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Quantifying electronic correlation strength in a complex oxide:
A combined DMFT and ARPES study of LaNiO3
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The electronic correlation strength is a basic quantity that characterizes the physical properties of materials
such as transition metal oxides. Determining correlation strengths requires both precise definitions and a careful
comparison between experiment and theory. In this paper, we define the correlation strength via the magnitude
of the electron self-energy near the Fermi level. For the case of LaNiO3, we obtain both the experimental and
theoretical mass enhancements m�/m by considering high resolution angle-resolved photoemission spectroscopy
(ARPES) measurements and density functional + dynamical mean field theory (DFT + DMFT) calculations. We
use valence-band photoemission data to constrain the free parameters in the theory and demonstrate a quantitative
agreement between the experiment and theory when both the realistic crystal structure and strong electronic
correlations are taken into account. In addition, by considering DFT + DMFT calculations on epitaxially strained
LaNiO3, we find a strain-induced evolution of m�/m in qualitative agreement with trends derived from optics
experiments. These results provide a benchmark for the accuracy of the DFT + DMFT theoretical approach, and
can serve as a test case when considering other complex materials. By establishing the level of accuracy of the
theory, this work also will enable better quantitative predictions when engineering new emergent properties in
nickelate heterostructures.
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I. INTRODUCTION

Strongly correlated electron materials such as transition
metal oxides display a rich variety of phenomena, including su-
perconductivity, magnetism, and charge and orbital orders [1].
Electron-electron interactions (among the electrons in partially
filled transition metal d-orbitals in the transition metal oxide
case) are a key source of this richness, but other factors
including the crystal structure [2] and the relative energies
of other orbitals [3] also are important. A defining property
of a strongly correlated electron material is the “correlation
strength,” which characterizes the degree to which a measured
property of the material differs from that predicted by a
reference calculation in which electron-electron interactions
are neglected or treated in a mean-field manner. While the
qualitative meaning of the term “correlation strength” is
intuitively clear, a precise definition of correlation strength
requires choices of a reference calculation and a physical
property. The most widely used reference calculation is density
functional theory (DFT), while the most basic property is the
electron mass enhancement m�/m, which can be accessed
by a variety of experimental probes. An important test of a
theoretical method is whether it reproduces the correlation
strength of a given material.
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In this paper, we investigate the mass enhancement of
LaNiO3 both experimentally, via angle-resolved photoemis-
sion spectroscopy (ARPES) [4] and theoretically, via density
functional + dynamical mean field theory (DFT + DMFT)
calculations. By comparing the experiment and theory at
precisely the same points in momentum space, and to the
same reference DFT band structure, we seek to quantify
how well DFT + DMFT can reproduce the experimental mass
enhancement. LaNiO3 is an appropriate test case for this study
because it has strong electronic correlations, yet remains a
Fermi liquid down to low temperatures. In addition, there
has been a great deal of interest in potential exotic physics
in LaNiO3, including engineering orbital polarization with
epitaxial strain [5–7] and a cupratelike Fermi surface via
heterostructuring [8], and precise knowledge of the predictive
capabilities of theory will aid in engineering new emergent
properties in the nickelates.

LaNiO3 is also an interesting choice for this study because
there is a strong association between correlation effects such as
metal-insulator transitions (MIT) and lattice distortions in the
nickelates. Considering the phase diagram of the rare-earth
nickelate family RNiO3, LaNiO3 is the only material that
remains metallic to lowest temperatures; upon cooling, other
RNiO3 undergo an MIT accompanied by a large-amplitude
structural distortion [9]. The MIT temperature is related to
the amplitude of the NiO6 octahedral rotations, which in
bulk materials is controlled by the size of the R cation. In
addition, studies of ultrathin films of LaNiO3 grown epitaxially
on different substrates [10–15] show that both the critical
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film thickness for an MIT and the coefficient of the T 2

term in the resistivity depend on the value of the epitaxially
induced strain. We thus expect that in LaNiO3 the correlation
strength is determined by a subtle interplay between a basic
interaction parameter and the precise crystal structure. A
precise determination of the correlation strength must untangle
these two effects; this issue is relevant for many transition
metal oxides.

LaNiO3 has already been characterized experimentally
via ARPES [14–16], optical conductivity [17–19], and ther-
modynamic measurements [20–22], as well as theoretically
with DFT [23–25], DFT + DMFT [6,8,26–29], and model
system [30–32] calculations, and a variety of measurements of
m�/m have previously appeared (to be discussed more later).
ARPES offers a particularly direct measure of a material’s
mass enhancement via momentum-resolved access to the
electronic Green’s function, which is the fundamental quantity
that characterizes electron propagation in a material:

G(k,ω) = (ω + μ − HDFT(k) − �(k,ω))−1. (1)

Here, k is a momentum in the first Brillouin zone, μ is
the chemical potential, and HDFT is the reference calculation
Hamiltonian (here labeled by DFT because this is the reference
used in this paper). The electron self-energy �(k,ω) encodes
the electronic correlations by parametrizing the difference
between the observed electron propagation and that predicted
by HDFT(k). Below, we briefly summarize the relevant theory
for extracting a mass enhancement of a Fermi liquid from
ARPES.

In a Fermi liquid at the lowest temperatures and frequencies
and small (k − kF ), the imaginary part of the self-energy
�′′(k,ω) may be neglected. In this case, the physical Fermi
surface is given by the locus of momentum points k =
kF for which det[HDFT(kF ) + �′(kF ,ω = 0)] = μ, while the
DFT Fermi surface is defined as points k = kF for which
det[HDFT(kF )] = μDFT, where μ and μDFT are chemical po-
tentials chosen so that the electron density in each calculation
is the same as that in the actual material. Remarkably, in many
cases including that studied here, DFT correctly predicts the
shape of the Fermi surface; correlations are revealed only in
the excitation spectrum. Of particular interest is the physical
quasiparticle dispersion ωqp(k) of the correlated material,
given by the solution of

det[ωqp(k) − HDFT(k) − �′(k,ωqp(k)) + μ] = 0. (2)

While Eq. (2) is defined for all k, the solution describes a
propagating Fermi liquid quasiparticle only for k near kF .
In this range of momenta, comparison of the quasiparticle
dispersion to the DFT dispersion ωDFT(k) defined by

det[ωDFT(k) − HDFT(k) + μDFT] = 0 (3)

gives a mass enhancement m�/m relative to DFT. This
mass enhancement is widely regarded as a key measure of
correlation strength. The mass enhancement can in principle be
momentum-dependent, either through the intrinsic momentum
dependence of the electron self-energy �(k,ω), which is
ignored in the single-site DMFT approximation, or if the
orbital character varies substantially around the Fermi surface
(for example, if the Fermi surface has regions of both

predominantly strongly correlated d and weakly correlated
p character).

The plan for the rest of the paper is as follows. We describe
our methods in Sec. II, and then consider the choice of the free
parameters in the DFT + DMFT calculation (via comparison
to high-energy features in the experimental angle-integrated
photoemission spectra) and the choice of the reference DFT
band structure in Sec. III. We present the results of our study in
Sec. IV, and discuss our results in the context of the literature
and conclude in Secs. V and VI.

II. METHODS

Epitaxial thin films of LaNiO3 are grown on (001) oriented
pseudocubic (pc) LaAlO3 substrates using reactive-oxide
molecular-beam epitaxy and then transferred and measured
under ultrahigh vacuum with in situ ARPES via the methods
described in Ref. [14]. All ARPES data reported here were
obtained with a VG Scienta R4000 electron analyzer using
He Iα radiation (hν = 21.2 eV) at a measurement temperature
of T = 20 K and with 8 meV energy resolution. Because
we are interested in the correlated-metal properties here, we
use films with a 10 pseudocubic unit cell thickness where a
bulklike Fermi surface has been observed, well away from the
previously reported thickness-driven MIT [14].

DFT calculations are performed using the Perdew-Burke-
Ernzerhof (PBE) functional and the projector augmented wave
method as implemented in the Vienna ab initio simulation
package (VASP) [33,34]. We use a 600-eV plane-wave cutoff
and, for structural relaxations, a force convergence tolerance of
2 meV/Å. We consider bulk LaNiO3 in both the rhombohedral
(space group R3̄c, a−a−a− in Glazer notation) and idealized
cubic (space group Pm3̄m) structures. For the rhombohedral
and cubic structures, we use 7 × 7 × 7 and 8 × 8 × 8 k-
point meshes, respectively. We also consider LaNiO3 under
biaxial strain, in which case the symmetry is reduced from
rhombohedral to monoclinic (space group C2/c, in Glazer
notation a−a−c−). For biaxial strain calculations we use a
10-atom unit cell with lattice vectors (a, a, 0), (a + �, �, c),
and (�, a + �, c). This choice of unit cell imposes an epitaxial
constraint to a square substrate with in-plane pseudocubic
lattice constant a. This cell allows for relaxation of the
out-of-plane lattice parameter c as well as a monoclinic tilt β

of the unit cell (tan β = c/�). We relax β by manually setting
� to different values, relaxing the resulting structure, and
choosing the value of � that yields the minimum total energy.
We make use of VESTA [35] to visualize crystal structures.

DFT + DMFT calculations are performed using the
methodology described in Ref. [36] using structures relaxed
within DFT. DFT calculations are fit using WANNIER90 [37]
over the full ≈ 10 eV range spanned by the p-d manifold
to obtain the correlated Ni-d subspace. Interactions in the
correlated subspace are taken to be of the Slater-Kanamori
form specified by the Hubbard interaction strength U and
the Hund’s interaction J . As described below, the values of
these parameters are fixed by comparison to wide energy
range angle-integrated photoemission measurements. For the
double-counting correction required in DFT + DMFT [38], we
use the parametrization U ′ = U − 0.2 eV, which was found to
correctly reproduce the pressure phase diagram of the RNiO3
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family [28]. The filled t2g orbitals are treated with the Hartree-
Fock approximation while the partially occupied eg orbitals
are treated with single-site DMFT. The DMFT impurity
problem is solved using the hybridization expansion version
of the continuous time quantum Monte Carlo method [39,40]
with the temperature set to 0.01 eV ≈ 120 K. For analytic
continuation to obtain the real frequency spectral function and
density of states (DOS), we employ the maximum entropy
method [41].

III. DETERMINATION OF INTERACTION STRENGTH
AND REFERENCE BAND STRUCTURE

In making a quantitative comparison between experiment
and theory, it is important to clarify the relevant uncertainties.
For our comparison of the experimental and theoretical m�/m

for LaNiO3, the uncertainties arise from the free parameters
in the DFT + DMFT calculation, and the choice of reference
DFT band structure. We explore both of these issues in turn in
this section.

A. Interaction parameters

We first fix the Hubbard U and Hund’s interaction J

parameters by comparing experimental angle-integrated pho-
toemission spectra to the DFT + DMFT DOS calculated with
various choices of (U , J ) in Fig. 1. The DFT + DMFT
calculations are performed using an R3̄c crystal structure
relaxed within DFT. The experimental spectra show a peak
at ∼1 eV binding energy, arising from the Ni-t2g states,
and a broad higher-energy feature with onset at ∼2 eV
binding energy, arising from the O-2p states. We note that the
calculation does not include matrix element effects, which are
crucial in determining photoemission intensities. As a result,
in comparing the measurement and the calculation, we focus
on peak positions and the onset of spectral weight, rather than
the precise shape and size of the peaks.

Figure 1(a) compares our experimental spectrum to
DFT + DMFT DOS calculations with different values of U

(5, 7, and 9 eV), while keeping J fixed to 1 eV. From the
DOS in Fig. 1(a), we extract the onset of the O-2p feature
(here we define this as the midpoint of the rising edge) and
the location of the Ni-t2g peak and plot them in Fig. 1(c)
as a function of U . Both the U = 5 and 7 eV calculations
capture the energy of the O-2p feature at ∼2 eV binding
energy, while the position of this feature is off by ∼1 eV in the
U = 9 eV calculation. Considering the Ni t2g peak position,
the U = 7 eV calculation correctly reproduces this, while
the U = 5 and 9 eV calculations place this peak at too low
and high binding energies, respectively. As a result, only the
U = 7 eV calculation is able to correctly reproduce the energy
scale of both features observed in experiment.

Now constraining U to 7 eV, we consider the impact of
varying J in Fig. 1(b) and show the extracted O-2p onset
and Ni-t2g peak locations as a function of J in Fig. 1(d). We
find that the J = 1.4 eV calculation captures the energy of
the O-2p onset, while the J = 0.6 eV calculation places this
feature at too low binding energy. The Ni t2g peak is located at
too high and low binding energies, respectively, in the J =
0.6 eV and 1.4 eV calculations. From consideration of

(a) J = 1 eV (b) U = 7 eV

(c) (d) 
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DMFT Ni t2g DOS 
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Ni t2g peak

FIG. 1. (Color online) Comparison of experimental angle-
integrated photoemission spectra (thick lines, grey and green online)
to calculated DFT + DMFT partial density of states (thin lines, blue
and red online) for (a) J = 1 eV and U = 5, 7, and 9 eV (bottom
to top), and (b) U = 7 eV and J = 0.6, 1.0, and 1.4 eV (bottom
to top). Due to the experimental photon energy, the intensity of the
Ni-t2g peak is weak compared to the O-2p features, so the low energy
part of the spectrum enlarged by a factor of 10 (green) is shown for
comparison to the calculated Ni-t2g peak. Note that the spectra are
artificially offset along the vertical axis for clarity. (c) and (d) plot
the midpoint of the O-2p onset (blue squares) and the Ni-t2g peak
position (red triangles) extracted from the DFT + DMFT calculations
in (a) and (b) as a function of U and J respectively. The dashed lines
indicate the position of these features in the experimental spectrum.

these DFT + DMFT calculations with five different (U , J )
parameter sets, we find that only (U,J ) = (7,1) eV is able to
reproduce the experimental energy position of both features,
while the other calculations misalign either one or both
features. As a result we use this parameter set in the rest
of our calculations. In addition to constraining the free
parameters in our calculation, this comparison in Fig. 1
also highlights the sensitivity of the energies of features in
the angle-integrated photoemission spectrum to the electron
interaction parameters used in DFT + DMFT calculations.
A previous study [42] on bulk LaNiO3 extracted a value of
U = 4.7 eV by comparing XPS and Auger spectra, which is
lower than our optimized value of U . However, the extraction
of U from XPS/Auger spectra is indirect, requiring modeling
of core-hole excitonic corrections and hybridization effects,
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which may be why this value is different from that obtained
from our photoemission/DMFT comparison.

B. Reference band structure

We now consider the choice of reference band structure.
LaNiO3 exhibits a rhombohedral structural distortion [25],
which has been observed experimentally in our films via
superstructure in low-energy electron diffraction measure-
ments [14]. We perform DFT calculations for two structures:
a hypothetical cubic structure [shown in Fig. 2(a)] and the
experimental rhombohedral (R3̄c) structure, where the NiO6

octahedra rotate out of phase about the [111] pseudocubic axis,
which corresponds to rotations of equal amounts about each
of the three pseudocubic axes, as shown in Fig. 2(b). In each
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FIG. 2. (Color online) Bulk DFT LaNiO3 band structure in cubic
and rhombohedral structures. Comparison of cubic (a) and rhombohe-
dral (b) structures: in the rhombohedral structure, the NiO6 octahedra
rotate out of phase about each of the pseudocubic axes. (c) Fermi
surface for LaNiO3 in the cubic structure. The black slab indicates the
momentum space cut (π/2apc, ky , 0.7π/apc) that we measure in our
ARPES experiment. (d) and (e) compare the cubic and rhombohedral
band structures (thick red and thin black lines) along high-symmetry
cuts and along the experimental cut, respectively. Note that in (d) we
label high-symmetry points using notation for the cubic structure. (f)
and (g) show the dominant orbital character (dx2−y2 or d3z2−r2 ) of the
bands crossing the Fermi level (for the rhombohedral structure) for
the same momentum space cuts as shown in (d) and (e).

case, we fully relax the structures; we find a Ni-O-Ni bond
angle of 161.6◦ and a Ni-O bond length of 1.95 Å when we
relax the rhombohedral structure with PBE. This compares to
experimental values of 164.8◦ and 1.93 Å for the bond angle
and length, respectively, for bulk LaNiO3 at 1.5 K [9].

Figure 2(c) shows a schematic of the LaNiO3 Fermi surface
computed for the hypothetical cubic structure. It consists of
two sheets with a small electron pocket centered at the 


point, and large hole pockets centered at the Brillouin zone
corners. In this work, we study the band structure along the
momentum space cut (π/2apc, ky , 0.7π/apc), which is shown
as the black slab in the lower part of Fig. 2(c) (this momentum
space cut is determined by our experimental photon energy).
We determine the value of kz corresponding to this photon
energy as described in Ref. [14]. Due to surface sensitivity,
the photoemission measurements integrate over a range of kz,
which is represented by the finite height of the slab along
kz in Fig. 2(c). However, the electronic structure has little kz

dependence in this range, so this should minimally affect our
results. We also consider calculated band structures along high-
symmetry cuts through the Brillouin zone for comparison.
LaNiO3 has a nominal t6

2ge
1
g electronic configuration, so the

bands crossing the Fermi level have predominately eg character
with a sizable O 2p component from hybridization. The
dominant orbital character of the bands crossing the Fermi
level is shown in Figs. 2(f)–2(g).

The rhombohedral distortion present in LaNiO3 is generally
expected to reduce the bandwidth relative to that of the cubic
structure, because rotations of the NiO6 octahedra distort the
Ni-O-Ni bond angle away from 180◦ and thus reduce the
orbital overlap between the Ni-eg and the O-2p states. To
clarify how the octahedral rotations influence the specifics
of the near-Fermi level band structure needed for obtaining
m�/m from ARPES measurements, we compare DFT band
structures computed in the rhombohedral structure and in the
idealized cubic structure both along high-symmetry Brillouin
zone cuts [Fig. 2(d)] and along our experimentally accessible
momentum cut [Fig. 2(e)].

Focusing first on the band structure along high-symmetry
cuts in Fig. 2(d), the two prominent near-Fermi level features
are a band crossing the Fermi level on the 
-M cut (two bands
in the case of the rhombohedral band structure, due to zone
folding), and a shallow band bottom at the M point. The Fermi
velocity vF of the 
-M band is reduced in the rhombohedral
band structure relative to that in the cubic band structure, and
the M-point band bottom moves to significantly lower binding
energy. Both of these changes are consistent with the reduction
of Ni-O hybridization due to the rhombohedral distortion.
However, the magnitude of these changes differs substantially:
while there is only a small difference in vF along 
-M between
the rhombohedral and cubic structures, the position of the band
bottom at the M point moves from ∼300 meV binding energy
(cubic) to ∼30 meV binding energy (rhombohedral).

Now turning to the momentum space cut accessed by our
experiments [Fig. 2(e)], we find that both vF and the binding
energy of the band bottom are reduced by approximately a fac-
tor of 2 in the rhombohedral structure relative to the cubic one.
(Note that the slight offset of the rhombohedral band relative to
the cubic one is due to the lower symmetry of the rhombohedral
structure.) In summary, the comparison in Figs. 2(d)–2(e)
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illustrates that the rhombohedral distortion present in LaNiO3

has a significant influence on the low-energy band structure,
but the precise magnitude of this effect varies significantly in
momentum space. Therefore a quantitative determination of
m�/m depends sensitively on the correct details of the crystal
structure and requires a comparison of theory and experiment
at the same locations in momentum space.

IV. RESULTS

A. Bulklike rhombohedral structure

Figure 3(a) compares the rhombohedral DFT band structure
from Fig. 2(e) to spectra measured by ARPES and calculated
by DFT + DMFT. The experiment and calculations consider
exactly the same momentum cut (π/2apc, ky , 0.7π/apc). In
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FIG. 3. (Color online) (a) Comparison of ARPES spectrum (left
side) and DFT + DMFT spectral function (right side), both along
the momentum space cut (π/2apc, ky , 0.7π/apc) to the DFT band
structure, calculated in the bulk R3̄c structure (white line). (b)
Imaginary part of the Matsubara axis DFT + DMFT self-energy, used
to calculate the theoretical value of m�/m.

both experiment (left side) and DFT + DMFT (right side),
there is a shallow band crossing the Fermi level with a
band bottom at ∼50 meV and a Fermi level crossing at
ky = −0.2π/apc. This band is substantially renormalized by
electron correlations relative to the rhombohedral DFT band
structure, and the renormalization predicted by DFT + DMFT
is in good agreement with that seen in experiment. It is
important to emphasize that the DFT + DMFT calculation
used the values of U and J obtained from matching features
in the high-energy spectrum in Fig. 1, we do not further
optimize these parameters to obtain the present comparison
of the low-energy spectra.

We obtain a mass renormalization of m�/m = 3.1 ± 0.5
by comparing the DFT and experimental/DFT + DMFT band
bottom energies, and m�/m = 3.4 ± 0.5 by comparing Fermi
velocities vF . An earlier report of m�/m of 7 in this system
from some of the present authors arose from using DFT
calculations in the idealized cubic structure [14] which, as
can be seen from Fig. 2(e), are about a factor of two more
dispersive.

Alternatively, the theoretical mass renormalization can
be obtained by considering the frequency derivative of the
electron self-energy ∂�′(ω)/∂ω|ω=0 (in the single-site DMFT
approximation considered here, the self-energy has no k
dependence). This is related to the physical mass enhance-
ment discussed in the previous paragraph by factors of the
relative d and p content of the near-Fermi surface wave
functions [43,44]. In the Fermi liquid regime relevant here,
the imaginary part of the real-axis self-energy is negligible
at low frequencies and one may estimate ∂�′(ω)/∂ω|ω=0

from the imaginary part of the self-energy on the Matsubara
axis �′′(iωn), shown in Fig. 3(b). We fit the five lowest
Matsubara points to a fourth order polynomial to obtain
m�/m = (1 − ∂�′′(iωn)/ωn|ωn→0) = 3.5. We also calculate
the mass renormalization from the analytically continued
self-energy, m�/m = (1 − ∂�′(ω)/∂ω|ω=0) (not shown) and
obtain the same value, thus lending confidence to our analytic
continuation procedure. The estimate we obtain is in good
agreement with the experimentally determined value, and
consistent with the observation that in this region of the
Brillouin zone the states are of primarily Ni-d character.
This quantitative comparison between experiment and theory
in Fig. 3(a) demonstrates that DFT + DMFT is able to
accurately describe correlated physics in LaNiO3. However, it
also highlights the importance of considering realistic crystal
structure, correct interaction parameters, and precisely the
same momentum space points in experiment and theory.

B. Strained films

LaNiO3 grown on LaAlO3 is under ∼1% compressive
strain, so it is important to consider how this strain impacts
our results, given that strain couples to octahedral rotations.
Here we define strain as (a − a0)/a0, where a0 is the in-plane
lattice constant at which the total energy of the C2/c structure
is a minimum, and apply strain in the xy plane. As discussed
in Sec. II, the structure becomes monoclinic (C2/c) under the
epitaxial constraint, which changes the pattern of octahedral
rotations. The NiO6 octahedra still rotate out of phase about
[111]pc, but there are now two distinct Ni-O-Ni bond angles
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FIG. 4. (Color online) Influence of biaxial strain on DFT band
structure. The evolution with strain of (a) the Ni-O-Ni bond angles
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at −1%, 0, and +1% strain is shown in (c) along high-symmetry cuts
and (d) along the experimental ARPES cut. Note that LaNiO3 grown
on LaAlO3 (the experimental setup) corresponds to 1% compressive
strain.

θxy and θz, which lie in and out of the plane of applied strain,
respectively. In addition, there are also two distinct Ni-O bond
lengths, rxy and rz lying in (out of) the strain plane. The crystal
structure accommodates this biaxial strain via changes to both
the Ni-O-Ni bond angles and the Ni-O bond lengths, as shown
in Figs. 4(a) and 4(b). Upon moving from compressive to
tensile strain, θxy moves closer to 180◦ and rxy expands to
accommodate the stretching of the crystal in this plane, while
θz moves further from 180◦ and rz contracts.

Experimentally, an asymmetry in the response of the in-
/out-of plane bond angles and lengths is observed in LaNiO3:
the out-of-plane bond angle changes more with biaxial strain
than the in-plane bond angle, while the in-plane bond length
changes more than the out-of-plane bond length [25] (the same
asymmetric response also is observed in strained LaAlO3

[45]). We find that our calculated bond angles in Fig. 4(a)
reproduce this asymmetric trend, while the bond lengths in
Fig. 4(b) do not (rxy and rz change by roughly the same
amount). Improved agreement with experiment regarding
these structural changes can be obtained by performing
structural relaxations within DFT + U [25].

We compare the band structure at −1%, 0, and + 1% biaxial
strain along high symmetry cuts and along our experimental
cut in Figs. 4(c) and 4(d). Focusing on the near-Fermi level
band structure features, in Fig. 4(c), vF of the band crossing
the Fermi level on the 
-M cut is essentially unchanged for

the strains we consider, while the position of the near-Fermi
level band bottom at the M point changes substantially
(note that the 0%-strain C2/c band structure does not need
to agree precisely with the bulk R3̄c band structure due
to the different symmetries of these structures). For our
experimental momentum cut in Fig. 4(d), the band displays
moderate changes with strain. Interestingly, the response of
the band structure to strain is remarkably different at different
momentum points: compressive strain pushes the band bottom
at the M point to higher binding energy in Fig. 4(c), while
the band bottom in Fig. 4(d) moves to lower binding energy.
These differences can be understood in light of the fact that
biaxial strain lifts the degeneracy of the eg orbitals, and
bands derived from the d3z2−r2 and dx2−y2 orbitals respond
differently to biaxial strain (both in terms of changes to the
bandwidth and the band’s center of mass) [6]. As can be seen
in Figs. 2(f) and 2(g), the band bottom at M is predominantly
of d3z2−r2 character, while the band on our experimental cut
is predominantly dx2−y2 character, so it is not surprising that
these bands display opposite trends with strain.

While these results reveal a complex evolution of the band
structure with strain, the key observation for our chosen system
of LaNiO3/LaAlO3 is that in Fig. 4(d) the band under 1%
compressive strain is quite similar to the bulk R3̄c band used
to obtain m�/m in Fig. 3 (both in terms of band bottom energy
and vF ). Therefore our use of the bulk R3̄c structure rather than
the 1% compressively strained C2/c structure for the particular
strain and momentum space cut considered in this work does
not introduce significant errors in our determination of m�/m.
However, as illustrated in Fig. 4, the bands at other strain values
and momentum space cuts can be significantly different from
the bulk band structure, so in general using a band structure
computed at the strain imposed by the experimental substrate
may be necessary to obtain a quantitative comparison between
experiment and theory.

Finally, Fig. 5 shows the strain-dependence of the mass
renormalization m�/m calculated with DFT + DMFT. These
values of m�/m were obtained from fitting Matsubara self-
energies, using the same procedure as in Sec. IV A. Because
biaxial strain breaks the degeneracy of the eg orbitals, there

FIG. 5. (Color online) Strain-dependence of calculated DFT +
DMFT mass enhancement in the a−a−c− structure. Because biaxial
strain breaks the degeneracy of the eg orbitals, we show here orbitally
resolved mass enhancements for dx2−y2 (green) and d3z2−r2 (blue).
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are now distinct self-energies corresponding to the dx2−y2 and
d3z2−r2 orbitals, so Fig. 5 shows the orbitally resolved mass
enhancements. We find that the dx2−y2 mass enhancement
increases upon stretching the in-plane lattice constant (moving
from compressive to tensile strain), while the d3z2−r2 mass
enhancement decreases slightly. Because the dominant orbital
character of the bands crossing the Fermi level varies in
momentum space, as shown in Figs. 2(f) and 2(g), at large
compressive or tensile strains we would therefore expect a
momentum-dependent mass enhancement if ARPES measure-
ments were made at points around the Fermi surface with
different dominant orbital characters.

The strain dependence of the orbitally resolved m�/m can
be understood in light of the changes to the Ni-O-Ni bond
angles and Ni-O bond lengths presented in Figs. 4(a) and 4(b),
which both couple to the electronic bandwidth W . Assuming
strain does not strongly influence the electron-electron inter-
action strength U , strain-induced bandwidth changes will tune
the ratio U/W , which controls the correlation strength [1].
Thus the increase (decrease) in the dx2−y2 (d3z2−r2 )-orbitally
resolved m�/m with tensile strain would arise from a decrease
(increase) in bandwidth Wx2−y2 (W3z2−r2 ). For bands formed by
hybridized eg and O 2p orbitals, W is related to the Ni-O bond
length r and the Ni-O-Ni bond angle θ via the expression [46]
W ∼ | cos θ |/r3.5. Here, the bandwidth Wx2−y2 is controlled
by rxy and θxy , while the bandwidth W3z2−r2 is controlled by
rz and θz.

The expression for W above reveals that strain-induced
changes to r and θ shown in Figs. 4(a) and 4(b) will generally
affect the bandwidth in opposite ways. Taking the example of
Wx2−y2 , tensile strain increases rxy and θxy relative to the un-
strained values, which will decrease (increase) the bandwidth,
respectively. As a result, the net bandwidth response to strain
depends on whether changes in bond angle or bond length
are the primary mechanism for strain accommodation, and
to what extent the changes cancel each other out. Comparing
Figs. 4(a), 4(b), and 5, it is clear that the changes to the orbitally
resolved m�/m with strain follow the trends that one would
expect from the Ni-O bond distance changes, rather than the
Ni-O-Ni bond angle (an increasing dx2−y2 mass enhancement
arises from increased rxy , while a decreasing d3z2−r2 m�/m

arises from a decreasing rz). The fact that the dx2−y2 mass
enhancement changes more with strain than the d3z2−r2 mass
enhancement can be understood because θxy responds less to
strain than θz as shown in Fig. 4(a), so there is less cancellation
of the bond length/angle changes to the bandwidth.

While this analysis describes the strain induced changes
to m�/m solely in terms of bond angle and bond length
changes, the evolution of correlation strength with strain
may be more complex, due to the strong coupling between
electronic correlations and the lattice in the RNiO3 family. For
example, structural relaxations within DFT + U [24,25,47]
predict that tensile strain will induce a bond length dis-
proportionation phase in LaNiO3, similar to the correlation-
induced disproportionation observed in the bulk insulating
RNiO3 compounds [48,49]. However, DFT + U generally
overpredicts the tendency towards bond disproportionation
(while DFT underpredicts it), and structural relaxations within
DFT + DMFT are needed to correctly reproduce the structural
and pressure phase diagram of the bulk nickelates [28]. On

the experimental side, there is mixed evidence regarding bond
disproportionation in strained LaNiO3 films [5,24].

V. DISCUSSION

To summarize the last sections, comparison of ARPES
spectra to the DFT band structure computed in the rhombohe-
dral structure establishes a mass enhancement m�/m ≈ 3–3.5
in LaNiO3, and DFT + DMFT using the same structure, and
interaction parameters fixed by high binding energy features
in the photoemission spectra, give quasiparticle bands in very
good agreement with the data. This establishes LaNiO3 as
a moderately correlated Fermi liquid material. For context,
this value of m�/m is in the same regime as other correlated
metallic oxides, such as SrRuO3 (m�/m ∼ 4) [50,51] and VO2

(m�/m ∼ 2) [52].
Other measurements of m�/m for LaNiO3 have previously

appeared in the literature. Soft x-ray ARPES measure-
ments [16] reported m�/m ∼ 3 and ∼ 0 on the electron- and
holelike bands, respectively, by comparing experiment to DFT
calculations in the idealized cubic structure (as noted earlier,
we obtain a renormalization of 7 when comparing our data to
cubic DFT calculations). This difference of results could be
due to measuring at different momentum space points, or to
the energy resolution available with soft x rays.

Optical conductivity experiments [17,18] determine a cor-
relation strength from the integral of the optical conductivity
over a given frequency range [53–55]. One group [17] found
an optical mass enhancement m�/m ∼ 3 for LaNiO3 grown
on LaAlO3, in good agreement with our results. They also
reported that m�/m increases from ∼3 to ∼5 as the strain
moves from compressive to tensile. As seen in Fig. 5 this trend
is consistent with the results of our DFT + DMFT calculations,
but the experimental variation is larger than the calculated one.
Other optical conductivity experiments [18] found the same
strain-dependent trend, but with larger mass enhancements.
The differences, both between experiments and between
experiment and calculation, could arise partly from the choice
of frequency range used in the analysis of optical data.

In bulk LaNiO3, thermodynamic studies [20–22] report
a Fermi surface averaged mass enhancement of 10 relative
to free electrons at a density corresponding to one elec-
tron per Ni site. Here, we compare the experimental [22]
specific heat-based DOS at the Fermi level of g(EF ) =
(1.1–1.3) × 1023 eV−1 cm−3 to the DOS obtained from our
DFT calculations in the rhombohedral structure, gDFT(EF ) =
4.1 × 1022 eV−1 cm−3. Taking the ratio of the experimental
and DFT DOS, we obtain m�/m ∼ g(EF )/gDFT(EF ) = 2.7–
3.2, in reasonable agreement with the value we obtain from
ARPES and DFT + DMFT in this paper. (For comparison,
for the idealized cubic structure, we obtain gDFT(EF ) = 2.1 ×
1022 eV−1 cm−3 and thus m�/m = 5.2–6.2.) The enhancement
of the Fermi level DOS in the rhombohedral structure relative
to the cubic structure is due to the flattening of the bands in the
vicinity of the Fermi level in the rhombohedral structure as is
visible in Fig. 2(d); this was previously discussed in Ref. [6].

VI. CONCLUSION

In this paper, using ARPES measurements and
DFT + DMFT calculations to study LaNiO3, we determine
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the experimental and theoretical mass enhancement m�/m,
which is a defining property of any correlated material, and
demonstrate a quantitative comparison between experiment
and theory. This result establishes LaNiO3 as a moderately
correlated Fermi liquid, and that DFT + DMFT can accurately
describe this correlated physics. We compare our value of
m�/m to previous reports in the literature, and discuss possible
origins of differences where appropriate; in particular, we
find that our results agree with those from thermodynamic
measurements, if we compare those measurements to our DFT
calculations.

We highlight the choices that must be made in such a
experiment-theory comparison, in particular, the free param-
eters U and J in the DFT + DMFT calculation, which we
constrain using angle-integrated photoemission spectra. We
also emphasize the key role played by the reference DFT band
structure. Octahedral rotations and biaxial strain can change
the near-Fermi level band structure features significantly,
and there is substantial variation in the magnitude of these
changes depending on the particular point in momentum
space under consideration. In general, octahedral rotations and
strain can “renormalize” the low-energy bands relative to an
idealized cubic band structure by the same amount as electron
correlations can, so it is key to consider the realistic crystal

structure and biaxial strain (and make comparisons at the same
momentum-space point) to obtain a quantitative estimate of the
mass enhancement arising from electron correlations. These
results provide an important benchmark for the DFT + DMFT
method, and thus will enable future studies of other nickelates
and strongly correlated materials.
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