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We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1
2

particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift
orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum
conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant
kinetic theory due to side jumps. We show that 2=3 of the chiral-vortical effect for a uniformly rotating
particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance.
We also show how the classical action can be obtained by taking the classical limit of the path integral for a
Weyl particle.
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Introduction.—The parity-odd response of a chiral
medium and its deep relationship to topology and quantum
anomalies have attracted significant theoretical interest. Two
such phenomena, the chiral magnetic and chiral vortical
effects (CME and CVE), which is the appearance of nonzero
current in a magnetic field or when the system is in rotation,
were considered some time ago in astrophysical context
[1,2]. More recently, the interest in such phenomena was
rekindled by developments in various subfields of physics. It
was observed that charge-dependent correlations can be used
to detect theCME in heavy-ion collisions [3]. Independently,
the chiral vortical effect has been found in a calculation using
gauge-gravity duality [4,5], and a general argument based on
the second law of thermodynamics was put forward in
Ref. [6] to demonstrate the generality of this result. The
recent experimental discovery of “3D graphene” [7,8] brings
closer the possibility of realizing thematerialswith nontrivial
chiral properties, such as Weyl semimetals [9].
One promising approach to explore anomaly-related

phenomena is the kinetic theory, which can go beyond
the regime of the thermodynamic equilibrium. This kinetic
approach is applicable when the external fields and the
interactions between the (quasi)particles are sufficiently
weak, so each particle can be considered as moving along a
classical trajectory, punctuated by rare collisions. Between
collisions, one has essentially a single-particle problem.
The information about the quantum anomaly is encoded in
the momentum-space Berry curvature [10]. The classical
action for such a motion can be derived either from a single-
particle quantum Hamiltonian [11] or, more directly, from
field theory [12].
There is, however, a puzzling aspect of the kinetic theory:

it does not have a manifest Lorentz symmetry, which it
should inherit from the original quantum field theory. The
issue was first raised in Ref. [12] by comparing the kinetic

theory and field theory results for a Fermi liquid at zero
temperature and later, in Ref. [13], at finite temperature. In
this Letter we confirm the suggestion made in Ref. [12] that
Lorentz symmetry requires an additional magnetic moment
coupling term in the classical action of the particle.
Unexpectedly, we also find that the Lorentz transformation
laws of the coordinates and momenta contain extra terms
associated with particle spin. Another nontrivial conse-
quence of the analysis is a magnetization current contribu-
tion to the total current, which is required to reproduce the
correct (Lorentz-covariant) magnitude of the CVE.
Classical action.—We shall argue that the motion of a

massless right-handed spin-1
2
particle in an external electro-

magnetic field is described, in the classical regime, by the
following phase-space action:

I ¼
Z

ðpþ AÞ·dx − ðE þ ΦÞdt − ap·dp; ð1Þ

where ap is the Berry connection such that

b≡∇ × a ¼ p̂
2jpj2 ; p̂≡ p

jpj ; ð2Þ

while the dispersion relation

E ≡ jpj − p̂ · B
2jpj ð3Þ

is modified to linear order in the field by the magnetic
moment coupling [12,13] (see also Ref. [14] for a com-
prehensive review of earlier studies of massive fermions).
Although we work in the convenient units ℏ ¼ c ¼ 1, it is
easy to see, by restoring ℏ, that both the Berry connection
term in Eq. (1) and the magnetic coupling term in Eq. (3)
are of order OðℏÞ. Later in the Letter, we will derive the
action (1) from the Weyl Hamiltonian by taking the
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classical limit of a path integral, but for now we take it as
the starting point.
Lorentz invariance.—To zeroth order in ℏ the actionR ðpþ AÞ · dx − ðjpj þ ΦÞdt, which is the action of a

spinless particle, is invariant with respect to the infinitesi-
mal Lorentz boost

δβx ¼ βt; δβt ¼ β · x; δβp ¼ βjpj;
δβB ¼ β × E; δβE ¼ −β × B: ð4Þ

The OðℏÞ terms in (1) are not invariant with respect to this
boost, and the action changes by

δβI ¼
Z �

β × p̂
2jpj ð_p − E − p̂ × BÞ þ B · p̂

2jpj β · ð_x − p̂Þ
�
dt:

ð5Þ

However, noting that the two expressions in parentheses
are the variations of theOðℏ0Þ part of action with respect to
x and p, respectively, one can find a modified Lorentz
transformation for x and p

δ0βx ¼ βtþ β × p̂
2jpj ; δ0βp ¼ βE þ β × p̂

2jpj × B; ð6Þ

under which the action is invariant up to order ℏ inclu-
sively: δ0βI ¼ Oðℏ2Þ.
Thus, the action (1) has, in fact, a hidden Lorentz

invariance, under which the position and the momentum
of the particle transform in a nontrivial manner. We now
give a physical interpretation of the modified Lorentz
transformations.
Angular momentum and side jump.—We will assume for

simplicity that E ¼ B ¼ 0. Since the Berry connection
comes into play when the particle changes its momentum,
we consider an elastic scattering of two particles. For
simplicity, consider the process in the center-of-mass
frame, and assume zero impact parameter. The angular
momentum conservation is trivial in this frame: Jin ¼
Jout ¼ 0 with both orbital L and spin S contributions
vanishing before and after the collision.
Let us now perform a Lorentz boost along the the

direction of motion of one of the incoming particles.
Then the total angular momentum of incoming particles
is still zero Jin ¼ 0. However, the spins of the outgoing
particles no longer cancel each other, since their momenta
are not collinear in the new frame. That means that the
orbital momentum of the outgoing pair should be nonzero,
which would be impossible if the particle trajectories were
going through a single collision point.
However, the modified Lorentz transformation in Eq. (6)

shifts the trajectory in the direction perpendicular to the
boost and the particle momentum: Δx ¼ β × p̂=ð2jpjÞ.
Since the momenta of the particles, p and −p, are opposite

before the boost, the shifts are also opposite. As a result the
two outgoing particles are moving in two parallel planes. It
is easy to check that such a shift leads to a contribution to
the orbital momentum

Lout ¼
β × p̂
jpj × p ð7Þ

equal and opposite to the total spin of the outgoing particles

Sout ¼ δβðp̂Þ ¼
β − p̂ðβ · p̂Þ

jpj ¼ −Lout: ð8Þ

Therefore, collisions of two particles with spin involves a
shift in the position; see Fig. 1. This is similar to the “side
jump” phenomenon in impurity scatterings with spin-orbit
interaction [15]. The magnitude of the side jump is frame
dependent and does not depend on the details of the
collision. This phenomenon has a classical analog: the
center of mass of a spinning extended particle is frame
dependent [16]. We expect the side jump to be important
for constructing Lorentz invariant chiral kinetic theory with
collisions, and that in such a theory the collision kernel
must be nonlocal in space and time.
Lorentz algebra.—We now check that the modified

Lorentz transformations satisfy the algebra of the
Lorentz group. For simplicity, we set the electromagnetic
field to zero—similar results hold in the presence of the
field. It is well known that the commutator of the ordinary
Lorentz transformations is a rotation. For example,
½δβ1 ; δβ2 �x ¼ φ × x, where φ≡ β2 × β1. For the modified
Lorentz transformation, however,

½δ0β1 ; δ0β2 �x ¼ φ × xþ p̂δt; ½δ0β1 ; δ0β2 �t ¼ δt; ð9Þ

where δt ¼ −φ · p̂=jpj. We see that the Lorentz algebra
closes up to an additional shift δt and δx ¼ δtp̂ which, by
virtue of the fact that dx ¼ dtp̂ on equations of motion, is
an invariance of the action (for a classical trajectory it
amounts to time reparametrization). Using this (gauge)
freedom, one can accompany boost by such a transforma-
tion, i.e., define δ00βt ¼ 0 and δ00βx ¼ δ0βx − p̂δβt, so that the
algebra will close: ½δ00β1 ; δ00β2 �x ¼ φ × x and ½δ00β1 ; δ00β2 �t ¼ 0.

FIG. 1 (color online). Side jump.
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This would correspond (at B ¼ 0) to the representation of
the Lorentz algebra found in Ref. [17].
Chiral vortical effect.—Another nontrivial consequence

of the magnetic moment coupling is a contribution to the
current which turns out to be essential for reproducing the
correct value of the chiral vortical effect.
The current is determined by variation of the action with

respect to the external gauge potential A. The resulting
single-particle current (in zero field) is given by

Jðx; tÞ≡ δI
δAðx; tÞ

����
A¼0

¼
�
p̂ −

p̂
2jpj ×∇

�
δ3(x − x0ðtÞ);

ð10Þ

where x0ðtÞ is the position of the particle at time t. Consider
now an ensemble of particles with a distribution function f.
The corresponding current is given by

Jðx; tÞ ¼
Z

d3p
ð2πÞ3

�
p̂f −

p̂
2jpj ×∇f

�
: ð11Þ

The first term is the classical Liouville current, while the
second term, which is due to the magnetic moment
coupling, is OðℏÞ. It is trivially conserved because it can
be written as ∇ ×M, where

M ¼
Z

d3p
ð2πÞ3

p̂
2jpj f ð12Þ

is the total magnetization (the sum of the magnetic
moments). However, this contribution is needed to make
the current a Lorentz vector and, as we shall now show, to
reproduce the correct magnitude of the CVE.
Consider a distribution f such that there exists a frame in

which the distribution is isotropic in momentum. Denoting
the energy of particles in this frame ϵ0 we can write
f ¼ fðϵ0Þ. Now consider a distribution which, in addition,
varies very slowly in space because the velocity u of the
frame in which the distribution in momentum is isotropic
varies very slowly with space point x. Since the distribution
function is a Lorentz scalar we can write the distribution in
the lab frame as f ¼ fðϵ0Þ, where ϵ0 ¼ ϵ − p · u − λp̂ · ω is
the energy in the locally comoving frame expressed in
terms of the lab energy ϵ and momentum p and the helicity
of the particle λ ¼ 1

2
. The last term is present if the velocity

distribution has vorticity ω ¼ ∇ × u=2 since the particle
carries intrinsic angular momentum λp̂.
The shift −λp̂ · ω arises naturally when f is a local

equilibrium solution of Boltzmann equation. The detailed
balance dictates that, for fermions, ln½f=ð1 − fÞ� is a linear
function of the conserved quantities ϵ, p and angular
momentum j, i.e., −βðϵ − p · u0 − j · αÞ with some
constants β, u0, and α. Inserting j ¼ x × pþ λp̂ gives
−βðϵ − p · u − λp̂ · αÞ with u≡ u0 þ α × x. This means

the equilibrium distribution could be inertially moving as
well as rotating and that α ¼ ω.
Substituting the distribution fðϵ − p · u − λp̂ · ωÞ into

Eq. (11) and Taylor expanding to linear order in u and ω
one finds that the magnetization current contributes 2=3 of
the total current:

J ¼ −
Z

d3p
ð2πÞ3

∂f
∂ϵ

1

2
½p̂ðp̂ · ωÞ − p̂ ×∇ðp̂ · uÞ�

¼ −
ω
2

Z
d3p
ð2πÞ3

∂f
∂ϵ

�
1

3
þ 2

3

�
: ð13Þ

where we used the isotropy of f to replace p̂ip̂j by δij=3
under the integral. Now using ϵ ¼ jpj, taking the integral
over angular directions of p and then integrating by parts,
we find for the current

J ¼ ω

4π2

Z
∞

0

dϵ2ϵf; ð14Þ

which agrees with the expression for the CVE obtained
from the CME by the substitution B → 2ϵω (for isotropic
distributions) [11]. Such an agreement between the results
in different frames is another manifestation of the Lorentz
covariance of the current in Eq. (11).
Classical action from path integral.—We now show that

the action (1), including the magnetic moment coupling,
can be derived systematically from the path integral. This
derivation is different but complementary to the previously
developed wave-packet approach for massive fermions (see
Ref. [14] for a review). Path-integral derivation was
introduced for the free case in Ref. [11]; however, the
coupling to the electromagnetic field was incorrectly
assumed to be minimal. Here we show that a careful
analysis reveals the presence of the magnetic moment
coupling dictated by Lorentz invariance.
We start from a path-integral representation of an

amplitude for the Weyl Hamiltonian in an external field

H ¼ σ · ½p − Aðx; tÞ� þ Φðx; tÞ; ð15Þ

where x and p are canonically conjugate operators of
position and momentum: ½xi; pj� ¼ iδij. Inserting sums
over complete sets of momentum and coordinate eigen-
states, a transition amplitude can be rewritten as a matrix
element of the path-ordered products of 2 × 2 matrices
e−iHΔt, where xðtÞ and pðtÞ are now classical c-number
variables of path integration. As in Ref. [11], we diago-
nalize each of these matrices along the path using
p-dependent matrix Vp satisfying V†

pσ · pVp ¼ σ3jpj.
In the classical regime, we can neglect off-diagonal

elements of the propagator matrix and consider only the
contribution given by the diagonal matrix elements
between positive-energy eigenvectors of σ3jpj which we
denote as ½…�þþ. The key ingredient for the magnetic
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moment coupling is found in the matrix element
½V†

peiσ·AΔtVp−Δp�þþ which we can evaluate using Gordon
identity to linear order in Δp ¼ p − p0:

½V†
peiσ·AΔtVp−Δp�þþ

¼ u†pup0 exp

�
i
p̂þ p̂0

2
·AΔtþΔp× p̂

2jpj ·AΔt
�
þOðΔp2;Δt2Þ;

ð16Þ

where up is the positive energy eigenvector—the solution
of the Weyl equation: σ · pup ¼ jpjup. The first term in the
square brackets combines with neighboring factors e−ijpjΔt
in the path-ordered product to replace jpj with jp − Aj ≈
p − p̂ · AþOðA2=jpjÞ [18].
Naively, we could neglect the last term in the square

brackets in Eq. (16) because it contains an additional factor
Δp. However, p and p0 are independent integration variables
and the difference Δp is not small in general. Rather, it is
the factor

Q
expðip · ΔxÞ ¼ Q

expð−ix · ΔpÞ which, upon
integration over x, makes rapidly oscillating contributions
at large Δp cancel out. If Δp multiplies a function of x the
result of integration is the same as if we replaced Δp with
−i∂=∂x as in this example:

Z
dxe−ixΔpΔpFðxÞ ¼ −i

Z
dxe−ixΔp

dFðxÞ
dx

: ð17Þ

This relation is the path-integral representation of the
canonical commutation relation between x and p (similar
to the commutation relation between coordinate and
velocity discussed in Ref. [19]). Thus we cannot consider
Δp as small in the second term in Eq. (16) if A depends on
x. Replacing Δp with −i∂=∂x we find that this term
contributes ip̂ · B=ð2jpjÞΔt to the phase, representing the
interaction energy of the particle’s magnetic moment.
Finally, the factor u†pup0 ¼ expð−iap · ΔpÞ is the Berry

phase. If we express it using the physical (gauge-invariant)
momentum P ¼ p − A, we can, to linear order in A, write

h…u†pup0…i ¼ h…ð1 − iap · ΔpÞ…i
¼ h…ð1 − iðaP · ΔPþ Δp × b · AÞ…i
¼ h…ð1þ b · B − iaP · ΔPÞ…i
¼ h…ð1þ b · BÞe−iaP·ΔP…i ð18Þ

where h…i denote remaining factors and limits in the path
integral and in the third line we replaced Δp with −i∂=∂x
as before. We find that if we change variables to physical
momentum P, the factor u†pup0, expanded to order ΔP, and
under path integration, cannot be treated as a pure phase.
The magnitude factor ð1þ b · BÞ in Eq. (18) combined
with the path-integral measure dxdP gives the correct
conserved (up to the anomaly [10,11]) Liouville measure
for a Weyl particle.

Conclusions.—We have shown that the theory of a single
particle with spin-1=2 and definite helicity can be made
Lorentz invariant if one includes one term in the action that
corresponds to the interaction between the particle’s mag-
netic moment with the magnetic field. The magnitude of the
magnetic moment is completely determined by Lorentz
invariance. We have also shown that the Lorentz trans-
formations of the particle’s coordinates and momentum
components are nontrivial, and that they are related to the
side jumps in scattering processes.
Although our action has Lorentz symmetry, it is not

written in a manifestly Lorentz invariant manner. We are
currently developing a manifestly Lorentz-invariant formu-
lation, which will be reported elsewhere. It would also be
interesting to generalize this analysis to higher dimensions
and non-Abelian anomalies [20].
From the equation of motion of a single particle one can

go to the kinetic description in terms of a Boltzmann
equation. We expect that the side jumps required by
Lorentz invariance are necessary for the collision term in
the Boltzmann equation to be consistent with angular
momentum conservation. Understanding how to write
down a correct kinetic theory of chiral particles, including
their interactions, will provide a link, so far missing,
between quantum field theory and hydrodynamics with
anomalies and would allow, in particular, treatments of
processes far from equilibrium in theories with anomalies.
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