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Vortex	cutting	and	reconnection	is	an	intriguing	and	still-unsolved	problem	central	to	many	
areas	 of	 classical	 and	 quantum	 physics,	 including	 hydrodynamics,	 astrophysics,	 and	
superconductivity.	 Here	 we	 describe	 a	 comprehensive	 investigation	 of	 the	 crossing	 of	
magnetic	 vortices	 in	 superconductors	 using	 time	 dependent	 Ginsburg-Landau	 modeling.	
Within	 a	 macroscopic	 volume	 we	 simulate	 initial	 magnetization	 of	 an	 anisotropic	 high	
temperature	superconductor	 followed	by	subsequent	remagnetization	with	perpendicular	
magnetic	fields,	creating	the	crossing	of	the	initial	and	newly	generated	vortices.	The	time	
resolved	evolution	of	vortex	lines	as	they	approach	each	other,	contort,	locally	conjoin	and	
detach,	elucidates	the	fine	details	of	the	vortex-crossing	scenario	under	practical	situations	
with	many	interacting	vortices	in	the	presence	of	weak	pinning.	Our	simulations	also	reveal	
left-handed	 helical	 vortex	 instabilities	 that	 accompany	 the	 remagnetization	 process	 and	
participate	in	the	vortex	crossing	events.		

	
Introduction	
Magnetic	 field	 lines	 introduced	by	Michael	Faraday	nearly	 two	centuries	ago	are	a	

very	useful	abstraction	that	represents	the	behavior	of	magnetic	fields.	(1)	They	provide	a	
visual	 picture	 of	 the	magnitude	 and	 direction	 of	 magnetic	 fields	 in	 vacuum,	 in	magnetic	
media	 and	 at	 their	 boundaries.	 These	 imaginary	 magnetic	 field	 lines	 can	 be	 straight	 or	
curved,	 converge	 into	dense	contours	 that	portray	enhanced	 fields	or	diverge	 into	sparse	
arrays	for	decreased	fields,	but	they	neither	cross	nor	entangle.		
	 In	 contrast,	 when	 the	 magnetic	 field	 enters	 a	 type-II	 superconductor	 below	 the	
superconducting	transition	temperature,	the	field	lines	become	real	material	elastic	strings	-
Abrikosov	vortices	comprised	of	 supercurrents	circulating	around	a	normal	core	 that	can	
carry	 one	 or	more	 (in	mesoscopic	 samples)	magnetic	 flux	 quanta	 (Φ0=h/2e).	 (2-4).	 The	
normal	 core	 of	 vortices	 has	 the	 characteristic	 size	 of	 the	 coherence	 length	 (ξ)	 and	 the	
surrounding	 circulating	 supercurrents	 decay	 at	 the	 distance	 of	 the	 London	 penetration	
depth	 	 λ>>ξ	 .	 	 These	 vortices	 are	 the	 principal	 building	 blocks	 for	 complex	 matter-like	
assemblies,	as	they	form	lattices	and	melt	into	a	liquid	state	with	thermal	fluctuations.		The	
statics	and	dynamics	of	 ‘vortex	matter’	depend	on	 their	many	 interactions,	with	 surfaces,	
defects	 in	 the	 crystal	 structure,	 applied	 transport	 currents,	 and	with	 each	other.	Vortices	
and	 their	 interactions	 define	 the	 basic	 electromagnetic	 response	 of	 superconductors	 and	
hence	 their	 fundamental	 understanding	 is	 crucial	 for	 fundamental	 science	 and	 for	
applications	 in	 superconducting	 power	 lines,	 high-field	magnets,	microwave	 filters	 (5-7)	
and	potential	quantum	computer	circuits	(8,	9).	

Unlike	Faraday’s	abstract	magnetic	field	lines,	vortices	in	a	superconductor	can	cross,	
cut,	and	reconnect	or	entangle	with	each	other	in	complex	dynamic	processes	that	currently	
lack	a	clear	theoretical	description.		Although	long-range	repulsion	of	vortices	resists	their	
close	 approach,	 suitable	 combinations	 of	 thermal	 fluctuations,	 pinning	 and	driving	 forces	
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may	 bring	 two	 flexible	 vortex	 lines	 together	 to	 cross,	 cut	 and	 reconnect	 or	 entangle	 in	
complex	topologies.	

	
One	 can	 imagine	 different	 outcomes	 when	 vortices	 approach	 each	 other.	 The	

repulsive	 energy	 at	 the	 point	 of	 closest	 approach	 may	 be	 too	 large	 to	 be	 overcome,	
preventing	vortices	from	touching,	cutting	or	penetrating	through	each	other.	In	this	case,	
further	vortex	motion	elsewhere	along	their	lengths	could	bring	the	vortices	close	to	other	
neighboring	vortices	and	create	a	topologically	entangled	configuration,	such	as	an	orderly	
braid	of	several	vortices	or	a	randomly	entangled	“bowl	of	spaghetti.”	On	the	other	hand,	if	
the	repulsive	barrier	is	sufficiently	small,	the	vortices	may	penetrate	each	other,	preventing	
the	formation	of	an	entangled	state.		At	the	point	of	local	contact,	instead	of	merely	crossing	
through	each	other,	two	vortices	could	exchange	vortex	halves	on	either	side	of	the	point	of	
contact		producing	a	new	reconnected	configuration.		

Vortex	 crossing	 and	 reconnection	 are	 often	 invoked	 in	 treating	 the	 dynamics	 of	
dense	 vortex	 systems	 such	 as	 pinned	 vortex	 liquids	 and	 entangled	 vortex	 solids,	
particularly	 in	high	temperature	superconductors	where	thermal	energies	enable	a	 larger	
degree	of	vortex	motion	 (10-13).	 	Beyond	superconductivity,	vortex	crossing	 is	a	general	
physical	phenomenon	actively	discussed	 in	the	dynamics	of	classical	and	quantum	liquids	
including	astrophysical	plasmas	and	atomic	Bose-condensates	(14-17).	

In	this	paper,	we	present	time	dependent	Ginzburg-Landau	simulations	of	arrays	of	
vortices	 in	 a	 finite-sized	 sample	 that	 is	 initially	magnetized	 in	one	direction	 and	 then	 re-
magnetized	 with	 an	 orthogonal	 magnetic	 field.	 In	 this	 process,	 vortices	 created	 by	 the	
orthogonal	 remagnetization	 field	 come	 in	 contact	 with	 the	 initially	 generated	 vortices	
allowing	vortices	with	different	orientations	to	touch,	penetrate,	or	cut	and	reconnect.		The	
simulations	 use	 material	 parameters	 typical	 of	 YBa2Cu3O7-d	 (YBCO)	 high	 temperature	
superconductors.	 Our	 simulations	 reveal	 a	 complex	mechanism	 for	 vortex	 cutting:	 when	
two	vortices	 approach,	 at	 the	nearest	point	 they	 locally	bend	 so	 that	 the	polarity	of	 bent	
segments	 becomes	 opposite,	 converting	 their	 local	 mutual	 repulsion	 to	 local	 mutual	
attraction.	 	 The	 vortices	 then	 merge	 at	 the	 point	 of	 closest	 approach	 and	 re-emerge	 as	
independent	 vortices	 having	 exchanged	 their	 respective	 half-vortices.	 After	 cutting,	
reconnecting	 and	 straightening,	 the	 new	 vortices	 tilt	 towards	 the	 applied	 field	 direction,	
resulting	in	the	rotation	of	the	magnetic	flux	inside	the	superconductor.		

	
Background	
Despite	 the	 pervasiveness	 of	 vortex	 crossing	 in	 many	 physical	 systems,	 the	

fundamental	 description	 of	 the	 phenomenon	 remains	 a	 challenge.	 	 It	 has	 been	 discussed	
theoretically	 in	 various	 contexts,	 often	with	 simplifying	 assumptions	 to	make	 theoretical	
analysis	tractable.	The	easiest	simplification	is	to	focus	on	the	interactions	of	two	vortices	
(18)	removed	from	the	interactions	with	the	surrounding	vortices	

Oftentimes	the	analysis	is	carried	out	considering	the	separate	contributions	to	the	
total	vortex	energy,	such	as	the	long-range	magnetic	repulsion	due	to	interacting	circulating	
supercurrents,	 the	short-range	attraction	due	to	overlapping	normal	vortex	cores	and	the	
elastic	energy	due	to	 local	vortex	bending.	 	 	Even	with	these	simplifying	assumptions,	 the	
analysis	 is	challenging	because	these	energies	depend	 locally	on	each	other,	making	them	
difficult	to	identify	and	treat	independently.				
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The	dependence	of	vortex	interaction	on	the	angle	between	them	adds	a	fascinating	
and	 complicating	 feature:	 	 as	 two	 vortices	 approach,	 they	 can	 replace	 their	 mutual	
repulsion	at	the	point	of	closest	approach	with	mutual	attraction	if	they	bend	sufficiently	to	
point	locally	in	opposite	directions.	In	this	case,	the	elastic	energy	of	bending,	the	attractive	
or	repulsive	energy	of	interacting	circulating	supercurrents	and	the	condensation	energy	of	
the	normal	core	are	intimately	connected	and	cannot	be	readily	separated.		In	the	presence	
of	such	extreme	local	distortions,	the	neighboring	vortices	will	deform	significantly	as	well	
and	 their	 energy	of	 local	 deformation	must	 be	 included.	Moreover,	 at	 close	distances	 the	
current	patterns	near	crossing	vortices	transform	so	strongly	that	the	concept	of	individual	
flux	 lines	 becomes	 irrelevant	 and	 an	 accurate	 account	 of	 the	 complete	 current	 pattern	
needs	to	be	taken	into	account.		

Vortex	cutting	still	lacks	even	a	qualitative	coherent	description	(19),	although	many	
of	the	general	physical	effects	involved	in	the	process	were	clarified	earlier	by	Brandt	et	al.	
(18).	At	close	enough	distances,	straight	rigid	crossing	vortex	cores	experience	an	attractive	
interaction,	due	to	the	reduction	of	the	total	normal	core	volume	by	~ξ3	(assuming	that	the	
length	of	 the	overlap	as	~ξ).	 	However,	 to	come	close	enough	 for	 this	 to	happen,	vortices	
must	 overcome	 strong	 electromagnetic	 repulsion	 due	 to	 the	 circulating	 supercurrents	
surrounding	 the	 vortices	 over	 the	 penetration	 depth	 distance,	 r~	λ.	 	 The	 repulsive	 force	
reaches	a	maximum	at	short	distances	≥	ξ,	where	the	strong	λ-range	repulsion	changes	to	
the	weak,	short-range	attraction.		Initially,	it	was	suggested	that	the	value	of	this	maximum,	
characterizing	the	activation	barrier	of	the	vortex	crossing,	UX	,	is	extremely	high	(see	refs.	
in	 (18)).	 	 However,	 calculations	 of	 the	 crossing	 energy	 of	 straight	 rigid	 vortices	 in	 (18)	
demonstrated	that	it	can	have	a	reasonably	moderate	value.	It	was	clearly	shown	that	the	
flux	cutting	potential	is	dominated	by	electromagnetic	interactions,	while	the	contribution	
due	 to	 the	 vortex	 core	 overlap	 is	 small.	 UX	 drops	 with	 decreasing	 Ginzburg-Landau	
parameter	κ=λ/ξ	 ,	which	corresponds	to	the	decreasing	role	of	λ-repulsion	and	increasing	
contribution	 of	 ξ-attraction.	 For	 larger	 angles	 between	 straight	 flux	 lines,	 the	 crossing	
barrier	becomes	smaller	and	 for	vortices	 tilted	by	more	 than	90	degrees,	 the	 interactions	
become	attractive	at	all	distances.	At	the	boundary	value	of	κ~(1/2)1/2	 ,	corresponding	to	
the	transition	from	type-II	to	type-I	superconductivity,	and	for	any	angles	between	vortices,	
their	 interactions	become	attractive,	 as	was	 confirmed	by	observations	of	 coupled	vortex	
domains	in	pure	niobium	samples	(20-21).		
	

	
Further	 account	of	 the	 local	 bending	of	 flexible	 vortex	 lines	near	 the	 contact	point	

where	the	vortices	re-align	into	antiparallel	configurations	to	reduce	their	mutual	repulsion,	
revealed	that	the	expected	value	of	UX	can	be	noticeably	smaller	than	for	straight	vortices	
(22).	A	decrease	of	the	vortex	crossing	energy	in	spite	of	the	increase	in	the	self-energy	due	
to	the	increased	length	of	bending,	revealed	that	crossing	of	straight	rigid	vortices	is	hardly	
a	 proper	 description.	 In	 fact,	 estimates	 of	 the	 cutting	 barrier	 for	 straight	 non-parallel	
vortices	 yield	 very	 large	 barrier,	 UX~50kBTc	 ,	 which	 would	 prevent	 vortex	 crossing	 (e.g.	
(10)).	

Later,	 the	 effect	 of	 bending	 of	 the	 crossing	 vortices	was	 calculated	 for	 anisotropic	
SCs	with	different	penetration	depth	along	different	directions	(	e.g.	Γ=λc/λab	~	5	in	YBCO)	
(23).	In	this	case,	the	shape	of	vortex	bending	is	determined	by	the	anisotropy	of	the	vortex	
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line	 tension.	 Interestingly,	 the	 line	 tension	 or	 rigidity	 of	 vortices	 is	 maximum	 for	
orientations	 with	minimum	 vortex	 line	 energy	 and	 Ux	 increases	 relative	 to	 the	 isotropic	
case.	In	contrast,	in	(24)	it	was	found	that	for	moderate	Ginzburg-Landau	parameters	(κ=λ-
/ξ	~10)	 and	not	 very	 large	 fields,	 the	 cutting	 energy	 should	decrease	with	 anisotropy	 as	
~1/Γ.	Calculations	of	the	crossing	barrier	were	also	performed	for	anisotropic	materials	in	
the	 high-field	 limit	 (H~Hc2)	 (25,	 12).	 In	 high	 fields,	 the	 crossing	 vortices	 cannot	 be	
considered	 separately	 from	 the	 rest	 of	 the	 vortex	matter,	 but	 still	 a	 noticeable	 Ux	 of	 the	
order	of	a	few	kBTc	was	reported.		Thus	the	value	of	the	crossing	barrier	and	consequently	
the	 probability	 of	 vortex	 cutting	 remains	 poorly	 defined.	 The	 effects	 of	 vortex	 rigidity,	
dependence	on	the	Ginzburg-Landau	parameter,	and	the	role	of	anisotropy	are	 important	
factors	defining	the	crossing	process,	which	still	awaits	a	proper	description.		

A	crucial	point	of	the	vortex-crossing	phenomenon,	which	requires	special	attention	
and	still	remains	an	open	question,	is	the	local	collapse	of	the	vortex	lines.	Apparently	even	
a	 long	 parallel	 vortex	 and	 antivortex	will	 initially	 collapse	 at	 a	 single	 point	 and	 then	 the	
resulting	U-shaped	vortex	arcs	will	shrink	in	opposite	directions	until	they	disappear.			How	
the	 current	 patterns	 around	 the	 cores	 of	 colliding	 vortices	 transform	 in	 time	 and	 space	
during	 close	 approach	 and	 intersection	 of	 vortex	 centers	 is	 not	 obvious.	 In	 fact,	 between	
vortices,	which	are	strongly	bent	around	the	crossing	point	to	create	the	vortex-antivortex	
configuration,	supercurrents	should	be	strongly	enhanced	upon	the	mutual	approach	of	the	
vortex	 lines.	 Eventually	 they	 should	 go	 through	 an	 abrupt	 topological	 change	 when	 the	
cores	 of	 vortices	 merge.	 So	 far,	 this	 scenario,	 which	 also	 emerges	 when	 vortex	 and	
antivortex	collapse	in	classical	and	quantum	liquids,	has	not	been	clarified	theoretically.	We	
found	 the	only	 illustration	of	 the	 current	distributions	around	close	2D	vortex-antivortex	
pairs	in	(26)	and	with	a	lower	resolution	in	(27).												

Perhaps	 the	most	 spectacular	description	of	 the	 crossing	process	was	obtained	by	
time	 dependent	 Ginzburg-Landau	 simulations	 in	 (28).	 There,	 it	 was	 shown	 that	 two	
colliding	 perpendicular	 vortices	 first	 locally	 bend,	 cut,	 and	 reconnect,	 exchanging	 vortex	
halves.	Subsequently,	reconnected	vortices	cross	and	cut	again,	exchange	their	halves	back	
and	reconnect	into	the	original	vortices,	which	eventually	diverge	from	each	other.	Such	a	
striking	 double-step	 process	 requires	 special	 conditions	 that	 preserve	 the	motion	 of	 the	
vortex	tails	and	recover	the	original	vortices	after	collapse.	It	was	pointed	out	in	(28)	that	
in	the	presence	of	other	vortices,	the	crossing	process	could	be	different.	Hence	the	picture	
of	 two	 individual	 crossing	 vortices,	 although	 important	 for	 understanding	 the	
cutting/reconnection	process,	is	oversimplified,	as	it	neglects	interactions	with	neighboring	
vortices	and	coupling	of	vortices	to	external	fields.		

	
Time	Dependent	Ginzburg-Landau	Simulations	
In	this	work	we	clarify	the	flux-cutting	scenario	using	large	scale	TDGL	simulations	

on	a	sample	containing	an	array	of	longitudinal	vortices,	remagnetized	by	a	perpendicular	
field.	 	 The	model	 parameters	 were	 chosen	 close	 to	 those	 of	 modern	 anisotropic	 high-Tc		
superconductors	 and	 at	magnetic	 fields	 high	 enough	 to	 produce	multiple	 vortices	 in	 the	
simulation	 volume.	 We	 reveal	 specific	 features	 of	 the	 flux	 evolution	 for	 an	 ensemble	 of	
vortices	generated	by	one	direction	of	 the	applied	magnetic	 field	(longitudinal	H||)	under	
steadily	 increasing	 perpendicular	 magnetic	 field	 (H⊥).	 Successive	 images	 of	 the	 flux	
patterns	 show	 that	 new	 entering	 vortices	with	 perpendicular	 field	 component,	 cut	 initial	
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longitudinal	vortices	in	a	single	stage	process	after	an	almost	180°	local	twist	.	The	shape	of	
this	 twist	 is	 distinctively	 controlled	 by	 the	 anisotropy.	 The	 crossing	 event	 occurs	 as	 an	
instantaneous	collapse	of	the	antiparallel	segments,	leaving	local	bends	on	the	reconnected	
vortices.		The	resulting	new	vortices	–	consisting	of	the	halves	of	initial	vortices	–	straighten	
and	tilt	with	respect	to	their	pre-collision	orientation.	This	process	rotates	the	flux	towards	
the	applied	field	direction	in	the	bulk	of	the	superconductor	upon	progressive	entry	of	new	
flux	 components	 from	 the	 sample	 edges.	 	 Accompanying	 this	 process	 is	 a	 helical	 vortex	
instability	induced	by	currents	screening	the	perpendicular	field	and	flowing	parallel	to	the	
initial	vortices	 (see	details	 in	 the	 last	 section)	Expanding	 left-handed	vortex	helices	 cross	
longitudinal	 flux	 lines	 and	also	 result	 in	 a	 tilt	 of	 vortices	 towards	 the	 applied	 field.	 Some	
results	of	our	early	simulations	are	presented	in	(31).	

	
Model	

To	study	vortex	dynamics	 in	crossing	magnetic	 fields	we	use	a	recently	 introduced	
large-scale	solver	for	time-dependent	Ginzburg-Landau	equations	allowing	visualization	of	
dynamics	of	mesoscopically	large	vortex	arrays	within	relatively	large	spatial	volumes	(32).	
It	 relies	on	 the	numerical	 integration	of	 the	TDGL	 in	 the	 large-λ	 limit	using	graphics	card	
processing	units	(GPUs).		

The	TDGL	model	was	first	suggested	by	Schmid	in	a	very	clever	attempt	to	describe	
the	relaxation	in	the	Ginzburg-Landau	equilibrium	state	by	adopting	the	kinetic	description	
of	 liquid	 helium	 by	 Landau-Khalatnikov	 (33).	 Later,	 Gorkov	 and	 Eliashberg	 presented	 a	
microscopic	derivation	of	TDGL	(34).	In	spite	of	limited	formal	range	of	applicability	(T~Tc,	
(34-35)),	so	far	TGDL	is	the	most	relevant	and	widely	used	approximation	for	modeling	the	
flux	dynamics	in	superconductors	(see	e.g.	(36-41)and	refs	there.	Although	the	TGDL	model	
has	 a	 confirmed	 applicability	 only	 in	 the	 gapless	 superconductors	 (35),	 it	 is	 believed	 to	
provide	 a	 reasonable	 approach	 to	 analyze	 the	 vortex	 dynamics.	 In	 this	work	we	 use	 the	
dimensionless	 form	 of	 the	 TDGL	 equation	 for	 the	 complex	 superconducting	 order	
parameter	ψ,	which	reads	(32):	

	𝜕!𝜓 + 𝑖𝜇𝜓 = 𝜀(𝑟)𝜓 − 𝜓 !𝜓 + 𝑔 ∇− 𝑖𝑨
!
𝜓 + 𝜁(𝒓, 𝑡)								(1)	

Here	µ is the	scalar	potential	calculated	self-consistently	from	the	Poisson	equation,	𝑔 is	the	
anisotropy	 tensor,	and	A	 is	 the	vector	potential.	 	Compared	 to	 the	 traditional	TGDL	 form,	
(1)	 includes	 anisotropy	 through	 the	 anisotropy	 tensor	𝑔 	.	 The	 equation	also	 accounts	 for	
weak	disorder,	represented	by	the	function	𝜀(𝑟),	and	thermal	noise	 	𝜁(𝒓, 𝑡).	To	model	HTS	
we	 use	 parameters	 characteristic	 for	 YBCO.	 The	 length	 is	 scaled	 in	 units	 of	 zero-
temperature	 coherence	 length	 ξ0=ξab,	 the	 unit	 of	 time	 is	 the	 Ginzburg-Landau	 time	 τGL	
=πħ/8kBTC,	 and	 the	 magnetic	 field	 is	 scaled	 to	 Bc2(T=0)=Φ0/2πξ02	 .	 Quenched	 disorder	
imitating	 the	weak	pinning	 is	described	by	modulations	of	 the	critical	 temperature	 in	 the	
simulation	 volume	 with	 random	 function	𝜀 𝑟 = !! !

!
− 1	changing	 in	 the	 interval	 [0.8,1]	

yielding	 10%	 variations	 of	 Tc.	 For	 YBCO,	 the	 anisotropy	 rescales	 the	 gauge-invariant	
gradient	along	the	z-axis	(||c)	by	a	factor	of	𝑔=5.	In	this	case	we	neglect	the	layered	crystal	
structure	 of	 the	 sample	 and	 account	 only	 for	 the	 mass	 anisotropy	 (g=(mc/mab)1/2).	 The	
vector	potential	is	taken	as	𝑨 = 𝑦 −𝐵! , 0,𝐵! ! .	And	the	thermal	noise	is	defined	by	spatio-
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temporal	 correlator	 𝜁(𝒓, 𝑡)𝜁(𝒓′, 𝑡′) ∝ !
!"
𝛿 𝒓− 𝒓! 𝛿 𝑡 − 𝑡! 	where	 we	 choose	 T=Tc/2.	 The	

equation	is	discretized	on	a	regular	spatial	mesh	of	256x256x128	grid	points	with	ξ0/2	unit	
step.	 In	 such	 a	 volume,	 we	 could	 realistically	 capture	 the	 dynamics	 of	 many	 interacting	
vortices	 with	 0.1τGL	 time	 resolution	 within	 a	 reasonable	 calculation	 time.	 A	 typical	
simulation	run	integrates	106	time	steps	and	takes	3×104	s	real	time	on	a	K20x	NVidia	tesla	
GPU.	

To	 understand	 the	 effect	 of	 disorder	 imitating	 weak	 pinning	 in	 the	 system,	 we	
compare	 calculations	 with	 results	 at	 ε(r)=1	 (no	 spatial	 disorder,	 but	 only	 thermal	 noise	
present).	We	model	two	different	geometries	to	address	the	shape	effect	relevant	 for	thin	
crystal	plates	of	high-Tc	superconductors.	One	of	them	corresponds	to	the	anisotropic	plate	
with	surfaces	parallel	 to	 the	anisotropy	axis	c.	Another	corresponding	 to	cuprate	crystals	
mimics	 a	 plate	 perpendicular	 to	 the	 c-axis.	 Boundary	 conditions	 are	 open	 at	 the	 sample	
surfaces	(||c	and	⊥	 c	 ,	respectively,	for	above	geometries)	 	and	quasi-periodic	in	the	other	
two	directions.		At	open	boundaries,	the	perpendicular	supercurrent	components	are	set	to	
zero,	while	at	quasi-periodic	boundary	conditions,	a	 jump	of	 the	complex	phase	has	to	be	
introduced	 as	 a	 result	 of	 the	 chosen	 gauge	of	 the	 vector	potential	 (see	 (32)).	 	 Below,	we	
present	pictures	of	the	evolution	of	the	vortex	distributions	in	time	with	a	constant	in-plane	
field	while	 increasing	 the	 perpendicular	 field.	 Vortices	 are	 visualized	 as	 isosurfaces	with	
constant	order	parameter	|ψ|.		

We	will	first	briefly	comment	on	the	general	picture	of	magnetization	with	crossing	
magnetic	fields.	Then	we	will	describe	in	more	detail	the	vortex	cutting	process.	Finally,	we	
will	discuss	 the	helical	 instability	 induced	by	 the	perpendicular	 field.	Short	movies	of	 the	
vortex	evolution	can	be	found	in	the	supplementary	information.	

	
	

Plate	with	surfaces	parallel	to	the	anisotropy	axis	-c	(c||Z)	
	
In	 this	 case,	 sample	 surfaces	are	parallel	 to	 the	XZ-plane	and	 the	c-axis	 is	 along	Z.	

The	 initial	 field	 is	 along	 the	 X-axis,	 and	 the	 perpendicular	 field	 is	 parallel	 to	 Z.	 General	
changes	 of	 the	 vortex	 structure	 are	 illustrated	 in	 Fig.1,	 where	we	 show	 the	 evolution	 of	
vortices	 without	 spatial	 disorder	 (“Clean”)	 in	 the	 left	 column	 and	 with	 weak	 disorder	
(“WD”)	 in	 the	 right	 column	 at	 the	 same	 values	 of	 time	 and	 field.	 Bx=const=0.04	 and	 Bz	
changes	 in	 steps	 of	ΔBz=0.0005	 each	Δt=3750τGL	 from	0	 to	0.0095	within	 the	 same	 time	
protocol	for	both	Clean	and	WD	cases.	All	visualizations	of	the	internal	vortex	structure	are	
done	using	isosurfaces	of	the	order	parameter	amplitude,	|ψ|= 0.6.	There	are	no	jump-wise	
changes	in	the	vortex	system	due	to	the	field	steps	and	the	structure	does	not	become	static	
between	them.	The	vortex	array	dynamically	adjusts	to	the	steps	on	time	scales	larger	than	
Δt,	 indicating	 the	 overdamped	 character	 of	 the	 vortex	 motion.	 To	 clearly	 present	 the	
arrangement	of	vortices	we	show	three	projections	of	 the	vortex	arrays	at	each	 time	and	
field.		

Qualitatively,	 the	 evolution	of	 the	 vortex	 state	 is	 very	 similar	 in	both	 cases.	 In	 the	
initial	state	(Bz=0)	vortices	are	mostly	aligned	with	 the	applied	 field	(Fig1a,	 a1).	Vortices	
are	smoothly	bending	in	the	XY-plane	due	to	the	introduced	structural	disorder,	or	thermal	
noise	in	the	Clean	case,	but	they	do	not	bend	along	Z	due	to	the	anisotropy	in	the	vortex	line	
tension.	 	They	have	elliptic	cores	extended	perpendicular	to	the	Z-axis	as	expected	for	the	
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chosen	anisotropy	parameter.	Close	comparison	at	the	same	value	of	the	order	parameter	
shows	that	vortices	are	slightly	wider	in	the	WD	case.		There	is	a	clear	tendency	towards	the	
formation	of	a	vortex	lattice	with	a	unit	cell	predominantly	stretched	along	the	Y-direction	
in	 accordance	 with	 predictions	 for	 anisotropic	 superconductors	 ((42)	 and	 refs.	 therein).	
This	 feature	 is	 clearly	 seen	 in	 z-projections	 of	 Fig.1	 through	 the	 bunching	 of	 vortices	
dominating	over	their	wiggling	in	the	XY	plane.		

With	 increasing	 perpendicular	 field,	 Bz,	 vortices	 remain	 unchanged	 in	 the	 middle	
section	while	new	tilted	vortices,	usually	arched	inside	as	shown	by	white	arrow	in	Fig.1b,	
form	at	 the	XZ	sample	surfaces.	They	move	preferentially	perpendicular	 to	 the	Z-axis	and	
cross	 the	 inner	 vortices.	 After	 cutting	 and	 reconnection	 through	 an	 intricate	 process	
described	 below,	 the	 resulting	 vortices	 become	 tilted	 from	 the	 XY-plane.	 So	 the	 BZ	
component	is	delivered	from	the	surface	by	newly	generated	vortices	and	transferred	to	the	
initial	 vortices	 in	 the	 bulk	 through	 the	 cutting-reconnection	 events.	 The	 resulting	 tilted	
vortices	aligned	towards	the	external	 field	 lower	the	energy	of	the	system	(see	scheme	in	
Fig.2).		

	
With	increasing	normal	field,	the	resulting	tilted	vortices	move	inside	together	with	

new	vortices	arriving	 from	the	surfaces	and	 the	normal	 flux	component	steadily	occupies	
the	sample	(Figs.1b-d,	b1-d1).	Interestingly,	at	the	normal	flux	front	there	is	a	sharp	change	
of	the	vortex	angle.	 It	 is	better	observed	in	the	illustration	of	the	WD	case	in	Fig.1b1	(see	
red	arrow	on	X-projection,	top-right	panel).	Here	the	left	vertical	stack	of	vortices	is	tilted	
by	a	noticeable	angle	 compared	 to	 the	 inner	vortices	aligned	mostly	 in	 the	XY-plane.	The	
difference	 in	 tilt	 is	well	 resolved	 in	 the	bottom	Y-projection	of	Fig.1b1.	A	moving	 front	of	
tilted	flux	penetration	was	observed	experimentally	in	YBCO	crystals	under	crossing	fields	
(see	(31)	and	refs	there).	Following	Clem	(43)	one	should	expect	that	such	fronts	will	carry	
enhanced	currents	responsible	for	the	variation	of	the	induction	angle	dθ/dr	in	contrast	to	
Bean’s	vortex	pinning	currents	limiting	the	transverse	motion	of	vortices	and	defining	the	
induction	density	gradients	d|B|/dr.	At	the	largest	Bz=0.0095,	vortices	tend	to	form	chains,	
as	predicted	for	tilted	vortices	in	anisotropic	superconductors	(42).	

The	 main	 difference	 between	 the	 Clean	 and	 WD	 case	 is	 an	 unexpectedly	 better	
mutual	alignment	of	vortices	in	the	disordered	sample.	Also,	counterintuitively,	at	larger	BZ	
vortices	shift	to	a	longer	distance	from	the	XZ	sample	surfaces	in	the	presence	of	disorder	
(Fig.1d).	Note,	that	the	larger	wiggling	of	vortices	in	the	Clean	case	is	mostly	around	the	Z-
axis	while	their	tilt	with	respect	to	the	Z-axis	is	nearly	the	same	over	the	sample.			
	

Plate	with	surfaces	perpendicular	to	the	anisotropy	axis-c	(c||Z)	
	
Snapshots	of	the	vortex	structure	evolution	in	the	crossing	fields	for	sample	surfaces	

parallel	 to	 the	 XY	 plane	 are	 shown	 in	 Fig.3	 	 for	 both	 Clean	 (left	 column)	 and	WD	 (right	
column)	cases.	They	are	calculated	within	the	same	time-field	protocol	as	discussed	above	
and	 presented	 with	 the	 same	 t	 and	 Bz	 values	 as	 in	 Fig.1.	 The	 emerging	 vortex	
configurations	are	qualitatively	similar	to	those	in		the	sample	with	XZ-surfaces.	However,	
now	 vortices	 arrange	more	 irregularly	 across	 the	 Z-axis	 and	 do	 not	 show	 a	 tendency	 to	
form	 a	 regular	 lattice.	 This	 can	 probably	 be	 associated	 with	 increased	 interactions	 of	
vortices	with	sample	surfaces	perpendicular	 to	 the	anisotropy	 axis,	which	 interferes	with	
interactions	 between	 vortices	 defining	 their	 order.	 Although	 vortex-vortex	 coupling	
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remains	still	dominating	and	at	larger	tilt	angles	results	in	a	set	of	distorted	vortex	chains	
(see	 vortex	 stacks	 vaguely	 aligned	 in	 YZ	 	 planes	 marked	 by	 arrows	 on	 X-projection	 of	
Fig.3d).	 Differences	 between	 the	 Clean	 and	 WD	 cases	 are	 much	 less	 noticeable.	 A	 new	
feature	in	Fig.	3		(see	Y-projections	in	b-d	panels	and	top-right	insert)	is	a	noticeable	tilt	of	
the	vortex	ends	near	the	XY-surfaces.	This	is	an	expected	effect	of	the	supercurrents	flowing	
preferentially	 in	 the	XY-plane	near	 the	surface	and	aligning	 these	vortices	 towards	 the	Z-
axis.					

Vortex	loops	penetrating	from	the	XZ	surfaces	and	crossing-reconnecting	with	initial	
vortices	 produce	 new	 tilted	 vortices	 in	 the	 bulk.	 The	 tilted	 vortices	move	 further	 inside,	
forming	 a	 front,	which	 is	 less	 pronounced	 than	 in	 the	 sample	with	 XZ-surfaces.	Near	 the	
front,	we	observe	helical	 instability	 (see	 the	 last	 section),	 also	 resulting	 in	 tilted	vortices.	
For	the	maximum	Bz	(Fig.	3d,	d1	),	tilted	vortices	are	assembled	closer	to	the	center	of	the	
sample	than	in	Fig.	1.	We	do	not	observe	the	entry	of	new	vortices	from	the	XY-surfaces	but	
they	always	propagate	from	the	XZ-edges	of	the	simulation	volume.	This	can	be	referred	to	
the	advanced	mobility	of	anisotropic	vortices	in	the	direction	across	the	Z-axis.		
	

Vortex	crossing	
As	pointed	out	above,	the	main	phenomenon	resulting	in	the	tilt	of	flux	lines	in	the	

bulk	 is	 cutting	 and	 reconnection	 of	 vortices	 followed	 by	 their	 straightening	 in	 a	 new	
direction.	To	study	details	of	the	cutting,	we	first	identified	crossing	events	with	time	steps	
of	τGL	and	then	decreased	the	time	steps	to	0.1τGL	within	the	event	duration.	This	allowed	us	
to	 reveal	 characteristic	 features	of	 the	process	and	 follow	 the	dynamics	using	 reasonable	
calculation	efforts.	For	all	studied	geometries	and	both	Clean	and	WD	cases	the	process	was	
very	similar	and	below	we	illustrate	it	with	a	couple	of	characteristic	pictures.	

Fig.	 4	 	 presents	 typical	 consecutive	 stages	 of	 the	 cutting	 and	 reconnection	 of	 two	
vortices	on	a	 large	 time	scale.	Two	different	projections	 (with	 shown	coordinate	axes)	of		
the	same	event	are	visualized	in	the	top	two	and	bottom	two	rows.	The	moving	vortex	loop	
entering	 from	 the	 edge	 at	 increasing	 Bz	 is	 green	 and	 the	 initial	 vortex,	 generated	 by	 the	
longitudinal	field	Bx,	is	yellow.		

As	 the	 two	 vortices	 approach	 each	 other,	 they	 mutually	 bend	 to	 acquire	 a	 local	
antiparallel	 orientation	 (Fig.	 4a,	 a1).	 The	 local	 bending	 of	 vortices	 increases	 their	 length	
and	their	elastic	energy	but	strongly	reduces	their	repulsion	energy,	ultimately	resulting	in	
their	 local	 attraction.	 The	 more	 mobile	 entering	 vortex	 (generated	 by	 the	 increasing	
perpendicular	field	Bz)	usually	bends	more	than	the	initial	vortex	(created	by	the	parallel	
field	Bx).	The	cores	of	two	vortices	touch	(Fig.	4b,	b1	)	and	merge	locally	(Fig.	4c,	c1).	Then	
the	merged	core	segment	deforms	(Fig.	4d,	d1	)	and	breaks	resulting	in	a	pair	of	new	highly	
twisted	 vortices	 consisting	 of	 exchanged	 halves	 of	 the	 initial	 vortices	 	 (Fig.	 4e,	 e1).	 The	
peculiar	 strong	 twist	 	 (marked	 by	 arrow	 in	 Fig.	 4e1)	 of	 vortices	 around	 the	 Z-axis	 is	 a	
consequence	of	the	superconducting	anisotropy	leading	to	much	smaller	line	tension	in	the	
XY-plane	(23).	Eventually,	strong	twists	of	the	departing	vortices	stretch	out,	resulting	in	a	
pair	of	tilted	vortices	(Fig.	4f,	f1).			

The	second	example,	Fig.	5,	illustrates	the	crossing	of	an	initial	linear	vortex	with	an	
expanding	 helical	 vortex	 (details	 of	 the	 helical	 instability	 are	 discussed	 later).	 The	main	
features	are	the	same	as	in	the	previous	case	but	the	helical	vortex	is	already	in	a		twisted	
configuration	before	 it	 approaches	 the	 linear	vortex	 (Fig.	5a,	 a1).	 	When	 the	vortices	are	
close,	 the	 linear	 vortex	 also	 starts	 to	 bend	 and	 the	 twist	 on	 the	 helix	 becomes	 more	
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pronounced	 (Fig.	 5b,	 b1).	 Subsequently,	 the	 vortex	 cores	 merge	 (Fig.	 5c,	 c1)	 and	 then	
deform	and	split	forming	two	different	vortices	with	exchanged	halves.	.	These	new	vortices	
produced	 by	 cutting-reconnection	 depart	 (Fig.	 5d,	 d1)	 and	 later	 straighten	 (not	 shown),	
resulting	in	a	pair	of	vortices	tilted	towards	the	field	direction.		
	 To	 follow	 the	 dynamics	 of	 the	 vortex	 cutting	 process	 we	 calculated	 the	 time	
dependence	of	the	minimum	distance	(rmin)	between	centerlines	of	mutually	bent	vortices.	
The	position	of	the	centerlines	was	found	using	closed	contour	integration	of	the	gradient	of	
phase	 of	 the	 complex	 order	 parameter	 over	 the	mesh	 faces,	 and	 choosing	 subsets	which	
produce	 2π	 phase	 shift	 within	 (see	 (44)).	 Subsequent	 triangulation	 and	 tracing	 of	 the	
center	 point	 then	 yield	 the	 vortex	 line	 with	 a	 sub-grid	 resolution.	 Remarkably,	 this	
procedure	reveals	the	centerlines	even	when	vortex	cores	are	already	well	merged.	Fig.	 6	
shows	 a	 set	 of	 rmin(t)	 dependences	 for	 a	 number	 of	 crossing	 events.	 Here,	 the	 time	
coordinate	for	each	event	is	shifted	so	that	the	moment	of	collapse	corresponds	to	t=0.	The	
events	 are	 taken	 at	 different	 real	 time	 and	Bz	 values	 at	 different	points	 in	 the	 sample.	 In	
spite	of	all	that,	they	show	practically	the	same	time	duration	of	the	crossing	process.	First,	
vortices	approach	with	relatively	 low	velocity	(negative	times	on	the	plot).	Then,	at	small	
distances	 (separations),	 they	 accelerate	 (at	 t→0).	 At	 this	 stage	 they	 experience	 a	 strong	
mutual	 twist.	 Finally,	 after	 the	 collapse	 (the	exact	position	 rmin=0	 is	not	 resolvable	 in	our	
simulations)	they	first	depart	with	high	velocity	and	then	decelerate	to	a	lower	speed.	The	
difference	 in	 separation,	 across	which	 the	 approach	 and	 departure	 of	 the	 crossing	 event	
occurs,	 is	 not	 surprising	 because	 the	 events	 take	 place	 in	 different	 neighboring	 vortex	
environment	 and	 at	 different	 Bz.	 Interestingly,	 these	 factors	 do	 not	 change	 the	 average	
duration	 of	 the	 events,	 which	 is	 also	 independent	 of	 the	 presence	 of	 the	 weak	 spatial	
disorder.	 However,	 we	 believe	 that	 the	 introduction	 of	 strong	 pinning	 should	 introduce	
noticeable	 changes	 in	 the	 dynamics	 of	 the	 vortex	 cutting	 due	 to	 the	 pinning	 of	 the	 bent	
vortex	segments.	

Our	numerical	calculations	of	 the	total	Ginzburg-Landau	energy,	EGL,	 in	the	volume	
surrounding	the	vortex	collision	point	show	that	during	the	crossing	process,	EGL	drops	and	
then	increases	again.	The	value	of	the	EGL	drop	yields	an	estimate	of	the	crossing	barrier	as	
Ecr~14Tc.	 	From	the	simulated	vortex	behavior,	such	a	barrier	is	not	a	serious	obstacle	for	
the	 cutting-reconnection	 process	 in	 our	 case.	 At	 the	 same	 time,	 such	 a	 considerable	 Ecr	
leaves	 the	 possibility	 of	 vortex	 entanglement	 under	 different	 conditions	 (orientation	 and	
magnitude	of	the	field	and	presence	of	stronger	pinning	centers).			
	
	
Left-handed	helical	vortices	
	 The	 helical	 deformation	 of	 straight	 initial	 vortices	 is	 an	 independent	 and	
simultaneous	process	 that	emerges	during	 the	application	of	a	perpendicular	 field.	 It	also	
leads	 to	 vortex	 crossing	 and	 results	 in	 the	 orientation	 of	 vortices	 along	 the	 new	 field	
direction.	 A	 model	 of	 the	 helical	 vortex	 instability	 accompanied	 by	 flux-cutting	 was	
introduced	by	Clem	(29)	to	explain	the	behavior	of	current	carrying	superconducting	wires	
in	 longitudinal	 field.	The	self-field	of	 the	current	 I	 is	circular	(azimuthal)	at	 the	surface	of	
the	 wire	 and	 couples	 to	 the	 applied	 longitudinal	 field	 H	 to	 generate	 clock-wise	 twisted	
(right-handed)	 helical	 vortices	 at	 large	 enough	 I	 and	H.	 The	 Lorentz	 force	 of	 the	 current	
squeezes	these	helices	towards	the	wire	axis,	where	they	become	parallel	to	H,	resulting	in	
a	 process	 akin	 to	 longitudinal	 field	 pumping.	 Experimentally,	 such	 pumping	 was	 never	
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observed	 and	 instead,	 inhomogeneous	 oscillations	 of	 the	 voltage	 along	 the	 wire	 were	
detected	 (45).	 Clem	 suggested	 (29)	 that	 counter-clockwise	 twisted	 helices	 (left-handed)	
nucleate	 from	 the	 straight	 vortex	 lines	 in	 the	 middle	 of	 the	 wire	 and	 naturally	 expand	
towards	 the	 periphery	 of	 the	wire	 due	 to	 the	 Lorentz	 force	 of	 the	 same	 current	 (Fig.	 7).	
These	left-handed	helices	collapse	when	they	come	in	contact	with	the	inward	propagating	
right-handed	helices,	preventing	parallel	field	pumping	and	resulting	in	voltage	oscillations.	

Brandt	 (30)	 showed	 that	 a	 similar	 helical	 instability	 should	 occur	 in	 the	 vortex	
lattice	in	the	presence	of	currents	flowing	parallel	to	vortices.	Later,	Genenko	analyzed	the	
appearance	 of	 helical	 vortices	 in	 different	 samples	 accounting	 for	 the	 effect	 of	 surface	
barrier	 on	 vortex	 entry	 (46).	 So	 far,	 the	 experimental	 efforts	 to	 confirm	 the	 above	
theoretical	predictions	of	nucleation	and	collapse	of	the	helical	vortices	are	mostly	limited	
to	macroscopic	measurements	as	discussed	in	(47,	19).	

In	our	simulations,	the	appearance	of	helical	vortices	with	increasing	Bz	can	be	seen	
in	the	large-scale	pictures	of	Fig.	1c		and	3c		(see	top-right	X-projections).	A	more	detailed	
illustration	is	presented	in	Fig.	8.	Here,	we	show	by	arrows	the	direction	of	both	Bx	and	Bz	
along	 with	 the	 screening	 Bz	 currents	 JC.	 Circles	 with	 arrows	 around	 the	 current	 lines	
indicate	 the	 chirality	 of	 the	 expected	 right-handed	 vortices	 that	 would	 be	 supported	 by	
these	 currents.	 Our	 simulations	 reveal	 vortex	 helices	 that	 are	 all	 left-handed,	 following	
Clem’s	predictions.	The	resulting	Lorentz	force	FL=Φ0JC	 ,	where	Φ0	defines	locally	oriented	
helical	vortex	flux,	is	directed	outwards	from	the	helix	axis	and	thus	should	expand	the	left-
handed	 helix	 in	 accordance	 with	 our	 simulations.	 The	 expanding	 helices	 cross	 and	
reconnect	with	 the	 initial	 vortices	 introduced	by	BX,	 as	 e.g.	 shown	 in	 Fig.	5,	 and	produce	
new	 tilted	 vortices.	 Segments	 of	 helices	 that	 are	 tilted	 opposite	 to	 the	 applied	BZ	 expand	
towards	the	XZ-sides	and	exit	the	sample.	

Results	of	the	simulations	shown	in	Fig.	8	 	correspond	to	the	plate	perpendicular	to	
the	Z-axis	 i.e.	normal	 to	BZ.	However,	 very	 similar	 left-handed	helices	appear	 in	 the	plate	
parallel	to	the	Z-axis.	The	spatial	disorder	also	does	not	introduce	any	noticeable	changes	in	
this	picture.		Due	to	the	anisotropy,	helical	vortices	expand	preferentially	perpendicular	to	
the	 Z-axis	 (Fig.9)	 and	 	 outline	 a	 flat	 cylinder	 extended	 along	 the	 XY-direction	 as	
schematically	 shown	 Fig.	 9d.	 Thus,	 helical	 instability	 is	 a	 universal	 component	 of	 the	
crossing-field	magnetization	process	with	some	geometrical	distortions	 introduced	by	the	
superconducting	anisotropy.	

	
Conclusions	
In	this	work	we	used	time	dependent	Ginzburg-Landau	model	to	simulate	the	vortex	

cutting	 and	 reconnection	 process	 under	 applied	 crossed	 magnetic	 fields.	 Using	 massive	
parallel	simulations	on	GPUs,	we	managed	to	follow	the	behavior	of	a	relatively	large	array	
of	 vortices	 with	 high	 time	 resolution	 of	 0.1	 τGL	 in	 anisotropic	 high-TC	 superconductor,	
accounting	for	weak	disorder,	thermal	noise,	and	specific	geometry	of	the	sample.	

The	 vortex	 cutting	 process	 emerges	 when	 longitudinal	 magnetic	 field	 induced	
vortices	 in	 a	 superconductor	 intersect	 with	 incoming	 orthogonal	 vortices	 induced	 by	 an	
applied	perpendicular	 field.	 	Two	approaching	vortices	bend	to	 form	local	 twists	near	the	
crossing	point	to	arrive	at	a	locally	antiparallel	configuration.	Their	vortex	cores	merge	and	
then	deform	and	break-away	locally,	leaving	two	new	vortices	consisting	of	the	exchanged	
halves	 of	 the	 initial	 vortex	 lines	with	 strong	 local	 twists.	 Eventually,	 the	 twisted	 sections	
straighten	out	and	the	resulting	vortices	end	up	tilted	towards	the	direction	of	the		applied	
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magnetic	 field.	 The	 simulated	 time-lapse	 images	 of	 the	 cutting	 process	 reveal	 the	
acceleration	 of	 the	 vortex	 as	 it	 approaches	 the	 crossing	 point	 and	 a	 deceleration	 of	 the	
newly	 cut	 and	 reconnected	 vortices	 as	 they	 retreat	 from	 each	 other.	We	believe	 that	 the	
introduction	of	 strong	pinning	 can	 substantially	delay	vortices	 in	 the	 close	vicinity	of	 the	
crossing	point	due	to	the	trapping	of	strongly	bent	segments	at	the	pinning	centers.		

The	entry	of	the	tilted	flux	from	the	surface	is	accompanied	by	a	helical	deformation	
of	 	 longitudinal	 vortices	 induced	 by	 currents	 that	 screen	 the	 perpendicular	 field	 and	 are	
parallel	 to	 the	 vortices,.	 These	 helical	 vortices	 are	 left-handed	 in	 accordance	 with	 the	
predictions	 by	 Clem	 (29).	 They	 expand	 under	 the	 Lorentz	 force	 of	 the	 same	 screening		
current	and	cut-reconnect	with	initial	straight	vortices,	resulting	in	tilted	flux	lines.	We	find	
that	both	 the	expansion	of	helices	and	 the	cutting-reconnection	of	vortices	are	noticeably	
modified	by	anisotropy.		

Our	 study	 of	 the	 vortex	 cutting	 phenomenon	 yield	 crossing	 patterns	 that	 are	 very	
similar	 to	 those	 observed	 in	 hydrodynamic	 stimulations	 of	 the	 reconnection	 process	 of	
vortices	 in	classical	and	quantum	liquids	(48,	49,	 17).	This	similarity	 is	not	accidental.	 In	
fact,	 in	 the	 case	of	quantum	 liquids	 the	dynamic	Gross-Pitaevskii	 equation	 (see	 e.g.	 (50))	
has	nearly	the	same	form	as	TGDL,.	 	In	usual	liquids	the	similarity	is	not	that	obvious	and	
points	 to	 a	 qualitative	 analogy	 between	 transformations	 in	 the	 viscous	 flow	 and	 in	 the	
electric	 current	variations	 in	 superconductors.	 It	hints	 at	 the	possibility	of	 a	 coarse-grain	
hydrodynamic	 approach	 to	 describe	 the	 current	 and	 magnetic	 flux	 dynamics	 in	
superconductors.			
	 Our	 results	 is	 a	 first	 step	 towards	 a	 fundamental	 understanding	 of	 ‘bulk’	 vortex	
crossing	phenomena	in	superconductors.	Further	studies	of	vortex	crossing	should	address	
different	scenarios	for	vortex	cutting,	characteristic	times	of	the	event,	accurate	statistical	
estimates	of	 the	 crossing	barrier,	 and	 topological	 changes	 in	 the	 current	patterns	 around	
the	crossing	points.		Answers	to	these	questions	should	depend	on	the	material	parameters	
defining	the	shape,	coupling	efficiency,	and	cutting	barrier	of		intersecting	vortices,	such	as	
anisotropy,	 sample	 geometry,	 layered	 crystal	 structure,	 and	different	 pinning	 landscapes.		
This	opens	a	vast	field	for	exploration	that	can	be	extended	to	many	vortex	phenomena	in	
other	 physical	 systems.	 We	 hope	 our	 results	 will	 attract	 wide	 attention	 to	 this	 exciting	
problem,	which	can	be	approached	using	comprehensive	TDGL	simulations.,		
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Figure	captions	
	
Fig.1	Snapshots	of	the	vortex	configurations	during	application	of	the	perpendicular	field	
(Bz)	to	the	sample	with	initial	vortices	formed	in	the	longitudinal	field	(Bx=	0.04,	By=0).	
Boundary	conditions	imitate	a	plate	with	XZ-surfaces	parallel	to	the	anisotropy	axis	c	||Z	
(shaded	planes	in	the	top	insert))	.	Appropriate	time	values	t	(in	units	of	τGL)	and	Bz	(in	
units	of	Hc2)	are	shown	near	the	panels.	Three	projections	along	Z-	(left),	X-(right-top),	and	
Y-axis	(right-bottom),	are	shown	for	each	t-Bz	pair.	Left	column	(a-d)	presents	data	for	the	
Clean	case	(no	spatial	disorder)	and	the	right	column	(a1-d1)	shows	data	at	the	same	t-Bz	in	
the	case	with	disorder	(WD).	Vortices	are	visualized	by	isosurfaces	of	the	order	parameter	
|ψ|=0.6.		
	
Fig.2	Simplified	scheme	of	the	vortex	rotation	in	the	bulk	through	the	cutting-reconnection	
process.	(a-b)	New	vortex,	N,	delivers	the	normal	field	component	(H⊥||	Z)	from	the	surface	
to	the	initial	vortex,	I,	generated	in	the	in-plane	field	H||	||	X.	After	crossing		(b),	new	
reconnected	vortices	stretch	due	to	the	vortex	line	tension	and	become	tilted	towards	the	
applied	field	direction	(c).					
	
Fig.3	Same	as	in	Fig.1	but	for	boundary	conditions	imitating	a	plate	with	XY-surfaces	
(shaded	planes	in	the	top-left	sketch)		perpendicular	to	the	anisotropy	axis	c	||Z.	Top-right	
insert	illustrates	the	tilt	and	expansion	of	vortices	near	the	XY	sample	surface.		
	
Fig.4	Close-up	of	the	vortex	crossing	process	in	Clean	plate	with	XY-surfaces	perpendicular	
to	the	anisotropy	axis	c.	B=(0.04,	0,	0.0025).	Time	values	in	units	of	τGL	are	shown	on	the	(a-
f)	panels.	Initial	vortex	is	yellow,	new	entering	vortex	is	green.	Bottom	panels	(a1-f1)	show	
the	same	crossing	stages	in	slightly	tilted	projection.		
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Fig.5	Crossing	of	the	expanding	helical	vortex	(green)	and	the	initial	straight	vortex	
(yellow).	Time	values	are	shown	in	(a-d).	(a1-d1)	panels	show	the	same	stages	in	different	
projection.	Bx=0.04,	Bz=0.006.	Clean	case,	plate	with	surfaces	perpendicular	to	the	c-axis.	
	
Fig.6	Time	dependence	of	the	minimum	distance	between	vortex	centerlines,		rmin,	for	
several	crossing	events.	Individual	crossing	events	are	taken	at	different	time	and	Bz	values,	
in	different	parts	of	the	sample	and	with	different	arrangement	of	neighboring	vortices,	
which	causes	varying	initial	and	final	rmin.	However,	the	time	evolution	of	the	process	looks	
the	same.	Time	coordinates	for	different	events	are	adjusted	so	that	ta=0	corresponds	to	the	
collapse	moment.	rmin	is	in	units	of	ξ0	and	ta	in	τGL.	Note,	that	our	procedure	of	tracing	the	
centerlines	of	vortices	yields	a	sub-grid	resolution	and	a	smoothed	trajectory	of	the	vortex	
core	motion.		
	
Fig.7	Helical	deformations	of	vortices	parallel	to	the	magnetic	field	H	at	strong	longitudinal	
currents	J	(in	accordance	with	(29-30)).	Lorentz	force	(small	arrows)	on	the	clockwise	
twisted	(right-handed,	RH)	vortices	should	squeeze	them	into	a	straight	line,	but	it	should	
expand	counterclockwise	twisted	(left-handed,	LH)	vortices.	
	
Fig.8	Development	of	the	helical	instability	at	increasing	Bz	observed	in	the	simulations.	
Helices	at	the	left	and	right	sides	have	opposite	chirality,	but	they	are	all	left-handed	with	
respect	to	the	screening	currents	Jc.	t=57250,	Bx=0.04,	Bz=0.0065.	Clean	plate	perpendicular	
to	the	c-axis.	Similar	patterns	appear	in	the	plate	parallel	to	the	c-axis.	
	
Fig.9	(a-c)	Three	projections	of	the	helical	vortex	near	the	right	side	of	the	sample	
illustrated	in	Fig.8	(Clean	plate	with	surfaces	perpendicular	to	the	c-axis,	t=57500,	Bx=0.04,	
Bz=0.0065).	(d)	The	scheme	of	the	elliptical	trajectory	of	helix	in	the	anisotropic	material.	
(e)	Front	of	helices	formed	near	the	left	side	of	the	sample	illustrated	in	Fig.1	(Clean	plate	
parallel	to	c	,	t=73250,	Bz=0.0085).		
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Movies	of	the	vortex	evolution	are	presented	in	the	Supporting	Information	(4	separate	
files).	
	


