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Abstract. In this paper, we study the cones of higher codimension (pseudo)effective cycles
on point blow-ups of projective space. We determine bounds on the number of points for
which these cones are generated by the classes of linear cycles, and for which these cones
are finitely generated. Surprisingly, we discover that for (very) general points, the higher
codimension cones behave better than the cones of divisors. For example, for the blow-up
Xn

r of Pn, n > 4, at r very general points, the cone of divisors is not finitely generated as
soon as r > n + 3, whereas the cone of curves is generated by the classes of lines if r ≤ 2n.
In fact, if Xn

r is a Mori Dream Space then all the effective cones of cycles on Xn
r are finitely

generated.

1. Introduction

In recent years, the theory of cones of cycles of higher codimension has been the subject
of increasing attention [CC], [DELV], [DJV], [FL1], [FL2]. However, these cones have been
computed only for a very small number of examples, mainly because the current theory is
hard to apply in practice. The goal of this paper is to provide some much-needed examples.

Let Γ be a set of r distinct points on Pn. Let Xn
Γ denote the blow-up of Pn along Γ.

When Γ is a set of r very general points, we denote Xn
Γ by Xn

r . For a smooth variety Y , we
write Effk(Y ) for the pseudoeffective cone of codimension-k cycles on Y , and Effk(Y ) for the
pseudoeffective cone of dimension-k cycles. In this paper, we study the cones Effk(X

n
Γ) when

the points of Γ are either in linearly general or very general position. We also investigate the
cones when Γ contains points in certain special configurations.

Cones of positive divisors on Xn
Γ provide an important source of examples in the study of

positivity. These cones are particularly attractive since they have concrete interpretations in
terms of subvarieties of projective space, yet still have very complicated structure. However,
even the cones of divisors on blow-ups of P2 at 10 or more points are far from well-understood,
and several basic questions remain open, including the Nagata [N] and Segre–Harbourne–
Gimigliano–Hirschowitz (SHGH) conjectures [G], [Har], [Hi]. We expect the cones of higher
codimension cycles on Xn

Γ to be an equally rich source of examples.
Surprisingly, these cones are simpler than one might expect. Effective cones of low-

dimensional cycles are generated by the classes of linear spaces for r well into the range for
which Xn

r ceases to be a Mori Dream Space. For example, Eff1(Xn
r ) is generated by classes
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of lines for r ≤ 2n even though Eff1(Xn
r ) is not finitely generated for r ≥ n+ 4 when n ≥ 5.

We now describe our results in greater detail.

Definition 1.1. We say that Effk(X
n
Γ) is linearly generated if it is the cone spanned by the

classes of k-dimensional linear spaces in the exceptional divisors and the strict transforms
of k-dimensional linear subspaces of Pn, possibly passing through the points of Γ. We say
Effk(X

n
Γ) is finitely generated if it is a rational polyhedral cone.

Theorem (3.1). Let Γ be a set of r points in Pn in linearly general position. If r ≤
max

(
n+ 2, n+ n

k

)
, then Effk(X

n
Γ) is linearly generated.

There exist configurations of 2n+ 2− k points in linearly general position in Pn for which
Effk(X

n
Γ) is not linearly generated (see Example 3.4). In particular, Theorem 3.1 is sharp

for 1-cycles. We expect that this bound can be improved to r ≤ 2n+ 1− k, and prove this
in the case that Γ is a very general configuration of points (Theorem 4.5). We obtain the
following consequence.

Corollary (4.7). If Xn
r is a Mori Dream Space, then Effk(X

n
r ) is finitely generated.

In general, Mori Dream Spaces may have effective cones of intermediate dimensional cycles
which are not finitely generated; the corollary shows that this does not happen for blow-ups
of Pn. A good example is [DELV, Example 6.10] attributed to Tschinkel. Let Xb be the
blow-up of P4 along a smooth quartic K3 surface Yb ⊂ P3 ⊂ P4. Then Xb is Fano, hence, by
[BCHM], a Mori Dream Space. On the other hand, Eff2(Xb) has infinitely many extremal
rays when Eff1(Yb) does. Quartic K3 surfaces may have infinitely many (−2)-curves or even a
round cone of curves. This example also shows that the property of having finitely generated
higher codimension cones can fail countably many times in a family.

The bounds can be exponentially improved (at least for 1-cycles) if we assume that Γ is a
set of very general points.

Proposition (4.1). The cone Eff1(Xn
r ) is linearly generated if and only if r ≤ 2n.

As a consequence of Proposition 4.1, we conclude that Effk(X
n
r ) is not linearly generated

if r ≥ 2n−k+1 + k (Corollary 4.2). This specializes to the fact that the cone of divisors of Xn
r

is not linearly generated as soon as r > n+ 2 (see Theorem 2.7).
Work of Mukai [Mu] shows that the cone of divisors of Xn

r is not finitely generated if
r ≥ n + 4 and n ≥ 5 (one needs r ≥ 9 for n = 2, 4 and r ≥ 8 for n = 3). Mukai explicitly
constructs infinitely many extremal divisors on Eff1(Xn

r ), as the orbit of one of the exceptional
divisors under the action of Cremona transformations. However, in higher codimensions it is
more difficult to prove that the corresponding cones become infinite.

Many questions about cones of higher codimension cycles appear to be intractable, quickly
reducing to difficult questions about cones of divisors. For example, the interesting part
of the cone of curves of P3 blown up at 9 points is given by curves lying on the unique
quadric Q through the 9 points. The blow-up of Q is isomorphic to the blow-up of P2 at 10
points, and the curves which are extremal on X3

9 are certain KQ-positive ones contained in Q.
Hence understanding Eff1(X3

9 ) requires understanding the KX2
10

-positive part of Eff1(X2
10),

running immediately into the SHGH conjecture (see Conjecture 5.1). We are able to show
this non-finiteness only for cones of codimension-2 cycles, and then assuming the SHGH
conjecture on the cone of curves of P2 blown up at 10 points.
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Corollary (5.7). Assume the SHGH conjecture holds for blow-ups of P2 at 10 points. Then
Eff2(Xn

r ) is not finitely generated if r ≥ n+ 6 and n ≥ 3.

Finally, in the last section, we compute Effk(X
n
Γ) when Γ is a set of points in certain

special positions. Using these computations, we show that linear and finite generation of
Effk(X

n
Γ) are neither open nor closed in families (see Corollary 6.6 and Corollary 6.7). This

generalizes analogous jumping behavior exhibited for divisors and Mori Dream Spaces to all
codimensions.

The organization of the paper. In §2, we collect basic facts concerning the cohomology of
Xn

Γ , cones of divisors, the action of Cremona transformations, and some preliminary lemmas.
In §3, we prove Theorem 3.1 and study the linear generation of the cones Effk(X

n
Γ) when

Γ is a linearly general set of points. In §4, we study the linear generation of the cones
Effk(X

n
r ). In §5, we prove that Eff2(Xn

r ) is not finitely generated for r ≥ n+ 6 assuming the
SHGH conjecture. In §6, we discuss the cones Xn

Γ when Γ contains points in certain special
configurations and study the variation of Effk(X

n
Γ) in families.

Acknowledgements. We would like to thank Dawei Chen, Lawrence Ein, Mihai Fulger, Joe
Harris, Brian Lehmann, Kristian Ranestad, and Kevin Tucker for helpful discussions on cones
of higher codimension cycles. We also thank the referees for numerous helpful suggestions.

2. Preliminaries

In this section, we recall basic facts about the cohomology of Xn
Γ and cones of codimension-1

cycles. We will work over the complex numbers C.

The cohomology of Xn
Γ . Let Γ be a set of r points p1, . . . , pr in Pn, and let

π : Xn
Γ = BlΓ Pn → Pn

denote the blow-up of Pn along Γ. Let H denote the pullback of the hyperplane class and let
Ei denote the class of the exceptional divisor over pi. The exceptional divisor Ei is isomorphic
to Pn−1 and OEi

(Ei) ∼= OPn−1(−1). Consequently, we have the following intersection formulas:

Hn = (−1)n−1En
i = 1, H · Ei = 0, Ei · Ej = 0, i 6= j.

Notation 2.1. In order to simplify notation, we make the convention that Hk is the class
of a k-dimensional linear space in Pn and Ei,k is the class of a k-dimensional linear space
contained in the exceptional divisor Ei. We then have the relations

Hn−k = Hk, (−1)n−k+1En−k
i = Ei,k, Ei · Ei,k = −Ei,k−1.

On Xn
Γ homological, numerical and rational equivalence coincide. For 0 < k < n, we write

Nk(X
n
Γ) for the R-vector space of k-dimensional cycles on Xn

Γ , modulo numerical equivalence.
Dually, Nk(Xn

Γ) denotes the space of codimension-k cycles modulo numerical equivalence.
They are both (r + 1)-dimensional vector spaces.

A class in Nk(X
n
Γ) is said to be pseudoeffective if it is the limit of classes of effective cycles.

We write Effk(X
n
Γ) for the closed convex cone in Nk(X

n
Γ) containing pseudoeffective classes.

If V is an (irreducible) k-dimensional subvariety of Xn
Γ , we write [V ] for the class of V in

Nk(X
n
Γ), although when confusion seems unlikely we omit the brackets.

A set of points in Pn is said to be linearly general if no k+2 points are contained in a linear
subspace Pk ⊂ Pn for 1 ≤ k ≤ n− 1. A claim holds for a very general configuration of points
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if it holds for all points in the complement of a countable union of proper configurations of
points.

Convention 2.2. It is occasionally useful to compare the cones Effk(X
n
Γ) and Effk(X

m
∆ ),

where Xn
Γ and Xm

∆ are the blow-ups of Pn and Pm along sets of points Γ and ∆, respectively.
If n > k, we can identify Nk(X

n
Γ) with the abstract vector space spanned by Hk and Ei,k for

1 ≤ i ≤ r, irrespective of n and Γ provided that Γ has cardinality r. We can thus view the
cones Effk(X

n
Γ) as cones in the same abstract vector space and compare the effective cones of

different blow-ups after this identification. In the rest of the paper, we will do so without
further comment.

We will often use the following easy lemma implicitly.

Lemma 2.3. Let Y ⊂ Xn
Γ be a k-dimensional subvariety.

(1) If Y ⊂ Ei for some 1 ≤ i ≤ r, then [Y ] = biEi,k for bi > 0.
(2) Otherwise, [Y ] = aHk −

∑r
i=1 biEi,k with a ≥ bi ≥ 0. The coefficient bi is equal to the

multiplicity of π(Y ) in Pn at the point pi.

Proof. If Y ⊂ Ei, then Y is a subvariety of Ei ∼= Pn−1. Hence, its class is a positive
multiple of the class of a k-dimensional linear space. The linear system H − Ei defines the
projection from the point pi and is a base-point-free linear system. Hence, the intersection
of k general members of H − Ei with Y is either empty or finitely many points. Therefore,
(H −Ei)k · [Y ] = a− bi ≥ 0. Similarly, the intersection Y ∩Ei is a (possibly empty) effective
cycle of dimension k− 1 contained in Ei. Hence, by the first part of the lemma, bi ≥ 0. That
bi in fact coincides with the multiplicity is [Fu, Cor. 6.7.1]. �

The cones Effk(X
n
Γ) satisfy a basic semicontinuity property under specialization.

Lemma 2.4. Suppose that V ⊂ Pn × T is a closed subvariety, flat over T , with fibers of
dimension k, and let p : T → Pn be a section. Then multp(t)(Vt) is an upper semicontinuous
function on T .

Proof. It suffices to prove this in the case that T has dimension 1. Let π : Y → Pn×T be the
blow-up along p(T ), with exceptional divisor E, and let Ṽ be the strict transform of V on Y .
Since Ṽ is irreducible and dominates T , this family is flat. The intersection of a flat family
of cycles with a Cartier divisor is constant in t [Fu, Prop. 10.2.1], and so (−1)k+1Ek · Ṽt is
independent of t.

The general fiber Ṽt is irreducible, but a special fiber Ṽ0 may have additional components
in the exceptional divisor E0. Write Ṽ0 = V 0

⋃
∪iWi, where the Wi are contained in E0.

Then (−1)k+1Ek · V 0 = multp(0) V0. The class (−1)k+1Ek
0 is a linear space in E0, and so

(−1)k+1Ek
0 ·Wi ≥ 0. This shows that multp(0) V0 ≥ (−1)k+1Ek · Ṽt = multp(t) Vt, and so the

multiplicity is upper semicontinuous. �

Corollary 2.5. Let Γ be a configuration of r distinct points on Pn. Then Effk(X
n
r ) ⊆

Effk(X
n
Γ).

Proof. Let Γt be a very general one-parameter family of configurations of points in Pn with
Γ0 = Γ. If a k-cycle class W is effective for very general T , then by a Hilbert scheme
argument there exists a flat family Vt ⊂ BlΓt Pn over T with [Vt] = W for general T . Since
the multiplicity of Wt can only increase at t = 0 by Lemma 2.4, the class W is also effective
on XΓ. �
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Cones. Taking cones will be a useful method to generate interesting cycles. Let Γ′ be a very
general configuration of r+ 1 points p′0, . . . , p

′
r in Pn+1. The projection of the points p′1, . . . , p

′
r

from p′0 is then a set Γ of r very general points p1, . . . , pr in Pn. Suppose that V is a k-cycle
on Xn

Γ , with class aHk −
∑r

i=1 biEi,k. The image of V in Pn has degree a and multiplicity bi
at the points of Γ. We may form the cone CV over V inside Pn+1 with vertex at p′0. This
is a (k + 1)-dimensional variety, of degree a. It has multiplicity a at the cone point, and
multiplicity bi along the lines spanned by pi and p′i for 1 ≤ i ≤ r. In particular, the cycle
CV has degree a, and multiplicities a, b1, . . . , br at the points of Γ′. Its proper transform has
class aHk+1 − aE0,k+1 −

∑r
i=1 biEi,k+1.

We define a map C : Nk(X
n
r ) → Nk+1(X

n+1
r+1 ) by C(Hk) = Hk+1 − E0,k+1 and C(Ei,k) =

Ei,k+1. With this definition, C([V ]) is the class of the cone over V with vertex p′0, and so
C(Effk(X

n
r )) ⊆ Effk+1(Xn+1

r+1 ) with respect to the identification discussed in Convention 2.2.
The following simple computation of a dual cone will be useful on a number of occasions.

Lemma 2.6. Suppose that v = (a,−b1, . . . ,−br) ∈ Zr+1 is a vector satisfying

(1) a, bi ≥ 0;
(2) a ≥ bi for every i;
(3) na ≥

∑r
i=1 bi.

Then v is a positive linear combination of the vectors ei (1 ≤ i ≤ r) and hI = e0 −
∑

i∈I ei
with |I| ≤ n. When r ≥ n, we may assume each term has |I| = n.

Proof. Note first that the vectors hI = e0 −
∑

i∈I ei with |I| < n are positive linear combina-
tions of the given vectors. We now proceed by induction on a. The case a = 1 is clear: since
by (2) a ≥ bi for each i, each bi is either 0 or 1. By (3) there are at most n nonzero bi, and
the vector is of the form claimed.

Suppose that a > 1. Let J be the set of indices i such that bi > 0, and let j =
min(n, |J |). Let I be a set of j indices {i1, . . . , ij} such that bi1 ≥ · · · ≥ bij ≥ bi for any
i 6∈ I. Then the vector hI is a nonnegative linear combination of the given vectors. Set
v′ = (a′,−b′1, . . . ,−b′r) = v − hI . If j ≥ n, v′ still satisfies all of the inequalities in question
since a′ = a− 1 and

∑
b′i =

∑
bi − n. If j < n, then in view of inequality (2), the inequality

(3) can be improved to ja ≥
∑r

i=1 bi. Then v′ satisfies these improved inequalities. This
completes the proof by induction on a. �

Lemma 2.6 implies that the cone Effk(X
n
r ) is linearly generated if and only if the class

(k + 1)Hn−k −
∑r

i=1 Ei,n−k is nef.

The codimension-1 cones and Cremona actions. We are primarily interested in the
question of when the cones of cycles on Xn

Γ are linearly or finitely generated. For cones of
divisors, the answers to these questions were worked out by Castravet–Tevelev and Mukai [CT],
[Mu].

Theorem 2.7 ([CT], [Mu]). Let Γ be a set of r very general points in Pn. The cone Eff1(Xn
Γ)

is linearly generated if and only if r ≤ n+ 2, and finitely generated if and only if

(1) n = 2 and r ≤ 8,
(2) n = 3 and r ≤ 7,
(3) n = 4 and r ≤ 8,
(4) n ≥ 5 and r ≤ n+ 3
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The characterization of cases when the effective cone of divisors is finitely generated is
based on the study of the action of Cremona transformations on the pseudoeffective cone.
The Coxeter group W corresponding to a T -shaped Dynkin diagram of type T2,n+1,r−n−1

acts on N1(Xn
Γ) and preserves the pseudoeffective cone Eff1(Xn

Γ). This is an infinite group if
1
2

+ 1
n+1

+ 1
r−n−1

< 1, which happens as soon as n ≥ 5 and r ≥ n+ 4. (When n = 2 or 4, we
need r ≥ 9, while when n = 3, we require r ≥ 8). The orbit of a single exceptional divisor
class gives an infinite set of divisors spanning other extremal rays. For details on this group
action, we refer to [Do] (see also [Co]).

Unfortunately, there does not seem to be a simple way to use the Cremona action to
understand cones of cycles of higher codimension. The standard Cremona involution acts on
Xn
r by a map with codimension 2 indeterminacy, so it does not define an action preserving

the cone Effk(Xn
r ) for any k > 1. For example, suppose that L is a line through two blown up

points. The class of L defines an extremal ray on Eff1(Xn
r ). The strict transform of L under

a Cremona transformation centered at n+ 1 other points is a rational normal curve in Pn
passing through n+ 3 points. If n ≥ 3, this is no longer an extremal ray on Eff1(Xn

r ), since
it is in the interior of the subcone generated by classes of lines through 2 of the n+ 3 points.

One might attempt to construct interesting codimension-2 cycles on Xr
n by taking the

intersections of a fixed divisor with an infinite sequence of (−1)-divisors (i.e. divisors in the
orbit of Ei under the action of W ) of increasing degree. However, the next lemma shows that
the intersection of a (−1)-divisor with any other effective divisor on Xn

r is in the span of the
classes of codimension-2 linear cycles.

Lemma 2.8. Suppose that D1 is a (−1)-divisor and that D2 is an irreducible effective divisor
distinct from D1. Then [D1 ∩D2] is in the span of linear codimension-2 cycles.

Proof. Consider the pairing on N1(Xn
r ) defined by (H,H) = n−1, (H,Ei) = 0, (Ei, Ei) = −1,

and (Ei, Ej) = 0 if i 6= j. This pairing is invariant under the action of W on N1(Xn
r ) [Mu],

[Do].
We first show that (D1, D2) ≥ 0. Since the pairing (,) is invariant under the action of W on

N1(Xn
r ), we may apply a suitable element of W and assume that D1 = E1 is an exceptional

divisor. If D2 = Ej is an exceptional divisor different from E1, then (D1, D2) = 0. Otherwise,
[D2] = aH −

∑r
i=1 biEi, with bi ≥ 0, in which case (D1, D2) = bi ≥ 0.

For the second part, write D1 = aH −
∑r

i=1 biEi and D2 = cH −
∑r

i=1 diEi. That
(D1, D2) ≥ 0 yields

(n− 1)ac ≥
r∑
i=1

bidi.

By Lemma 2.6, this means that the codimension-2 cycle [D1 ∩ D2] = acH −
∑r

i=1 bidi is
contained in the span of linear cycles. �

Easy Lemmas. Here we collect a couple of geometric lemmas that we will use repeatedly.

Lemma 2.9. Suppose that E is an effective divisor and that P is a nef divisor. If Y is an
irreducible, effective variety of dimension k which is not contained in E, then P k−1 ·E ·Y ≥ 0.

Proof. The intersection E · Y is a (possibly empty) cycle of dimension k − 1 by assumption.
Since P is nef, it follows that P k−1 · E · Y ≥ 0. �
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Lemma 2.10. Let Y ⊂ Xn
Γ be an irreducible variety of dimension k, not contained in any

exceptional divisor Ei, with class aHk −
∑e

i=1 biEi,k. If bi + bj > a for two indices i 6= j, then
Y contains the line through pi and pj with multiplicity at least bi + bj − a.

Proof. The base locus of the linear system |H −Ei −Ej| is the line li,j spanned by pi and pj .
Consequently, the intersection (H − Ei − Ej)k−1 · Y is an effective 1-cycle Z. Express

Z = αli,j + u,

where u is a 1-cycle not containing li,j. Since

−α ≤ (H − Ei − Ej) · Z = a− bi − bj < 0,

we conclude that α ≥ bi + bj − a. Hence, Y must have multiplicity at least bi + bj − a at
every point of li,j. �

3. Points in linearly general position

In this section, we study Effk(X
n
Γ) when the cardinality of Γ is small and the points of Γ

are in linearly general position. Our main theorem is the following.

Theorem 3.1. Let Γ be a set of r points in Pn in linearly general position. If

r ≤ max
(
n+ 2, n+

n

k

)
,

then Effk(X
n
Γ) is linearly generated.

The proof will be by induction on k and n. We first single out the case k = 1.

Lemma 3.2. Let Γ be a set of r ≤ 2n points in Pn in linearly general position. Then Eff1(Xn
Γ)

is linearly generated.

Proof. Let B be an irreducible curve. By Lemma 2.3, we may assume that B is not contained
in any of the exceptional divisors and has class aH1 −

∑r
i=1 biEi,1 with a ≥ bi ≥ 0. Any

r ≤ 2n points in linearly general position are cut out by quadrics [H, Lecture 1]. Consequently,
there is a quadric whose proper transform has class [Q] = 2H −

∑r
i=1Ei in Xn

Γ and does not
contain B. Hence, B has nonnegative intersection with Q and satisfies 2a ≥

∑r
i=1 bi. By

Lemma 2.6, the class of B is spanned by the classes of lines. �

Next, we study the case when r ≤ n+ 1. In this case, Xn
Γ is toric and the effective cones

are generated by torus-invariant cycles (see e.g. [Li, Prop. 3.1]). For the reader’s convenience
we will give a simple independent proof.

Lemma 3.3. Let Γ be a set of r ≤ n+ 1 linearly general points in Pn. The cone Effk(X
n
Γ) is

linearly generated for any k.

Proof. Let Γ′ ⊂ Γ be two sets with cardinality r and n + 1, respectively. Then the proper
transform of any effective cycle in Xn

Γ′ is an effective cycle in Xn
Γ . Consequently, if Effk(X

n
Γ) is

linearly generated, then Effk(X
n
Γ′) is also linearly generated. Hence, without loss of generality,

we may assume that r = n+ 1. Let Y be an irreducible k-dimensional variety in Xn
Γ with

class

[Y ] = aHk −
n+1∑
i=1

biEi,k.
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By Lemma 2.3, we may assume that Y is not contained in an exceptional divisor and that
a ≥ bi ≥ 0. We proceed by induction on k and n. After reordering the points, we may assume
b1 ≥ b2 ≥ · · · ≥ bn+1. Let L be the proper transform of the Pn−1 spanned by the first n
points. First, suppose Y is contained in L. Since L is isomorphic to the blow-up of Pn−1 in n
points, by induction on n with base case Theorem 2.7, we conclude that the class of Y is
in the span of linear spaces. Otherwise, Y ∩ L is an effective cycle of dimension k − 1 in L.
Write HL,k−1 and EL,i,k−1 for the restriction of Hk to L and the (k − 1)-dimensional linear
space in the exceptional divisor EL,i of the blow-up of L at pi. Then we have

[Y ∩ L] = aHL,k−1 −
n∑
i=1

b′iEL,i,k−1

with b′i ≥ bi. By induction on n with base case Lemma 3.2, Y ∩ L is in the span of linear
spaces. In particular, ka ≥

∑n
i=1 b

′
i. Hence, (k + 1)a ≥

∑n+1
i=1 bi. By Lemma 2.6, the class of

Y is in the span of linear spaces. This concludes the proof. �

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We preserve the notation from the proof of Lemma 3.3 and argue
similarly. It suffices to check the result in the case r = max

(
n+ 2, n+ n

k

)
. Suppose that Y

is an irreducible k-dimensional variety on Xn
Γ with class

[Y ] = aHk −
r∑
i=1

biEi,k.

We may assume that Y is not contained in an exceptional divisor and, by reordering the
points, we have that

a ≥ b1 ≥ · · · ≥ br ≥ 0.

Let L be the Pn−1 passing through the points p1, . . . , pn. If Y is contained in L, then its class
is linearly generated by Lemma 3.3. Otherwise, Y ∩L is an effective cycle of dimension k− 1
with class

[Y ∩ L] = aHL,k−1 −
n∑
i=1

b′iEL,i,k−1

with b′i ≥ bi. This class and hence aHL,k−1 −
∑n

i=1 biEL,i,k−1 is linearly generated by Lemma
3.3. Therefore, it can be written as a combination of linear classes HL,k−1 −

∑
|I|=k EL,i,k−1

and EL,i,k−1

a∑
j=1

αj

HL,k−1 −
∑
|I|=k

EL,i,k−1

+
n∑
j=1

βjEL,j,k−1.

Each of the classes in this sum is effective, with those on the left the classes of Pk−1 through
k of the points in L. By taking cones over these classes, we obtain a Pk on X, passing
through an additional one of the points pi with i > n. Since there are a planes available, if∑r

i=n+1 bi ≤ a, the class Y can be expressed as a sum of linear cycles.
Observe that

ak ≥
n∑
i=1

bi ≥ nbn, and so bj ≤ bn ≤
ak

n
for j ≥ n.
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This implies that if (r−n) k
n
≤ 1 or equivalently if r ≤ n+ n

k
, the classes of all effective cycles

are in the span of the classes of linear spaces.
If k ≤ n

2
, then n+2 ≤ n+ n

k
and the theorem is proved. If k > n

2
, then n+1 < n+ n

k
< n+2

and we need to settle the case r = n + 2. There is a rational normal curve through any
n+ 3 points in linearly general position in Pn [H, Lecture 1]. Consequently, given an effective
divisor D, there exists a rational normal curve C containing the points but not contained
in D. Hence, C · D ≥ 0 and all effective divisors satisfy na ≥

∑n+2
i=1 bi. We recover the

linear generation result of Theorem 2.7. By Lemma 3.2, the curve classes are also linearly
generated. By induction assume that for all m < n and all k < m, the effective cone of k
cycles of the blow-up of Pm in m+ 2 linearly general points is linearly generated. We carry
out the inductive step for Pn. Let Y, L be as above. By Lemma 3.3, we may assume that
Y is not contained in L. If bn+1 + bn+2 ≤ a, then we already proved that the class of Y is
linearly generated. If bn+1 + bn+2 > a, then, by Lemma 2.10, Y contains the line ln+1,n+2

spanned by pn+1 and pn+2 with multiplicity at least bn+1 + bn+2 − a. Let p0 denote the point
of intersection L ∩ ln+1,n+2. Then the proper transform of L ∩ Y is an effective cycle in the
blow-up of L in p0, p1, . . . , pn with class

aHL,k−1 − (bn+1 + bn+2 − a+ c)EL,0,k−1 −
n∑
i=1

biEL,i,k−1,

where c ≥ 0. By induction on n, this class is linearly generated. Hence,

ka ≥ bn+1 + bn+2 − a+ c+
n∑
i=1

bi, therefore (k + 1)a ≥
n+2∑
i=1

bi.

By Lemma 2.6, the class of Y is linearly generated. This concludes the proof. �

Example 3.4. Lemma 3.2 is sharp in the sense that there exist sets Γ of r > 2n points in
general linear position such that Eff1(Xn

Γ) is not linearly generated. For example, let Γ be
r > 2n points on a rational normal curve C in Pn. Points on a rational normal curve are in
general linear position [H]. Then the class of the proper transform of C is

nH1 −
r∑
i=1

Ei,1.

Since r > 2n, this class cannot be in the span of the classes of lines. In the next section,
we will see that we can improve the bounds for linear generation exponentially if instead of
assuming that Γ is linearly general, we assume Γ is a set of very general points in Pn.

More generally, let Y be the cone over a rational normal curve of degree n− k + 1 with
vertex V a Pk−2. Let Γ be the union of a set of k − 1 general points p1, . . . , pk−1 in V and
a set of r − k + 1 general points pk, . . . , pr on Y . Then Γ is in general linear position. The
class of the proper transform of Y is

(n− k + 1)Hk −
k−1∑
i=1

(n− k + 1)Ei,k −
r∑
i=k

Ei,k,

which cannot be in the span of linear spaces if r > 2n− k + 1. Consequently, we conclude
the following.

Proposition 3.5. There exists sets Γ of r > 2n− k + 1 points in general linear position in
Pn such that Effk(X

n
Γ) is not linearly generated.
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In view of Proposition 3.5, it is natural to ask whether the bound in Theorem 3.1 can be
improved to r ≤ 2n− k + 1.

Question 3.6. Assume that Γ is a set of r linearly general points in Pn such that

max
(
n+ 2, n+

n

k

)
< r ≤ 2n− k + 1.

Is Effk(X
n
Γ) linearly generated?

The answer is affirmative for curves and divisors. We will shortly check that for 2-cycles
in P4 the answer is also affirmative. In Theorem 4.5 we will see that the answer is also
affirmative if the points are very general. In view of this evidence, we expect the answer to
Question 3.6 to be affirmative.

Remark 3.7. The dimension of the space Sn−k,k+1(Pn) of scrolls of dimension n − k and
degree k + 1 in Pn is

2n+ 2nk − k2 − 2

[C1, Lemma 2.4]. There are scrolls in Sn−k,k+1(Pn) passing through 2n−k+2 points (see [C2]
for the surface case). Hence, the family of scrolls passing through 2n− k + 1 points covers
Pn. By Lemma 2.6, an affirmative answer to Question 3.6 is equivalent to the statement that
every effective k-dimensional cycle intersects the proper transform of a scroll passing through
the 2n− k + 1 points non-negatively.

Question 3.8. Let Γ be 2n− k + 1 linearly general points in Pn. For every effective k-cycle
Y in Xn

Γ , does there exist a scroll S of dimension n− k and degree k+ 1 such that the proper
transform S in Xn

Γ intersects Y in finitely many points?

By Remark 3.7, an affirmative answer to Question 3.8 implies an affirmative answer to
Question 3.6.

Effective 2-cycles on the blow-up of P4 at 7 points. We now verify that the answer to
Question 3.6 is affirmative for two-cycles in P4. The argument is subtle because we need to
verify linear generation for every configuration of 7 points in linear general position, rather
than just very general configurations of points.

Theorem 3.9. Let Γ be 7 linearly general points on P4. Then the cone Eff2(X4
Γ) is linearly

generated.

Proof. There is a unique rational normal quartic curve R containing 7 linearly general points
in P4 [H]. The secant variety Sec(R) to R is a cubic hypersurface which has multiplicity two
along R. Hence, its proper transform Sec(R) in X4

Γ has class 3H −
∑7

i=1 2Ei. In fact, this
secant variety is a (−1)-divisor on X4

Γ: it is in the Cremona orbit of one of the exceptional
divisors.

Let Y be an irreducible surface in X4
Γ. Without loss of generality, we may assume that Y

is not contained in an exceptional divisor and has class aH2 −
∑7

i=1 biEi,2 with a ≥ bi ≥ 0.

First, suppose that Y is not contained in Sec(R). The class of a quadric [Q] = 2H −
∑7

i=1Ei
is nef, and so by Lemma 2.9 we have

Y ·Q · Sec(R) = 6a−
7∑
i=1

2bi ≥ 0.

Lemma 2.6 implies that [Y ] is in the span of the classes of planes.
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We are reduced to showing that if Y ⊂ Sec(R), then [Y ] is in the span of the classes of
planes. Let S3 denote the space of cubic surface scrolls containing the points of Γ. We will
show the following.

Theorem 3.10. The proper transform S of a general member S ∈ S3 intersects Sec(R) in
an irreducible curve B whose projection to Sec(R) is a degree 9 curve with multiplicity two at
the points of Γ. Furthermore, the curve B can be made to pass through a general point of
Sec(R).

Assume Theorem 3.10. Let p ∈ Sec(R) be a general point not contained in Y . Hence, an
irreducible curve B passing through p intersects Y in finitely many points. Let S be the
proper transform of a scroll S ∈ S3 containing p and intersecting Sec(R) in an irreducible
curve. We conclude that S and Y intersect in finitely many points, hence their intersection
number is non-negative. Therefore,

[S] · [Y ] = (3H2 −
7∑
i=1

Ei,2) · (aH2 −
7∑
i=1

biEi,2) = 3a−
7∑
i=1

bi ≥ 0.

By Lemma 2.6, we conclude that [Y ] is in the span of the classes of planes.
There remains to prove Theorem 3.10, which we will do via a series of claims. We first set

some notation.

Notation 3.11. Let li,j denote the line spanned by pi, pj ∈ Γ and let Πi1,...,il denote the
linear space spanned by pi1 , . . . , pil ∈ Γ. Let Γi1,...,il denote the set of points pi1 , . . . , pil . Let l
be the line of intersection Π1,2,3,4 ∩Π5,6,7 and, for 5 ≤ i < j ≤ 7, let zi,j denote the point of
intersection Π1,2,3,4 ∩ li,j. Since the points are in linearly general position, the line l does not
intersect the lines li,j for 1 ≤ i < j ≤ 4 and intersects the planes Πi,j,k, for 1 ≤ i < j < k ≤ 4,
in a unique point different from zi,j.

Next, we recall a compactification S3 of S3. Every irreducible cubic scroll induces a degree
3 rational curve in the Grassmannian G(1, 4) of lines in P4. We can compactify the space of
degree 3 rational curves in G(1, 4) via the Kontsevich moduli space. Hence, we can take the
closure of S3 in the Kontsevich moduli space (see [C2, §3] for details). More precisely, let
M0,7(G(1, 4), 3) denote the Kontsevich moduli space of 7-pointed genus-0 maps of degree
3 to G(1, 4). It is equipped with 7 evaluation morphisms evi : M0,7(G(1, 4), 3) → G(1, 4),
1 ≤ i ≤ 7. Define

S3 =
7⋂
i=1

ev−1
i (Σ3(pi)),

where Σ3(pi) denotes the Schubert variety of lines containing pi.

Claim 3.12. The space S3 is irreducible of dimension 4.

Proof. The locus T = ∩4
i=1 ev−1

i (pi) in the Kontsevich moduli space M0,4(P3, 3) of 4-pointed
genus 0 maps of degree 3 to P3 provides a compactification of the space of twisted cubic
curves in Π1,2,3,4 containing Γ1,2,3,4. Since M0,4(P3, 3) is irreducible of dimension 16, every
component of T has dimension at least 4.

If a twisted cubic T is irreducible, then any finite set of points on T is linearly general.
Furthermore, given 6 linearly general points in P3, there is a unique twisted cubic curve
containing them. Consider the incidence correspondence I = {(T, q1, q2)|q1, q2 ∈ T}, where T
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is a twisted cubic curve containing the set of points Γ1,2,3,4 and q1, q2 are points such that
Γ1,2,3,4∪{q1, q2} are in linearly general position. The incidence correspondence I is irreducible
of dimension 6 since it is isomorphic to an open subset of P3 × P3. It dominates the space
of twisted cubic curves containing p1, . . . , p4 via the first projection. Since the fibers of the
first projection are two-dimensional, we conclude that the space of irreducible twisted cubics
containing Γ1,2,3,4 is irreducible of dimension 4.

Since there are no connected curves of degree two or one containing 4 points in linearly
general position in P3, any map in T is birational to its image. If there is a reducible curve
of degree 3 containing Γ1,2,3,4, either a degree two curve must contain 3 of the points or a line
must contain two of the points. In either case, it is easy to see that there is a 3-dimensional
family of reducible cubics containing Γ1,2,3,4. Hence, these cannot form a component of T
and T is irreducible.

Furthermore, 2 additional points q1, q2 impose independent conditions on twisted cubics
unless they are coplanar with three of the points in Γ1,2,3,4 or one of the points is collinear with
two of the points in Γ1,2,3,4. If q1 is collinear with p1, p2, then there is a 1-parameter family of
reducible cubics containing the line l1,2. Similarly, if q1 and q2 are in Π1,2,3 but no 4 of the
points are collinear, then there is a 1-parameter family of reducible cubics containing the conic
through Γ1,2,3∪{q1, q2}. If q1, q2 are collinear with p1 and p2, there is a three-parameter family
of reducible cubics containing l1,2. Recall that l = Π1,2,3,4 ∩Π5,6,7. In particular, the subset
of T that parameterizes twisted cubics incident (respectively, secant) to l has dimension 3
(respectively, 2) since any pair of distinct points impose independent conditions on twisted
cubics. Similarly, the locus of twisted cubics in T passing through z5,6 has dimension 2.

Since M0,7(G(1, 4), 3) is irreducible of dimension 25 [C2, §2], every irreducible component
of S has dimension at least 4. Let T be a twisted cubic curve containing Γ1,2,3,4 and not secant
to the line l and not containing the points z5,6, z5,7 and z6,7. Then there is a unique cubic
scroll S containing T and passing through p5, p6, p7 [C2, Example A1]. Briefly, take a general
P3 containing Π5,6,7. This P3 intersects T in 3 points r1, r2, r3. There is a unique twisted
cubic curve T ′ containing r1, r2, r3 and Γ5,6,7. The curves T and T ′ are both isomorphic to P1

and there is a unique isomorphism φ taking ri ∈ T to ri ∈ T ′. Then the surface ST,T ′ swept
out by lines joining the points that correspond under φ is the unique cubic scroll containing
T and Γ5,6,7. If T contains the point z5,6 or is secant to the line l, then there is a 1-parameter
family of choices for T ′. Once we fix T and T ′, the scroll is uniquely determined by a similar
construction. Since the locus of T containing z5,6 or secant to l has codimension 2, this locus
cannot form a component of S3. Finally, reducible cubic surfaces containing Γ must contain
a plane through 3 of the points and a quadric surface through the remaining 4 points. There
is a 2-dimensional family of such surfaces and they do not give rise to a component in S3

(see [C2]). We conclude that S3 is irreducible of dimension 4. �

Claim 3.13. There exists a dense open set U ⊂ S3 such that S 6⊂ Sec(R) for S ∈ U .
Furthermore, S can be made to pass through a general point of Sec(R).

Proof. It suffices to exhibit one S ∈ S3 such that S 6⊂ Sec(R). Given 7 points in general
linear position and 2 general additional points, [C2, Example A1] shows that there are 2 cubic
scrolls containing these nine points. In particular, if we take one of the two additional points
outside Sec(R), we obtain a scroll not contained in Sec(R). Furthermore, a general twisted
cubic in Π1,2,3,4 containing Γ1,2,3,4 intersects Sec(R) in a another point q. Consequently, the
construction in the proof of Claim 3.12 exhibits a cubic scroll containing q and not contained
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in Sec(R). Since the space S3 is irreducible, the general scroll containing a general point of
Sec(R) and Γ will not be contained in Sec(R). �

Claim 3.14. There exists a dense open set U ⊂ S3 such that for S ∈ U the following hold:

(1) The intersection S ∩ Sec(R) ∩ Ei is a finite set of points in X4
Γ for every 1 ≤ i ≤ 7.

(2) The scroll S does not contain any lines li,j for 1 ≤ i < j ≤ 7.
(3) The scroll S does not contain any conics through 3 of the points in Γ.
(4) The scroll S does not contain a twisted cubic curve through 5 of the points of Γ.
(5) The scroll S does not contain the rational normal quartic R.
(6) The scroll S does not contain a quintic curve double at one of the points of Γ and

passing through the others.
(7) The directrix of the scroll does not contain any of the points in Γ.

Proof. Since each of these conditions are closed conditions and S3 is irreducible, it suffices
to exhibit one element S ∈ S3 satisfying each condition. For (1), there exists a twisted
cubic containing Γ1,2,3,4 with any tangent line at p1 (for example, the reducible twisted cubic
consisting of any line through p1 and a conic through Γ2,3,4). Hence, the tangent spaces to
the scrolls at p1 sweep out E1 and there exists S such that S ∩ E1 6⊂ Sec(R). By permuting
indices, we conclude (1).

For (2) and (3), take the scroll ST,T ′ constructed in the proof of Claim 3.12. Since
Π1,2,3,4∩ST,T ′ = T , this scroll does not contain any of the linear li,j with 1 ≤ i < j ≤ 4 or any
conic passing through any of the three points in Γ1,2,3,4. By permuting indices, we conclude
(2) and (3).

Since a twisted cubic curve spans a P3 and the points are in linearly general position (4)
is clear. For (5), (6) and (7), it is more convenient to exhibit a reducible scroll satisfying
these properties. Let S be the union of the plane Π5,6,7 and a general quadric surface Q
containing l and Γ1,2,3,4. After choosing a point of l, this surface determines a point p of S3

[C2]. The directrix line is then the unique line on the quadric Q intersecting l at p. Hence,
(7) holds. Since R is irreducible and nondegenerate, it cannot be contained in this surface.
Suppose there is a quintic curve F in S containing Γ and double at p1. Since p5, p6, p7 are
not collinear, F must intersect Π5,6,7 in a curve of degree at least 2. Hence, F intersects Q in
a curve of degree 3 containing Γ2,3,4 and double at p1. Any cubic double at p1 must contain
the line of ruling through p1. Since Γ1,2,3,4 are linearly general there cannot be a degree 2
curve through these points on Q. After permuting indices, we conclude (6) holds. �

Claim 3.15. There exists a dense open set U ⊂ S3 such that for S ∈ U the intersection
S ∩ Sec(R) is an irreducible degree 9 curve double along Γ.

Proof. By Claim 3.13 and Claim 3.14, we can find a scroll S 6⊂ Sec(R) and satisfying the
conclusions of Claim 3.14. The intersection S ∩ Sec(R) is a curve B of degree 9 double along
Γ. We need to show that B is irreducible. Recall that a smooth cubic scroll is isomorphic to
the blow-up of P2 at a point. Its Picard group is generated by the directrix e (the curve of
self-intersection −1) and the class of a fiber line f . The intersection numbers are

e2 = −1, e · f = 1, f 2 = 0.

The effective cone is spanned by e and f . The canonical class is −2e− 3f and the class of
B is 3e + 6f . The degree of a curve ke + mf is k + m. If k > m, then any representative
contains e with multiplicity k −m. By adjunction, the arithmetic genus of a curve in the
classes e+mf , 2e+mf and 3e+mf are 0, m− 2 and 2m− 5, respectively.
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It is now straightforward, but somewhat tedious to check that B cannot be reducible.
Indeed, suppose that B is reducible. Write B = B1 ∪B2, where the class of B1 is ke+mf
with 2 ≤ k ≤ 3 and assume that B1 does not contain any fibers as components. Furthermore,
if k = 3, we may assume that B1 is irreducible. Otherwise, we can regroup a component with
class e+m′f with B2. Then the class of B2 is (3− k)e+ (6−m)f and every fiber component
of B is included in B2. By Claim 3.14 (2), a curve with class mf can be double at most in
0 ≤ d ≤ m

2
points of Γ in which case it can contain at most m− 2d of the remaining points

of Γ. We tabulate the possibilities for curves with class e+mf .

class # double points of Γ # remaining points of Γ resp. Reason
e 0 0 Claim 3.14 (7)
e+ f 0 2 Claim 3.14 (3,2)
e+ 2f 0 or 1 4 or 1 Claim 3.14 (4,3,2)
e+ 3f 0, 1 or 2 6, 3 or 0 Claim 3.14 (7,5,4,3,2)
e+ 4f 0, 1 or 2 7, 5 or 2 Claim 3.14 (7,5,4,3,2)

First, suppose B1 has class 3e+mf . By assumption, it is irreducible and by arithmetic
genus considerations can have at most 2m−5 nodes. On the other hand, B2 can pass through
at most 6−m of the points. We have 2m− 5 + 6−m = m+ 1 < 7 if m < 6. Hence, such a
curve cannot be double at all the points of Γ.

We may therefore assume that the class of B1 is 2e+mf and the class of B2 is e+(6−m)f .
If B1 is reducible, then it can have at most 2 components with classes e+m1f and e+m2f .
An inspection of the above table shows that it is not possible to make B double at all points
of Γ. If B1 is irreducible, then m ≥ 2 and its arithmetic genus is m− 2. Hence, the maximal
number of double points on B1 is m− 2. If m = 2, B1 can contain at most 6 of the points of
Γ by Claim 3.14 (5) and it is smooth at those points. Hence, B cannot be made double at all
points of Γ by the last line of the table. If m = 3 and B1 has a double point, then by Claim
3.14 (6) B1 contains at most 5 other points of Γ. By the second to last row of the table, B
cannot be double at all points of Γ. If m ≥ 4, an easy inspection of the first three rows of the
table show that B can have at most 6 double points. We conclude that B is irreducible. �

This concludes the proof of Theorem 3.10 and consequently of Theorem 3.9.
�

4. Non-linearly generated cones

Recall that Xn
r denotes the blow-up of Pn in r very general points. In this section, we

study the cones of effective cycles on Xn
r . Our first result completely characterizes when the

cone of curves is linearly generated.

Proposition 4.1. The cone Eff1(Xn
r ) is linearly generated if and only if r ≤ 2n.

Proof. We first observe that the linear system of quadrics through 2n very general points is nef.
Choose n general quadrics Q1, . . . , Qn in Pn. By Bertini’s theorem, the intersection of these
quadrics is a set of 2n points in Pn. Let X0 be the blow-up of Pn at these points. We claim
that D = 2H−

∑2n

i=1Ei is nef on X0. Note that the proper transforms of Qi have class D and
D has positive degree on curves contained in exceptional divisors Ei. Since the intersection
Q1 ∩ · · · ∩Qn is finite, if B is a curve on X0 not contained in an exceptional divisor, there is
a quadric Qi whose proper transform does not contain B. Consequently, D ·B ≥ 0 and D is
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nef. By [La, Prop. 1.4.14], 2H −
∑2n

i=1Ei is nef for very general configurations of 2n points as
well. We conclude that if r ≤ 2n, an effective curve class in Xn

r satisfies the inequalities in the
assumptions of Lemma 2.6, and so every curve class is a linear combination of classes of lines.

The top self-intersection of the class Q = 2H −
∑r

i=1Ei on Xn
r is given by 2n − r. Hence,

if r > 2n, then the top self-intersection of Q is negative and Q cannot be nef by Kleiman’s
Theorem [La, Theorem 1.4.9]. Suppose the class of every effective curve is in the span of
the classes of lines. The cone generated by the classes of lines is a closed cone. Hence, the
effective and the pseudoeffective cones coincide. Since every line has nonnegative intersection
with Q, we conclude that Q is nef. This contradiction shows that there must exist effective
curves whose classes are not spanned by the classes of lines. �

We obtain the following consequence.

Corollary 4.2. If r ≥ 2n−k+1 + k, then Effk(X
n
r ) is not linearly generated.

Proof. Let Γ be a set of r very general points. Project Γ from the first k−1 points p1, . . . , pk−1

and let Γ′ be the set of points in Pn−k+1 consisting of the images of the remaining points.
Then Γ′ is a set of r − k + 1 very general points in Pn−k+1. If r − k + 1 > 2n−k+1, the
cone Eff1(Xn−k+1

r−k+1 ) is not linearly generated by Proposition 4.1. Fix a 1-cycle B with class
aH1 −

∑r
i=k biEi,1 that is not in the span of linear spaces. In particular, 2a <

∑r
i=k bi. Then

the class

aHk −
k−1∑
i=1

aEi,k −
r∑
i=k

biEi,k

is represented in Xn
r by the proper transform of the cone over B with vertex the span of

p1, . . . , pk−1. The resulting k-cycle is not in the span of k-dimensional linear spaces since
(k + 1)a < (k − 1)a+

∑r
i=k bi. �

Question 4.3. If r < 2n−k+1 + k, is Effk(X
n
r ) linearly generated?

Remark 4.4. The answer to Question 4.3 is affirmative for curves and divisors. For cycles
of intermediate dimension, we do not know any examples with r = 2n−k+1 + k − 1 where the
cone is linearly generated.

There has been a great deal of interest in the construction of cycles that are nef but
not pseudoeffective. Such cycles were constructed on abelian varieties in [DELV], and on
hyperkähler varieties on [O2]. If Question 4.3 has an affirmative answer, this would give
many examples of nef classes that are not pseudoeffective. For example, if Eff3(X

6
r ) is

linearly generated for 16 < r < 19, then the class 4H3 −
∑r

i=1Ei,3 would be nef but not
pseudoeffective; indeed, the self-intersection of this class is negative.

We can, however, give a linear bound.

Theorem 4.5. The cone Effk(X
n
r ) is linearly generated if r ≤ 2n− k + 1.

Proof. The theorem is true for k = 1 by Lemma 4.1 and for divisors by Theorem 3.1. We will
prove the general case by induction on n. Assume that the theorem is true for Effk(X

m
r ) for

r ≤ 2m− k + 1 and all k < m < n. Let Γ be a set of r points such that Γ consists of r − 2
very general points p1, . . . , pr−2 in a hyperplane L = Pn−1 and two very general points pr−1, pr
not contained in L. Let L′ denote the proper transform of L in Xn

Γ . Note that L′ ∼= Xn−1
r−2 .

Let Y be an irreducible k-dimensional subvariety of Xn
Γ not contained in an exceptional

divisor with class aHk +
∑r

i=1 biEi on Xn
Γ . If Y is contained in L′, then Y ⊂ Xn−1

r−2 . Since
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r − 2 ≤ 2(n − 1) − k + 1, by the induction hypothesis the class of Y is linearly generated
and (k + 1)a ≥

∑r
i=1 bi. If Y is not contained in L′, then Z = Y ∩ L′ is an effective cycle of

dimension k− 1. Let p0 denote the intersection of the line l1,2 spanned by pr−1 and pr with L.
Let β = max(0, br−1 + br − a). Consider the blow-up Xn−1

r−1 of L along p0, p1, . . . , pr−2. Then
the proper transform of Z is an effective cycle in Xn−1

r−1 with class

aHk−1 − (β + c)E0,k−1 −
r−2∑
i=1

biEi,k−1

for some c ≥ 0. Since r ≤ 2n− k + 1, the inductive hypothesis r− 1 ≤ 2(n− 1)− (k− 1) + 1
is satisfied. We conclude that this class is linearly generated. Consequently,

ka ≥ β +
r−2∑
i=1

bi and hence (k + 1)a ≥
r∑
i=1

bi.

By Lemma 2.6, the class of Y is linearly generated. By Corollary 2.5, Effk(X
n
r ) ⊂ Effk(X

n
Γ)

and Effk(X
n
r ) is linearly generated. This concludes the induction and the proof of the

theorem. �

The cone Eff2(X4
8 ). In this subsection, we prove that Eff2(X4

8 ) is linearly generated.

Theorem 4.6. The cone Eff2(X4
8 ) is linearly generated.

The fact that the points are now very general, means that we are in position to apply
degeneration arguments. These sorts of arguments work because of the semicontinuity
of multiplicities in families: A surface S on the very general X4

8 violating the inequality
3a ≥

∑
bi will specialize to an effective 2-cycle with the same property (Lemma 2.4).

To illustrate the range of applicable techniques, we give two different degeneration arguments
to prove Theorem 4.6.

Proof 1. Let Γ be a configuration of 8 points in P4 such that p1, . . . , p7 are very general
points and p8 is a general point on Sec(R), where Sec(R) is the secant variety of the
rational normal curve R through the points p1, . . . , p7. Let Y be an irreducible surface
in XΓ. If Y is not contained in the strict transform Sec(R), then Y ∩ Sec(R) is a curve
and the class 3aH1 −

∑7
i=1 2biEi,1 − b8E8,1 is effective. We claim that the linear system

Q = 2H−
∑7

i=1 Ei− 2E8 is nef on Sec(R). Granting this, Q ·Sec(R) ·Y = 6a− 2
∑8

i=1 bi ≥ 0,

and so Y is in the span of planes. We may therefore assume that Y ⊂ Sec(R).
To prove that Q is nef on Sec(R), it suffices to show that the linear system of quadrics

double at p8 and passing through p1, . . . , p7 in P4 has base locus consisting of 8 lines none of
which are contained in Sec(R). Then Q restricts to a semi-ample, in particular, nef class on
Sec(R). Since p8 is general, the only line through p8 incident to R and contained in Sec(R)
is the unique secant line l to R through p8. Suppose there were another line p8 ∈ l′ ⊂ Sec(R)
incident to R, then the plane spanned by l and l′ would intersect Sec(R) in a completely
reducible cubic curve singular along the three points of intersection with R and at p8. This is
clearly impossible.

Since p8 is general, we may assume that the secant line l does not contain any of the points
p1, . . . , p7. Any effective member of the linear system Q is a quadric cone with vertex at p8.
Let q1, . . . , q7 denote the projection of p1, . . . , p7 through p8. These are very general 7 points
in P3. The base locus of the linear system of quadrics passing through q1, . . . , q7 in P3 is 8
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points q1, . . . , q7, q contained in the smooth locus of the projection R′ of R. (The curve R′ is
a complete intersection of 2 quadrics. There is a three-dimensional linear system of quadrics
passing through q1, . . . , q7. Any quadric in this linear system not containing R′ intersects R′

at a further point q in the smooth locus of R′.) By taking cones over these quadrics with
vextex p8, we see that the base locus of Q in P4 are the 8 lines spanned by p8 and one of
q, q1, . . . , q7. Since these lines are lines through p8 incident to R and distinct from the secant
line containing p8, none of them are contained in Sec(R).

To prove the theorem, we need to show that S · Y = 3a−
∑8

i=1 bi ≥ 0 for a cubic scroll S.
It suffices to show that there is some scroll S which intersects Y in finitely many points. We
may further assume that Y ⊂ Sec(R).

Let us consider the family of cubic scrolls through these 8 points. Through the first 7 points,
p1, . . . , p7 there is a 4-dimensional space of scrolls. There is an open set of this parameter
space parameterizing scrolls S such that the intersection Sec(R) ∩ S = B is an irreducible
curve. We also know that we can get a curve to go through a general 8th point (by Claim
3.13), and so there must in fact be an irreducible one through a general 8th point. In all,
picking p8 general, we have that the space of cubic scrolls containing p1, . . . , p8 is of dimension
2 and there is a nonempty open subset of scrolls such that the proper transform of a scroll S
intersects Sec(R) in an irreducible curve.

Now, taking a general point q of Sec(R), there exists two scrolls containing the 9 points
p1, . . . , p8 and q [C2]. Since varying q gives a 2-dimensional family of scrolls, we conclude
that by choosing S generic, the curve B can be made to pass through a general ninth point
of Sec(R). In particular, we can choose a scroll so that B is not contained in Y . As the curve
B is irreducible and not contained in Y , we see that S and Y generically intersect in finitely
many points and so their intersection number is non-negative. We conclude that the effective
cone is linearly generated. �

Proof 2. We will degenerate to a configuration where the 8 points lie on two rank 3 quadrics.
Let x0, . . . , x4 be coordinates on P4 and let p1 = (1, 0, 0, 0, 0), . . . , p5 = (0, 0, 0, 0, 1) denote

the coordinate points. Consider the two quadrics q1 = {x0x1 + x0x2 + x1x2 = 0} and
q2 = {x2x3 + x2x4 + x3x4 = 0}. Here q1 is a cone over a smooth conic in the x0x1x2-plane
with the vertex being the line {x0 = x1 = x2 = 0}, and similarly for q2. Note that q1 and q2

both contain the points p1, . . . , p5. Moreover, q1 (resp. q2) contains p4, p5 (resp. p1, p2) with
multiplicity two. We now choose the remaining three points p6, p7, p8 to be general on the
intersection q1 ∩ q2.

On the blow-up at these points the strict transform of q1 is an irreducible divisor Q1 with
class 2H −

∑8
i=1Ei − E4 − E5. Consider the divisor D1 = 3H − 2

∑8
i=1Ei + E4 + E5; it

satisfies [Q1] · [D1] = 2(3H2 −
∑8

i=1Ei,2). A computation gives that the linear system |D1| is
2-dimensional. Moreover, the base locus of D1 is 1-dimensional and has 18 components; 15
lines and three quartic normal curves. One checks that none of these curves lie on Q1. Indeed,
these statements are easy to verify for one particular configuration (and thus it follows a
general 8-tuple as above). In particular, D1|Q1 has only finitely many base-points, and hence
is nef on Q1.

Now, suppose that Y ⊂ X is an irreducible surface with class aH2 −
∑8

i=1 biEi,2. Then if
Y is not contained in Q1, the intersection i∗Y is represented by an effective 1-cycle on Q1
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(here i : Q1 → X is the inclusion). As D1|Q1 is nef, we have

0 ≤ D1|Q1 · i∗Y = 6a−
8∑
i=1

2bi,

as desired. A symmetric argument (with Q2 = 2H −
∑8

i=1Ei − E1 − E2 and D2 = 3H −
2
∑8

i=1 Ei + E1 + E2), shows that the conclusion also holds if Y is not contained in Q2.
We therefore reduce to the case where Y ⊆ Q1 ∩Q2. Note that Q1 ∩Q2 is an irreducible

surface, so Y = Q1 ∩Q2. Now, [Q1][Q2] equals 4H2 − 2E1,2 − 2E2,2 − 2E3,2 − 2E4,2 − E5,2 −
E6,2 − E7,2 − E8,2, which is equivalent to a sum of 4 planes. This completes the proof. �

We immediately deduce the following corollary.

Corollary 4.7. If Xn
r is a Mori Dream Space, then Effk(X

n
r ) is finitely generated.

Remark 4.8. Combining Prop. 4.6 with the degeneration argument of Theorem 4.5, it
follows that Eff2(Xn

r ) is linearly generated for r ≤ 2n as long as n ≥ 4.

We will see in the next section that Eff2(X4
10) is not finitely generated, assuming the SHGH

conjecture holds for blow-ups of P2 at 10 points. The only remaining case in dimension 4 is:

Question 4.9. Is the cone Eff2(X4
9 ) linearly generated?

It is not easy to find explicit curves in Xn
r which are not in the span of lines. The following

example gives a construction in the case of 9 very general points in P3.

Example 4.10. By [CM], the class CCM = 57H1 −
∑10

i=1 18Ei,1 on X2
10 is represented by a

unique irreducible plane curve of genus 10. On X3
9 , there is a unique divisor Q in the class

2H1 −
∑9

i=1 Ei,1, given by the strict transform of the unique quadric through the 9 points.
There is a morphism i : X2

10 → X3
9 identifying the proper transform of Q with the blow-up of

P2 at 10 points.
A quick calculation shows that the pushforward of the class of CCM to X3

9 is

i∗(CCM) = 78H1 − 21E1,1 −
9∑
i=2

18Ei,1.

We have 21 + 8(18) = 165, while 2 · 78 = 156. Hence, this curve is not in the span of the
lines. It does not, however, define an extremal ray on Eff1(X3

9 ). In the next section, we will
use a similar construction to show that assuming the SHGH conjecture, the cone Eff1(X3

9 ) is
not finitely generated.

By repeatedly taking cones over i∗(CCM), we obtain explicit non-linearly generated
codimension-two cycles on Xn

n+6 for every n ≥ 3.

Complete intersections also provide examples of nonlinearly generated pseudoeffective
curve classes, provided that the number of points is large.

Example 4.11. Assume that dn ≥ r > 2dn−1 for some integer d > 2. Then the divisor class
D = dH −

∑r
i=1 Ei is nef on Xn

r by the argument given in the proof of Proposition 4.1. The
(n− 1)-fold self-intersection of the class is

Dn−1 = dn−1H1 −
r∑
i=1

Ei,1.
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Since r > 2dn−1, this class is not in the span of lines. On the other hand, the class is
pseudoeffective. A small perturbation of D is ample. Hence, a sufficiently high multiple is
very ample and the (n− 1)-fold self-intersection is an effective curve. It follows that the class
Dn−1 is pseudoeffective.

5. Non-finitely generated cones

The cone of curves the blow-up of P2 at 10 or more very general points is not entirely
understood, and we will find it useful to assume the following standard conjecture.

Conjecture 5.1 (Segre–Harbourne–Gimigliano–Hirschowitz (SHGH) conjecture, [G]). Sup-
pose that r ≥ 10 and that m1 ≥ m2 ≥ · · · ≥ mr and d > m1 +m2 +m3. Then

H0(X2
r , dH1 −

r∑
i=1

miEi,1) =

(
d+ 2

2

)
−

r∑
i=1

(
mi + 1

2

)
We next prove that the cone of codimension-2 cycles on Xn

r is not finitely generated for
r ≥ n+ 6, assuming the SHGH conjecture. The calculation relies on the following observation
of de Fernex.

Theorem 5.2 ([DF, Prop. 3.4]). Assume the SHGH conjecture holds for 10 points. Let
P ⊂ N1(X2

10) be the positive cone

P =
{
D ∈ N1(X2

10) : D2 ≥ 0, D ·H ≥ 0
}
,

where H is an ample divisor. Then

Eff1(X2
10) ∩K≥0 = P ∩K≥0.

Let Q ⊂ X3
9 be the strict transform of the unique quadric passing through the 9 points and

let i denote the inclusion of Q in X3
9 . Note that Q is isomorphic to X2

10, and so Conjecture 5.1
provides some information about the cone Eff1(Q). However, the map N1(Q)→ N1(X3

9 ) is
not injective, since the two rulings of the quadric both map to the class of a line in P3. The
next lemma gives a criterion to show that certain extremal rays on Eff1(Q) nevertheless push
forward to extremal rays on Eff1(X3

9 ).
Write r1 and r2 for the classes of the two rulings on the quadric, and let fi = Ei|Q be the

exceptional curves. Let `ij = r1 − fi − fj ∈ N1(Q); this class is not effective on Q, but i∗`ij
is effective in N1(X3

9 ) since it is the class of a line through the points pi and pj.

Theorem 5.3. Suppose that D is a class in N1(Q) which satisfies:

(1) D is nef, and if γ ∈ Eff1(Q) has D · γ = 0, then γ is a multiple of D;
(2) D · r1 = D · r2;
(3) D · `ij > 0 for all i and j;

Then i∗D is nonzero and spans an extremal ray on Eff1(X3
9 ).

Proof. That i∗D is nonzero follows from the fact that D is nef, since if H is ample, then so
is i∗H and then i∗D · H = D · i∗H > 0. We claim next that D lies on a two-dimensional
extremal face of the cone

Σ = Eff1(Q) +
∑
i,j

R≥0[`ij] + R[r1 − r2] ⊂ N1(Q).

More precisely, if D = α + β with α, β ∈ Σ, then

α = a1D + b1(r1 − r2) and β = a2D + b2(r1 − r2),
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where a1 and a2 are positive. Note that D is nef, D · (r1 − r2) = 0, D · `ij > 0 for all i, j,
and D · fk > 0. Hence D is contained in the dual cone of Σ. By conditions (1) and (2), the
classes in Σ with D · C = 0 are precisely R≥0D + R(r1 − r2).

We claim next that

Eff1(X3
9 ) = i∗ Eff1(Q) +

∑
i,j

R≥0i∗[`ij] = i∗Σ.

Suppose that Γ is an irreducible effective cycle on Eff1(X
3
9 ). If Q · Γ < 0, then Γ must be

contained in Q, and so [Γ] is contained in i∗ Eff1(Q). If Q · Γ ≥ 0, then Γ satisfies 2a ≥
∑

i bi,
which means that [Γ] is in the span of classes of lines i∗[`ij ] and lines i∗[fk] in the exceptional
divisors, by Lemma 2.6. Each fk is numerically equivalent to a curve in the quadric.

Suppose now that i∗D = α+β, where α and β are pseudoeffective classes on Eff1(X3
9 ). Using

the decomposition above, we can write α = i∗αQ +
∑
ciji∗[`ij] and β = i∗βQ +

∑
diji∗[`ij],

where αQ and βQ are classes in Eff1(Q).
We claim now that

D = αQ + βQ +
∑

(cij + dij)`ij + f(r1 − r2)

for some constant f . Indeed, the two sides differ by an element of the kernel of i∗ : N1(Q)→
N1(X3

9 ), which is generated by r1 − r2, giving rise to the constant f .
Since D2 = 0, D · (r1 − ei − ej) > 0 for any i and j, and D · (r1 − r2) = 0, it must be that

cij = dij = 0 for all i, j and all k. We conclude that

αQ = a1D + b1(r1 − r2) and βQ = a2D + b2(r1 − r2).

Hence α = i∗αQ = a1i∗D and β = i∗βQ = a2i∗D. This shows that i∗D is extremal. �

The requirement that D is nef makes it difficult to exhibit classes D on X2
10 with the

necessary properties without assuming the description of Eff1(X2
10) provided by the SHGH

conjecture.

Theorem 5.4. Assume that the SHGH conjecture holds for blow-ups of P2 at 10 very general
points. Then there exist infinitely many classes D satisfying the hypotheses of Theorem 5.3.

Proof. It is convenient to fix an identification Q ∼= X2
10 and rewrite the hypotheses in the

basis for N1(Q) arising from this identification. The strict transforms of the two rulings
through the point p1 give disjoint (−1)-curves on Q, and these can be contracted. The other
8 exceptional curves fi can then be contracted to give a map to P2. Let e0 and e1 be the first
two (−1)-curves contracted, and let ej = fj for 2 ≤ j ≤ 8. With respect to this new basis,
we have r1 − f1 = e0 and r2 − f1 = e1, and f1 = h− e0 − e1, where h denotes the class of a
line on P2.

While the first condition in Theorem 5.3 is independent of the basis, the last two can be
rewritten as

(2) D · e0 = D · e1.
(3) D · e0 > D · ej for any j > 1, and D · (h− e1 − ei − ej) > 0 for any i, j > 1.

The first part of (3) arises when i = 1 < j, while the second case is when 1 < i < j.
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Fix any 1√
10
< δ < 1

3
, and let δ′ =

√
1−2δ2

8
. Observe that 3

10
< 1

6

√
7
2
< δ′ < δ for δ in this

range. Consider the divisor

Dδ = h− δ(e0 + e1)− δ′
9∑
j=2

ej.

We check each of the hypotheses in turn. To simplify notation, for the rest of this proof
set X = X2

10.

(1) First we check that Dδ is nef. The cone theorem implies that

Eff1(X) = Eff1(X)KX≥0 +
∑
i

R≥0[Ci],

where the Ci are KX-negative curves. According to Theorem 5.2,

Eff1(X) ∩ Eff1(X)KX≥0 = P ∩K≥0.

Hence, it suffices to show that Dδ · C ≥ 0 if C is KX-negative, and that Dδ · C ≥ 0 if C has
C2 ≥ 0 and C ·H > 0.

First, suppose that C is a pseudoeffective class with KX · C < 0. We have

3Dδ −KX = (3δ − 1)(e0 + e1) + (3δ′ − 1)
9∑
j=2

ej,

and so

3Dδ · C = KX · C +

(
(3δ − 1)(e0 + e1) + (3δ′ − 1)

9∑
j=2

ej

)
· C

However, since δ < 1/3, the number 3δ − 1 is negative. It is easy to check that δ′ < 1/3 as
well, and so the divisor on the right is a sum of exceptional divisors with negative coefficients.
If C is any curve other than one of the ei, then both terms on the right are negative. If C is
one of the curves ei, then Dδ · C > 0 because δ and δ′ are both positive.

It remains to check that Dδ · C > 0 if C is a class with positive self-intersection. This
follows from the Cauchy-Schwartz inequality: suppose that d2 ≥

∑
a2
i and e2 ≥

∑
b2
i . Then

de ≥
∑
aibi. Moreover, equality is achieved if and only if C is a multiple of Dδ.

(2) Since Dδ is of the form h− δe0 − δe1 − · · ·, we have D · e0 = D · e1.
(3) Because δ > δ′, we have D · e0 > D · ej for any j > 1. We also have D · (h− e1− ei− ej) =
1− δ − 2δ′ > 0, since δ′ < δ < 1/3.

�

Remark 5.5. One can even arrange that Dδ is a rational class through judicious choice of δ.
For example,

D 226
692

= h− 226

692
(e0 + e1)− 217

692

9∑
i=2

ei.

However, in general such classes are not expected to have any effective representatives.

Assuming the SHGH conjecture, we can now conclude that Eff2(Xn
r ) is not finitely generated

if r ≥ n+ 6. We need the following lemma, which guarantees that cones over extremal classes
in Effk(X

n
r ) are extremal in Effk+1(Xn+1

r+1 ).
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Lemma 5.6. Suppose that D = aHk−
∑r

i=1 aiEi,k spans an extremal ray on Effk(X
n
r ). Then

CD = aHk+1−aE0,k+1−
∑r

i=1 aiEi,k+1 spans an extremal ray on Effk+1(Xn+1
r+1 ). In particular,

if Effk(X
n
r ) has infinitely many extremal rays, then so does Effk+1(Xn+1

r+1 ).

Lemma 5.6 immediately implies the following.

Corollary 5.7. Assume the SHGH Conjecture for the blow-up of P2 at 10 points. Then
Eff2(Xn

r ) is not finitely generated if r ≥ n+ 6.

Proof of Lemma 5.6. Given r+ 1 very general points p0, . . . , pr in Pn+1, their projection from
p0 give r very general points in Pn. Let Di be effective cycles arbitrarily close to D in Effk(X

n
r ).

Then the classes of the cones CDi over Di converge to CD. Hence, CD ∈ Effk+1(Xn+1
r+1 ).

Conversely, we claim that if CD = aHk+1 − aE0 −
∑r

i=1 biEi,k+1 is a pseudoeffective
(k + 1)-cycle on Xr+1

n+1, then D = aHk −
∑r

i=1 biEi,k is a pseudoeffective k-cycle on Xr
n. The

class CD + εHk+1 is effective for any ε > 0. Let Vε be a (rational) cycle representing the
class CD + εHk+1. Let `0j denote the strict transform on Xr+1

n+1 of the line through p0 and pj .
By Lemma 2.10, Vε contains the line `0j with multiplicity βj ≥ bj − ε. Let L ⊂ Xn+1

r+1 be the
proper transform of a general hyperplane in Pn+1. The lines l0j intersect L in r very general
points p. The proper transform of the intersection L ∩ Vε gives an effective cycle with class
(a+ ε)Hk−

∑j
i=1 βjEj,k. Letting ε tend to 0, we see that aHk−

∑r
i=1 biEi,k is pseudoeffective

in Xn
r , as required.

Now, suppose that D = aHk −
∑r

i=1 biEi,k spans an extremal ray of Effk(X
n
r ). We claim

that CD = aHk+1−aE0,k+1−
∑r

i=1 biEi,k+1 spans an extremal ray of Effk+1(Xn+1
r+1 ). Suppose

CD = α + β, where α and β are both pseudoeffective (k + 1)-cycles on Xn+1
r+1 . Since any

pseudoeffective class has a ≥ b0, it must be that

α = cHk+1 − cE0,k+1 −
r∑
i=1

ciEi,k+1, β = dHk+1 − dE0,k+1 −
r∑
i=1

diEi,k+1.

Then

α0 = cHk −
r∑
i=1

ciEi,k, β0 = dHk −
r∑
i=1

eiEi,k.

are pseudoeffective on Xn
r . Hence, α0 and β0 are proportional to D. It follows that α and β

are proportional to CD and CD is extremal. �

There are several interesting remaining questions concerning the finite generation of cones
of higher codimension.

Question 5.8. Can one show that Effn−2(X
n
r ) is not finitely generated for r ≥ n + 6

independently of the SHGH Conjecture?

Question 5.9. Fix n and k. Does there exist r for which Effk(X
n
r ) is not finitely generated?

How does r depend on n and k?

In particular, we have the following fundamental question:

Question 5.10. For every n, does there exist r for which Eff1(Xn
r ) is not finitely generated?

If Eff1(X
n
r ) is not finitely generated for r ≥ r0, then by Lemma 5.6 Effk(X

n+k−1
r+k−1 ) is not

finitely generated for r ≥ r0. Hence, an affirmative answer to Question 5.10 implies an
affirmative answer to Question 5.9.
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6. Blow-Ups at points in special position

Until now we have considered blow-ups of Pn at linearly general or very general points. It is
also interesting to consider cones of effective cycles on blow-ups of Pn at special configurations
of points. The dependence of the cones on the position of the points can be subtle, which
makes degeneration arguments difficult. We will see that the property of the effective cone
being finite is neither an open nor closed condition, even in families where the vector space
of numerical classes of k-dimensional cycles has constant dimension.

Proposition 6.1. Let Γ be a set of r points whose span is Pm ⊂ Pn. Let Xn
Γ and Xm

Γ denote
the blow-up of Pn and Pm along Γ, respectively.

(1) Then Effk(X
n
Γ) is linearly generated for m ≤ k ≤ n− 1 and

(2) Effk(X
n
Γ) = Effk(X

m
Γ ) for k < m.

Proof. Since Xm
Γ embeds in Xn

Γ as the proper transform of the Pm spanned by Γ, any effective
cycle Z ⊂ Xm

Γ is also an effective cycle in Xn
Γ with the same class. Hence, Effk(X

m
Γ ) ⊆

Effk(X
n
Γ) for k < m. Conversely, suppose that k < m. Let Z be an effective cycle in Pn

of dimension k with class [Z]. We may assume that Z is not contained in an exceptional
divisor. Choose a general point p. Let qi denote the projection of pi from p and let Z ′ be the
projection of Z from p. Then Z ′ and Z have the same degree and the multiplicities of Z ′ at qi
are greater than or equal to the multiplicities of Z at pi. Repeatedly projecting Z to Pm from
general points, we obtain an effective cycle contained in Pm. Since [Z] differs from the class
of this cycle by a positive combination of exceptional linear spaces Ei,k, we conclude that [Z]
is effective on Xm

Γ . Taking closures, we obtain the reverse inclusion Effk(X
n
Γ) ⊆ Effk(X

m
Γ ).

If k ≥ m, let L be a k-dimensional linear space containing Γ. Then the proper transform L
of L has class Hk −

∑r
i=1Ei,k. Since a k-dimensional variety not contained in an exceptional

divisor has class aHk −
∑r

i=1 biEi,k with a ≥ bi ≥ 0, we conclude that any k-dimensional

effective cycle is a nonnegative linear combination of [L] and Ei,k, 1 ≤ i ≤ r. �

By taking m = 1, we obtain the following corollary.

Corollary 6.2. Suppose Γ is a set of r collinear points in Pn. Then Effk(X
n
Γ) is linearly

generated for every 1 ≤ k ≤ n− 1.

Remark 6.3. It was shown in [O1] that the blow-up of P2 in collinear points is a Mori
Dream Space (and indeed its Cox ring can be computed). Consequently, the cone of curves
and divisors are finite polyhedral. The previous corollary generalizes this to all cycles.

Let L ∼= Pn−1 be a hyperplane in Pn. Let Γ′ ⊂ L be a set of points p1, . . . , pr and let
p0 ∈ Pn be a point not contained in L. Let Γ = Γ′ ∪ {p0}. Let Xn

Γ and Xn−1
Γ′ denote the

blow-up of Pn and Pn−1 along Γ and Γ′, respectively. Taking cones with vertex at p0, we
generate a subcone CEffk(X

n−1
Γ′ ) ⊂ Effk+1(Xn

Γ).

Proposition 6.4. The cone Effk+1(X
n
Γ) is generated by CEffk(X

n−1
Γ′ ), Effk+1(X

n−1
Γ′ ) and

E0,k+1. Furthermore, the extremal rays of CEffk(X
n−1
Γ′ ) are also extremal in Effk+1(Xn

Γ).

Proof. Let Z = aHk+1 −
∑r

i=0 biEi,k+1 be an irreducible (k + 1)-dimensional variety in Xn
Γ .

We may assume that Z is not contained in any exceptional divisors. Otherwise, its class is
a positive multiple of Ei,k+1. The proper transform of L in Xn

Γ is isomorphic to Xn−1
Γ′ . If

Z is contained in Xn−1
Γ′ , then the class of Z is in Effk+1(Xn−1

Γ′ ). Otherwise, Z ∩Xn−1
Γ′ is an

effective k cycle with class α′ = aHk −
∑r

i=1 b
′
iEi,k, where b′i ≥ bi. Consequently, the class



24 I. COSKUN, J. LESIEUTRE, AND J. C. OTTEM

α = aHk −
∑r

i=1 biEi,k is effective. Then the cone C(α) is an effective class in Xn
Γ and since

b0 ≤ a, [Z] is in the span of E0,k+1 and C(α).
Let Z be a cycle that generates an extremal ray of CEffk(X

n−1
Γ′ ). Suppose [Z] = α + β in

Effk+1(X
n
Γ). Since b0 ≤ a holds on Effk+1(X

n
Γ) and b0 = a on CEffk(X

n−1
Γ′ ), we must have

that both α and β satisfy b0 = a. We can perturb α and β by εHk+1 to obtain rational
effective classes. Since the coefficient of E0,k+1 of any class contained in Effk+1(X

n−1
Γ′ ) is 0,

the coefficients of any component of the class contained in Effk+1(X
n−1
Γ′ ) are bounded by

ε. Taking cones over the classes of the hyperplane sections of the remaining subvarieties
and letting ε tend to zero, we see that both α and β are contained in CEffk(X

n−1
Γ′ ). By the

extremality of Z, we conclude that they are both proportional to [Z]. �

Corollary 6.5. Let Γ be a set of points {q1, . . . , q9, p1, . . . , ps−1} such that q1, . . . , q9 are
general points in a plane P ⊂ Pn and p1, . . . , ps−1 are linearly general points with span disjoint
from P . Then Effk(X

n
Γ) is not finitely generated for k ≤ s and linearly generated for k > s.

Proof. When r ≥ 9, the blow-up of P2 at r general points has infinitely many (−1)-curves,
which span extremal rays of the effective cone of curves. Applying Proposition 6.4 (k − 1)-
times, the cones over the classes of (−1)-curves with vertex p1, . . . , pk−1 provide infinitely
extremal rays of Effk(X

n
Γ) for k ≤ s. The linear generation of Effk(X

n
Γ) for k > s follows

from Proposition 6.1 �

Corollary 6.6. (1) Linear generation of Effk(X
n
Γ) is not closed in smooth families.

(2) Finite generation of Effk(X
n
Γ) is not closed in smooth families.

Proof. Let n ≥ k+8. Take a general smooth curve B in (Pn)k+8 which avoids all the diagonals
and contains a point 0 ∈ B where 9 of the points are general points in a plane P and the
remaining points are in linearly general position with span not intersecting P . Such curves
exist by Bertini’s Theorem since the diagonals have codimension n ≥ 2. Consider the family
X → B, where Xb is the blow-up of Pn in the k + 8 points Γb parameterized by b ∈ B. If
the points in Γb are in linearly general position, then by Lemma 3.3 the cone Effk(XΓb

) is
linearly generated. In particular, the cone is finite. However, by Corollary 6.5, Effk(XΓ0) is
not finitely generated. In particular, the cone is not linearly generated. �

Corollary 6.7. (1) Linear generation of Effk(X
n
Γ) is not open in smooth families.

(2) Finite generation of Effk(X
n
Γ) is not open in smooth families.

Proof. Let B be a smooth curve parameterizing 9 general points in a plane P becoming
collinear at 0 ∈ B. Let Γ′ be k − 1 points in general linear position in Pn whose span is
disjoint from P . Let Γb be the union of Γ′ and the points parameterized by b. Consider the
family X → B obtained by blowing up Pn along Γb. When the points are collinear, Effk(XΓ0)
is linearly generated. However, for the general point of B, Effk(XΓb

) is not finitely generated
by Corollary 6.5. �

Remark 6.8. Corollary 6.7 is well-known for cones of divisors. For example, Castravet-
Tevelev [CT] prove that the blow-up of Pn at points on a rational normal curve is a Mori
Dream Space. In particular, if we specialize a large number of points to lie on a rational
normal curve, we see that being a Mori Dream Space is not an open condition.

One can ask for the finite/linear generation of Effk(X
n
Γ) for Γ any special set of points.

Perhaps the following question is the most interesting among them.
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Question 6.9. Let Γ be a set of points contained in a rational normal curve in Pn. Is Effk(X
n
Γ)

finitely generated? Is Effk(X
n
Γ) generated by the classes of cones over secant varieties of

projections of the rational normal curve?

By results of Castravet and Tevelev, the answer to Question 6.9 is affirmative for curves
and divisors. The cone of curves Eff1(Xn

Γ) is generated by the class of the proper transform
of the rational normal curve nH1 −

∑r
i=1 Ei,1 and the classes of lines. The rational normal

curve is cut out by quadrics. If a curve B has positive intersection with a quadric containing
the points, then by Lemma 2.6 the class of B is spanned by the classes of lines. Otherwise, B
is contained in the base locus of all the quadrics containing the rational normal curve. Hence,
B is a multiple of the rational normal curve. Castravet and Tevelev show that the classes of
divisors are generated by linear spaces and codimension-1 cones over secant varieties of the
projection of the rational normal curve [CT]. We do not know whether Eff2(Xn

Γ) is generated
by the classes of planes and cones over the rational normal curve with vertex a point of Γ.
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