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Recently, Weinberg proposed a scenario where Goldstone bosons may be masquerading as fractional
cosmic neutrinos. We calculate the energy loss rates through the emission of these Goldstone bosons in a
postcollapse supernova core. Invoking the well-established emissivity bound from the Supernova 1987A
observations and simulations, we find that nuclear bremsstrahlung processes can notably impose a bound
on the Goldstone boson coupling to the Standard Model Higgs, g, dependent on the mass of the associated
radial field, mr. We apply the supernova emissivity bound at typical core conditions: a density of
ρ ¼ 3 × 1014 g=cm3 and a temperature T ¼ 30 MeV. Even in the conservative limit where mr is large
enough compared with the Goldstone boson energies attainable at this temperature, our bound
jgj ≲ 0.011ðmr=500 MeVÞ2 is very competitive to those derived from current and projected sensitivities
of collider experiments.
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I. INTRODUCTION

The cosmic microwave background (CMB) radiation, if
combined with other observational data, can be used to
constrain the effective number of light neutrino species.
The WMAP9 data combined with eCMB, BAO, and H0

measurements has inferred Nν ¼ 3.55þ0.49
−0.48 at 68% C.L. [1].

Latest Planck data combined with WP, highL, BAO, and
H0 measurements gives Nν ¼ 3.52þ0.48

−0.45 at 95% C.L. [2].
Most recently, with the inclusion of the B-mode polariza-
tion data by the BICEP2 experiment [3], evidence for an
extra weakly interacting light species becomes favorable,
withNν ≃ 4 (see e.g. Ref. [4]). These bounds are consistent
with that from the big bang nucleosynthesis (BBN) Nν ¼
3.71þ0.47

−0.45 (see e.g. Ref. [5]). On the other hand, the standard
scenario with three active, massless neutrinos predicts
Nν ¼ 3.046 at the CMB epoch [6].
Recently, Weinberg [7] has investigated whether

Goldstone bosons can be masquerading as fractional
cosmic neutrinos. The motivation is that they would be
massless or nearly massless, and their characteristic deriva-
tive coupling would make them very weakly interacting at
sufficiently low temperatures. The most crucial criterion is
that those Goldstone bosons have to decouple from the
thermal bath early enough so that their temperature is lower
than that of the neutrinos. A simple extended Higgs sector
in the Standard Model (SM) has been proposed to realize
this idea such that the Goldstone bosons contribute sig-
nificantly to the effective number of light species. The
thermal history of these Goldstone bosons depends cru-
cially on their coupling to the Standard Model Higgs field

and the mass of the radial field. An upper bound on the
coupling constant can be quickly derived using the limit on
the invisible decay width of the SM Higgs. In this paper we
will examine the viability of this scenario by considering
the cooling of a postcollapse supernova core, such as the
Supernova 1987A.

II. WEINBERG’S MODEL

Let us first briefly summarize Weinberg’s model [7]
following the convention of Ref. [8]. Consider the simplest
possible broken continuous symmetry, a global Uð1Þ
symmetry associated with the conservation of some quan-
tum number W. A single complex scalar field SðxÞ is
introduced for breaking this symmetry spontaneously. With
this field added to the SM, the Lagrangian is

L¼ð∂μS†Þð∂μSÞþμ2S†S−λðS†SÞ2−gðS†SÞðΦ†ΦÞþLSM;

ð1Þ

where Φ is the SM Higgs doublet, μ2, g, and λ are real
constants, and LSM is the usual SM Lagrangian. One
separates a massless Goldstone boson field αðxÞ and a
massive radial field rðxÞ in SðxÞ by defining

SðxÞ ¼ 1ffiffiffi
2

p ðhri þ rðxÞÞe2ıαðxÞ; ð2Þ

where the fields rðxÞ and αðxÞ are real. In the unitary gauge,
one sets ΦT ¼ ð0; hφi þ φðxÞÞ= ffiffiffi

2
p

, where φðxÞ is the
physical Higgs field. The Lagrangian in Eq. (1) thus
becomes*huitzu@phys.sinica.edu.tw
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L ¼ 1

2
ð∂μrÞð∂μrÞ þ 1

2

ðhri þ rÞ2
hri2 ð∂μαÞð∂μαÞ

þ μ2

2
ðhri þ rÞ2 − λ

4
ðhri þ rÞ4

−
g
4
ðhri þ rÞ2ðhφi þ φÞ2 þ LSM: ð3Þ

In Eq. (3), we have replaced αðxÞ → αðxÞ=ð2hriÞ in order
to achieve a canonical kinetic term for the αðxÞ field. In this
model, the interaction of the Goldstone bosons with the SM
particles arises entirely from a mixing of the radial boson
with the Higgs boson via the mixing angle

tan 2θ ¼ 2ghφihri
m2

φ −m2
r
: ð4Þ

The φ-r mixing allows the SM Higgs boson to decay into a
pair of the Goldstone bosons with the decay width

Γφ→2α ¼
g2hφi2m3

φ

32πðm2
φ −m2

rÞ2
: ð5Þ

For hφi ¼ 247, mφ ¼ 125 GeV, and assuming mr ≪ mφ,
one obtains a constraint of jgj≲ 0.018. In Ref. [8] it is
pointed out that by including the φ → rr channel, the
constraint can be improved to jgj≲ 0.011. Further collider
signatures of this model have been investigated therein and
in Ref. [9]. In the future, the International Linear Collider
(ILC) may constrain the branching ratio of Higgs invisible
decays to < 0.4–0.9% [10], improving the collider bound
on jgj by a factor of 5–7.
From the mixing term −ghφihriφr and the interaction

term ð1=hriÞr∂μα∂μα in the Lagrangian [Eq. (3)] as well as
the SM Higgs-fermion coupling −mfφf̄f=hφi, an effective
interaction between the Goldstone bosons and any SM
fermion f,

þgmff̄fφr∂μα∂μα; ð6Þ

is produced. In the early universe, the Goldstone bosons
remain in thermal equilibrium via the processes αα ↔ f̄f,
where f are SM fermions in the thermal bath. If the
Goldstone bosons freeze out before the muon annihilation
occurs, they contribute about 0.39 to the effective number
of neutrino types in the era before recombination. Weinberg
has made an order-of-magnitude estimate,

g2m7
μMPl

m4
φm4

r
≈ 3; ð7Þ

which shows that for g ¼ 0.005 the Goldstone bosons
decouples at muon annihilation for mr ≈ 500 MeV (see
also Ref. [11]). While a more accurate calculation is

underway [12], in this paper we will use mr ¼ 500 MeV
as a benchmark.

III. SUPERNOVA COOLING DUE TO
GOLDSTONE BOSON EMISSION FROM

PAIR ANNIHILATION PROCESSES

Now we turn to supernova cooling. The observed
duration of neutrino burst events from Supernova 1987A
in several detectors confirmed the standard picture of
neutrino cooling of postcollapse supernova. In the second
phase of neutrino emission, a light particle which interact
even more weakly than neutrinos could lead to more
efficient energy loss and shorten the neutrino burst dura-
tion. Demanding that the novel cooling agent X should not
have affected the total cooling time significantly, an upper
bound on their emissivity can be derived [13,14],

ϵX ≡QX

ρ
≲ 1019 erg g−1 s−1 ¼ 7.324 × 10−27 GeV; ð8Þ

where QX is the energy loss rate. This bound, dubbed the
“Raffelt criterion,” is to be applied at typical core con-
ditions, i.e. a density ρ ¼ 3 × 1014 g=cm3 and a temper-
ature T ¼ 30 MeV. It has been used exhaustively in the
literature to constrain the properties of exotic particles,
notably the axions [15–17], right-handed neutrinos [15],
Kaluza-Klein gravitons [18,19], and unparticles [20,21],
etc. Among all, the authors of Ref. [19] have performed
self-consistent simulations of the early, neutrino-emitting
phase of a proto-neutron star including energy losses due to
the Kaluza-Klein gravitons in large extra dimension sce-
narios. From their subsequent probabilistic analyses they
inferred bounds on the radii of the extra dimensions for the
cases of two and three extra dimensions. They found
excellent agreement between their simulation results and
those obtained by using the Raffelt criterion.
Stellar energy loss due to Goldstone boson pair emission

had been considered for the Compton-like process [22].
Here, from their effective interaction with the SM fermions
[Eq. (6)], the Goldstone bosons can be produced in
electron-positron pair annihilation eþe− → αα, in photon
scattering γγ → αα and in nuclear bremsstrahlung proc-
esses NN → NNαα. The number densities of neutron,
proton, electron, and electron neutrino in the supernova
core are determined by the baryon density nB, charge
neutrality and β-equilibrium conditions. The chemical
potential of each particle at T ¼ 30 MeV are μn ¼ 971,
μp ¼ 923, μe ¼ 200, and μνe ¼ 152 MeV, respectively, for
a fixed lepton fraction YL ¼ 0.3. The degeneracy parameter
for the neutron is ηn ≡ ðμn −mnÞ=T ≈ 1.05 in this case,
corresponding to neither strongly nondegenerate nor
degenerate case. On the other hand, the electrons are
highly degenerate.

(i) For the eþðp1Þe−ðp2Þ → αðq1Þαðq2Þ process, the
amplitude squared, summed over the initial spins, is
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X
spins

jMeþe−→ααj2¼
16g2m2

eðq1 ·q2Þ2½ðp1 ·p2Þ−m2
e�

ðs−m2
φÞ2ðs−m2

rÞ2
;

ð9Þ

where s ¼ ðp1 þ p2Þ2 ¼ ðq1 þ q2Þ2 is the center-
of-mass (cm) energy squared. Denote the energies of
the e� and the Goldstone boson pairs by E1, E2, ω1,
and ω2, respectively. The energy loss rate due to this
process is

Qeþe−→αα ¼
1

2!

Z Y2
j¼1

d3~qj
ð2πÞ32ωj

Z Y2
i¼1

2d3 ~pi

ð2πÞ32Ei

×
1

4

X
spins

jMeþe−→ααj2ð2πÞ4δ4

× ðp1 þ p2 − q1 − q2Þ
× f1f2ðω1 þ ω2Þ; ð10Þ

where f1ð~p1Þ ¼ ðeðE1þμeÞ=T þ 1Þ−1 and f2ð~p2Þ ¼
ðeðE2−μeÞ=T þ 1Þ−1 are the distribution functions for
the positron and the electron, respectively. A sym-
metry factor of 1=2! is included for the identical
particles in the final state. In the large mr limit, the r
field propagator can be expanded in powers of
(s=m2

r). In this paper we use only the leading term
in the expansion, as in Ref. [7]. The results we will
present should thus be regarded as conservative
estimates, since all higher terms contribute posi-
tively to the energy loss rate. Performing the
d3~q1d3~q2 integral analytically, we obtain

Z
d3~q1
ω1

d3~q2
ω2

ðq1 · q2Þ2
m4

r
δ4ðp1 þ p2 − q1 − q2Þ

¼ π

2

ðp1 þ p2Þ4
m4

r
; ð11Þ

analogous to the Lenard’s Identity for the eþe− →
νν̄ process [23]. Then following Ref. [24], we define
these two dimensionless functions,

Uk ≡ 1

π2

Z
∞

0

j~p1j2dj~p1j
T3

�
E1

T

�
k
f1ð~p1Þ;

Φk ≡ 1

π2

Z
∞

0

j~p2j2dj~p2j
T3

�
E2

T

�
k
f2ð~p2Þ: ð12Þ

The energy loss rate can then be expressed as

Qeþe−→αα ¼
T11

16π

�
g2m2

e

m4
rm4

φ

�X
CijðUiΦj þ ΦiUjÞ;

ð13Þ

where the sum runs over fi; jg pairs, with C23 ¼ 2,
C12 ¼ 1=3, C03 ¼ −1, C01 ¼ C−12 ¼ −1=3, and
C−10 ¼ −2=3. Evaluating the Uk, Φk functions
numerically for the typical supernova core
condition ρ ¼ 3 × 1014 g=cm3, T ¼ 30 MeV and
μe ¼ 200 MeV, we find the emissivity due to the
process eþe− → αα is

ϵeþe−→αα ¼ 1.73 × 10−28 GeV g2
�

mr

500 MeV

�
−4
:

ð14Þ
One sees that for mr around 500 MeV, even with
g ≈ 0.018 saturating the collider bound, contribution
from Goldstone boson emission to supernova cool-
ing is far from competing with that from neutrino
emission.

(ii) The energy loss rate for the photon scattering
process can be calculated similarly. The amplitude
squared for the process γðp1Þγðp2Þ → αðq1Þαðq2Þ is

jMγγ→ααj2 ¼
�
α

4π

�
2 16GFffiffiffi

2
p jFj2ðq1 · q2Þ2

×
g2hφi2

ðs −m2
φÞ2

ðp1 · p2Þ2
ðs −m2

rÞ2
; ð15Þ

and the resulting energy loss rate in the large mr
limiting case is

Qγγ→αα ¼
�
1

2!

�
2 1819.8

5
ffiffiffi
2

p
π

�
α

2π

�
2

GFjFj2
g2hφi2
m4

φm4
r
T13:

ð16Þ

Here, α and GF are the fine-structure constant and
the Fermi constant, respectively, and the symmetry
factor ð1=2!Þ2 is included for identical particles in
the initial and in the final state. The form factor F
enters through the amplitude for the SM Higgs
decay to two photons (see e.g. Ref. [25,26]), in
this case a function of the cm energy

ffiffiffi
s

p
in the

photon collision. The cm energies attainable at
the typical temperature in the postcollapse super-
nova core correspond to the mass of the light
(sub-GeV) Higgs boson studied in Ref. [27,28].
For simplicity, we use a constant value of jFj2 ¼ 4 to
approximate the result of Ref. [28], and find that the
emissivity is

ϵγγ→αα∼
6.32×10−29GeV
ðρ=3×1014 g=cm3Þ

g2

ð mr
500MeVÞ4

�
T

30MeV

�
13

;

ð17Þ
even smaller than that from the electron-positron
annihilation process.
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IV. SUPERNOVA COOLING DUE TO GOLDSTONE BOSON EMISSION FROM NUCLEAR
BREMSSTRAHLUNG PROCESSES

Now we turn to evaluate the energy loss rate due to the nuclear bremsstrahlung process,

QNN→NNαα ¼
S
2!

Z Y2
j¼1

d3~qj
ð2πÞ32ωj

Z Y4
i¼1

d3 ~pi

ð2πÞ32Ei

X
spins

jMNN→NNααj2f1f2ð1 − f3Þð1 − f4Þðω1 þ ω2Þ

× ð2πÞ4δ4ðp1 þ p2 − p3 − p4 − q1 − q2Þ; ð18Þ

where p1;2 are the four-momenta of the initial-state
nucleons, and p3;4 those of the final-state nucleons
N ¼ p, n. For nn or pp interactions, the symmetry factor
for identical particles is S ¼ 1

4
, whereas for np interactions

it is 1. The amplitude squared jMnn→nnααj2 is summed over
initial and final nucleon spins but without being averaged.
In the nonrelativistic limit, the occupation numbers are
given by the normalized Maxwell-Boltzmann distribu-
tion fð~pÞ ¼ ðnB=2Þð2π=mNTÞ3=2e−~p2=2mNT .
To calculate the scattering amplitude, first we need to

obtain the effective coupling of the Goldstone bosons to the
nucleons through the Higgs. We follow the Shifman-
Vainshtein-Zakharov (SVZ) approach [29,30] to evaluate
the matrix element hNjPq mqq̄qþP

Q mQQ̄QjNi, with
q, Q denoting the light and the heavy quarks, respectively.
Using the SVZ heavy quark expansion

X
Q

mQQ̄Q → −
2

3

αs
8π

nhGa
μνGaμν; ð19Þ

in the mq → 0 limit we obtain the effective Lagrangian for
the interaction of Weinberg’s Goldstone bosons with the
nucleons

Leff ¼
2

27
nhg

mN

m2
rm2

φ
∂μα∂μαψ̄NψN; ð20Þ

with nh the number of heavy quarks. From this we define an
effective coupling gN ≡ ð2=27Þnhg, to be used in the
following calculation.
Armed with this knowledge, we follow the prescription

given in Ref. [31] to calculate the amplitude for the nuclear
bremsstrahlung process. In the one-pion exchange (OPE)
approximation, there are four direct and four exchange
diagrams, corresponding to the Goldstone boson pairs
being emitted by any one of the nucleons. In total there
are 64 diagrams to calculate, which can be grouped into
eight categories. Denote the four-momenta of the
exchanged pions by ka ≡ p2 − p4 (in the direct diagrams)
and la ≡ p2 − p3 (in the exchange diagrams), respectively.
In young supernova cores, k2a ≃ −j~kj2, l2a ≃ −j~lj2, and j~kj2,
j~lj2 ∼ 3mNT. Again we work in the conservative large mr
limit, using only the leading term in the (s=m2

r) expansion
of the r field propagator. Summing all diagrams from the 8
categories and expanding in powers of (T=mN), we find the
amplitude squared for the nuclear bremsstrahlung process
nn → nnαα to be

X
spins

jMnn→nnααj2 ≈ ð2!Þ2
�
gNmN

m2
rm2

φ

�
2
�
2mNf
mπ

�
4

ðq1 · q2Þ2
ð2q2Þ2m2

N

ð2p · qÞ4

× 256

� j~kj4
ðj~kj2 þm2

πÞ2
þ j~lj4
ðj~lj2 þm2

πÞ2
þ j~kj2j~lj2 − 2j~k · ~lj2
ðj~kj2 þm2

πÞðj~lj2 þm2
πÞ

þ � � �
�
; ð21Þ

with q ¼ q1 þ q2. Here, απ ≡ ð2mNf=mπÞ2=ð4πÞ ≈ 15

with f ≈ 1 being the pion-nucleon “fine-structure”
constant. The ð2!Þ2 factor arises from the Wick con-
traction of the two Goldstone bosons in the final state.
Considering only the leading terms in the (T=mN) ex-
pansion of the amplitude squared and neglecting the pion
mass mπ in the curly brackets, the phase space integral in
Eq. (18) can be performed analytically as for the axion
or neutrino emission cases [32]. We estimate the energy
loss rate due to nn → nnαα in the nondegenerate (ND)
case to be

QND
nn→nnαα ≃ 1056

ffiffiffi
π

p
ð2πÞ6

�
3 −

2β

3

�
n2B

×
�
gNmN

m2
rm2

φ

�
2
�
2mNf
mπ

�
4 T9.5

m4.5
N

: ð22Þ

The β term arises from the averaging of the ð~k · ~lÞ term
over the nucleon scattering angle and we find that
β ¼ 2.0938. In the large mr limiting case, the very strong
temperature dependence arises from the presence of the
ðq1 · q2Þ2=m4

r term in the amplitude squared because of
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the ∂μα∂μαf̄f type coupling [33] in Eq. (6). In compari-
son, in the ND limit the temperature dependence of the
energy loss rate is T3.5 and T5.5 for the axion and the
neutrino emission cases, respectively [31,32]. In large
extra dimension scenarios with 2 and 3 extra dimensions,
the temperatuer dependence of the Kaluza-Klein graviton
emissivity is T5.42 and T6.5, respectively [19]. We compare
the emissivity due to the Goldstone bosons,

ϵNDnn→nnαα ¼
QND

nn→nnαα

ρ

≃ 6.65 × 10−22 GeV
ðρ=3 × 1014 g=cm3Þ g

2
N

�
mr

500 MeV

�
−4

×

�
T

30 MeV

�
9.5
; ð23Þ

with the emissivity bound in Eq. (8), which should be
applied at ρ ¼ 3 × 1014 g=cm3 and T ¼ 30 MeV [14].
We obtain a constraint of

g2N

�
mr

500 MeV

�
−4 ≲ 1.1 × 10−5; ð24Þ

on the coupling of Weinberg’s Goldstone bosons to
nucleons through the Higgs. This implies for the coupling
constant [cf. Eq. (1)] to the Higgs that

jgj≲ 0.011

�
mr

500 MeV

�
2

; ð25Þ

from the relation gN ¼ ð2=27Þnhg, with the number of
heavy quark flavors nh ¼ 4. One sees that the supernova
bound is competitive and complementary to the collider
bound g≲ 0.018ð0.011Þ, which is insensitive to the mr

value. We have checked the pion mass effects on the
energy loss rate by keeping the m2

π in the denominators in
Eq. (21) and performing the phase space integrals using
the Monte Carlo routine VEGAS [34]. We find that the
reduction is 12% at T ¼ 30 MeV and only 5% at
T ¼ 80 MeV, milder than that in the axion emission case.
It remains to estimate the emissivity for more general
cases, i.e. for smaller mr values, and including the higher-
order terms in the (T=mN) expansion of the amplitude
squared [Eq. (21)], to find the modifications of this bound.
Besides using the OPE approximation, one may also
estimate the emissivity due to nuclear bremsstrahlung
processes in a model-independent way following
Refs. [18,35]. In this approach, the emissivity is related
to the measured nucleon-nucleon total cross section by
taking the soft radiation (ω1 þ ω2 → 0) limit.

Eq. (23) imparts the impression that our supernova
bound on the Goldstone boson coupling is very sensitive
to the supernova core temperature. For example, if we
assume that the temperature at supernova core is
T ¼ 20 MeV, our bound in Eq. (25) would be 6.86 times
weaker. The authors of Ref. [19] did not present the results
for more than 3 large extra dimensions, otherwise we would
know whether one can still apply the Raffelt criterion at
T ¼ 30 MeV in the case of emissivities with stronger T
dependence. It is appropriate to perform a simulation of the
early phase of a proto-neutron star including energy losses
due to Goldstone boson emission, this is however beyond
the scope of this paper.

V. SUMMARY AND OUTLOOK

In conclusion, we have determined the allowed range for
the coupling constant g in dependence of mr, the mass of
the radial field rðxÞ in Weinberg’s extended Higgs model,
in which new Goldstone bosons may be masquerading as
fractional cosmic neutrinos. In the conservative large mr
limit, we have estimated the energy loss rates in post-
collapse supernova cores due to Goldstone boson emission
in different channels including the eþe− annihilation,
photon scattering and nuclear bremsstrahlung processes.
We present our main result in Eq. (25), obtained by
confronting our estimate for the nuclear bremsstrahlung
processes with the well-established emissivity bound from
the Supernova 1987A observations and simulations, known
as the “Raffelt criterion.”We applied the Raffelt criterion at
typical core conditions: a density of ρ ¼ 3 × 1014 g=cm3

and a temperature T ¼ 30 MeV, and discussed the validity
in our case. We found that even in the conservative limit
where mr is large enough compared with the Goldstone
boson energies attainable at this temperature, our bound is
highly competitive to that derived from collider experi-
ments. In the future, if the ILC can indeed improve the
collider bound to jgj < 0.0015, Weinberg’s estimate
[Eq. (7)] would require mr < 274 MeV in order that the
Goldstone bosons contribute 0.39 to Nν. In this case our
bound is at least as good as jgj < 0.0033, still competitive.
Technical details, investigation of more general cases, as
well as other astrophysical constraints will be presented in a
subsequent work [12].
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