines a holonomy map hJ at w0.

Now let εF > 0 be as above, ξ0 = x0 ∈ Tj0 for the plaque chain J as chosen above, and suppose
that Pj0(z0) ∩ f−1(f(ξ0)) 6= ∅ for some z0 ∈ Tj0 . Then dF (ξ0, ξ1) < λ2 by (23), so by (25) we have

ξ1 ∈ Pj0(ξ0) ∩ Pj1(ξ1). Hence by Lemma 4.2 there exists z′1 ∈ f−1(f(ξ1)) ∩ Pj0(z0).

Note that dM(ξ1, z
′
1) ≤ εF ≤ εU/4, so z′1 ∈ BM(ξ1, εU/4) ⊂ Uj1 . Thus, there exists z1 ∈ Tj1 such

that z′1 ∈ Pj1(z1) and hence Pj0(z0) ∩ Pj1(z1) 6= ∅.

We now repeat the application of Lemma 4.2 to the new basepoint ξ1, and then continue recursively
to obtain a sequence of points {z` ∈ Tj` | 0 ≤ ` ≤ β} such that for 0 < ` ≤ β we have:

• Pj`−1
(z`−1) ∩ Pj`(z`) 6= ∅ ,

• z′` ∈ f−1(f(ξ`)) ∩ Pj`(z`).

Recall that πi : U i → Ti for 1 ≤ i ≤ ν is the transverse projection to the model space Ti. Then the
above shows that for w0 = πj0(z0) and wβ = πjβ (zβ) we have w0 ∈ D(hJ ) and hJ (w0) = wβ .

4.3. Proof of Theorem 1.5. We can now complete the proof of Theorem 1.5. We have assumed
that ε > 0 is given, and εF > 0 is defined as in (17). Then choose an εF -map f as in Section 4.1.
Let hI ∈ G∗F be as in Section 4.2, and PJ the path chain constructed above from I.

For each 1 ≤ i ≤ ν the transversal map τi : Ti → Ti is a homeomorphism of compact spaces, and
the metric dTi on the subspace Ti ⊂ U i ⊂M was defined in Section 2.1 as the restriction of dM.

Recall that ε′1 = εf (δ1) was defined in Section 4.2 and used in the hypothesis of Lemma 4.2. By the
uniform continuity of the maps τi, there exists δ > 0 such that for all 1 ≤ i ≤ ν and w ∈ Ti,

(26) BTi(w, δ) ⊂ τ−1i (BTi(τi(w), ε′1)) .

It thus follows from the above results that hJ (BTj0
(w, δ)) ⊂ BTjβ

(hJ (w), ε), as was to be shown.

Appendix A. Local surjectivity for ε-maps

In this appendix, we give a technical result concerning ε-maps.
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PROPOSITION A.1. Let M be a matchbox manifold with leafwise Riemannian metric on F .
Then there exists εF > 0 such that, if f : M→M is an εF -map to a compact manifold M , then there
exists δ1 > 0 such that for x0 ∈M with w0 = f(x0), we have DM (f(x0), δ1) ⊂ f(DF (x0, λF/2)).

Proof. We use the notations of Section 2.2 above.

Choose ε0 > 0 so that ρ(dF , dM, ε0) ≤ λF/2, as defined by (3) to be the maximal radius of a leafwise
disk about x contained in a closed disk of radius ε0 in M, for all x ∈M.

Set λ0 = λF (ε0), which is defined in Section 2.4 to be the largest radius λ ≤ λF such that the disk
DF (x, λ) is contained in BM(x, ε0), for all x ∈M. Then by the definition of ρ(dF , dM, ε0) and the
inclusions (8), for all x ∈M we have the inclusions

(27) DF (x, λ0) ⊂ DF (dM, x, ε0) ⊂ DF (x, λF/2) ∩BM(x, ε0) .

Next, choose ε1 > 0 so that ρ(dF , dM, ε1) ≤ λ0/10, and let λ1 = λF (ε1). Then for all x ∈M,

(28) DF (x, λ1) ⊂ DF (dM, x, ε1) ⊂ DF (x, λ0/10) ∩BM(x, ε1) .

Set εF = ε1/2. This constant is chosen so that the result [19, Section 1, Théorème] by Eilenberg
holds uniformly for strongly convex compact subsets of DF (x, λF ) ⊂ Lx, as will be shown below.

Let f : M→M be an εF -map, which is onto the compact manifold M . Let dM be a metric on M .
For w ∈ M and δ > 0, let BM (w, δ) = {w′ ∈ M | dM (w′, w) < δ} denote the open disk in M of
radius δ, and DM (w, δ) = {w′ ∈M | dM (w′, w) ≤ δ} denote the closed disk in M of radius δ.

Assume that dM is chosen so that there exists a constant δM > 0 such that for all w ∈ M and
0 < δ ≤ δM , the disk DM (w, δ) is homeomorphic to a disk in Rn. For example, if M is a Riemannian
manifold, then let δM > 0 be such that each disk DM (w, δM ) is strongly convex.

Since M is compact, there exists a uniform modulus of continuity function εf (δ) > 0 for f : for δ > 0,
the constant εf (δ) is the largest value such that

(29) BM(x, εf (δ)) ⊂ f−1(BM (f(x), δ)) for all x ∈M .

Let δ∗f > 0 be the largest radius such that εf (δ) ≤ εF for all 0 < δ ≤ δ∗f .

Set λF,f (δ) = λF (εf (δ)), which is well-defined for 0 < δ ≤ δ∗f . Combining (8) and (29) we obtain a
leafwise modulus of continuity for f :

(30) DF (x, λF,f (δ)) ⊂ BM(x, εf (δ)) ⊂ f−1(BM (f(x), δ)) for all 0 < δ ≤ δ∗f , x ∈M .

As f is an εF -map, we have that f−1(f(x)) ⊂ BM(x, εF ) for all x ∈ M. As M is compact and
f−1(f(x)) is a compact set with diameter at most εF for all x ∈M, there exists 0 < δ1 ≤ δM/10 so
that for all x ∈M, we have

(31) f−1(DM (f(x), δ1)) ⊂ BM(x, 2εF ) = BM(x, ε1) .

Let λ2 = λF,f (δ1) so that for all x ∈M, by (30), (28), and the choice of δ1 we have

(32) DF (x, λ2) ⊂ f−1(DM (f(x), δ1)) ∩DF (x, λF ) ⊂ DM(x, ε1) ∩DF (x, λF ) ⊂ DF (x, λ0/10) ,

(33) f(DF (x, λ2)) ⊂ DM (f(x), δ1) ⊂ DM (f(x), δM/10) .

Set λ3 = 5λ2 so that by (32) we have λ3 ≤ λF/2.

LEMMA A.2. Let x ∈M and w = f(x) ∈M , then f(DF (x, λ3)) ⊂ DM (w, δM ).

Proof. Let y ∈ DF (x, λ3) ⊂ DF (x, λF/2) and let σ : [0, 1] → DF (x, λ3) be the unique geodesic
segment with σ(0) = x and σ(1) = y. Set xi = σ(i/5) for 0 ≤ i ≤ 5, then x5 = y. Note that as σ is
a geodesic, we have

dF (xi, xi+1) = dF (x, y)/5 ≤ λ3/5 = λ2 , 0 ≤ i < 5 .

Set wi = f(xi) for 0 ≤ i ≤ 5.
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Then for each 0 ≤ i ≤ 5, by (33) we have DF (xi, λ2) ⊂ f−1(DM (wi, δ1)), so that the collection
{DM (wi, δ1) | 0 ≤ i ≤ 5} is a covering of the image of σ. Thus, dM (w0, w5) ≤ 10δ1 ≤ δM , hence
dM (w, f(y)) ≤ δM , as was to be shown. �

For x ∈M and 0 < λ ≤ λF , introduce the following leafwise sets:

SF (x, λ) = {y ∈ DF (x, λF ) | dF (y, x) = λ}
D∗F (x, λ) = {y ∈ DF (x, λF ) | 0 < dF (y, x) ≤ λ} .

Then we have SF (x, λ) ⊂ D∗F (x, λ) ⊂ DF (x, λ) ⊂ BF (x, λF ).

Now let x0 ∈ M with w0 = f(x0). We claim that BM (w0, δ1) ⊂ f(DF (x0, λF/2)). Suppose not,
then we show this yields a contraction.

Let w2 ∈ BM (w0, δ1) but w2 6∈ f(DF (x0, λF/2)). Then there exists 0 < δ2 < δ1 such that

(34) BM (w2, δ2) ⊂ BM (w0, δ1) , BM (w2, δ2) ∩ f(DF (x0, λF/2)) = ∅ .

We consider the maps on Čech cohomology induced by f to obtain the contradiction.

For 0 < λ < λF/2, introduce the collections of open sets in Lx0 :

L(λ) = {BF (x, λ) | x ∈ DF (x0, λF/2)}(35)

L∗(λ) = {BF (x, λ) | x ∈ D∗F (x0, λF/2) such that BF (x, λ) ⊂ D∗F (x0, λF )} .(36)

For each x ∈ M, the disk BF (x, λ) ⊂ Lx is strongly convex, thus L(λ) is a good covering of
DF (x0, λF/2) in the sense of Čech theory. Let ‖L(λ)‖ denote the simplicial space which is the
geometric realization of the collection L(λ).

For 0 < λ < λ′ < λF/2, each open disk BF (x, λ) ∈ L(λ) is contained in the disk BF (x, λ′) ∈ L(λ′)
which induces a map between the realizations of their nerve complexes, ι : ‖L(λ)‖ → ‖L(λ′)‖, which
is a homotopy equivalence as all the sets in the cover are strongly convex. Similarly, the induced
map on the nerve complex induces a homotopy equivalence ι : ‖L∗(λ)‖ → ‖L∗(λ′)‖.

For 0 < δ < δ2, where δ2 was chosen so that (34) holds, introduce the collections of open sets in M :

Mδ2(δ) = {BM (w, δ) | w ∈ DM (w0, δM )−BM (w2, δ2)}(37)

Mf (δ) = {BM (w, δ) | w ∈ f(DF (x0, λ3))}(38)

MS(δ) = {BM (w, δ) | w ∈ f(SF (x0, λ3))} .(39)

Recall that by Lemma A.2, f(SF (x, λ3)) ⊂ DM (w, δM ), so by the choice of δ2 we have inclusions
MS(δ) ⊂Mf (δ) ⊂M∗(δ), and so obtain maps of their simplicial realizations

(40) ‖MS(δ)‖ −→ ‖Mf (δ)‖ −→ ‖Mδ2(δ)‖ .

As the disk DF (x0, λF ) is strongly convex, there is a natural map Rλ : ‖L(λ)‖ → DF (x0, λF/2)
which maps a simplex in the realization ‖L(λ)‖ to the geodesic simplex in DF (x0, λF/2) spanned
by its vertices. Then Rλ induces isomorphisms

R∗λ : {0} ∼= Hn(DF (x0, λF/2);Z)→ Hn(‖L(λ)‖;Z)(41)

R∗λ : Z ∼= Hn−1(D∗F (x0, λF/2);Z)→ Hn−1(‖L∗(λ)‖;Z) .(42)

Similarly, for 0 < δ < δ2, there is a continuous map Sδ2 : ‖Mδ2(δ)‖ → DM (w, δM )−BM (w2, δ2).

Let 0 < δ3 ≤ δ2 be sufficiently small so that we have an inclusion map

(43) S∗δ2 : Z ∼= Hn−1({DM (w0, δM )−BM (w2, δ2)};Z)→ Hn−1(‖Mδ2(δ3)‖;Z) .

We next consider the maps induced by f on the cohomology groups in (41), (42) and (43).

Let λ4 = λF,f (δ3) so that for all x ∈M, we have the inclusion f(DF (x, λ4)) ⊂ DM (f(x), δ3). Then
f induces an inclusion map Uf : L(λ4)→Mδ2(δ3), which induces a map of their realizations

(44) ‖Uf‖ : ‖L(λ4)‖ → ‖Mδ2(δ3)‖ .
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We have that 0 < δ3 ≤ δ2 < δ1 so that by (31) and (32), for all x ∈M we have

(45) f−1(DM (f(x), δ3)) ∩DF (x, λF ) ⊂ DF (x, λ0/10) .

For each BM (w, δ3) ∈Mf (δ3) choose x ∈ f−1(w)∩DF (x0, λF ), then the inclusion (45) holds. Thus,
f−1 induces an inclusion map Vf : Mδ2(δ3)→ L(λ0/10), which in turn induces a map between their
realizations

(46) ‖Vf‖ : ‖Mδ2(δ3)‖ → ‖L(λ0/10)‖ .
Note that the composition ‖Vf‖ ◦ ‖Uf‖ : ‖L(λ4)‖ → ‖L(λ0/10)‖ is a homotopy equivalence, as the
sets in L(λ0/10) are strongly convex.

Next, for 0 < λ ≤ λ0/10, introduce the collection of open balls centered at points of SF (x0, λ3),

(47) LS(λ) = {BF (x, λ) | x ∈ SF (x0, λ3) such that BF (x, λ) ⊂ D∗F (x0, λF )} .
As above, the map f induces maps of geometric realizations

‖Uf‖ : ‖LS(λ4)‖ → ‖MS(δ3)‖(48)

‖Vf‖ : ‖MS(δ3)‖ → ‖LS(λ0/10)‖ ,(49)

and the composition ‖Vf‖ ◦ ‖Uf‖ : ‖LS(λ4)‖ → ‖LS(λ0/10)‖ is a homotopy equivalence.

The space ‖LS(λ0/10)‖ is the simplicial realization of a good covering of SF (x0, λ3), so we have
Hn−1(‖LS(λ0/10)‖,Z) ∼= Z. Let ω ∈ Hn−1(‖LS(λ0/10)‖,Z) be a choice of a generator.

Note that the compact sets f(SF (x, λ)) in M limit to the point w = f(x) as λ→ 0. It follows that
there is a non-trivial class ‖Vf‖∗(ω) ∈ Image

{
S∗δ2
}

where S∗δ2 is given in (43).

On the other hand, ‖Vf‖∗ factors through the map

‖Vf‖∗ : Hn−1(‖L(λ0/10)‖;Z)→ Hn−1(‖Mδ2(δ3)‖,Z) .

The group Hn−1(‖L(λ0/10)‖;Z) ∼= {0}, so that ‖Vf‖∗(ω) = 0, which is a contradiction. �
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