
Verification of Multi-Linked Heaps

Ittai Balabana, Amir Pnueli, Yaniv Sa’arb, Lenore D. Zuckc

aNew York University, New York
bWeizmann Institute of Science, Israel
cUniversity of Illinois at Chicago

Abstract

We define the class of single-parent heap systems, which rely on a singly-linked heap
in order to model destructive updates on tree structures. This encoding has the advan-
tage of relying on a relatively simple theory of linked lists in order to support abstrac-
tion computation. To facilitate the application of this encoding, we provide a program
transformation that, given a program operating on a multi-linked heap without sharing,
transforms it into one over a single-parent heap. It is then possible to apply shape anal-
ysis by predicate and ranking abstraction. The technique has been successfully applied
on examples with lists (reversal and bubble sort) and trees with of fixed arity (balancing
of, and insertion into, a binary sort tree).

Keywords: Heaps, Shape Analysis, Verification, Abstraction, Ranking Abstraction,
Small Model, Model Checking, Termination, Trees, Lists.

1. Introduction

This paper is based on research reported in [3, 5].
The goal of shape analysis is to analyze properties of programs that perform de-

structive updating on dynamically allocated storage (heaps) [21]. Programs manipulat-
ing heap structures can be viewed as parameterized in the number of heap nodes, or,
alternatively, the memory size.
This paper presents an approach for shape analysis based on predicate abstrac-

tion that allows for analysis of functional properties such as safety and liveness. The
abstraction used does not require any abstract representation of the heap nodes (e.g.
abstract shapes), but rather, requires only reachability relations between the program
variables.
States are abstracted using a predicate base that contains reachability relations

among program variables pointing into the heap. The computation of the abstract
states and transition relation is precise, automatic, and does not require the use of a
theorem prover. Rather, we use a small model theorem to identify a truncated (small)
finite-state version of the program whose abstraction is identical to the abstraction of
the unbounded-heap version of the same program. The abstraction of the finite-state
version is then computed by BDD techniques.
For proving liveness properties, we augment the original system by a well-founded

ranking function, which is then abstracted together with the system. Well-foundedness

Preprint submitted to Elsevier April 30, 2011

is abstracted into strong fairness (compassion). We demonstrate the power of the rank-
ing abstraction method and its advantages over direct use of ranking functions in a
deductive verification of the same property, independent of its application to shape-
analysis examples. We show how various predicate abstractions can be used to estab-
lish various safety properties, and how, for each program, one of the abstractions can
be augmented with a progress monitor to establish termination.
We first introduce single-parent heaps, which are finite heap systems specialized

for representing trees and lists. We propose a framework for shape analysis of single-
parent heaps based on a small model property of a restricted class of first order asser-
tions with transitive closure. Extending this framework to allow for heaps with multiple
links per node entails extending the assertional language and proving a stronger small
model property. At this point, it is not clear whether such a language extension is
decidable (see [17, 19] for relevant results).
This paper deals with verification of programs on multi-linked heaps that consist

only of trees of bounded arity, which perform destructive updates of heaps. We bypass
the need to handle trees directly by transforming heaps consisting of multiple trees into
single-parent heaps that are structures consisting of singly-linked lists (possibly with
shared suffixes). This is accomplished by “reversing” the parent-to-child edges of the
trees populating the heap, as well as associating scalar data with nodes. Fig. 1(a) and
Fig. 1(b) together demonstrate the transformation of a multi-linked heap that consists
of a binary tree to its single-parent counterpart. In the latter graph, edges are directed
from children to parents, and each child is annotated with boolean information denoting
whether it is a left or right child.

(a) A Multi-Linked
Heap

(b) The Corresponding
Single-Parent Heap

Figure 1: Multi-Linked to Single-Parent Heap Transformation

Verification of temporal properties of multi-linked heap systems can be performed
as follows: Given a multi-linked system and a temporal property, the system and
property are (automatically) transformed into their single-parent counterparts. Then,
a counter-example-guided predicate- (and possibly ranking-) abstraction refinement
method ([4]) is applied. If a counter-example (on the transformed system) is produced,
it is automatically mapped into a counter-example of the original (multi-linked) system.
The rest of this paper is organized as follows: After we discuss related work, we

present in Section 2 two motivating examples which are used as running examples
throughout the paper. In Section 3 we present the formal framework, the single-parent
heap model, and the assertianal language. In Section 4 we introduce multi-linked heaps

2

and formally show how to translate programs, as well as assertions, over them into the
single-parent model. In Section 5 we overview the idea of abstraction and present
a small model property that allows to predicate-abstract single-parent heap programs
based on their instantiations to small heaps. In Section 6 we overview the method of
ranking abstraction for proving termination, present several ranking functions that we
show are useful for proving termination of programs that manipulate heaps. In Sec-
tion 7 we describe examples demonstrating the power of the method, and we conclude
in Section 8.
All our examples have been automatically tested using JTLV ([26]). The code is

available in http://shape-analysis.ysaar.net/

Related Work
The shape analysis method presented in this paper combines the frameworks of

predicate abstraction [29], model checking [14, 16], and ranking abstraction [4], with
a decision procedure over a logic of “tree-like” data structures (with limited cycles),
and their mutation. The decision procedure itself is based on two elements: A program
transformation, and a small model theorem for a logic of mutation of single-parent
heaps.
Numerous frameworks exist for analyzing singly-linked heaps, e.g., [24, 28, 9, 12,

10]. In contrast to our framework, all of these assume that programs access only
those heap cells that are reachable from program variables. While this is a reason-
able assumption for most programs, it does not hold for the programs generated by
our transformation, which manipulate heaps in which the links between heap cells are
reversed. Therefore, these frameworks cannot be used to analyze single-parent heap-
manipulating programs.
The correspondence between tree structures and singly-linked structures is the basis

of the proof of decidability of first-order logic with one function symbol in [11]. More
generally, the observation that complex data structures with regular properties can be
reduced to simpler structures has been utilized in [23, 20, 25, 31]. However, it is
not always straightforward to apply, and, to our knowledge, has not been applied in
the context of predicate abstraction. Several assumptions that hold true in analysis
of “conventional” programs over singly-linked heaps (e.g., C- or Pascal-programs),
cannot be relied upon when reducing trees to lists. For example, the number of roots
of the heap is no longer bounded by the number of program variables.
The use of path compression in heaps to prove small model properties of logics of

linked structures, has been used before, e.g., in [8] and more recently in [32]. Previous
work on parameterized systems ([1]) relies on a small model theorem for checking
inductiveness of assertions. The small model property there is similar to the one here
with respect to stratified data. However, with respect to unstratified data (such as
graphs), [1] takes the approach of using logical instantiation as a heuristic, whereas
here completeness is achieved using graph-theoretic methods.
In this paper we use the ranking abstraction method of [4] to verify liveness proper-

ties, and we make use of the ranking functions over singly-linked lists defined in [3]. In
addition, we define a new ranking function over single-parent heaps and prove a small

3

Nxt : array [0..h] of [0..h]
x, y : [0..h] init y = 0

⎡
⎢⎢⎣

1 : while x �= 0 do
2 : (x, y,Nxt [x]) := (Nxt [x], x, y)

end
3 :

⎤
⎥⎥⎦

Figure 2: Program LIST-REVERSAL

model property for the extended logic. For a discussion of work related to ranking
abstraction independent of shape analysis, see [4] and [2].
[18] is an abstract-interpretation-based framework that combines abstract domains

over sets of heap nodes, with numerical abstract domains. This results in an analysis
that can verify the termination of programs in which the proof relies on relationships
between cardinalities of sets of heap nodes. The approach is analogous to our method
of combining shape predicates with ranking functions that measure the cardinality of
sets of heap node. [13] defines a logic for reasoning about programs that manipulate
pointers and data of structures with single and multiple links, as well as arrays. The
logic is parameterized by the logic of the underlying data domain. The strength of
the approach is in its ability to deal with combinations of data structures and arbitrary
decidable data domains. However, the approach has yet to be applied to liveness prob-
lems.

2. Motivating Examples

Before giving the formal framework, we describe two motivating examples that
manipulate the most common heap structures – (singly) linked list and tree. For both
examples we assume memory of size h, a system’s parameter, with 0 representing nil.
The first example, LIST-REVERSAL, deals with a in-place list reversal. The statement
in line 2 denotes a simultaneous assignment of the three variables on the left-hand-
side to the (old) values of the expressions in the right-hand-side. The second, TREE-
INSERT, with insertion of a node n to a sorted binary tree. If the data contained in
node n is not already contained in the tree, then n is inserted as a new leaf. The tree
is assumed to be “non-sharing” – no two distinct links lead to the same node, and
“well-formed” – nil pointers lead to nil nodes without data. Otherwise the tree is not
modified. A formal description of the programs are in the sequel. Figures 2 and 3
describe the programs.
For LIST-REVERSAL we show:

1. Every node reachable from the initial node remains reachable upon termination;
2. The program eventually terminates.

For TREE-INSERT we show:

1. Every node reachable from the root remains so;

4

left, right : array [0..h] of [0..h]
data : array [0..h] of [0..k]
r : [0..h] init r > 0 ∧ ¬cycle(r)
t, n : [0..h] init t = r ∧ ¬reach(r, n) ∧ n > 0 ∧

left[n] = 0 ∧ right[n] = 0
done : bool init done = FALSE

init : well formed
m

∧ no sharing

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 : while ¬done do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 : if data[n] = data[t] then
3 : done := TRUE

4 : elseif data[n] < data[t] then⎡
⎢⎢⎢⎢⎣

5 : if left[t] = 0 then
6 : left[t] := n

7 : done := TRUE
else
8 : t := left[t]

⎤
⎥⎥⎥⎥⎦

9 : elseif right[t] = 0 then
10 : right[t] := n

11 : done := TRUE
else
12 : t := right[t]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3: Program TREE-INSERT

2. No node, but the one inserted, that is not initially reachable from the root be-
comes reachable upon termination;

3. If the new node contains data not initially in the tree then the node is inserted in
the tree;

4. The program eventually terminates;

We first translate the program into a formal model called “single parent heap sys-
tems” based on the [3] model of “finite heap systems” which in turn is based on the [1]
model of “bounded fair discrete systems” specialized for the case of heaps where each
node has a single “parent”; we later show how the model can encompass heaps where
each node has several children.
We shall use the above two examples as running examples throughout the paper.

At Section 7 we describe other examples.

3. The Formal Framework

In this section we present our computational model.

3.1. Fair Discrete Systems
As our computational model, we take a fair discrete system (FDS) 〈V,Θ, ρ,J , C〉,

where

5

• V —A set of system variables. A state ofD provides a type-consistent interpre-
tation of the variables V . For a state s and a system variable v ∈ V , we denote
by s[v] the value assigned to v by the state s. Let Σ denote the set of all states
over V .

• Θ—The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the
variables in state s ∈ Σ to the values V ′ in a D-successor state s′ ∈ Σ. We
assume that every state has a ρ-successor.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.

• C — A set of compassion (strong fairness) requirements: Each compassion re-
quirement is a pair 〈p, q〉 of state assertions; A computation should include either
only finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A run of an FDS D is a possibly infinite sequence of states σ : s0, s1, . . . satisfying

the requirements:

• Initiality— s0 is initial, i.e., s0 |= Θ.

• Consecution—For each � = 0, 1, . . ., the state s�+1 is aD-successor of s�. That
is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′
as s�+1[v].

A computation of D is an infinite run that satisfies

• Justice— for every J ∈ J , σ contains infinitely many occurrences of J-states.

• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occur-
rences of p-states, or σ contains infinitely many occurrences of q-states.

We say that a temporal property ϕ is valid over D, denoted by D |= ϕ, if for every
computation σ of D, σ |= ϕ. We are interested in safety properties, of the form � p,
and progress properties, of the form � (p→ � q), where p and q are state assertions.

3.2. Single-Parent Heaps
A single-parent heap system (SPHS) is an extension of the model of finite heap

systems of [3] specialized for representing trees.
Such a system is parameterized by a positive integer h, which is the heap size.

Some auxiliary arrays may be used to specify more complex structures (e.g., ordered
trees). However, each node u has a single link to which we refer as its “parent”, and
denote it by parent(u).
Let h > 0 be the heap size. We allow the following data types:

6

bool Variables whose values are boolean. With no loss of generality, we assume that
all finite domain (unparameterized) values are encoded as bools;

index Variables whose value is in the range [0..h];

index→ bool arrays (bool arrays) that map heap elements to boolean values. We
denote the set of boolean arrays by B;

index→ index arrays (index arrays), that describe the heap structure. We allow at
most a single index arrays, which we usually denote by parent for trees and by
Nxt for lists.

We assume a signature of variables of all of these types. Constants are introduced
as variables with reserved names. Thus, we admit the boolean constants FALSE and
TRUE, and the index constant 0. In order to have all functions in the model total, we
define both bool and index arrays as having the domain index. An SPHS is well-formed
if it never assigns a non-0 value to Z[0] for any (bool or index) array Z. Formally, we
say that a single-parent state is well formed if the state satisfies:

Z[0] = 0 ∧
∧
B∈B

(¬B[0]) (1)

where Z is the single index array (i.e., parent or Nxt).
On the other hand, unless stated otherwise, all quantifications are taken over the

range [1..h].
We refer to index elements as nodes. If in state s, the index variable x has the

value �, then we say that in s, x points to the node �. An index term is the constant 0,
an index variable, or an expression Z[y], where Z is an index array and y is an index
variable.
Atomic formulae are defined as follows:

• If x is a boolean variable, B is a bool array, and y is an index variable, then x
and B[y] are atomic formulae.

• If t1 and t2 are index terms, then t1 = t2 is an atomic formula.

• A transitive closure formula (tcf) of the form Z∗(x1, x2), denoting that x2 is
Z-reachable from x1, where x1 and x2 are index variables and Z is an index
array.

Preservation assertions describe the variables that are not changed by a transition.
There are two forms of preservation assertions: (i) pres({v1, . . . , vk}) =

∧k
i=1 v

′
i = vi

where all vi’s are scalar (bool or index) variables, and (ii) presH({a1, . . . , ak}) =∧k
i=1

∧
h/∈H . a′i[h] = ai[h] where all ai’s are arrays and H is a (possible empty)

set of index variables, which denotes that all but finitely many (usually a none or a
single) entries of arrays indexed by certain nodes remain intact. We abuse notation of
preservation and use the expression presEx ({v1, . . . , vk}) to denote the preservation of
all variables, excluding the terms v1, . . . , vk, which are either variables or array terms
of the form Z[x].

7

A restricted A-assertion is either one of the following forms: ∀y . Z[y] �= u,
∀y . Z[y] �= u ∨ B[y], ∀y . Z[y] �= u ∨ ¬B[y], presH(Z), and presH(B), where Z
is an index array and B is a bool array, and H is a set of index variables. A restricted
EA-assertion is a formula of the form ∃�x . ψ(�u, �x), where �x is a list of index variables,
and ψ(�u, �x) is a boolean combination of atomic formulae and restricted A-assertions,
where restricted A-assertions appear under positive polarity. Note that in restricted
EA-assertions, universally quantified variables may not occur in tcf’s. As the initial
condition Θ we allow restricted EA-assertions, and in the transition relation ρ and fair-
ness requirements we only allow restricted EA-assertions without tcf’s. Properties are
safety properties, of the form ∀�x.(φ1(�x) → � φ2(�x))) where φ1 and φ2 are boolean
combinations of atomic formulae, and liveness properties of the form ∀�x. � (φ(�x))
where φ is similarly defined.
Recall the TREE-INSERT example of Section 2. As mentioned in the introduction,

one can easily transform a tree into a single parent structure by reversing the directions
of the links, which we are going to formalize in Section 4. An ordered SPHS is one that
includes a distinguished ct : index → [1..k] array, for some constant k, that denotes
for each heap node its place among its siblings. This allows the subtrees of a given
root node to be distinguished by their ct order. We extend the assertional language
with a new type of atomic formula: For each i ∈ [1..k], the formula i-subtreeZ(x1, x2)
denotes that x1 is in the ith subtree of x2, where x1 and x2 are index variables and Z
is an index array. This is formally expressed by the formula

i-subtreeZ(x1, x2) : ∃u . Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u)

We support these predicates explicitly rather than as derived forms because, due to the
transitive closure over a quantified variable, they would otherwise be outside of the
assertional language allowed for abstraction predicates (see Section 5). Throughout
the paper, when the index array Z is apparent from the context, we use the short form
i-subtree(x1, x2). For example, in the context of program TREE-INSERT of Example 2,
the predicates left-subtree and right-subtree denote the left and right subtree relations
among nodes of the parent array, whereas left-subtree′ and right-subtree′ denote sub-
tree relations among nodes of the parent ′ array.

3.3. Examples
We present examples of transforming program manipulating multi-linked heaps

into SPHS.

Example 1 (List Reversal).

Consider program LIST-REVERSAL of Fig. 2 in Section 2. The array Nxt describes
the pointer structure. We ignore the actual data values, but they can easily be added as
bool type variables.
Fig. 4 describes the SPHS corresponding to program LIST-REVERSAL. Note that all

the clauses in Fig. 4 are restricted EA-assertions without tcf’s. The justice requirement
states that as long as the program has not terminated, its execution continues.

8

V :

⎧⎨
⎩

Nxt : array [0..h] of [0..h]
x, y : [0..h]
π : [1..3]

Θ : π = 1 ∧ y = 0

ρ :

⎡
⎢⎢⎢⎢⎣

π = 1 ∧ π′ = 3 ∧ x = 0 ∧ presEx ({π})
∨ π = 1 ∧ π′ = 2 ∧ x �= 0 ∧ presEx ({π})
∨ π = 2 ∧ π′ = 1 ∧ x′ = Nxt [x] ∧ y′ = x ∧

Nxt ′[x] = y ∧ presEx ({π, x, y,Nxt [x]})
∨ π = 3 ∧ presEx (∅)

⎤
⎥⎥⎥⎥⎦

J : {π �= 1, π �= 2}

C : ∅

Figure 4: SPHS for Program LIST-REVERSAL

One of the safety properties one wishes to prove is that no elements are removed
from the list, i.e., that every element initially reachable from x is reachable from y upon
termination. This property can be expressed by:

∀t.(π = 1 ∧ t �= 0 ∧Nxt∗(x, t)) → �(π = 3 → Nxt∗(y, t)) (2)

However, since here Nxt∗(x, t) is under a universal assertion, which is disallowed
by our definition of restricted EA-assertion, we augment the program with a skolem
constant t, whose initial value is unconstrained and remained fixed henceforth. The
validity of Formula (2) reduces to the validity of

(π = 1 ∧ t �= 0 ∧Nxt∗(x, t)) → �(π = 3 → Nxt∗(y, t)) (3)

In addition, one may want to prove the liveness property

� (π = 3) (4)

Example 2 (Single Parent Encoding of Tree Insertion).

Recall the TREE-INSERT program from Section 2. We present, in Fig. 5, a similar pro-
gram, SP-TREE-INSERT, encoded as a single-parent. In Subsection 4.3 we prove that
the transformation is sound. To allow for the presentation of a sorted binary tree, we
use an array ct (child-type) such that ct [u] equals left or right if node u is, respectively,
the left or right child of its parent. The initial condition captures the well-formedness
of Formula (1) and the requirement that any two children of the same parent must have
different child-types. (In Subsection 4.2 we term the conjunction of these two proper-
ties well formeds.)
The ε-expressions, εj.cond(j) in lines 8 and 12 denote “choose any node j that

satisfies cond.” For both statements in this program, it is easy to see that there is

9

parent : array [0..h] of [0..h]
ct : array [0..h] of {left, right}
data : array [0..h] of [0..k]
r : [0..h] init r > 0 ∧ parent [r] = 0
t, n : [0..h] init t = r ∧ n > 0 ∧ parent [n] = 0 ∧

∀u . parent [u] �= n

done : bool init done = FALSE

init : well formed ∧ ∀i �= j . parent [i] = parent [j] �= 0 → ct [i] �= ct [j]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 : while ¬done do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 : if data[n] = data[t] then
3 : done := TRUE

4 : elseif data[n] < data[t] then⎡
⎢⎢⎢⎢⎣

5 : if ∀j.parent [j] �= t ∨ ct [j] �= left then
6 : (parent [n], ct [n]) := (t, left)
7 : done := TRUE

else
8 : t := ε j . parent [j] = t ∧ ct [j] = left

⎤
⎥⎥⎥⎥⎦

9 : elseif ∀j.parent [j] �= t ∨ ct [j] �= right then
10 : (parent [n], ct [n]) := (t, right)
11 : done := TRUE

else
12 : t := ε j . parent [j] = t ∧ ct [j] = right

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 5: Program SP-TREE-INSERT

exactly one node j that meets cond. However, this is not always the case, and then
such an assignment is interpreted non-deterministically. We also allow for universal
tests, as those in lines 5 and 9, that test for existence of a particular node’s left or right
child.
In Fig. 6 we describe the SPHS for SP-TREE-INSERT. For the transition relation ρ,

we skip the description of the transition between lines 9 to 12 (denoting them by ρ9..12)
which is similar to the transition between lines 5 and 8. There we add a boolean error
variable initialized to FALSE, and set whenever Formula (1) is violated.
As discussed in Section 2, one may wish to show, for example, that program in

SP-TREE-INSERT no node is every lost:

parent∗(x, r) → � parent∗(x, r) (5)

and, not node (but possibly n) is ever gained:

x �= n ∧ ¬parent∗(x, r) → � ¬parent∗(x, r) (6)

Similarly to Example 1 we replace the universal quantification with a skolem constant
x.

10

V :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

parent : array [0..h] of [0..h]
ct : array [0..h] of {left, right}
data : array [0..h] of [0..k]
r : [0..h]
t, n : [0..h]
done : bool
π : [1..13]
error : bool

Θ :
¬parent∗(n, r) ∧ ¬parent∗(parent [r], r) ∧ r > 0 ∧ parent [r] = 0 ∧
parent [0] = 0 ∧ ∀i �= j . (parent [i] = parent [j] �= 0 → ct [i] �= ct [j]) ∧
t = r ∧ n > 0 ∧ parent [n] = 0 ∧ ∀u . (parent [u] �= n) ∧ ¬done ∧ ¬error

ρ:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

error ∧ presEx (∅)
∨

¬error ∧
π = 1 ∧ π′ = 2 ∧ ¬done ∧ presEx ({π})

∨ π = 1 ∧ π′ = 13 ∧ done ∧ presEx ({π})
∨ π = 2 ∧ π′ = 3 ∧ data[t] = data[n] ∧ presEx ({π})
∨ π = 2 ∧ π′ = 4 ∧ data[t] �= data[n] ∧ presEx ({π})
∨ π = 3 ∧ π′ = 1 ∧ done′ ∧ presEx ({π, done})
∨ π = 4 ∧ π′ = 5 ∧ data[n] < data[t] ∧ presEx ({π})
∨ π = 4 ∧ π′ = 9 ∧ data[t] ≤ data[n] ∧ presEx ({π})
∨ π = 5 ∧ π′ = 6 ∧ (∀j.parent [j] �= t ∨ ct [j] �= left) ∧ presEx ({π})
∨ π = 5 ∧ π′ = 8 ∧ (∃j.parent [j] = t ∧ ct [j] = left) ∧ presEx ({π})
∨ π = 6 ∧ n = 0 ∧ error′ ∧ presEx ({error})
∨ π = 6 ∧ π′ = 7 ∧ n �= 0 ∧ parent ′[n] = t ∧ ct ′[n] = left

∧ presEx ({π, parent [n], ct [n]})
∨ π = 7 ∧ π′ = 1 ∧ done′ ∧ presEx ({π, done})
∨ π = 8 ∧ π′ = 1 ∧ (∃j . parent [j] = t ∧ ct [j] = left ∧ t′ = j)

∧ presEx ({π, t})
∨ ρ9..12
∨ π = 13 ∧ π′ = 13 ∧ presEx ({π})

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J :
{

π �= 1, π �= 2, π �= 3, π �= 4, π �= 5, π �= 6,
π �= 7, π �= 8, π �= 9, π �= 10, π �= 11, π �= 12

}

C : ∅

Figure 6: SPHS for program SP-TREE-INSERT

4. From Multi-Linked Heaps into Single-Parent Heaps

We define multi-linked heap systems with a bounded out-degree on nodes, show
how to transform such a system into its ordered single-parent heap counterpart, and
prove the correctness of the transformation. Note that if the bounded out-degree is
1 then the heap is a single-parent and thus needs no special treatment. We therefore
restrict here to out-degrees of 2 or more.

11

4.1. Multi-linked Heap Systems
A multi-linked heap system is represented similarly to an SPHS, only, instead of

having a single index arrays (parent), we allow for some k > 1 index arrays, each de-
scribing one of the links a node may have. We denote these arrays by link1, . . . , linkk.
Thus, each link i is an array [0..h] → [0..h]. As in the single-parent case, we do not
allow programs to assign a non-0 value to any Z[0] (for a bool or index array Z), and
we assume it is always 0. We are mainly interested in non-sharing heaps, where no
two distinct (non-0) links can lead into the same non-0 node. Intuitively, non-sharing
captures the property that reversal of the links of a multi-linked heap system yields an
SPHS. Formally, a multi-linked heap system is well-formed if the following all holds:

1. For every i = 1, . . . , k, link i[0] = 0.
2. For every bool array B, ¬B[0].

We refer to the conjunction of the above two requirements by the formulaewell formedm.
In addition, we may require that:

1. No two distinct positive nodes may share a common positive child. This require-
ment can be formalized as

∀j, � ∈ [1..h], i, r ∈ [1..k] . (j �= �) ∧ (link i[j] = linkr[�]) → link i[j] = 0

2. No two distinct links of a positive node may point to the same positive child.
This can be formalized as

∀j ∈ [1..h], s, t ∈ [1..k] . (s �= t) ∧ (links[j] = link t[j]) → links[j] = 0

We refer to the conjunction of the above requirements by the formula no sharing. A
state violating no sharing is called a sharing state. A multi-linked system is called
sharing-free if none of its computations ever reaches a sharing state, nor does a com-
putation ever attempt to assign a value to Z[0] for some array Z.
Let D : 〈V,Θ, ρ,J , C〉 be a k-bounded multi-linked heap system. Fig. 7 describes

a BNF-like syntax of the assertions used in describing D, which we refer to as M-
assertions. As will become clear soon, M-assertions are the multi-linked equivalents
of the single-parent restricted EA-assertions. In Fig. 7, Ivar denotes an unprimed
index variable, Iarr denotes an unprimed index array, Bvar denotes an unprimed
bool variable, and Barr denotes an unprimed bool array. The expression reach(x, y)
abbreviates (x, y) ∈ (

⋃k
i=1 link i)

∗, and the expression cycle(x) abbreviates (x, x) ∈

(
⋃k

i=1 link i)
+. The Preservation assertion is just like in the single-parent case and we

require that if Assign appears in τ , then the Preservation assertion that is conjoined
with it includes preservation of all variables that don’t appear in the left-hand-side of
any clause of Assign.
For example, a binary tree is a multi-linked heap structure with bound 2 and no-

sharing. Each of left and right is a link . Program TREE-INSERT in Fig. 3 of Section 2
is the standard algorithm for inserting a new node, n, into a sorted binary tree rooted at
r. The properties listed in Example 2 can be expressed by the following two properties,
which are the counterparts of Formula (5) and Formula (6).

12

MCond1 ::= TRUE | Bvar | Barr[Ivar] | Ivar = Ivar |

Ivar = 0 | Iarr[Ivar] = Ivar | Iarr[Ivar] = 0 |

MCond1 ∨MCond1 | ¬MCond1

MCond2 ::= MCond1 | reach(Ivar,Ivar) | cycle(Ivar) |

¬MCond2 | MCond2 ∨MCond2

Assign ::= ε | Bvar′ | ¬Bvar′ | Barr′[Ivar] | ¬Barr′[Ivar] |

Bvar′ = Bvar | Ivar′ = 0 | Ivar′ = Ivar |

Iarr′[Ivar] = Ivar | Iarr′[Ivar] = 0 |

Assign ∧ Assign | Ivar′ = Iarr[Ivar]

Θ ::= MCond2 ∧ no sharing

ρ ::= TRUE | MCond1 ∧ Assign ∧ Preservation | ρ ∨ ρ

J ::= ∅ | J ∪ {MCond1}

C ::= ∅ | C ∪ {(MCond1,MCond1)}

Figure 7: Grammar for M-Assertions for Multi-Linked Systems

∀x. reach(r, x) → � reach(r, x) (7)

∀x. x �= n ∧ ¬reach(r, x) → � ¬reach(r, x) (8)

Section 2 also lists another safety property for TREE-INSERT, namely, that if needs
be, the new node is inserted into the tree. Formally,

(∀u. reach(r, u) → data[u] �= data[n]) → � (π = 13 → reach(r, n)) (9)

4.2. Transforming Multi-Linked Heaps into Single-Parent Heap Systems
Let Dm : 〈Vm,Θm, ρm,Jm, Cm〉 be a k-bounded multi-linked heap system. Thus,

Vm includes the index arrays link1, . . . , linkk. We transform Dm into an SPHS
Ds : 〈Vs,Θs, ρs,Js, Cs〉. Intuitively, to transform Dm into Ds, we replace the index
link arrays with a single index parent array that reverses the direction of the links,
and assign to ct [i] (child type) the “birth order” of i in the heap. The variable error ∈
Vs \ Vm is boolean and is set when Dm cannot be transformed into a singe-parent
system. This is caused by either an assignment to Z[0] or by a violation of the non-
sharing requirement. When such an error occurs, error is raised, and remains so, i.e.,
ρs implies error → error′.
Formally we transformDm intoDs, as follows. The set of variables Vs consists of:

13

1. Vm \ {link1, . . . , linkk}, i.e., we remove from Vm all the link arrays;
2. An index array parent : [0..h] �→ [0..h] that does not appear in Vm;
3. A bool array ct : [0..h] �→ [0..k] that does not appear in Vm (recall our conven-
tion that “bool” can be any finite-domain type);

4. A new bool variable error; error is set whenDm contains an erroneous transition
such as one that introduces sharing in the heap, or one that attempts to assign
values to Z[0] for some array Z.

We extend the definition of the well-formedness of Subsection 3.2 and require that
single parent state is well formed, and denote it by well formeds, if:

parent [0] = 0 ∧
∧

B∈B(¬B[0]) ∧
∀i �= j . (parent [i] = parent [j] �= 0 → ct [i] �= ct [j])

(10)

Note that the first conjunct is exactly Formula (1) of Subsection 3.2.
We next transform the M-assertions used in multi-linked heap systems into re-

stricted EA-assertions used for the SPHS’s. In fact, since no sharing and Preservation
are easily translatable into restricted EA-assertions over Vs, it suffices to transform
the M-asserions MCond1, MCond2, and Assign into restricted EA-assertions over
Vs. Since ρm can be easily expressed as a disjunction of M-assertions, this is done by
induction on the structure of the three M-assertions.
Let ψ be an M-assertion. In the following cases, ψ remains unchanged in the trans-

formation:

1. ψ contains no reference to index variables and arrays;
2. ψ is of the form x1 = x2 where x1 and x2 are both primed, or both unprimed,
index variables;

3. ψ is of the form x1 = x2 where x1 is a primed, and x2 is an unprimed, index
variable;

4. ψ is of the form x = 0 where x is a (either primed or unprimed) index variable;
5. ψ is of the form B[x], where B is an unprimed bool array.

The other cases are treated below. We now denote primed variables explicitly, e.g., x1
refers to an unprimed variable, and x′1 refers to a primed variable:

1. An assertion of the form link j [x2] = x1 is transformed into

(x2 = 0 ∧ x1 = 0)
∨ (x2 �= 0 ∧ x1 = 0 ∧ ∀z . (parent [z] �= x2 ∨ ct [z] �= j))
∨ (x2 �= 0 ∧ x1 �= 0 ∧ parent [x1] = x2 ∧ ct [x1] = j)

In the case that x2 �= 0 and x1 = 0, x2 should have no jth child. If x2 �= 0 and
x1 �= 0, then x1 should have x2 as a parent and the child type of x1 should be j.

2. A transitive closure formula reach(x1, x2) is transformed into

(x1 �= 0 ∧ x2 �= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

The first disjunct deals with the case where x1 and x2 are both non-0 nodes, and
then the reachability direction is reversed, reflecting reversal of heap edges in the

14

transformation to an SPHS. The second disjunct deals with the case that x2 = 0,
and then, since k > 1 and sharing is not allowed, there is a path from any node
into 0.

3. A transitive closure formula cycle(x), where x is an index variable, is trans-
formed into parent∗(parent [x], x).

4. An assertion of the form x′1 = link j [x2] is transformed into:

(x2 = 0 ∧ x′1 = 0)
∨ (x2 �= 0 ∧ x′1 = 0 ∧ ∀y . (parent [y] �= x2 ∨ ct [y] �= j))
∨ (x2 �= 0 ∧ ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′1 = y)

In case x2 = 0, this transition sets x1 to 0 since we assume that in non-sharing
states link j [0] = 0 for every j = 1, . . . , k. Otherwise, if x2 has no jth child,
then x1 is set to 0. Otherwise, there exists a y which is the jth child of x2, and
then x1 is set to y.

5. The transformation of an assertion of the form B′[x], where B is an unprimed
bool array, depends on the polarity of B′[x]. If positive, it is transformed into:

(x = 0 ∧ error′) ∨ (x �= 0 ∧ B′[x])

The error condition reflects an attempt to assign TRUE to B[0]. If the assertion
B′[x] appears under negative polarity, then no erroneous assignment is possible,
and the assertion remains unchanged by the transformation.

6. An assertion of the form link ′j [x1] = x2 is transformed into:

Err ∧ error′ ∨
¬Err

∧ (x2 = 0 ∨ (x2 �= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧

(
∀z . (parent [z] �= x1 ∨ ct [z] �= j) ∨
∃z . (parent [z] = x1 ∧ ct [z] = j ∧ (z = x2 ∨ parent ′[z] = 0))

)

Where Err is defined by:

(x1 = 0 ∧ x2 �= 0)
∨ (x2 �= 0 ∧ parent [x2] �= 0 ∧ (parent [x2] �= x1 ∨ ct [x2] �= j))

I.e., the assignment may cause an error by either attempting to assign a nonzero
value to link j [0], or by introducing sharing (when x2 either has a parent that is
not x1, or is x1’s ith child for some i �= j).
When there is no error, x2 should become the jth child of x1 unless it is 0, which
is expressed by the first conjunct of the non-error case; in addition, any node that
was the jth child of x1 before the transition should become “orphaned,” which
is expressed by the second conjunct of the non-error case.

Note that the transformation guarantees that M-assertions are transformed into re-
stricted EA-assertions.

Example 3 (transforming TREE-INSERT).

15

In Example 2 we presented SP-TREE-INSERT directly as an SPHS. Assume, however,
that we start with TREE-INSERT, and translate its FDS into an SPHS. The FDS obtained
would be very similar to that presented in Fig. 6, only that a special treatment would be
required for test of the maintenance of the well-formedness. For example in statement
where π = 8, in Fig. 6 the corresponding transition

π′ = 1 ∧ (∃j . parent [j] = t ∧ ct [j] = left ∧ t′ = j) ∧ presEx ({π, t})

while had we started as we should have from an FDS of TREE-INSERT the correspond-
ing transition, resulting from case (1) of the transformation, is

π′ = 1 ∧ presEx ({π, t}) ∧⎛
⎝ t = 0 ∧ t′ = 0

∨ t �= 0 ∧ t′ = 0 ∧ ∀j . (parent [j] �= t ∨ ct [j] �= left)
∨ t �= 0 ∧ ∃j . (parent [j] = t ∧ ct [j] = left ∧ t′ = j)

⎞
⎠

4.3. Correctness of Transformation
In order for the above transformation to fit into the verification process proposed

in Section 1, we have to show that the result of the verification, as carried out on the
transformed system and property, holds with respect to the untransformed counterparts.
Such a result is provided by Theorem 1 below. To show that the abstraction compu-
tation method of Subsection 5.3 is sound with respect to a transformed program and
property, we use the translation of M-assertions into restricted EA-assertions and Theo-
rem 2 below. For simplicity of presentation, in this section we do not take into account
fairness requirements. However, it is straightforward to extend the results, i.e., show
that the heap transformation preserves satisfiability of justice requirements, and that
the computation transformation preserves compassion.
LetDm : 〈Vm,Θm, ρm,Jm, Cs〉 be a k-bounded multi-linked heap system over the

set of variables Vm, with k > 1, and let Ds : 〈Vs,Θs, ρs,Js, Cs〉 be its transformation
into an SPHS. The transformation into an SPHS induces a mapping S : Σm → Σs. The
mapping S is formally defined below. Let S be a mapping from Σm into Σs, such that
for every sm ∈ Σm, if ss = S(sm), then the following all hold:

1. For every bool variable v ∈ Vm, ss[v] = sm[v];
2. For every bool array B ∈ Vm and x ∈ [0..h], ss[B](x) = sm[B](x);
3. For every index variable x ∈ Vm, ss[x] = sm[x]

4. ss[parent](0) = 0 and ss[ct](0) = 1.
5. Let y ∈ [1..h]. If for all z ∈ [1..h] and i ∈ [1..k], sm[link i](z) �= y, then
ss[parent](y) = 0 and ss[ct](y) = 1. Otherwise, ss[parent](y) = x and
ss[ct](y) = j where (x, j) is the lexicographically minimal pair in {(z, i) :
z ∈ [1..h], i ∈ [1..k], and sm[link i](z) = y}.

6. sm[error] =
{
FALSE, if sm |= no sharing ∧ well formedm

TRUE, otherwise

16

The following observation is an immediate consequence of the definition of the map-
ping:

Observation 1. The inverse S−1 is well defined for any well formed non-error state
ss ∈ Σs. That is, if ss |= well formeds ∧ ¬error then there exists a state sm ∈ Σk

such that S(sm) = ss.

In Appendix A we prove the main theorems that establish the correctness of the
transformation. Theorem 1 establishes the soundness of the transformation, that is,
that every temporal property holds over the multi-linked systems iff it holds over the
SPHS:

Theorem 1 (Soundness). Assume that for every reachable Dm-state sm ∈ Σm, s |=
no sharing ∧ well formedm. Let ϕm be a temporal property over M-restricted A-
assertions over Vm, and let ϕs be ϕm, where every assertion over Vm is replaced with
its transformation into a restricted EA-assertion over Vs. Then: Ds |= ϕs ⇐⇒ Dm |=
ϕm

While Theorem 1 shows that validity of temporal formulae carries from multi-linked
systems into single-parent ones only when the former satisfy non-sharing and well-
formedness, we prove that if the latter never reaches an error state, then the former
never violates non-sharing and well-formedness:

Theorem 2 (Non-sharing).

If Ds |= � (¬error ∧ well formeds)
then Dm |= � (no sharing ∧ well formedm)

Thus, to verify Dm |= ϕm, one would initially perform a “sanity check” by verifying
Ds |= � ¬error. If this is successful, then the process outlined in Section 1 can be
carried out. Theorem 1 guarantees not only that correctness of Ds implies correctness
of Dm, but also that a counterexample over Ds is mappable back into Dm.

5. Abstraction

We fix an SPHS S = 〈V,Θ, ρ,J , C〉 whose set of states is Σ for this section.

5.1. Finitary Abstraction
The material here is an overview of (a somewhat simplified version of) [22]. See

there for details.
An abstraction is a mapping α : Σ → Σ

A
for some set Σ

A
of abstract states. The

abstraction α is finitary if the set of abstract statesΣ
A
is finite. We focus on abstractions

that can be represented by a set of equations of the form ui = Ei(V), i = 1, . . . , n,
where the Ei’s are assertions over the concrete variables (V) and {u1, . . . , un} is the
set of abstract variables, denoted by V

A
. Alternatively, such α can be expressed by:

V
A
= Eα(V)

17

For an assertion p(V), we define its abstraction by:

α(p) : ∃V.(V
A
= E

A
(V) ∧ p(V))

The semantics of α(p) is ‖α(p)‖ = {α(s) | s ∈ ‖p‖}. Note that ‖α(p)‖ is, in general,
an over-approximation – an abstract state is in ‖α(p)‖ iff there exists some concrete
p-state that is abstracted into it. An assertion p(V, V ′) over both primed and unprimed
variables is abstracted by:

α(p) : ∃V, V ′.(V
A
= E

A
(V) ∧ V ′

A
= E

A
(V ′) ∧ p(V, V ′))

The assertion p is said to be precise with respect to the abstraction α if ‖p‖ =
α−1(‖α(p)‖), i.e., if two concrete states are abstracted into the same abstract state,
they are either both p-states, or they are both ¬p-states. For a temporal formula ψ in
positive normal form (where negation is applied only to state assertions), ψα is the
formula obtained by replacing every maximal state sub-formula p in ψ by α(p). The
formula ψ is said to be precise with respect to α if each of its maximal state sub-
formulas are precise with respect to α.
We restrict the abstraction predicates to be boolean combinations of atomic for-

mulae and non-preservation universal formulae. This last restriction ensures that the
language of abstraction predicates is closed under negation, an assumption needed dur-
ing abstraction computation. In all cases discussed in this paper, the formulae are
precise with respect to the relevant abstractions. Hence, we can restrict to the over-
approximation semantics.
The α-abstracted version of S is the system

Sα = 〈V
A
, α(Θ), α(ρ),

⋃
J∈J

α(J),
⋃

(p,q)∈C

(α(p), α(q))〉

From [22] we derive the soundness of finitary abstraction:

Theorem 3. For a system S, abstraction α, and a positive normal form temporal for-
mula ψ:

Sα |= ψα =⇒ S |= ψ

Thus, if an abstract system satisfies an abstract property, then the concrete system sat-
isfies the concrete property.

5.2. Predicate Abstraction
Predicate abstraction is an instance of finitary abstraction where the abstract vari-

ables are boolean. Following [30], an initial predicate abstraction is chosen as follows:
Let P be the (finite) set of atomic state formulas occurring in ρ, Θ, J , C and the
concrete formula ψ that refer to non-control and non-primed variables. Then the ab-
straction α is the set of equations {Bp = p : p ∈ P}. The formula ψα is then checked
over Sα producing either a confirmation that Sα |= ψa or a counterexample. In the
former case, the process terminates concluding that S |= ψ. Else, the counterexample
produced is concreticized and checked whether it is indeed a feasible S-trace. If so,

18

x 0, t 0, r xt , r yt : bool
init x 0 = t 0 = F, r xt = T, r yt = t 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 : while ¬x 0 do

2 :

⎡
⎢⎢⎢⎢⎢⎢⎣

(r xt , r yt) := case
¬r xt ∧ ¬r yt : (F,F)
¬r xt ∧ r yt : {(F,T), (T,T)}
otherwise : {(F,T), (T,F), (T,T)}

esac
x 0 := if r xt then F else {F,T}

end
3 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 8: Program ABSTRACT-LIST-REVERSAL

the process terminates concluding that S �|= ψ. Otherwise, the concrete trace implies
a refinement α′ of α under which the abstract error trace is infeasible. The process re-
peats (with a′) until it succeeds – ψ is proven to be valid or invalid – or the refinement
reaches a fixpoint, in which case the process fails. See [15, 6, 7] for discussion of the
iterated abstraction refinement method.
We demonstrate the process of predicate abstraction on program LIST-REVERSAL.

In the next section we show how to automatically compute the abstraction.

Example 4 (List Reversal Abstraction).
Consider program LIST-REVERSAL of Example 1 and the no-loss property Formula (3)
there. To prove the safety property of Formula (3), the set P consists of x = 0, t = 0,
Nxt∗(x, t), and Nxt∗(y, t), which we denote as the abstract variables x 0, t 0, r xt ,
and r yt respectively.
The abstract program is ABSTRACT-LIST-REVERSAL, shown in Fig. 8, and the

abstract property corresponding to Formula (3) is:

ψα : (Π = 1 ∧ ¬t 0 ∧ r xt) → �(Π = 3 → r yt)

where Π is the program counter of the abstract program.
It is now left to check whether Sα |= ψα, which can be done, e.g., using a model

checker. Here, the initial abstraction is precise enough, and program ABSTRACT-LIST-
REVERSAL satisfies ψα.

5.3. Computing Symbolic Abstractions of Single-Parent Heap Systems
We show how to symbolically compute the abstraction of an SPHS by extending the

methodology of [3]. That methodology is based on a small model property establishing
that satisfiability of a restricted assertion is checkable on a small instantiation of a
system. The main effort here is dealing with the extensions to the assertional language
introduced for SPHS’s. For simplicity, it is assumed that all scalar values are represented
by multiple boolean values.

19

Assume a vocabulary V of typed variables, as well as the primed version of said
variables. Furthermore, assume that there is a single unprimed index array in V as well
as a single primed one. These will be denoted throughout the rest of this section by
parent and parent ′, respectively. A modelM of size h+ 1 for V consists of:

• A positive integer h > 0;

• For each boolean variable b ∈ V , a boolean valueM [b] ∈ {FALSE, TRUE}. It is
required thatM [FALSE] = FALSE andM [TRUE] = TRUE;

• For each index variable x ∈ V , a valueM [x] ∈ [0..h]. It is required thatM [0] =
0 andM [H] = h;

• For each bool array B ∈ V , a functionM [B] : [0..h] → {FALSE, TRUE};

• For each index array Z ∈ {parent , parent ′}, a functionM [Z] : [0..h] → [0..h].

Let ϕ be a restricted EA-assertion, which we fix for this section. We require that if a
term of the form parent ′[u] occurs in ϕ where u is a free or existentially quantified
variable in ϕ, then ϕ also contains the preservation formula associated with parent .
Note that this requirement is satisfied by any reasonable ϕ — assertions that contain
primed variables occur only in proofs for abstraction computation (rather than in prop-
erties of systems), and are generated automatically by the proof system. In such cases,
the assertion generated includes also the transition relation, which includes all preser-
vation formulae. We include this requirement explicitly since the proof of the small
model theorem depends on it.
Given a modelM , one can evaluate the formula ϕ over the modelM . The model

M is a satisfying model for ϕ, if ϕ evaluates to TRUE inM , i.e., ifM |= ϕ. An index
term t ∈ {u, Z[u]} in ϕ, where u is an existentially quantified or a free variable, is
called a free term. Let Tϕ denote the minimal set consisting of the following:

• The term 0 and all free terms in ϕ;

• For every array Z ∈ V , if Z[u] ∈ Tϕ then u ∈ Tϕ;

• For every bool arrayB ∈ V , ifB[u] ∈ ϕ, then ifB is unprimed, parent [u] ∈ Tϕ,
and if B is primed, parent ′[u] ∈ Tϕ;

• If parent ′[u] ∈ Tϕ then parent [u] ∈ Tϕ (this is similar to history closure of
Subsection 6.2).

LetM be a model that satisfiesϕwith size greater then |Tϕ|+1 as follows: LetN be the
set of [0..h] values thatM assigns to free terms in Tϕ. Assume thatN = {n0, . . . , nm}
where 0 = n0 < · · · < nm. Obviously, m ≤ |Tϕ|. Define a mapping γ : N → [0..m]
such that γ(u) = i iffM [u] = ni (Recall thatM [Tϕ] = N , so that γ is onto).
We now define the model M . We start with its size and the interpretation of the

scalars: M [h] = m+1; For each bool variable b,M [b] =M [b]; For each term u ∈ Tϕ
M [u] = γ(u).
Let Z ∈ {parent , parent ′} be an index array, and let j ∈ [0..m]. Consider the

Z-chain in M α : nj = u0, . . . such that for every i ≥ 1, M [Z](ui−1) = M [ui]. If

20

there is some i ≥ 1 such that ui ∈ N , then let k be the minimal such i. We then say
that uk−1 is theM representative of Z for j and defineM [Z](j) = γ(uk). If no such
i exists, thenM [Z](j) = m+1.
As for the interpretation of M over bool arrays, we distinguish between the case

of unprimed and primed arrays. For an unprimed (resp. primed) bool array B, for
every j ∈ [0..m], if the M representative of parent (resp. parent ′) is defined and
equals v, then let M [B](j) = M [B](v). Otherwise, M [B](j) = M [B](nj). As for
M [B](m+1), let d ∈ [0..h] be the minimal such thatM [d] �∈ N . ThenM [B](m+1)
is defined to beM [B](d).
Note that nj in the reduced model inherits the properties of its representative in the

large model.

Example 5 (Model Reduction).

(a) A single-parent heap modelM

(b) The reduction M

ofM

Figure 9: Model Reduction

Let parent and data be index and bool arrays respectively, and let ϕ be the assertion:

ϕ : ∃u, v . u �= v ∧ ∀y . (parent [y] �= u ∨ data[y])

Since there are no free variables in ϕ, and since no array term refers to the uth or vth
element, it follows that Tϕ consists only of the index terms u and v. LetM be a model
of ϕ of size 7, as shown in Fig. 9(a). The interpretations byM of terms in Tϕ are the
highlighted nodes. Each node y is annotated with the valueM [data](y) (e.g., the node
pointed to by u has data value FALSE). M , which is the reduction ofM with respect
to Tϕ, is given in Fig. 9(b). TheM representative of parent forM [v] is given by the
node highlighted by a dashed line in Fig. 9(a). As shown here, the node pointed to by
v inM takes on the properties of this representative node.

In Appendix B we prove:

Theorem 4 (Small Model Property). If M |= ϕ then ϕ is satisfiable by a model of
size at most |Tϕ|+ 1.

Given a restricted EA-assertion ϕ and a positive integer h0, we define the h0-
bounded version of ϕ, denoted �ϕ�h0

, to be the conjunction ϕ∧ (H ≤ h0). Theorem 4
can be interpreted as stating that ϕ is satisfiable iff �ϕ�|T | is satisfiable.

21

Next, we would like to extend the small model property to the computation of
abstractions. Consider first the case of a restricted EA-assertion ϕ which only refers to
unprimed variables. As explained in Subsection 5.1, the abstraction of ϕ is given by
α(ϕ) = ∃V (V

A
= E

A
(V)∧ϕ(V)). Assume that the set of (finitely many combinations

of) values of the abstract system variables V
A
is {U1, . . . , Uk}. Let sat(ϕ) be the subset

of indices i ∈ [1..k], such that Ui = Eα(V) ∧ ϕ(V) is satisfiable. Then, it is obvious
that the abstraction α(ϕ) can be expanded into

α(ϕ)(V
A
) =

∨
i∈sat(ϕ)

(V
A
= Ui) (11)

Next, let us consider the abstraction of �ϕ�|T |, where T consists of all free terms in ϕ
and Eα(V) and the variable H , i.e. all the free terms in the assertion Ui = Eα(V) ∧
ϕ(V) ∧ (H ≤ h0). Our reinterpretation of Theorem 4 implies that sat(�ϕ�|T |) =
sat(ϕ) which leads to the following theorem:

Theorem 5. Let ϕ be an assertion which only refers to unprimed variables, α : V
A
=

E
A
(V) be an abstraction mapping, T be the set of free terms in the formula (Ui =

EA(V)) ∧ ϕ(V) ∧ (H ≤ h0), and h0 = |T |. Then

α(ϕ)(V
A
) ∼ α(�ϕ�h0

)(V
A
)

Theorem 5 deals with assertions that do not refer to primed variables. It can be ex-
tended to the abstraction of an assertion such as the transition relation ρ. Recall that
the abstraction of such an assertion involves a double application of the abstraction
mapping, an unprimed version and a primed version. Thus, we need to consider the
set of free terms in the formula (Ui = E

A
(V)) ∧ U2 = E

A
(V ′) ∧ ρ(V, V ′) plus the

variable H .
Next we generalize these results to entire systems. For an SPHS S = 〈V,Θ, ρ,J , C〉

and positive integer h0, we define the h0-bounded version of S, denoted �S�h0
, as

〈V ∪ {H}, �ρ�h0
, �J �h0

, �C�h0
〉, where �J �h0

= {�J�h0
| J ∈ J } and �C�h0

=
{(�p�h0

, �q�h0
) | (p, q) ∈ C}. Let h0 be the maximum size of the sets of free terms for

all the abstraction formulas necessary for computing the abstraction of all the compo-
nents of S. Then we have the following theorem:

Theorem 6. Let S be an SPHS, α be an abstraction mapping, and h0 the maximal size
of the relevant sets of free terms as described above. Then the abstract system Sα is
equivalent to the abstract system �S�αh0

.

We use BDD techniques to compute the abstract system �S�αh0
. The only manual

step in the process is the choice of the state predicates. As discussed in Subsection 5.2,
the initial choice is usually straightforward. One of the attractive advantages of using
a model checker for the abstraction is that it can be invisible – thus, the abstraction,
and checking of the (abstract) property over it, can be done completely automatically,
and the user need not see the abstract program, giving rise to the method of invisible
abstraction. However, because of the need for refinement, the user may actually prefer
to view the abstract program.

Example 6 (List reversal – safety).

22

Consider again program LIST-REVERSAL. In Example 4 (of Subsection 5.2) we de-
scribed its abstraction, which was manually derived, and the safety property ψα. In
order to obtain an automatic abstraction for the system whose set of free terms is
T = {0, H, x, y, t, x′, y′,Nxt ′[x]}, we bounded the system by h0 = 8.
We compute the abstraction by initially preparing an input file describing the con-

crete truncated system. We then use BDD-techniques for dynamically constructing and
updating a model to construct the abstract system by separately computing the abstrac-
tion of the concrete initial condition, transition relation, and fairness requirements.
Having computed the abstract system, we check the safety property ψα, which, of

course, holds.

As a consequence, in order to compute the abstract system Sα, we can instantiate
the system S to a heap of size h0, and use propositional methods, e.g., BDD-techniques
to compute the abstract system �S�αh0

. Note that h0 is linear in the number of system
variables. This process is fully automatic once the predicate base is given. The exact
manner by which predicates themselves are derived (e.g., by user input or as part of a
refinement loop) is orthogonal to the method presented here.
We conclude this section by presenting the abstraction and verification of safety

property of SP-TREE-INSERT:

Example 7 (Tree Insert – safety).

Recall SP-TREE-INSERT from Subsection 4.1 and its properties in Formulae (7), (8),
and (9):

reach(r, x) → � reach(r, x) (7)

x �= n ∧ ¬reach(r, x) → � ¬reach(r, x) (8)

(∀u.reach(r, u) → data[u] �= data[n]) → � (π = 13 → reach(r, n)) (9)

We begin by eliminating the universal quantifiers in the no-loss and no-gain proper-
ties by introducing a skolem constant x. This is done by augmenting the program with
a variable with an undetermined initial value that stays constant throughout a compu-
tation. This is a purely syntactic transformation.
As for the insertion property, unfortunately the abstraction computation method

disallows any occurrence of reach predicates under universal quantification. Therefore,
we heuristically instantiate the universal variable u to derive the following (stronger)
property:
⎛
⎝ ∧

u∈{r,n,t}

reach(r, u) → data[u] �= data[n]

⎞
⎠ → � (π = 13 → reach(r, n)) (12)

We now apply predicate abstraction. We use the predicate base given by the fol-

23

lowing set of assertions:

P :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 : ∀j . parent [j] �= n,

p2 : left-subtree(n, r),
p3 : right-subtree(n, r),
p4 : parent∗(t, r),
p5 : ∃j . parent [j] = t,

p6 : data[t] = data[n],
p7 : parent∗(x, r)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Note that the predicate p1 is in fact an inductive invariant, a fact that can be decided
(without the use of abstraction) by directly applying Theorem 4 to check validity of the
verification conditions

I1. Θ → p1
I2. p1 ∧ ρ→ p′1

Having decided the invariance of p1, it is possible to optimize the abstraction compu-
tation by removing p1 from the predicate base, and by constraining the concrete state
space to p1-states only.

6. Liveness

6.1. Transition Abstraction
State abstraction often does not suffice to verify liveness properties and needs to be

augmented with transition abstraction. Let (D,�) be a partially ordered well founded
domain, and assume a ranking function δ : Σ → D. Define a function decreaseδ by:

decreaseδ =

⎧⎨
⎩

1 δ � δ′

0 δ = δ′

−1 otherwise

Transition abstraction can be incorporated into a system by (synchronously) composing
the system with a progress monitor [22], shown in Fig. 10. The compassion require-

dec : {-1, 0, 1}

[
1 : loop forever do

2 : dec := decreaseδ

]

compassion (dec = 1, dec = −1)

Figure 10: Progress MonitorM(δ) for a Ranking δ

ment states that if dec is 1 infinitely many times, it should also be -1 infinitely many

24

x, y : N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 : x := ?
2 : while x > 0 do⎡

⎢⎢⎢⎢⎢⎢⎣

3 : y := ?
4 : while y > 0 do[

5 : y := y − 1
6 : skip

]

7 : x := x− 1
8 : skip

⎤
⎥⎥⎥⎥⎥⎥⎦

9 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 11: Program NESTED-LOOPS

times. This corresponds to the well-foundedness of (D,�): the ranking cannot de-
crease infinitely many times without increasing infinitely many times. To incorporate
this in a state abstraction α, we add the defining equation decA = dec to α.

Example 8 (List Reversal Termination).

Consider program LIST-REVERSAL and the termination property � (π = 3). The
loop condition x �= 0 in line 1 implies that the set of nodes starting with x is a measure
of progress. This suggests the ranking δ = {i | Nxt∗(x, i)} over the well founded
domain (2N,⊃). That is, the rank of a state is the set of all nodes which are currently
reachable from x. As the computation progresses, this set loses more and more of its
members until it becomes empty. Using a sufficiently precise state abstraction, one can
model check that the abstract property � (Π = 3) indeed holds over the program.

Just like the case of predicate abstraction, we lose nothing (except efficiency) by
adding potentially redundant rankings. The main advantage here over direct use of
ranking functions within deductive verification is that one may contribute as many el-
ementary ranking functions as one wishes. Assuming a finitary abstraction, it is then
left to the model-checker to sort out their interaction and relevance. To illustrate this,
consider the program NESTED-LOOPS in Fig. 11. The statements x := ?, y := ?
in lines 1 and 3 denote assignments of a random natural to x and y. Due to this un-
bounded non-determinism, a deductive termination proof of this program needs to use
a ranking function ranging over lexicographic triplets, whose core is (π = 1, x, y).
With augmentation, however, one need only provide the rankings δ1 : x and δ2 : y.

6.2. Computing the Augmented Abstraction
We aim to apply symbolic abstraction computation of Subsection 5.3 to systems

augmented with progress monitors. However, since progress monitors are not limited to
restricted A-assertions, such systems are not necessarily SPHS’s. Thus, for any ranking
function δ, one must show that Theorem 6 is applicable to such an extended form
of SPHS’s. Since all assertions in the definition of an augmented system, with the
exception of the transition relation, are restricted A-assertions, we need only consider

25

the augmented transition relation ρ ∧ ρδ , where ρ is the unaugmented transition relation
and ρδ is defined as dec′ = decreaseδ . Let T be a set consisting of all free terms in
the assertions ρ ∧ ρδ , Eα(V), and Eα(V ′), as well as the variableH . Then Theorem 6
holds if it is the case that

sat(�ρ ∧ ρδ�|T |) = sat(ρ ∧ ρδ) (13)

Since proving Formula (13) for an arbitrary ranking is potentially a significant manual
effort, we specifically consider the following commonly used ranking functions over
the well founded domain (2N,⊃):

δ1(x) = {i | Nxt∗(x, i)} (14)
δ2(x) = {i | Nxt∗(i, x)} (15)

δ3(x, y) = {i | Nxt∗(x, i) ∧ Nxt∗(i, y)} (16)

In the above, x, y are index variables, and Nxt is an index array. Ranking δ1 is used
to measure the progress of a forward moving pointer x, while ranking δ2 is used to
measure the progress of a backward moving pointer x. Ranking δ3 is used to measure
the progress of pointers x and y toward each other. Throughout the rest of this section
we assume that the variables x and y appearing in δ1 , δ2, or δ3 are free terms in the
unaugmented transition relation.
In order to extend the small model property to cover transition relations of the form

ρδ we impose stronger conditions on the set of terms T . A term set T is said to be
history closed if for every term of the form Nxt [x], Nxt ′[x] ∈ T only if Nxt [x] ∈ T .
From now on, we restrict to history-closed term sets. Note that history closure implies
a stronger notion of uniformity as follows: For any model M and nodes k, k1, k2, if
M [Nxt](k) = k1 �= k2 = M [Nxt ′](k), then all of k, k1, k2 are pointed to by terms in
T .
The following theorem, whose proof is in Appendix C, establishes the soundness

of our method for proving liveness for the three ranking functions we consider.

Theorem 7. Let S be an unaugmented SPHS with transition relation ρ, δi be a ranking
with i ∈ {1, 2, 3}, M be a uniform model satisfying ρ ∧ ρδ , T be a history-closed
term set containing the variable H and the free index terms in the assertions ρ ∧ ρδ ,
Eα(V), and Eα(V ′), andM be the appropriate reduced model of size h0 = |T |.
ThenM |= ρδi only ifM |= ρδi .

Example 9 (List Reversal Termination).

In Example 8 we propose ranking δ1 to verify termination of program LIST-REVERSAL.
From Theorem 7 it follows that there is a small model property for the augmented pro-
gram. The bound of the truncated system, according to Theorem 6, is

h0 = |T | = |{H, 0, x, y, x′, y′,Nxt ′[x],Nxt [x]}| = 8

We have computed the abstraction, and proved termination of LIST-REVERSAL.

26

Nxt : array [0..h] of [0..h] init Nxt∗(x, 0)
data : array [0..h] of [0..k]
x, y, yn, prev, last : [0..h]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 : (prev, y, yn, last) := (0, x,Nxt [x], 0);
2 : while last �= Nxt [x] do⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 : while yn �= last do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 : if (data[y] > data[yn]) then⎡
⎢⎢⎢⎢⎢⎢⎣

5 : (Nxt [y],Nxt [yn]) := (Nxt [yn], y);
6 : if (prev = 0) then

7 : x := yn

else
8 : Nxt [prev] := yn;

9 : (prev, yn) := (yn,Nxt [y])

⎤
⎥⎥⎥⎥⎥⎥⎦

else
10 : (prev, y, yn) := (y, yn,Nxt [y])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

11 : (prev, y, yn, last) := (0, x,Nxt [x], y);
12 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 12: Program BUBBLE SORT

Example 10 (TREE-INSERT Termination).

Consider program TREE-INSERT and the termination property � (π = 13). The loop
condition ¬done in line 1 implies that the set of nodes which decendence of t is a
measure of progress. This suggests the ranking δ2. That is, the rank of a state is the
set of all nodes which can reachable x. As the computation progresses, this set loses
more and more of its members until it becomes empty. Using a sufficiently precise
state abstraction, one can model check that the abstract property � (Π = 13) indeed
holds over the program.
From Theorem 7 it follows that there is a small model property for the augmented

program. The bound of the truncated system, according to Theorem 6, is

h0 = |T | = |{H, 0, r, n, t, t′}| = 6

We have computed the abstraction, and proved termination of TREE-INSERT.

7. Examples

7.1. Bubble Sort
We present our experience in verifying a bubble sort algorithm on acyclic, singly-

linked lists. The program is given in Fig. 12. The requirement of acyclicity is expressed
in the initial condition Nxt∗(x, 0) on the array Nxt . We first summarize the proof of
some safety properties. We then discuss issues of computational efficiency, and present
a ranking abstraction for proving termination.

27

Two safety properties of interest are preservation and sortedness, expressed as fol-
lows:

∀t.(π = 0 ∧ t �= 0 ∧ Nxt∗(x, t)) → �(Nxt∗(x, t)) (17)
∀t, s.(π = 11 ∧ Nxt∗(x, t) ∧ Nxt∗(t, s)) ⇒ data[t] ≤ data[s] (18)

As in previous examples we augment the program with a skolem constant for each
universal variable. The initial abstraction consists of predicates collected from atomic
formulas in properties (17) and (18) and from conditions in the program. These predi-
cates are

last = Nxt [x], yn = last, data[y] > data[yn], prev = 0, t = 0,

Nxt∗(x, 0), Nxt∗(x, t), Nxt∗(t, s), data[t] ≤ data[s]

This abstraction is too coarse for either property, requiring several iterations of refine-
ment. Since we presently have no heuristic for refinement, new predicates must be de-
rived manually from concretized counterexamples. In shape analysis typical candidates
for refinement are reachability properties among program variables that are not ex-
pressible in the current abstraction. For example, the initial abstraction cannot express
any nontrivial relation among the variables x, last, y, yn, and prev. Indeed, our final
abstraction includes, among others, the predicates Nxt∗(x, prev) and Nxt∗(yn, last).
In the case of prev, y, and yn, it is sufficient to use 1-step reachability, which is more
efficiently computed. Hence we have the predicates Nxt [prev] = y and Nxt [y] = yn.
When abstracting BUBBLE SORT, one difficulty, in terms of time and memory,

is in computing the BDD representation of the abstraction mapping. This becomes
apparent as the abstraction is refined with new graph reachability predicates. Naturally,
computing the abstract program is also a major bottleneck.
One optimization technique used is to compute a series of increasingly more refined

(and complex) abstractions α1, . . . , αn, with αn being the desired abstraction. For
each i = 1, . . . , n − 1, we abstract the program using αi and compute the set of
abstract reachable states. Let ϕi be the concretization of this set, which represents
the strongest invariant expressible by the predicates in αi. We then proceed to compute
the abstraction according to αi+1, while using the invariant ϕi to limit the state space.
This technique has been invaluable in limiting state explosion, almost doubling the size
of models we have been able to handle.
Proving termination of BUBBLE SORT is more challenging than that of LIST-

REVERSAL due to the nested loop. While a deductive framework would require con-
structing a global ranking function, the current framework requires only to identify
individual rankings of each loop. Therefore we examine both loops independently,
specifically their exit conditions.
The outer loop condition (last �= Nxt [x]) implies that “nearness” of last to x is a

measure of progress. We conjecture that after initialization, subsequent assignments
advance last “backward” toward x. This suggests the ranking δ3 defined in Equa-
tion (16). As for the inner loop, it iterates while yn �= last. We conjecture that yn
generally progresses “forward” toward the list tail. This suggests the ranking δ1 from
Equation (14).

28

left, right : array [0..h] of [0..h]
r, old r : [0..h] init r > 0

init : well formed
m

∧ no sharing

⎡
⎢⎢⎣

1 : old r := r

2 : r := right[r]
3 : (right[old r], left[r]) := (left[r], old r)
4 :

⎤
⎥⎥⎦

Figure 13: Program AVL-LEFT-ROTATE

We use δ1 and δ3 as a ranking augmentation, as well as a version of state abstrac-
tion described for verifying the safety property that omits predicates related to skolem
constants.

7.2. AVL Tree

(a) initial AVL tree (b) redirect root (c) redirect pivot (d) rotated AVL tree

Figure 14: AVL-LEFT-ROTATE

Finally, Consider the program AVL-LEFT-ROTATE in Fig. 13. The sequence of
figures in Fig. 14 demonstrate the AVL tree initial state in Fig. 14(a). Line (3) of the
program performs two heap mutations simultaneously in order to redirect the right link
of node old r and the left link of node r. For clarity, these are shown as two steps in
Fig. 14(b) and in Fig. 14(c). Fig. 14(d) shows the heap state upon termination of the
program.
A property that one may wish to verify is that every node that is reachable from

the original left subtree, remains reachable from the left subtree after the rotation. For-
mally, the property is expressed by:

∀x. reach(left[r], x) → � reach(left[r], x) (19)

We used our method and obtained an automatic verification of this safety property.
Note that since the program has no loops, termination is trivially guaranteed.

8. Conclusion

This work presents a “shapeless” shape analysis – an alternative to shape analysis
for reasoning about programs that perform destructive updates to heap structures. The

29

focus is on “single-parent” heap structures and structures that can be easily mapped
into them. As we show, this covers the important family of trees (and forests).
Roughly speaking, we prove a small model theorem that allows, given a heap pro-

gram and a property to be verified, to derive a predicate-abstracted program and prop-
erty from the original program instantiated on a heap of the size implied by the small
model theorem. The predicated abstracted program is obtained by model checking
techniques with little interference from the user – the user need only supply the predi-
cate base, which is often trivial. Then, one can check whether the predicated abstracted
program satisfies the property and, if so, conclude that so does the original program.
The methodology applies to all properties in the assertional language defined here,
which covers a large range of properties encountered in the specifications of heap ma-
nipulating programs.
The method described here can be applied to multi-linked heaps with unbounded

out-degrees, and to heap structures whose “backbone” (obtained when link directions
are ignored) is similar to that of single-parent structures. We are currently exploring
verification of such structures as well as using multi-linked heap systems as the basis
for further structure simulation (as in, e.g., [31, 20]).
Comparing the power of our methodology to other methodologies of analyzing

heap structure is also a topic of further research (e.g., [27]). Obviously, there are prop-
erties that, being based on precise abstraction, our method is too weak to deal with. Yet,
it offers several advantages over the alternatives, the obvious ones are its simplicity, its
elegant handling of termination properties, and its reliance on existing model checking
tools. While we used BDD-techniques to obtain the experimental results, SAT and SMT
solvers could have been used.

Acknowledgements. We would like to thank the anonymous referees for insightful
comments.

References

[1] Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Jiazhao Xu, and Lenore D. Zuck.
Parameterized verification with automatically computed inductive assertions. In
Proc. 13rd Intl. Conference on Computer Aided Verification, pages 221–234.
LNCS 2102, 2001.

[2] Ittai Balaban. Shape Analysis by Augmentation, Abstraction, and Transformation.
PhD thesis, New York University, New York, May 2007.

[3] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate
abstraction. In Radhia Cousot, editor, Proc. of the 6th Int. Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, volume 3385 of Lect. Notes
in Comp. Sci., pages 164–180. Springer, 2005.

[4] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Modular ranking abstraction.
Int. J. Found. Comput. Sci., 18(1):5–44, 2007.

30

[5] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis of single-parent
heaps. In Proc. of the 8th Int. Conference on Verification, Model Checking, and
Abstract Interpretation, pages 91–105, 2007.

[6] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative completeness
of abstraction refinement for software model checking. In Tools and Algorithms
for Construction and Analysis of Systems, pages 158–172, 2002.

[7] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. Lecture Notes in Computer Science, 2057:103+, 2001.

[8] Michael Benedikt, Thomas W. Reps, and Shmuel Sagiv. A decidable logic for
describing linked data structures. In ESOP, pages 2–19, 1999.

[9] Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic
termination proofs for programs with shape-shifting heaps. In CAV, pages 386–
400, 2006.

[10] Jesse D. Bingham and Zvonimir Rakamaric. A logic and decision procedure for
predicate abstraction of heap-manipulating programs. In VMCAI, pages 207–221,
2006.

[11] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Prob-
lem. Perspectives of Mathematical Logic. Springer-Verlag, 1997. Second printing
(Universitext) 2001.

[12] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, and
Tomás Vojnar. Programs with lists are counter automata. In CAV, pages 517–531,
2006.

[13] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. A
logic-based framework for reasoning about composite data structures. In Mario
Bravetti and Gianluigi Zavattaro, editors, CONCUR, volume 5710 of Lecture
Notes in Computer Science, pages 178–195. Springer, 2009.

[14] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Proc. IBM Workshop
on Logics of Programs, volume 131 of Lect. Notes in Comp. Sci., pages 52–71.
Springer-Verlag, 1981.

[15] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer Aided Verification,
pages 154–169, 2000.

[16] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. volume 85 of Lect. Notes in Comp. Sci.,
pages 169–181. Springer-Verlag, 1980.

[17] Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable
logics. In STACS, pages 249–260, 1997.

31

[18] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination framework for
tracking partition sizes. In Zhong Shao and Benjamin C. Pierce, editors, POPL,
pages 239–251. ACM, 2009.

[19] Neil Immerman, Alexander M. Rabinovich, Thomas W. Reps, Shmuel Sagiv, and
Greta Yorsh. The boundary between decidability and undecidability for transitive-
closure logics. In CSL, pages 160–174, 2004.

[20] Neil Immerman, Alexander M. Rabinovich, Thomas W. Reps, Shmuel Sagiv, and
Greta Yorsh. Verification via structure simulation. In Proc. 16th Intl. Confer-
ence on Computer Aided Verification, Lect. Notes in Comp. Sci., pages 281–294.
Springer-Verlag, 2004.

[21] Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of Lisp-
like structures. In Steven S. Muchnick and Neil D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 4, pages 102–131. Prentice-Hall, En-
glewood Cliffs, NJ, 1981.

[22] Yonit Kesten and Amir Pnueli. Verification by augmented finitary abstraction.
Information and Computation, 163(1):203–243, 2000.

[23] Nils Klarlund and Michael I. Schwartzbach. Graph types. In Proc. 20th ACM
Symp. Princ. of Prog. Lang., pages 196–205, New York, NY, USA, 1993. ACM
Press.

[24] Roman Manevich, Eran Yahav, Ganesan Ramalingam, and Shmuel Sagiv. Pred-
icate abstraction and canonical abstraction for singly-linked lists. In Radhia
Cousot, editor, Proc. of the 6th Int. Conference on Verification, Model Checking,
and Abstract Interpretation, volume 3385 of Lect. Notes in Comp. Sci., pages
181–198. Springer, 2005.

[25] Anders Møller and Michael I. Schwartzbach. The Pointer Assertion Logic En-
gine. In Programming Language Design and Implementation, 2001.

[26] Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. JTLV : A framework for devel-
oping verification algorithms. In Proc. 22nd Intl. Conference on Computer Aided
Verification, 2010. To appear.

[27] Andreas Podelski. private communication, January 2010.

[28] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74, 2002.

[29] Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, Proc. 9th International Conference on Computer Aided
Verification (CAV’97), volume 1254, pages 72–83. Springer Verlag, 1997.

[30] Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, Proc. 9th INternational Conference on Computer Aided
Verification (CAV’97), volume 1254, pages 72–83. Springer Verlag, 1997.

32

[31] Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin C. Ri-
nard. Field constraint analysis. In Proc. of the 7th Int. Conference on Verification,
Model Checking, and Abstract Interpretation, 2006.

[32] Greta Yorsh, Alexander M. Rabinovich, Mooly Sagiv, Antoine Meyer, and
Ahmed Bouajjani. A logic of reachable patterns in linked data-structures. In
FoSSaCS, pages 94–110, 2006.

33

Appendix A. Proof of Theorem 1

We prove Theorem 1 using a series of claims. The first establishes that well-
formed non-sharing multi-linked states are S-mapped into well-formed single parent
heap states and vice versa.

Lemma 1. Let sm ∈ Σm, and let ss = S(sm), then

sm |= no sharing ∧ well formedm ⇐⇒ ss |= well formeds ∧ ¬error

Proof:

In one direction assume that sm |= no sharing ∧ well formedm. We need to show
that ss satisfies:

¬error ∧ parent [0] = 0 ∧
∧

B∈B(¬B[0]) ∧
∀i �= j . (parent [i] = parent [j] �= 0 → ct [i] �= ct [j])

where B ⊂ Vs is the set of bool arrays ofDs. The definition of S implies the first three
conjuncts. As to the fourth note that in a multi-linked heaps each link leads to a single
node, thus for every i ∈ [1..k], every node has at most one link i-child. Furthermore, the
definition of S implies that for every node u and v, and i ∈ [1..k], ss[parent](u) = v

and ss[ct](u) = i iff sm[link i](v) = u. The claim now follows.
The other direction follows immediately from part (6) of the definition of S .

�

The following lemma extends the previous one to M-atomic formulea.

Lemma 2. Let sm ∈ Σm be a state that satisfies the no sharing constraint, and let
ss = S(sm). Let ϕm be a boolean combination of M-atomic formulae over Dm, and
let ϕs be its transformation into an assertion overDs. Then: sm |= ϕm ⇐⇒ ss |= ϕs

Proof:

The claim follows immediately from Lemma 1 for the case that ϕm is an M-atomic
non-reach and non-cycle formula. For the other cases, we distinguish between:

ϕm is of the form reach(x1, x2). Then, ϕs is of the from

(x1 �= 0 ∧ x2 �= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

From the definition of S it follows that ss[x1] = sm[x1] and ss[x2] = sm[x2]. In
one direction, assume that sm |= ϕm. If sm[x2] = 0, then obviously ss |= ϕs.
Otherwise, assume that sm[x2] �= 0. Hence, for some n ≥ 1 there exist nodes
sm[x1] = u1, . . . , un = sm[x2] such that for every i = 1, . . . , n, there exists
some ji ∈ [1..k] such that sm |= link ji [ui] = ui+1, and sm[ui] �= 0. Since
Dm |= no sharing, it follows that for every i = 1, . . . , n−1, ss[parent](ui+1) =
ui. Thus, ss |= parent∗(un, u1). Thus ss |= ϕs.

34

In the other direction, assume that ss |= ϕs. If ss[x1] = 0, then ss[x2] = 0, and
then sm |= ϕm trivially follows. Assume therefore that ss[x1] �= 0. If ss[x2] �= 0,
an argument, similar to the one used for this case in the other direction, shows that
sm |= ϕm. If ss[x2] = 0, then let u �= 0 be such that there is a ss[parent]-path
from u to ss[x1], and for some i ∈ [1..k], and for every y either ss[parent](y) �= u

or ss[ct](y) �= i. Thus, sm[link i](u) �= y for every y. It thus follows that
sm[link i](u) = 0. Similar arguments to the previous direction show that there
is a (

⋃k
i=1 link i)-path from sm[x1] to u. We can therefore conclude that sm |=

reach(x1, x2).
ϕm is of the form cycle(x). This case is similar to the previous case.

�

Since the initial condition of Dm is not a restricted A-assertion, it needs to be dealt
with separately:

Corollary 3. Let sm ∈ Σm such that sm |= no sharing ∧ well formedm. Let ss =
S(sm). Then: sm |= Θm ⇐⇒ ss |= Θs

Proof:
As a consequence of the grammar in Fig. 7, Θm is of the form ψ ∧ no sharing
where ψ is a boolean combination of M-atomic formulae. Subsection 4.2 defines Θs as
ψs ∧ well formeds, where ψs is the transformation of ψ by the rules of Subsection 4.2.
From Lemma 2 we have that if sm |= no sharing, then sm |= ψ iff ss |= ψs. From
definition of mapping S we have ss |= ¬error, and from Lemma 1 we have sm |=
no sharing ∧ well formedm iff ss |= ¬error ∧ well formeds. Thus sm |= Θm iff
ss |= Θs.

�

We now extend Lemma 2 to show that transformation of the transition relation pre-
serves the mapping S:

Lemma 4. Let sm ∈ Σm and ss = S(sm), such that sm |= no sharing. Then for
any state s′m ∈ Σm, S(s′m) is a ρs-successor of ss if s′m is a ρm-successor of sm.
Furthermore, if s′m |= no sharing, then the reverse direction holds as well.

Proof:
Let s′m ∈ Σm be a state such that s′m |= no sharing. Since ρm is a disjunction of
clauses, let ϕ(Vm) ∧ τ(Vm,V

′
m) ∧ preserve(Vm,V

′
m) be one such arbitrary clause.

Then the transformed clause is given by ϕs(Vs) ∧ τs(Vs,V
′
s), where ϕs(Vs) is the

transformation of ϕ(Vm) and τs(Vs,V
′
s) is the transformation of τ(Vm,V

′
m) (recall

that the preservation conjunct, present in the original clause, is discarded by the trans-
formation, and that τs encapsulates variable preservation clauses).
From Lemma 2 and Corollary 3 we have sm |= ϕ(Vm) iff ss |= ϕs(Vs). Let

s′s = S(s′m). It is left to show that (sm, s′m) |= τ(Vm,V
′
m) ∧ preserve(Vm,V

′
m) iff

(ss, s
′
s) |= τs(Vs,V

′
s). Since τ is a conjunction of Assign formulas, we show that for

each type of atomic Assign formula ψ(Vm,V
′
m) and its transformation ψs(Vs,V

′
s),

(sm, s
′
m) |= ψ(Vm,V

′
m) =⇒ (ss, s

′
s) |= ψs(Vs,V

′
s), and if s′m |= no sharing then

the reverse direction holds as well.

35

ψ has the form. x′1 = t2 where t2 is either an index variable or 0. In this case the
claim holds trivially for both directions.

ψ has the form. B′[x] or ¬B′[x], where B is a bool array and x is an index variable.
In the case of ¬B′[x], the claim follows trivially. In the case ofB′[x], ψs is the formula
(x = 0 ∧ error′) ∨ (x �= 0 ∧ B′[x]).

1. s′m |= no sharing. Then s′m |= ¬B[0], and s′s |= ¬error. If (sm, s′m) |= B′[x],
then x cannot be 0 in sm, nor in ss. From S we have (ss, s′s) |= x �= 0 ∧ B′[x].
Otherwise, if (ss, s′s) |= ψs, then the claim follows from the definition of S and
the fact that error is FALSE in s′s.

2. s′m �|= no sharing. Then s′s |= error. If sm[x] = 0, then from the definition of S
we have (ss, s′s) |= x = 0 ∧ error′. Thus (sm, s′m) |= ψ =⇒ (ss, s

′
s) |= ψs.

Otherwise, sm[x] = ss[x] �= 0. Since, by definition of S , s′m[B](sm[x]) =
s′s[B](ss[x]), then (sm, s′m) |= x �= 0 ∧ B′[x] iff (ss, s′s) |= x �= 0 ∧ B′[x].

ψ has the form. x′1 = link j [x2]. We focus on the nontrivial case that sm[x2] �= 0
and s′m[x′1] �= 0. First assume that x2 is a leaf, i.e., sm[link j](sm[x2]) = 0. In this
case s′m[x1] = 0, and by definition of S , s′s[x1] = 0. From the assumption, we have
sm |= link j [x1] = 0. Then by Lemma 2, ss |= ∀y . (parent [y] �= x2 ∨ ct [y] �= j).
Otherwise, assume that x2 is not a leaf, i.e., sm[link j](sm[x2]) �= 0. Then by definition
of S , there exists a node u �= 0 such that s′m[x1] = u and s′m[link j](sm[x2]) = u.
Then by definition of S , ss[parent](u) = ss[x2], ss[ct](u) = j, and s′s[x1] = u. Thus
(ss, s

′
s) |= ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′1 = y). In the reverse direction, if

sm and s′m both satisfy the no sharing constraint, then the claim follows trivially from
the definition of S .

ψ has the form. link ′j [x1] = x2. Then ψs is the formula

Err ∧ error′ (1)
∨⎡

⎢⎢⎢⎢⎣

¬Err
∧ (x2 = 0 ∨ (x2 �= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧

⎛
⎝ ∀z . (parent [z] �= x1 ∨ ct [z] �= j)

∨ ∃z . (parent [z] = x1 ∧ ct [z] = j ∧
(z = x2 ∨ parent ′[z] = 0))

⎞
⎠

⎤
⎥⎥⎥⎥⎦ (2)

First assume (sm, s′m) |= ψ. Let u1 = sm[x1] and u2 = sm[x2]. We consider two
cases:

1. Node u2 has multiple parents in s′m, one of which must be u1. In this case, we
have s′m |= no sharing. Furthermore, by definition of S , we have s′s[error] =
TRUE and ss |= Err. Thus (ss, s′s) |= ψs.

2. Node u2 has a single parent in s′m, which must be u1. In this case it must be the
case that ss |= ¬Err. We now show that (ss, s′s) satisfies the other two conjuncts
in disjunct (2) of ψs. The conjunct (x2 = 0 ∨ (x2 �= 0 ∧ parent ′[x2] =
x1 ∧ ct ′[x2] = j)) follows from the definition of S . As for the third conjunct,

36

consider first the case that u1 has no j-child in sm. Then by definition of S ,
ss |= ∀z . parent [z] �= x1 ∨ ct [z] �= j. Otherwise, there exists a node z that is
the j-child of u1 in sm. If z is not u2, then it is no longer the j-child of u1 in s′m.
It follows from the definition of S that (ss, s′s) |= ψs.

It is left to show the reverse direction, under the assumption that s′m |= no sharing.
It follows that s′s[error] = FALSE. Thus, it must be the case that (ss, s′s) satisfies
disjunct (2) of ψs. Let u1 = ss[x1] and u2 = ss[x2]. From the definition of S and the
conjunct (x2 = 0 ∨ (x2 �= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j)) we conclude that
if u2 �= 0, then u2 is a j-child of u1 in s′m. If u2 = 0, then from the third conjunct we
conclude that u1 has no child in s′m. Therefore, (sm, s′m) |= ψ.

�

Corollary 5. Let μ : s0m, s
1
m, . . . be a (finite or infinite) sequence of states that consists

only of non-sharing states. Then μ is a run of Dm iff S(μ) : S(s0m),S(s1m) . . . is a run
of Ds without error states.

Proof:

The proof is by induction on the run length. At the base case, from Corollary 3 we
have that S(s0m) |= Θs iff s0m |= Θm. Since Θm is defined to include the conjunct
no sharing, then s0m satisfies the non-sharing constraint, and by definition of S we
have S(s0m) |= ¬error.
For the inductive step, let s0m, . . . , snm be a run of Dm that is without sharing, and

let S(s0m), . . . ,S(snm) be a run of Ds that is without error states. By Lemma 4 and the
definition of S , a Dm-state sn+1

m without sharing is a ρm-successor of snm iff S(sn+1
m)

is a ρs-successor of ss such that S(sn+1
m)[error] = FALSE.

�

Appendix B. Proof of Theorem 4

Observation 2. Recall that N is the set of [0..h] values that M assigns to free terms
in Tϕ. For every ni, nj ∈ N and every index array Z, the following hold:

1. IfM(Z)[ni] = nj thenM(Z)[i] = j, and ifM(Z)[i] = j thenM |= Z∗(ni, nj);
2. M �|= Z∗(ni, n�), for any n� ∈ N , iffM(Z)[i] = m+1.
3. M |= Z∗(ni, nj) iffM |= Z∗(i, j);
4. IfB′[u] occurs in ϕ for some u ∈ Tϕ and a bool arrayB ∈ V , then u, parent [u],
and parent ′[u] are all in Tϕ.

Proof:

(1), (2), and (4) follow immediately from the construction. As for (3), in one direction
assume thatM |= Z∗(ni, nj). Thus, there exists a Z-chain α : ni = v0, . . . , vk = nj
inM . Remove all the non-N nodes fromα, and let vi0 , . . . , vin be the remaining nodes.
From the definition ofM(Z) it follows that for every � = 1, . . . , n,M(Z)[γ(vi�−1

)] =

37

γ(vi�). Thus, M |= Z∗(γ(v0), γ(vk)) = Z∗(i, j). In the other direction assume
that M |= Z∗(i, j). Since ni ∈ N , i �= m+1. Therefore, there exists a Z chain
α : i = u0, u1, . . . , uk = j inM such that for every � = 1, . . . , k,M(Z)(u�−1) = u�.
From part(1) it now follows thatM |= Z∗(ni, nj).

�

We now return to the proof of Theorem 4.

Proof:
Assume that ϕ is satisfiable. Recall that ϕ is a restricted EA-assertion, i.e., ϕ is of
the form ϕ : ∃�x.ψ(�u, �x), where �x and �u are disjoint lists of index variables, and ψ is a
boolean combination of atomic formulae and restricted A-assertions. A model satisfies
ϕ if it can be augmented by an interpretation of �x such that the augmented model
satisfies ψ(�u, �x). LetM be such an augmented model, and letM be its reduction with
respect to Tψ = Tϕ. To prove the theorem, we need to show thatM |= ψ ifM |= ψ.
Assume therefore that M |= ψ. To show that M |= ψ, it suffices to show that

(1) every atomic formula p is true in M iff it is true in M , and (2) every restricted
A-assertion p that is satisfied in M is also satisfied in M . (Recall that restricted A-
assertions may only appear in ψ under positive polarity.)
For the first case, let p be an atomic sub-formula of ψ. We distinguish between the

following cases:

p is a tcf formula. The claim follows immediately from Observation 2 (part 3).
p is of the form i-subtreeZ(x1, x2). Z, x1, and x2 are assumed to be an index ar-

ray and index variables, respectively. In this case, we are dealing with an or-
dered heap as defined in Subsection 3.2, and assume the presence of an array
ct : index → [1..k], with i ∈ [1..k]. In one direction, assume that M |= p.
Expanding the definition of p to ∃u .Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u), we
conclude thatM |= Z∗(x1, x2).
We first identify the Z-chain from x1 to x2 inM , i.e. the node sequenceM [x1] =
u1, . . . , u�, u�+1 = M [x2] such thatM [Z](uj) = uj+1, for every j = 1, . . . , �.
Let nj be the node ua, for the maximal a ∈ [1..�], such that nj ∈ N . Then u� is
theM representative of Z for nj . SinceM [Z](u�) = u�+1 = M [x2], it must be
the case thatM [ct](u�) = i. By construction, M [ct](j) = M [ct](u�) = i, and
M [Z](j) = γ(M [Z](u�)) = γ(M [x2]). Furthermore, from Observation 2 (part
3) we conclude that node j is Z-reachable from nodeM [x1] inM . Thus, x1 is in
the ith subtree of x2 inM , i.e.,M |= ∃u .Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u),
and the claim holds.
In the other direction, assume thatM |= p. LetM [x1] = j < m+1 andM [x2] =
� < m+1. The claim is proven by considering the Z-chain inM from j to � and,
based on the definition of M , constructing a corresponding Z-chain in M from
M [x1] = nj toM [x2] = n� in which nj is in the ith subtree of n�.

p is a bool variable. The claim follows trivially from the construction ofM .
p is of the form B[u] for an index variable u and a bool array B. It then follows that

parent [u] or parent ′[u] is in Tϕ, according to whether B is unprimed or primed,
and then it follows from the construction thatM [B](u) =M [B](u).

38

p is of the form t1 = t2 for index terms t1 and t2. Since t1, t2 ∈ Tϕ, it follows from
the construction thatM |= t1 = t2 iffM |= t1 = t2.

For the second case, let p be a universal formula. We distinguish between two
cases. The first is when p is in one of the forms: ∀y.Z[y] �= u, ∀y.Z[y] �= u ∨ B[y], or
∀y.Z[y] �= u ∨ ¬B[y]. We show here the second case; The other two are similar. Recall
that u must be in Tϕ, and assume thatM(u) = nj . Assume, by way of contradiction,
thatM |= ∀y.Z[y] �= u ∨ B[y] and for some i ∈ [0..m+1],M |= Z[i] = j ∧ ¬B[i].
If i = m+1, then obviously M(Z)[i] = m+1, and thus M �|= Z[i] = u. Hence,
i �= m+1. From Observation 2 it follows that M [Z](ni) �= nj . Thus, there exists a
Z-representative v �= ni for i inM . From the construction it follows thatM(Z)[i] =
γ(M(Z)[v]) and that M(B)[i] = M(B)[v]. From the assumption that M |= ¬B[i],
it follows that ¬M(B)[v], and from the assumption that M |= p it then follows that
M(Z)[v] �= nj , contradicting the assumption thatM(Z)[i] = j.
It remains to show the claim for the case that p is a preservation formula. We

distinguish between the following cases:

p is a preservation formula of an index array. Hence, p is of the form ∀y.Z ′[y] =
Z[y] ∨

∨n
i=j(y = yi), where y1, . . . , yn are index variables in Tϕ and Z is an

index array. Denote by Y the set {y1, . . . , yn} and by γ(Y) the set {γ(y1), . . . , γ(yk)}.
Thus p can be rewritten as ∀y.Z ′[y] = Z[y] ∨ y ∈ Y . Assume thatM |= p. We
have to show that M |= p, i.e., that M |= ∀i ∈ [0..m+1].Z ′[i] = Z[i] ∨
i ∈ γ(Y). Assume, by way of contradiction, that for some i ∈ [0..m+1],
M |= Z ′[i] �= Z[i] ∧ i �∈ γ(Y). We show that M(Z)[i] = M(Z ′)[i], con-
tradicting the assumption. Since M(Z)[m+1] = M(Z ′)[m+1] = m+1, it fol-
lows that i �= m+1. Consider the Z-chain ni = u0, u1, . . . and the Z ′-chain
ni = v0, v1, . . . in M . Since i �∈ γ(Y), it follows, from the assumption that
M |= p, that M |= Z[u0] = Z[v0], hence v1 = u1. Proceeding like this, we
obtain that either
1. For all j ≥ 0, uj = vj , or
2. For somem ≥ 1, um = vm ∈ Y , and for all j = 0, . . . ,m−1, uj = vj �∈ Y .

In the first case we obtain that M(Z ′)[i] = M(Z)[i]. In the second case, since
um = vm ∈ Y ⊆ Tϕ, we obtain that i has the same Z- and Z ′-representative
in M , and thus M(Z)[i] = M(Z ′)[i]. (Note that this Z-representative is either
uj = vj for some j < m, or um = jm. The claim follows in either case.)

p is a preservation formula of a bool array. Following the notation of the previous
part, assume p is of the form ∀y.B′[y] = B[y] ∨ y ∈ Y where Y is a set of
index variables in Tϕ. Assume that M |= p, and that M �|= p, i.e., for some
i ∈ [0..m+1],M |= B′[i] �= B[i] ∧ i �∈ γ(Y). SinceM(B)[m+1] =M(B)[d],
M(B′)[d] =M(B′)[d], and d �∈ Y , it follows that i �= m+1.
This case is handled similarly to the previous case, considering the Z-chain ni =
u0, . . . andZ ′-chain ni = v0, . . . inM , and concluding thatM(B′)[i] =M(B)[i].
The only difference is in the inductive step: Let k ≥ 0, and assume that for all
j ≤ k, uj = vj and uj �∈ Y . If M(Z ′)[vk] = M(Z)[vk], then obviously
vk+1 = uk+1. Otherwise, M(Z ′)[vk] �= M(Z)[vk]. From Observation 2, part

39

(4), it follows that vk, uk+1, vk+1 ∈ Tϕ. It thus follows that ni has the same Z
and Z ′ representative in M (which is either v0, vj for some j < k, or vk) and
thereforeM(B)[i] =M(B′)[i].

�

Appendix C. Proof of Theorem 7

Theorem 7 claims thatM |= ρδi impliesM |= ρδi , where ρδi is defined as dec
′ =

decreaseδi . We prove the claim for a ranking δ1 of the form δ1(x) = {i | Nxt∗(x, i)}
specified in Equation (14). The cases of δ2 and δ3 are justified by similar arguments.

Proof:

The evaluation of δ1 in M , written M [δ1], is the set {i | M [Nxt∗](M [x], i)}, i.e, the
set of all M -nodes which are reachable from M [x] by M [Nxt]-links. The evaluation
of δ1 inM and of δ′1 inM andM are defined similarly.
First note the following property of terms in T : It follows directly from Property P5

of Theorem 4 that, for any term t in T and δ ∈ {δ1, δ
′
1},M [t] ∈M [δ] iffM [t] ∈M [δ].

To prove the claim it is enough to show that both properties δ1 ⊃ δ′1 and δ1 = δ′1
are satisfied byM iff they are satisfied byM . First assumeM |= δ1 ⊃ δ′1. It is easy
to show that δ1 ⊇ δ′1 is satisfied in M . This is true since by construction, any node
i ∈ [0 . . . N] is pointed to inM by a term in T , and membership in δ1, δ′1 is preserved
for such terms.
It is left to show that δ1 �= δ′1 is satisfied inM . We do this by identifying a term in

T thatM interprets as a node inM [δ1] −M [δ′1]. Such a term must point to a node in
M that is a member ofM [δ1] −M [δ′1]. To perform this identification, let � be a node
in M [δ1] −M [δ′1]. Let M [x] = r1, . . . , rq = � denote the shortest Nxt-path in M
from the nodeM [x] to �, i.e., for i = 1, . . . , q−1, M [Nxt](ri) = ri+1. Let j be the
maximal index in [1..q] such that rj ∈ {n0, . . . , nm}, i.e., rj is theM -image of some
term t ∈ T . If rj �∈M [δ′1], our identification is complete.
Assume therefore that rj ∈ M [δ′1]. According to our construction, there exists an

M [Nxt]-chain connecting rj to �, proceeding along rj+1, rj+2, . . . , �. Consider the
chain of M [Nxt ′]-links starting from rj . At one of the intermediate nodes: rj , . . . , �,
theM [Nxt]-chain and theM [Nxt ′]-chain must diverge, otherwise � would also belong
to M [δ′1]. Assume that the two chains diverge at rk, for some j ≤ k < q. Then,
according to strong uniformity (implied by history closure), rk+1 ∈ {n0, . . . , nm},
contradicting the assumed maximality of j.
In the other direction, assume that M satisfies δ1 ⊃ δ′1. We first show that M

satisfies δ1 ⊇ δ′1. Let n be a node in M [δ′1], and consider a Nxt
′-path from M [x′] to

n in M . Let m be the ancestor nearest to n that is pointed to by a term in T . From
Theorem 4 it follows that m ∈ M [δ1]. The fact n ∈ M [δ1] follows by induction on
path length from m to n and by uniformity ofM andM . ThereforeM [δ1] ⊇ M [δ′1].
We now show thatM satisfies δ1 ⊃ δ′1. Let j be a node such that j ∈M [δ1]−M [δ′1].
By construction, j is pointed to inM by a term t or j = m+1. In the first case, t points

40

to a node nj inM , such that nj ∈M [δ1]−M [δ′1], and we are done. In the latter case,
from construction we haveM [Nxt](m+1) = M [Nxt ′](m+1) = m+1. Therefore, if
m+1 is not Nxt ′-reachable from M [x′], there must exist a node i in M [δ1] −M [δ′1]
such that M [Nxt](i) �= M [Nxt ′](i). By uniformity, i must be pointed to in M by a
term in T . From Theorem 4 there exists a corresponding node inM .
It is left to show thatM |= (δ1 = δ′1) iffM |= (δ1 = δ′1). This is done by similar

arguments.
The case of δ2, while not presented here, is shown by generalization: While δ1

involves nodes reachable from a single distinguished pointer x, δ2 involves nodes on
a path between x and a pointer y. Thus, given node � satisfying some combination of
properties of membership in δ2, δ′2, we identify a node satisfying the same properties,
that is also pointed to by a term in T . Here, however, we consider not only distant
ancestors of � on the path from x, but also distant successors on the path to y.

�

41

