
Selection of the number of clusters via the bootstrap

Yixin Fang∗

Division of Biostatistics, Department of Environmental Medicine

New York University

Email: Yixin.Fang@nyumc.org

Junhui Wang

Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago

Email: junhui@uic.edu

Abstract

Here the problem of selecting the number of clusters in cluster analysis is con-

sidered. Recently, the concept of clustering stability, which measures the ro-

bustness of any given clustering algorithm, has been utilized in Wang (2010) for

selecting the number of clusters through cross validation. In this manuscript,

an estimation scheme for clustering instability is developed based on the boot-

strap, and then the number of clusters is selected so that the corresponding

estimated clustering instability is minimized. The proposed selection crite-

rion’s effectiveness is demonstrated on simulations and real examples.
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1 Introduction 1

The goal of cluster analysis is to assign observations into clusters so that observations in 2

the same cluster are similar in some sense. Popular methods include k-means clustering 3

(MacQueen, 1967), hierarchical clustering (Johnson, 1967), k-medoids clustering (Kaufman 4

and Rousseeuw, 1990), and spectral clustering (Shi and Malik, 2000). Many selection criteria 5

have been proposed for selecting the number of clusters in a clustering algorithm. Most 6

of them are based on between-cluster and/or within-cluster sum of squared distances; to 7

name just a few, Calinski and Harabasz (1974), Hartigan (1975), and Krzanowski and Lai 8

(1985). Milligan and Cooper (1985) conducted comprehensive simulation studies to evaluate 9

the performances of 30 different such procedures. Additionally, other procedures such as the 10

silhouette statistic proposed by Kaufman and Rousseeuw (1990), the gap statistic proposed 11

by Tibshirani, Walther and Hastie (2001), and the jump statistic proposed by Sugar and 12

James (2003) can also be applied to select the number of clusters. 13

Recently, the concept of clustering stability has drawn great attention from statisticians. 14

Steinley (2008) developed a procedure, called stability analysis in his paper, for selecting 15

the number of clusters by repeatedly performing k-means many times with different random 16

initializations. Steinley (2008) also mentioned three other types of stability: Bryant (2002) 17

developed a method to determine the general stability of the data with respect to the choice 18

of hierarchical clustering methods; Cheng and Milligan (1996) and some other methods were 19

concerned with character stability when characters are added to or removed from the system; 20

and McIntyre and Blashfield (1980) defined stability as the ability of a cluster solution to be 21

continually recognized in different random samples of the general population. 22

Here we are concerned with the fourth type of stability, the one measuring the clustering 23

robustness against the randomness in the sample. Also see Fowlkes and Mallows (1983), 24

Gnanadesikan (1997), Ben-Hur, Elisseeff, and Guyon (2002), Lange et al. (2004), Ben-David, 25
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von Luxburg, and Pal (2006), and the references therein. As discussed in Wang (2010), the 1

intuition is that if we repeatedly draw samples from the population and apply the given 2

clustering algorithm, a good one should produce clusterings that do not vary much from one 3

sample to another. The stability measure is assumption free and applicable to both distance 4

based and non-distance based clustering algorithms. 5

It has been proposed to select the number of clusters as the one maximizing the clus- 6

tering stability. Since maximizing the clustering stability is equivalent to minimizing the 7

clustering instability, an estimation scheme for the clustering instability based on modified 8

cross-validation was developed in Wang (2010). The key idea in Wang (2010) is to split the 9

data into two training datasets and one validation dataset, where the two training datasets are 10

used to construct two clusterings and the validation dataset is used to measure the clustering 11

instability. However, the data splitting reduces the sizes of training datasets and therefore 12

the cross-validation method is inefficient. 13

In this manuscript, we develop an estimation scheme for clustering instability based on 14

the bootstrap. For an introduction to the bootstrap, please refer to Efron and Tibshirani 15

(1993). The implementation of the bootstrap method is straightforward, and it has a number 16

of advantages. First, the bootstrap samples are of the same size as that of the original data, 17

and therefore the bootstrap method is more efficient. Second, the bootstrap estimate of the 18

clustering instability is the nonparametric maximum likelihood estimate (MLE). Third, the 19

bootstrap method can provide the instability path of a clustering algorithm for any given 20

number of clusters. The last advantage is discussed in detail in Subsection 2.3. 21

The rest of the manuscript is organized as follows. In Section 2, the concept of clustering 22

stability is introduced and the bootstrap method is developed. In Section 3, the effectiveness 23

of the proposed method is demonstrated on simulations and two real data examples. Some 24

discussion is presented in Section 4. 25
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2 The bootstrap method 1

2.1 The clustering instability 2

This subsection is almost reproducing Section 2 in Wang (2010), but with different notation 3

and expressions. Assume that Xn = {x1, . . . , xn} is a random sample of size n from some 4

unknown distribution F (x) with x ∈ R
p, where p is the number of features. A clustering 5

ψ(x) is defined as a mapping ψ : Rp → {1, . . . , k}, where k is the given number of clusters. A 6

clustering algorithm Ψ(·; k) with a given number of clusters k ≥ 2 yields a clustering mapping 7

ΨXn,k(x) when applied to sample Xn. Here the case of k = 1 is excluded as Ψ(·; 1) leads to 8

the same degenerate clustering ΨXn,1(x) = 1 regardless of Xn. 9

Definition 1 (Clustering distance). The distance between any two clustering ψ1(x) and 10

ψ2(x) is defined as 11

dF (ψ1, ψ2) = Ex0∼F,y0∼F {|I{ψ1(x
0) = ψ1(y

0)} − I{ψ2(x
0) = ψ2(y

0)}|}, (1)

where I{·} is the indicator function, and the expectation is taken over x0 and y0, two inde- 12

pendent observations sampled from F . 13

The above expectation equals Prob{ψ1(x
0) = ψ1(y

0), ψ2(x
0) �= ψ2(y

0)} + Prob{ψ1(x
0) �= 14

ψ1(y
0), ψ2(x

0) = ψ2(y
0)}, so this distance measures the disagreement between two clusterings. 15

Definition 2 (Clustering instability). The clustering instability of Ψ(·; k) is defined as 16

s(Ψ, k, n) = EXn∼Fn,X̃n∼Fn{dF (ΨXn,k,ΨX̃n,k)}, (2)

where the expectation is taken over Xn and X̃n, two independent random samples of size n 17

from F , and ΨXn,k and ΨX̃n,k are two clusterings trained from Xn and X̃n respectively. 18

By definition, small values of s(Ψ, k, n) indicate a stable clustering algorithm Ψ(·; k). 19

Then the optimal number of clusters is defined as 20

k0 = k0(n) = argmin2≤k≤Ks(Ψ, k, n), (3)

where K is preset as the maximum number of clusters to be considered in practice. 21
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2.2 The bootstrap method for selecting the number of clusters 1

Because the random sample Xn is generated from F , denote s(Ψ, k, n) as θ(F ), a function 2

of F . We wish to estimate θ(F ) on the basis of Xn. Let F̂ be the empirical distribution, 3

putting probability 1/n on each of the observed values xi, i = 1, . . . , n. We are interested in 4

using the plug-in estimator, θ(F̂ ), to estimate θ(F ). Note that F̂ is the nonparametric MLE 5

of F , and consequently θ(F̂ ) is the nonparametric MLE of θ(F ). 6

Noting that θ(F ) can be written as 7

EXn∼Fn,X̃n∼FnEx0∼F,y0∼F {|I{ΨXn,k(x
0) = ΨXn,k(y

0)} − I{ΨX̃n,k(x
0) = ΨX̃n,k(y

0)}|},

its plug-in estimator θ(F̂ ) is equal to 8

EXn∗∼F̂n,X̃n∗∼F̂nEx0∗∼F̂ ,y0∗∼F̂ {|I{ΨXn∗,k(x
0∗) = ΨXn∗,k(y

0∗)} − I{ΨX̃n∗,k(x
0∗) = ΨX̃n∗,k(y

0∗)}|}.

Since the inside expectation can be simplified, the plug-in estimator becomes 9

EXn∗∼F̂n,X̃n∗∼F̂n{ 1

n2

n∑
i=1

n∑
j=1

|I{ΨXn∗,k(xi) = ΨXn∗,k(xj)} − I{ΨX̃n∗,k(xi) = ΨX̃n∗,k(xj)}|}.

Now it is ready to present the bootstrap method for estimating the clustering instability 10

s(Ψ, k, n), as well as the optimal number of clusters k0. 11

Algorithm 1: Bootstrap method for selecting the number of clusters 12

Step 1. Generate B independent bootstrap sample-pairs (Xn∗
b , X̃n∗

b ), b = 1, . . . , B. Each 13

sample consists of n observations generated from empirical distribution F̂ with replacement. 14

Step 2. Construct ΨXn∗
b ,k and ΨX̃n∗

b ,k based on (Xn∗
b , X̃n∗

b ) , b = 1, . . . , B. 15

Step 3. For each pair, ΨXn∗
b ,k and ΨX̃n∗

b ,k, calculate their empirical clustering distance 16

dF̂ (ΨXn∗
b ,k,ΨX̃n∗

b ,k) =
1

n2

n∑
i=1

n∑
j=1

|I{ΨXn∗,k(xi) = ΨXn∗,k(xj)} − I{ΨX̃n∗,k(xi) = ΨX̃n∗,k(xj)}|. (4)

Then the clustering instability s(Ψ, k, n) can be estimated by 17

ŝB(Ψ, k, n) =
1

B

B∑

b=1

dF̂ (ΨXn∗
b ,k,ΨX̃n∗

b ,k). (5)
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Step 4. Finally, the optimal number of clusters can be estimated by 1

k̂ = k̂(n) = argmin2≤k≤K ŝB(Ψ, k, n). � (6)

Hereafter the maximum number of clusters K is set as 10. However, the selection of K 2

depends on one’s interest and should be adjusted according to the data. If k̂ = K, that is 3

the instability achieves its minimum at the boundary, we should increase the value of K. 4

Algorithm 1 is demonstrated in Figure 1, the schematic diagram of the bootstrap method, 5

where “→” means data generating and “⇒” means estimating. This diagram is similar to 6

Figure 8.1 in Efron and Tibshirani (1993). 7

Insert Figure 1 about here

8

Furthermore, using the bootstrap, we can estimate the standard error of the estimated 9

clustering instability. The following algorithm describes a straightforward bootstrap proce- 10

dure, and some other more sophisticated procedures are discussed in Section 4. 11

Algorithm 2: Bootstrap method for estimating the standard error 12

Step 1. Generate C independent bootstrap samples Xn∗
c , c = 1, . . . , C. Each sample 13

consists of n observations generated from empirical distribution F̂ with replacement. 14

Step 2. For sample Xn∗
c , calculate the estimated clustering instability ŝc∗B (Ψ, k, n) based 15

on B bootstrap samples generating from Xn∗
c . 16

Step 3. Calculate the sample standard deviation of ŝc∗B (Ψ, k, n), c = 1, · · · , C, which 17

estimates the standard error of the estimated clustering instability, ŝB(Ψ, k, n). � 18

Ideally, ŝ∞(Ψ, k, n) = θ(F̂ ). In practice, based on our limited experience, moderate large 19

B, say B = 20 or 50, can result in very stable estimate of s(Ψ, k, n) and then very stable 20

estimate of k0. Efron and Tibshirani (1993, Section 6.4) gave some rules of thumb for selecting 21

the number of replications B, and demonstrated that the selection of B can be guided by the 22
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coefficient of variation. Note that we can apply Algorithm 2 to estimate the standard error 1

used in calculation of the coefficient of variation. 2

2.3 The bootstrap estimates of the instability paths 3

Although the clustering instability has attracted increasing attention, its theoretical justifi- 4

cation remains unclear. One important issue, as pointed out in Krieger and Green (1999) and 5

Ben-David et al. (2006), is that any clustering algorithm is asymptotically stable as long as 6

it can be formulated as an optimization problem with a certain objective function that has a 7

unique global minimizer. On the other hand, it has been noted that although the instability 8

measures may converge to zero, the rates of convergence can behave differently when different 9

numbers of clusters are specified (e.g., Shamir and Tishby, 2007). 10

Denote the instability path for clustering algorithm Ψ(·; k) as {s(Ψ, k,N) : N ≥ n}. To 11

estimate s(Ψ, k,N) for any given N and then visualize the convergence path of the clustering 12

instability for any given number of clusters, we modify Algorithm 1 in what follows. The 13

same idea has been used in Efron and Tibshirani (1993, Section 25.4) for power calculation. 14

Algorithm 3: Bootstrap method for estimating the instability paths 15

Step 1. Generate B independent bootstrap sample-pairs (XN∗
b , X̃N∗

b ), b = 1, . . . , B. Each 16

sample consists of N observations generated from empirical distribution F̂ with replacement. 17

Step 2. Construct ΨXN∗
b ,k and ΨX̃N∗

b ,k based on (XN∗
b , X̃N∗

b ) , b = 1, . . . , B. 18

Step 3. For each pair, ΨXN∗
b ,k and ΨX̃N∗

b ,k, calculate empirical distance dF̂ (ΨXN∗
b ,k,ΨX̃N∗

b ,k). 19

Then estimate s(Ψ, k,N) by ŝB(Ψ, k,N) = 1
B

∑B
b=1 dF̂ (ΨXN∗

b ,k,ΨX̃N∗
b ,k). � 20

3 Numerical results 21

3.1 An illustrative example 22

We first examine an illustrative example in great detail. The simulated sample contains 23

three clusters in a two-dimensional space, each with size 50 and sampled from bivariate 24
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normal distributions with a common identity covariance matrix and distinct centers (2, 0), 1

(−1, 2), and (−1,−2), respectively. Therefore, the sample size is n = 150 and the optimal 2

number of clusters is k0 = 3. An observed sample is displayed in the left panel of Figure 2. 3

Insert Figure 2 about here

4

For this observed sample, we apply both the newly proposed bootstrap method and the 5

cross-validation method to select the number of clusters. (Here the cross-validation method 6

is the one based on averaging, that is CVa in Wang (2010), where the cross-validation method 7

based on voting, CVv, was also proposed.) In the bootstrap method, 50 bootstrap sample- 8

pairs are generated, while in the cross-validation method, 50 data splittings are performed 9

and the splitting ratio is set as 1/3 (one third as the validation dataset, the other two thirds 10

as two training datasets). Here the k-means algorithm is applied. Both methods produce 11

estimates of the clustering instability for k = 2, . . . , 10. The results are displayed in the 12

right panel of Figure 2. Both methods select the optimal number of clusters as k̂ = 3, which 13

correctly estimates the true optimal number of clusters. 14

From the right panel of Figure 2, we also find that the cross-validation estimated in- 15

stabilities are consistently larger than those estimated using the bootstrap method, because 16

the sizes of two training datasets in the cross-validation method are only n/3. Actually, the 17

cross-validation only provides estimates for s(Ψ, k, n/3) instead of s(Ψ, k, n), whereas the 18

bootstrap method provides nonparametric MLE for s(Ψ, k, n). 19

Figure 2 also displays the estimated standard errors, shown as the bars. Here the standard 20

errors are estimated using Algorithm 2 with C = 100. It is found that the standard errors 21

in the bootstrap method are smaller than those in the cross-validation method, due to the 22

same reason that the effect simple size in the bootstrap method is larger. 23

We go further to see if the bootstrap distribution of dF̂ (ΨXn∗,k,ΨX̃n∗,k) is similar to the 24

true distribution of dF (ΨXn,k,ΨX̃n,k). We only consider the case where k is preset as 2. 25
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For this aim, we generate 1000 bootstrap sample-pairs (Xn∗
b , X̃n∗

b ) from the given empirical 1

distribution F̂ , b = 1, . . . , 1000. Then the clustering distances dF̂ (ΨXn∗
b ,2,ΨX̃n∗

b ,2) are calcu- 2

lated. On the other hand, we generate 1000 random sample-pairs (Xn
b , X̃

n
b ) from the true 3

simulation distribution F , b = 1, . . . , 1000. Then the clustering distances dF (ΨXn
b ,2
,ΨX̃n

b ,2
) 4

are calculated using Mente Carlo method based on 50 newly generated copies of Xn. The 5

histograms of {dF̂ (ΨXn∗
b ,2,ΨX̃n∗

b ,2), b = 1, . . . 1000} and {dF (ΨXn
b ,2
,ΨX̃n

b ,2
), b = 1, . . . , 1000} 6

are displayed respectively in Figure 3. 7

Insert Figure 3 about here

8

From Figure 3, we find that the two histograms are similar to each other; both of them 9

are in U-shape, with large frequencies at the two ends and small frequencies in the between. 10

Also, the means and the standard deviations of these two histograms are very close. Noting 11

that the two means are respectively the bootstrap estimate and the Monte Carlo estimate of 12

the true clustering instability s(Ψ, 2, n), we are further assured that the bootstrap method 13

gives almost unbiased estimates of the clustering instabilities. 14

3.2 Four simulation examples in Wang (2010) 15

We examine the newly proposed bootstrap method using the same four simulation examples 16

as in Wang (2010). The first example consists of two elongated clusters in a three-dimensional 17

space, each of size 100. This is also the example (e) in Tibshirani et al. (2001). Each cluster 18

is generated as follows. Set x1 = x2 = x3 = t with t taking 100 equally spaced values from 19

−0.5 to 0.5 and then Gaussian noise with standard deviation 0.1 is added to each feature. 20

Cluster 2 is generated in the same way, except that the value 10 is added to each feature at 21

the end. The second example contains four non-Gaussian clusters in a ten-dimensional space, 22

each of size 100. The clusters reside in a two-dimensional subspace, and are sampled from 23

bivariate exponential distributions with location parameters (4, 4), (4,−4), (−4, 4), (−4,−4) 24
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and a common scale parameter 1, and the remaining eight dimensions are noises sampled 1

from standard exponential distribution. The other two are non-distance based examples, the 2

two-moon example and the bull’s eye example, whose two realizations are displayed in Figure 3

4 (a) and (b) respectively. Wang (2010) compared his two cross-validation methods with six 4

other methods and concluded that the cross-validation based on averaging, CVa, performs 5

the best in these four simulation examples. 6

We perform the k-means algorithm for the first two examples (distance-based) and the 7

spectral clustering algorithm (Ng et al., 2001) for the other two examples (non-distance- 8

based). The k-means algorithm assigns each observation to the cluster whose center is nearest, 9

and the center is the average of all the observations in the cluster. The spectral clustering 10

algorithm defines a similarity matrix first and then makes use of the spectrum of the similarity 11

matrix to perform principle component analysis for clustering in fewer dimensions. 12

We compare the bootstrap method with CVa, along with three recent methods, the 13

silhouette statistic in Kaufman and Rousseeuw (1990), the gap statistic in Tibshirani et 14

al. (2001), and the jump statistic in Sugar and James (2003). Kaufman and Rousseeuw 15

(1990) defined the silhouette statistic as s(k) = n−1
∑n

i=1(b(xi) − a(xi))/max{a(xi), b(xi)}, 16

where a(xi) is the averaged distance to other observations in its cluster, and b(xi) is the 17

averaged distance to observations in its nearest cluster. Tibshirani et al. (2001) defined the 18

gap statistic as Gap(k) = B−1
∑B

b=1 log(W
∗b
k ) − log(Wk), where B reference datasets are 19

generated and Wk and W ∗b
k are the within-cluster sums of squares from the observed dataset 20

and the bth reference dataset respectively. Sugar and James (2003) defined the jump statistic 21

as Jump(k) = d̂
−p/2
k − d̂

−p/2
k−1 , where d̂k = p−1

∑n
i=1mincr(xi − cr)

′(xi − cr). The number of 22

clusters is chosen such that s(k), Gap(k) or Jump(k) is maximized. 23

Each simulation example is repeated 50 times and the results are summarized in Table 1. 24

Here the number of bootstrap sample-pairs in the bootstrap method, the number of random 25
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splits in the cross-validation method, and the number of reference datasets are all set as 50. 1

Insert Table 1 about here

2

From Table 1, we find that the bootstrap method performs as well as the cross-validation 3

method for selecting the number of clusters, and clearly outperforms the others. The gap 4

statistic also performs very well in Example 1, which is of Gaussian distribution, and in the 5

two-moon example. However, the gap statistic does not perform well in Example 2, where 6

the clusters are non-spherical, and is not working in the bull’s eye example, one of the non- 7

distance based examples. Neither the silhouette statistic nor the jump statistic performs 8

well here. Because the sample sizes in these examples are in hundreds, the advantage of the 9

bootstrap method over the cross-validation method is not clear. However, as byproducts, the 10

bootstrap method can provide almost unbiased estimates for the clustering stabilities and 11

the stability paths. The latter will be further demonstrated by two real examples. 12

3.3 More simulation examples 13

To further compare the bootstrap method with the cross-validation method and the gap 14

statistic, we revisit the illustrative example but under various conditions, such as the true 15

optimal number of clusters, dimension of features, correlation among features, and clusters 16

overlapping level. 17

Two groups of simulation settings are considered. In the first group, there are 3 clusters, 18

that is k0 = 3, while in the second group, k0 = 5. Each cluster contains 50 observations, and 19

the number of features p is either 2 or 5. We describe the first two dimensions as follows. In 20

the first group, the three cluster centers are on the vertices of an equilateral triangle with the 21

edge length d. In the second group, four cluster centers are on the vertices of a square and 22

the fifth cluster center is at the middle with the diagonal length 2d. For the settings where 23

p = 5, the remaining three dimensions contain no clustering information. 24
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The observations are generated from multivariate normal distributions with means being 1

their corresponding centers, variances 1, and correlation coefficients ρ, which is equal to 2

either 0 or 0.6. The length d, which controls the clusters overlapping level, is set as 3, 4, or 6. 3

When d = 6, clusters are moderately overlapped, while d = 4 indicates serious overlapping 4

and d = 3 indicates extremely serious overlapping. 5

Each simulation setting is repeated 50 times and the results are presented in Table 2. 6

Again, the k-means is performed, the number of bootstrap sample-pairs in the bootstrap 7

method, the number of random splits in the cross-validation method, and the number of 8

reference datasets are all set as 50. The maximum number of clusters K is set as 10. 9

Insert Table 2 about here

10

From Table 2, we find that the bootstrap method performs slightly better than the cross- 11

validation method. In the settings where p = 2, all the three methods performs very well 12

even when the clusters are seriously overlapped, and the correlation between variables does 13

not cause any problem. 14

Both the stability selection methods are outperformed by the gap statistic. This is not 15

surprising because here the data are generated from Gaussian distribution and the gap statis- 16

tic is based on the Euclidean distance. In the previous subsection, it has shown that the gap 17

statistics works well with Gaussian clusters or other spherical distributed clusters, but it fails 18

when the clusters are non-spherical. 19

In the settings where p = 5 and three features contain no clustering information, no 20

method is working except in the settings where k0 = 3 and ρ = 0. This indicates that it is 21

necessary to consider some feature selection procedure to get rid of redundant features before 22

conducting cluster analysis; for example, Witten and Tibshirani (2010) proposed a general 23

sparse clustering framework and Sun, Wang, and Fang (2011) proposed a regularized k-means 1

algorithm for high-dimensional data. 2
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In the settings where p = 5, k0 = 3, and ρ = 0, the gap statistic is working with both 3

d = 4 and d = 6, while the bootstrap method is working only when d = 6 and the cross- 4

validation method is not working. This indicates that the stability selection methods are not 5

working well for the cases where clusters are seriously overlapped. 6

3.4 Two real data examples 7

We examine the effectiveness of the bootstrap method in two real data examples, comparing 8

it with the cross-validation method in Wang (2010). The first one is iris data (Fisher, 1936), 9

which contains 150 observations from three different species of iris, each with four measures 10

on the length and width of the sepal and petal. The second one is wine data (Aeberhard, 11

Coomans and de Vel, 1992), which consists of 12 measurements for each of 178 alcohols 12

from three different kinds. The iris dataset is available in R, and the wine dataset is down- 13

loaded from University of California Irvine machine learning repository. Figure 5 displays 14

the scatterplots of these two datasets. 15

In both real examples, the true numbers of clusters are unknown, but their available class 16

memberships provide a helpful reference from the true clustering. The results are displayed 17

in Figure 6 and Figure 7 respectively. In both examples, k-means is performed, 50 bootstrap 18

sample-pairs are generated for the bootstrap method, and 50 data-splittings with ratio 1/3 19

are generated for the cross-validation method. 20

In the iris example, from the left panel of Figure 6, both the bootstrap and cross-validation 21

methods select the optimal number of clusters as k̂ = 2, while the dataset contains three 22

species of iris. Similar observation was made in Sugar and James (2003). This example shows 23

the weakness of the stability selection methods when some clusters are seriously overlapped, 24

which has already been shown in Subsection 3.3. We also see that the bootstrap estimated 1

instabilities are larger than those by the cross-validation method for the same reason given 2

in Section 4. From the right panel of Figure 6, we see that the instability path of k = 2 3

13



converges to zero the fastest. 4

Insert Figure 6 about here

5

In the wine example, from the left panel of Figure 7, both the bootstrap and cross- 6

validation methods select the optimal number of clusters as k̂ = 3, which agrees with the 7

number of classes in the dataset. Similarly, the bootstrap estimated instabilities are larger 8

than those by the cross-validation method. And from the right panel of Figure 7, we see that 9

the instability path of k = 3 converges to zero much faster than the other two. 10

Insert Figure 7 about here

11

4 Discussion 12

We propose the bootstrap method for estimating the clustering instability and then selecting 13

the number of clusters. It can be applied to any distance-based or non-distance-based clus- 14

tering algorithm. It is an alternative to the cross-validation method in Wang (2010), whose 15

selection consistency has been established. Since the bootstrap method provides nonpara- 16

metric MLE of the clustering instability, which are believed to enjoy many good properties, 17

we don’t attempt to work on the selection consistency of the bootstrap method. 18

The main goal in this manuscript is selecting the number of clusters, but the method 19

can also be used to construct confidence interval estimate for the clustering instability. The 20

jackknife-after-bootstrap method (Efron, 1992), the BCa (Efron, 1987) and the ABC (DiCi- 21

ccio and Efron, 1992) methods can provide desirable confidence interval estimates. 22

The bootstrap method has other applications rather than selection of the number of 23

clusters. For example, the bootstrap method can also be applied to select tuning parameters 1

in the regularized k-means (Sun et al., 2011), the penalized cluster analysis (Fang and Wang, 2

2011) and the sparse clustering (Witten and Tibshirani, 2010). 3
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Table 1: Four simulation examples in Wang (2010)

Estimated number of clusters
Method

2 3 4 5 6 7 8 9 10

Example 1: Two elongated clusters in 3 dimensions

Silhouette 50 0 0 0 0 0 0 0 0

Gap 50 0 0 0 0 0 0 0 0

Jump 0 0 0 0 4 0 36 7 3

CVa 50 0 0 0 0 0 0 0 0

Bootsrap 50 0 0 0 0 0 0 0 0

Example 2: Four Exponential clusters in 10 dimensions

Silhouette 0 1 36 8 4 1 0 0 0

Gap 46 0 1 3 0 0 0 0 0

Jump 0 0 50 0 0 0 0 0 0

CVa 0 0 50 0 0 0 0 0 0

Bootstrap 0 0 50 0 0 0 0 0 0

The two-moon example

Silhouette 0 0 1 2 9 5 13 13 7

Gap 50 0 0 0 0 0 0 0 0

Jump 39 0 0 3 0 3 1 3 1

CVa 50 0 0 0 0 0 0 0 0

Bootstrap 50 0 0 0 0 0 0 0 0

The bull’s eye example

Silhouette 0 0 6 9 2 5 10 9 9

Gap 10 27 10 2 1 0 0 0 0

Jump 0 4 12 11 4 9 3 4 3

CVa 50 0 0 0 0 0 0 0 0

Bootstrap 50 0 0 0 0 0 0 0 0
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Table 2: More simulation examples

k0 = 3 k0 = 5

Estimated number of clusters 2 3 4 ≥ 5 ≤ 3 4 5 6 ≥ 7

Gap 0 50 0 0 0 0 50 0 0

ρ = 0 CVa 0 41 4 5 0 0 39 2 1

Boot 0 48 0 2 0 9 38 2 1
d = 3

Gap 0 47 3 0 0 0 46 2 2

ρ = 0.6 CVa 0 40 5 5 0 3 40 3 4

Boot 0 41 4 5 0 4 41 3 2
p = 2

Gap 0 50 0 0 0 0 50 0 0

ρ = 0 CVa 0 50 0 0 0 0 50 0 0

Boot 0 50 0 0 0 0 50 0 0
d = 4

Gap 0 50 0 0 0 0 50 0 0

ρ = 0.6 CVa 0 50 0 0 0 2 48 0 0

Boot 0 50 0 0 0 6 44 0 0

Gap 0 35 9 6 4 1 9 19 17

ρ = 0 CVa 0 0 1 49 0 0 0 0 50

Boot 0 5 3 42 0 0 0 0 50
d = 4

Gap 0 1 3 46 0 4 2 17 30

ρ = 0.6 CVa 1 0 0 49 0 0 0 0 50

Boot 5 0 0 45 7 0 0 1 42
p = 5

Gap 0 50 0 0 1 0 13 19 17

ρ = 0 CVa 0 26 17 7 0 0 0 0 50

Boot 0 50 0 0 0 0 0 0 50
d = 6

Gap 0 0 5 45 0 2 2 25 21

ρ = 0.6 CVa 0 0 1 49 0 0 0 0 50

Boot 1 0 5 44 3 0 0 2 45
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Figure 1: Schematic diagram of the bootstrap method
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Figure 2: Illustrative example
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Figure 3: True distribution and bootstrap distribution of clustering distance
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Figure 4: Some scatterplots
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Figure 5: Iris data example (k̂ = 2)

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

clustering stability methods

num of clusters K

e
s
ti
m

a
te

d
 i
n

s
ta

b
il
it
y

bootstrap

cross-validation

500 1000 1500 2000

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

instability path

bootstrap sample size N

b
o

o
ts

tr
a

p
 e

s
ti
m

a
te

 o
f 
in

s
ta

b
il
it
y

K=2

K=3

K=4

25



Figure 6: Wine data example (k̂ = 3)
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