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Abstract: We study skyrmions in the littlest Higgs model and discuss their possible

role as dark matter candidates. Stable massive skyrmions can exist in the littlest Higgs

model also in absence of an exact parity symmetry, since they carry a conserved topological

charge due to the non-trivial third homotopy group of the SU(5)/SO(5) coset. We find a

spherically symmetric skyrmion solution in this coset. The effects of gauge fields on the

skyrmion solutions are analyzed and found to lead to an upper bound on the skyrmion

mass. The relic abundance is in agreement with the observed dark matter density for

reasonable parameter choices.
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1 Introduction

Little Higgs models are extensions of the standard model, where the Higgs scalar is a

pseudo-Nambu-Goldstone boson of a global symmetry G, spontaneously broken at a scale

f ∼ 1 TeV to a subgroup H. The enlarged global symmetry, together with a suitable

embedding of gauge and Yukawa interactions, protects the Higgs mass from large radiative

corrections at the one loop level, and provides a natural explanation for the hierarchy

between the electroweak scale v and the global symmetry breaking scale f . A simple

implementation of this mechanism is given by the “littlest Higgs” model of ref. [1] which is

based on the coset G/H = SU(5)/SO(5). Models with other symmetry breaking patterns

include the “minimal moose” model [2] based on a [(SU(3) × SU(3))/SU(3)]4 coset, the

antisymmetric model using a SU(6)/Sp(6) coset [3], the [SO(5) × SO(5)/SO(5)]4 model

of [4], or the “bestest little Higgs” with SO(6) × SO(6)/SO(6) symmetry [5]. At a scale

Λ ≈ 4πf little Higgs models become strongly coupled and must be supplemented by a UV-

completion. The global symmetry breaking patterns can be thought to arise from a set of
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(techni-) fermions which condense due to gauge interactions becoming strongly coupled at

the scale Λ, similar to the mechanism of chiral symmetry breaking in QCD.

The coset spaces upon which the little Higgs models are based may have nontrivial

homotopy groups, which in turn lead to the existence of solitons — topologically nontrivial

field configurations, also known as topological defects. This was already noted in [6] where

zero- and one-dimensional topological defects, monopoles and strings, are shown to exist in

the littlest Higgs model, and in [7] where the possible presence of skyrmions in the littlest

Higgs model is mentioned. Stable skyrmions [8] can exist provided that the third homotopy

group π3(G/H) of the coset is nontrivial. They represent “baryons” formed at the scale Λ

[9]. Among the little Higgs models admitting skyrmion solutions are the littlest Higgs where

π3(SU(5)/SO(5)) = Z2 and the minimal moose model with π3(SU(3)×SU(3)/SU(3)) = Z

[7, 10]. Other models, for example the ones based on SU(6)/Sp(6), have a trivial third

homotopy group and therefore do not possess stable skyrmion solutions.

Due to their nontrivial global structure, skyrmions carry a topological charge. Their

masses and sizes are stabilised by completing the effective Lagrangian with a particular

higher-derivative operator, the so-called Skyrme term [8]. This mechanism prevents the

lightest skyrmion state from decaying, thus providing a new possible candidate for dark

matter in little Higgs models, without requiring the introduction of a parity symmetry

by hand. This is a welcome alternative since it was recently shown that T-parity [11] is

violated by anomalies [7, 12] and leads to the decay of the dark matter candidate [13, 14].

While alternative implementations of a dark matter parity are possible (see e.g. [15–19]),

the topological charge also protects the dark matter candidate from possible symmetry

breaking induced at higher scales, and allows for simpler low energy structures of little

Higgs models. First steps towards skyrmion dark matter for little Higgs models were

taken in [20], where a spherically symmetric skyrmion solution is found. Notice also that

skyrmions have been shown recently to appear in compact five-dimensional models [21],

where they provide a successful description of QCD baryons [22].

Our paper improves and extends the previous analyses in little Higgs models in several

ways. After reviewing the littlest Higgs model and introducing the Skyrme term in section

2, in section 3 we present a spherically symmetric skyrmion solution which is significantly

lighter than previous solutions. We then show that gauge interactions further reduce the

mass of the skyrmion and preserve its stability on cosmological time scales. In section 4 we

study the skyrmion self-interactions, estimate its annihilation cross-section, and derive cos-

mological bounds. In section 5 we discuss shortly the presence and properties of skyrmions

in other realisations of the little Higgs model. Finally, section 6 contains our conclusions.

The limiting behaviour of the gauged skyrmion for a large Skyrme term is discussed in the

appendix.

2 The model

2.1 The littlest Higgs

We consider the littlest Higgs model of ref. [1]. The model is based on a global SU(5) sym-

metry, spontaneously broken down to SO(5) by a vacuum expectation value. The Nambu-
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Goldstone bosons are therefore described by a SU(5)/SO(5) non-linear sigma model

LΣ =
f2

4
Tr ∂μΣ∂

μΣ†, (2.1)

where Σ is a 5× 5 symmetric matrix. Under a global SU(5) transformation, Σ transforms

as Σ→ V ΣV T , with V ∈ SU(5). The vacuum expectation value is taken to be the identity

matrix, 〈Σ〉 = 15, so that the 10 unbroken generators obey (T a)T = −T a, and the 14

broken ones (Xa)T = Xa. The Nambu-Goldstone bosons πa can therefore be parametrised

as Σ = (eiπaXa/f )(eiπaXa/f )T = e2iπaXa/f .

The global SU(5) symmetry is then explicitly broken by gauging an [SU(2)× U(1)]2

subgroup. The generators of this gauge group are chosen as1

Q
(1)
i =

1

4

⎛
⎜⎝ σi 0 iσi

0 0 0

−iσi 0 σi

⎞
⎟⎠ , Q

(2)
i = −Q(1)T

i , (2.2)

Y (1) =
1

20

⎛
⎜⎝ 12 0 5i12

0 −4 0

−5i12 0 12

⎞
⎟⎠ , Y (2) = −Y (1)T , (2.3)

and they obey [Q
(α)
i , Q

(β)
j ] = iδαβεijkQ

(α)
k , [Q

(α)
i , Y (β)] = [Y (α), Y (β)] = 0. The commuta-

tion relations of the SU(2) and U(1) subgroups is easier to see in the original parametri-

sation of ref. [1], in which the vacuum expectation value 〈Σ〉 is not diagonal. In our case

however, it will be more convenient to work in a basis where 〈Σ〉 = 15. The Lagrangian is

made gauge invariant by promoting the spacetime derivatives to covariant derivatives:

DμΣ = ∂μΣ− i
(
AμΣ+ ΣAT

μ

)
, (2.4)

where Aμ =
∑

α=1,2

(
gαW

(α),a
μ Q

(α)
a + g′αB

(α)
μ Y (α)

)
.

Only the linear combinations Qa = Q
(1)
a +Q

(2)
a , Y = Y (1)+Y (2) of the gauge generators

are symmetric and thus preserve the vacuum. The orthogonal combinations Qa = Q
(1)
a −

Q
(2)
a , Y = Y (1)−Y (2) do not. The [SU(2)× U(1)]2 gauge group is therefore spontaneously

broken down to a diagonal SU(2) × U(1) subgroup. The latter is identified with the

standard model electroweak gauge group.

To simplify the structure of the gauge sector of the model we work in the T-parity

symmetric limit [11] which is obtained by setting g1 = g2 =
√
2g and g′1 = g′2 =

√
2g′. This

1 With respect to the generators as defined in ref. [1], our generators are rotated according to the

rule Q
(α)
i

→ ΩQ
(α)
i

Ω† (and similarly for the Y (α), where our definition differs by an additional overall

minus sign). Here, Ω is a SU(5) matrix taking the vacuum expectation value Σ0 of ref. [1] to the identity,

Σ0 → ΩΣ0Ω
T = 15, and is defined as

Ω =
1√
2

⎛
⎜⎝

12 0 12

0 −
√
2 0

−i12 0 i12

⎞
⎟⎠ .
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also allows us to consider values of the breaking scale f � 1 TeV. The standard model

gauge bosons are identified with the parity even linear combinations

W a
μ =

1√
2

(
W (1),a

μ +W (2),a
μ

)
, Bμ =

1√
2

(
B(1)

μ +B(2)
μ

)
. (2.5)

The parity odd linear combinations

W
a
μ =

1√
2

(
W (1),a

μ −W (2),a
μ

)
, Bμ =

1√
2

(
B(1)

μ −B(2)
μ

)
, (2.6)

are responsible for cutting off the quadratically divergent contribution to the Higgs mass

in the gauge sector. They obtain tree-level masses

m2
W

= 2g2f2, m2
B
=

2

5
g′2f2. (2.7)

The 14 Nambu-Goldstone bosons can be parametrised as Σ = e2iΠ/f . They decompose

under the electroweak gauge group as 10 ⊕ 30 ⊕ 2±1/2 ⊕ 3±1. Explicitly, we have

Π =
1

2
√
2

⎛
⎜⎝
−iφ− ω − 1

2
√
5
η −h −φ− iω

−hT 2√
5
η ihT

−φ+ iω ih iφ− ω − 1
2
√
5
η

⎞
⎟⎠+ c.c., (2.8)

h =

(
h+

h0

)
, φ =

(
φ++ 1√

2
φ+

1√
2
φ+ φ0

)
, ω =

(
1
2ω

0 1√
2
ω+

1√
2
ω− −1

2ω
0

)
.

The real triplet ω and the singlet η are eaten by the Higgsing of the broken SU(2)×U(1).

The complex doublet h is identified with the standard Higgs boson, while the complex

triplet φ is a new field of the model, which receives a large O(gf) mass at the one loop level.

The degeneracy between the triplet states is lifted after electroweak symmetry breaking

by a vacuum expectation value for the Higgs doublet 〈h〉 = (0, v/
√
2)T , also giving the

standard model W± and Z bosons their mass. For more details we refer the reader to [23].

2.2 Skyrme term

We are interested in finding solutions of the classical equations of motion for the field Σ

with nontrivial topological charge, i.e. solutions which cannot be deformed into the vacuum

state 〈Σ〉 = 1 by a series of infinitesimal transformations.

In order to identify those special field configurations with particles, they need to have

a finite energy and size. Notice that we will only consider time-independent field config-

urations here; propagating solitons can then be obtained from static ones by applying a

Lorentz boost.

The finite energy requirement implies that at large distances from the origin, the field

Σ must approach the vacuum expectation value: Σ(x →∞) = 〈Σ〉 = 15. For this reason,

all points located at spatial infinity can be identified, and the configuration space R
3 is

topologically equivalent to the three sphere S3. The space of solutions to the equations of
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motion can therefore be split into homotopy classes, characterised by the third homotopy

group π3.

For the littlest Higgs coset, we have π3(SU(5)/SO(5)) = Z2 [24], which means that

there exist two topologically inequivalent classes of field configurations, characterised by

a winding number equal to 0 or 1. Field configurations of winding number zero can be

continuously deformed into the identity, but this is not possible for the configurations of

winding number one — they carry a conserved topological charge. Unfortunately, while

for SU(N) the winding number can be expressed as a simple integral over spacetime, there

is to the best of our knowledge no such universal quantity for SU(N)/SO(N) cosets.

However, one can still ensure by construction that a configuration has a given winding

number. If one considers a field Φ(x) ∈ SU(5), its winding number (or topological charge)

in SU(5) is given by

η(Φ) = − 1

24π2
εijk

∫
d3x Tr(Φ†∂iΦ)(Φ†∂jΦ)(Φ†∂kΦ) ∈ Z. (2.9)

The winding number integral is additive: η(Φ1Φ2) = η(Φ1) + η(Φ2). Furthermore, for

a field R(x) ∈ SO(5), we have that η(R) is an even integer, i.e. η(R) ∈ 2Z. Following

[24] we can then construct a field of winding number one in the coset as follows: given a

map Φ(x) ∈ SU(5), we write Σ(x) = Φ(x)Φ(x)T which defines at each point of space a

representative of SU(5)/SO(5). We then have that the quantity

η̃(Σ) = η(Φ) mod 2 (2.10)

describes the winding number of the field configuration Σ(x). Taking a field configuration

with η(Φ) = 1 therefore ensures a topologically non-trivial field configuration Σ(x). A

proof of the relation (2.10) is for example given in [24] using the exact homotopy sequence.

Here we just note that it is consistent with the fact that ΦR with R ∈ SO(5) gives the

same Σ as Φ by construction, so that η̃(Σ) is uniquely defined.

These field configurations with nontrivial topological charge ensure the existence of

skyrmions [8, 9]. However, in order to stabilise their energy and size, one need to complete

the Lagrangian with terms with higher number of derivatives. The simplest choice is to

add the so-called Skyrme term:

LSkyrme =
1

32e2
Tr

[
Σ†DμΣ,Σ

†DνΣ
] [

Σ†DμΣ,Σ†DνΣ
]
. (2.11)

This term is obviously invariant under both SU(5) global transformations and gauge trans-

formations. Moreover, since each of the commutators in (2.11) is antisymmetric in its

Lorentz indices, the Skyrme term contains at most two time derivatives, which facilitates

the quantisation procedure.

The Skyrme term does not modify the mass of the gauge bosons at tree-level, but it

induces new couplings between gauge and Nambu-Goldstone bosons. The gauge-boson four

vertices are of particular interest since they might contribute at one loop to the electroweak

precision measurements. In practice, the contributions to the Peskin-Takeuchi S and T

parameter [25, 26] are suppressed by the loop factor and by powers of (v/f)2 and are thus

negligible as long as (1/e2) � 32.
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The other important place where the Skyrme term might play a role is in the poten-

tial for the scalars. Since the Skyrme term involves four derivatives, these contributions

only start at the two loop level. The protection of the Higgs mass through the collective

symmetry breaking mechanism is therefore not affected by the addition of the Skyrme

term.

Other terms with four or more derivative might also be included in addition to the

Skyrme term (2.11). In particular, a term with 6 derivatives is often used in the QCD

Skyrme models to stabilise the soliton [27, 28], namely the square of the topological current:

L6 ∼ TrBμB
μ. However, in the littlest Higgs model, and more generally for a skyrmion

living in a SU(N)/SO(N) coset, the topological current built out of the Σ fields is vanishing

due to the group structure:

Bμ =
1

24π2
εμνρσ

∫
d3x Tr(Σ†∂νΣ)(Σ†∂ρΣ)(Σ†∂σΣ) = 0 (2.12)

Motivated by QCD, where no other higher derivative terms than the Skyrme term are

necessary for the skyrmions to reasonably approximate many baryon features, we will use

throughout this paper the Lagrangian density given by L = LΣ + LSkyrme.

3 The Littlest Skyrmion

3.1 Gauge invariant topological charge

The expression for the winding number (2.9) is obviously invariant under the global SU(5)

symmetry, however it is not invariant under the local [SU(2) × U(1)]2 gauge symmetry of

the littlest Higgs model. It is thus desirable to find an expression similar to (2.9) which is

gauge invariant. An additional complication arises because we can not directly compute

the winding number for a field configuration Σ ∈ SU(5)/SO(5) but we need to take the

detour using a field Φ ∈ SU(5). However the representation of Σ in terms of Φ is not

unique. In particular, the matrix ΦR where R belongs to SO(5) yields the same Σ. So the

topological charge B in the coset has to be an integral containing Φ, Aμ and derivatives

thereof, and must satisfy the following conditions:

(i) invariance under the global SU(5) symmetry Φ → LΦ, such that Σ → LΣLT trans-

forms as required,

(ii) invariance under gauge transformations

Φ→ V (x)Φ , Aμ → V (x)AμV
†(x) + iV (x)∂μV

†(x) ,

where V (x) belongs to the [SU(2) × U(1)]2 gauge group,

(iii) invariance under a local SO(5) symmetry Φ→ ΦR(x), with R(x)RT (x) = 1,

(iv) in the limit of vanishing gauge fields, one recovers the winding number (2.9),

(v) time-conservation ∂0B = 0.
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Gauge invariance can be made explicit by introducing a covariant derivative for Φ:

DμΦ ≡ ∂μΦ− iAμΦ. With this notation, we have DμΣ = (DμΦ)Φ
T +Φ(DμΦ)

T . However,

it is not sufficient to promote the normal derivatives of eq. (2.9) to covariant derivatives in

order to obtain the correct topological charge.

Instead, let’s consider the current2

Bμ =
1

24π2
εμνρσ

[
−Tr(Φ†DνΦ)(Φ

†DρΦ)(Φ
†DσΦ) +

3

2
iTrFνρΦDσΦ

†
]

(3.1)

=
1

24π2
εμνρσ

[
−Tr(Φ†∂νΦ)(Φ†∂ρΦ)(Φ†∂σΦ) + 3iTr ∂ν(AρΦ∂σΦ

†)

−3Tr(∂νAρ)Aσ + 2iTrAνAρAσ] ,

where Fμν = ∂μAν − ∂νAμ + i[Aμ, Aν ]. In its first form, this current is obviously gauge

invariant and symmetric under global SU(5) transformations. Defining

B =

∫
d3xB0 = η(Φ)− 1

8π2
εijk

∫
d3xTr

[
(∂iAj)Ak − 2

3
iAiAjAk

]
, (3.2)

where we have eliminated surface terms, we see that we recover the winding number when

the gauge fields are set to zero. The last term is also known as the Chern-Simons three-

form. Under a local SO(5) transformation Φ→ ΦR(x), we have

B → B + η(R) = B + 2k, k ∈ Z, (3.3)

so that (B mod 2) satisfies the conditions (i) to (iv) above. However, this quantity is not

conserved in time. From eq. (3.2), one has that

∂μB
μ = − 1

8π2
εμνρσ Tr [(∂μAν)(∂ρAσ)− 2i(∂μAν)AρAσ] = − 1

16π2
TrFμν F̃

μν , (3.4)

where F̃μν = 1
2ε

μνρσFρσ is the dual field strength, and thus

∂0B = − 1

16π2

∫
d3xTrFμν F̃

μν . (3.5)

The integrand is nevertheless a total derivative: TrFμν F̃
μν = Tr ∂μK

μ, with Kμ =

2εμνρσ [(∂νAρ)Aσ − 2
3 iAνAρAσ]. Defining N = 1

16π2

∫
d3xTrK0, the quantity B + N is

conserved in time. N is not gauge-invariant, but ∂0N is, and in particular
∫
dt ∂0N =

N |t=∞ − N |t=−∞ = 1
16π2

∫
d3xTrFμν F̃

μν is an integer number counting the number of

instantons [30]. In the particular case of the littlest Higgs model, we have two commuting

SU(2) gauge groups. Therefore, two different types of instantons might be present, and

we can define two independent quantities counting the instantons of the two SU(2) gauge

groups,

N(W (α)
μ ) =

1

16π2
εijk

∫
d3x

[
g2α(∂iW

(α)a
j )W

(α)a
k + 2g3αW

(α)1
i W

(α)2
j W

(α)3
k

]
, (3.6)

2The gauge invariant topological current is built in a similar fashion as in the U(1) gauged Skyrme model

of ref. [29].
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where α = 1 or 2. The topological charge defined in (3.2) can now be written as

B = η(φ) +N(W (1)
μ ) +N(W (2)

μ ) , (3.7)

and satisfies (modulo 2) all the conditions (i) to (v) fixed above in the absence of instan-

tons. A consequence of this is that the skyrmion is not stable but may decay through an

electroweak instanton. At low temperatures these decays are strongly suppressed [31–33]

such that the skyrmion is stable on cosmological time scales. A more precise estimate of

its lifetime will be given later.3

3.2 An SU(5) Skyrmion

First we want to find the lightest field configuration of winding number one in the limit

of vanishing gauge fields. We are always interested in field configurations going to the

identity matrix at spatial infinity, and thus will consider maps Φ : S3 → SU(5) with

nonzero winding number. Finding these maps is simplified by the unique fact that S3

is isomorphic to SU(2) - it is sufficient to find a map that winds once around a SU(2)

subgroup of SU(5).

One example of such a map is given by Φ(x) = exp[2iF (r)x̂iTi], where F is a function

of the distance r to the origin, x̂i = xi/r are angular variables, and Ti, i = 1, 2, 3 are the

generators of a SU(2) subgroup of SU(5) obeying [Ti, Tj ] = iεijkTk and TrTiTj = 1
2δij .

This ansatz is the natural extension of the so-called hedgehog ansatz used in the original

SU(2) Skyrme model. It is said to be spherically symmetric, since it mixes the spatial

indices coming from x̂i with the group indices in Ti, so that a spatial rotation around the

origin is equivalent to a global SU(2) transformation,

Φ(Rx) = exp [2iF (r)Rij x̂jTi] = UΦ(x)U †, (3.8)

where Rij = 2Tr TiUTjU
†. Since the original Skyrme model is invariant under this diagonal

SU(2), its Lagrangian density at every point in space is automatically independent on the

spatial direction and only depends on the distance r from the origin, hence the so-called

spherical symmetry.

The boundary condition Φ(r → ∞) = 1 is obtained by choosing F (r → ∞) = 0. For

the field to be well defined at the origin, we must also have that Φ(x) does not depend on

the angular variables x̂i at r = 0. This implies that F (r = 0) = kπ, k ∈ Z. With this

ansatz for Φ and the corresponding boundary conditions for F , the winding number (2.9)

becomes

η(Φ) = − 2

π

∞∫
0

dr sin2 F (r) F ′(r) = k. (3.9)

Notice that the global structure of the SU(2) subgroup generated by the Ti enters crucially

in the winding number. For a general representation of an algebra isomorphic to su(2)

3 Note that the stability of the skyrmion in SU(N)/SO(N) coset models can also be understood in

terms of a microscopic theory, if the symmetry breaking pattern arises from a technicolor-like theory with

fermions in the adjoint representation [34, 35].
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with TrTiTj = C(R)δij , where C(R) is a Casimir invariant of the representation, the

winding number integral (2.9) is η = 2C(r)k. Hence, the elements of the algebra used in

the hedgehog ansatz have to be in a representation with C(R) = 1
2 in order to give a unit

winding field configuration. As a counter-example, consider for instance the generators of

SO(3),

R1 =

⎛
⎜⎝ −i

i

⎞
⎟⎠ , R2 =

⎛
⎜⎝ −i

i

⎞
⎟⎠ , R3 =

⎛
⎜⎝ −i

i

⎞
⎟⎠ , (3.10)

which also satisfy [Ri, Rj ] = iεijkRk but have TrRiRj = 2δij , i.e. C(R) = 2. Defining the

hedgehog ansatz with generators Ti = Ri gives an integer multiple of 4 for the winding

number (2.9). Another counter-example is the 4-dimensional antisymmetric set

Z1 =
1

2

⎛
⎜⎜⎜⎝

−i
i

−i
i

⎞
⎟⎟⎟⎠ , Z2 =

1

2

⎛
⎜⎜⎜⎝

−i
i

i

−i

⎞
⎟⎟⎟⎠ , Z3 =

1

2

⎛
⎜⎜⎜⎝

−i
−i

i

i

⎞
⎟⎟⎟⎠ , (3.11)

obeying TrZiZj = δij , hence giving a winding number which is an integer multiple of 2.

This very set of generators actually belong to the generators of SO(N) for N ≥ 4 and

therefore allows us to identify π3(SU(5)/SO(5)) as Z2: the winding number of any map

S3 → SU(5)/SO(5) can be raised or lowered by an integer multiple of two applying the

SO(5) transformation R(x) = exp[2iF (r)x̂iZi], which has winding number 2 by construc-

tion.

3.3 The SU(5)/SO(5) Skyrmion

A generator of π3(SU(5)/SO(5)), and thus a candidate for the skyrmion in the SU(5)/SO(5)

coset, is now obtained by defining

Σ(x) = Φ(x)Φ(x)T , (3.12)

where Φ(x) is an SU(5) matrix of winding number one constructed using the hedgehog

ansatz defined in the previous section. There is however a subtle point in using this ansatz,

namely that it does not in general represent a spherically symmetric field configuration

in the coset. This can be seen as follows. While the Skyrme Lagrangian for SU(N) can

be entirely written as a trace of products of the currents Xμ = Φ†∂μΦ, the littlest Higgs

Lagrangian also contains the transpose of this current. With the above definition of Σ we

have that Σ†∂μΣ = Φ∗[(Φ†∂μΦ) + (Φ†∂μΦ)T ]ΦT , so that the Lagrangian becomes

L = LΣ + LSkyrme = −f2

4
Tr(Xμ +XT

μ )(X
μ +XμT ) +

1

32e2
Tr

[
Xμ +XT

μ ,Xν +XT
ν

]2
.

(3.13)

Under a rotation in space, the current Xμ transforms as Xμ → UXμU
†, where U belongs

to the SU(2) subgroup of SU(5) defined by the generators Ti. The Lagrangian above is

obviously not rotational invariant in general. In particular taking a trivial embedding of

the Pauli matrices in a 5× 5 matrix does not preserve the spherical symmetry.
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It is well accepted that for solitons, the field configurations of highest symmetry tend

to yield the lowest energy solutions to the field equations. This is the case of the original

skyrmion solution [9], of the ’t Hooft-Polyakov monopole [36, 37], and of the Julia-Zee

dyon [38]. All these solitonic field configurations are spherically symmetric, reflecting the

rotational invariance of the Lagrangian density.4 Since the above ansatz is not spherically

symmetric, one may therefore wonder whether a different field configuration of higher

symmetry exists, and whether it has a lower energy than the above solution.

For the SU(3)/SO(3) coset a spherically symmetric ansatz was found in [40]. In this

case, an SU(3) matrix Φ2(x) is built such that a spatial rotation has the same effect on

it as a SO(3) transformation, namely Φ2(Rx) = RΦ2(x)R
T , so that the field Σ2 = Φ2Φ

T
2

transforms as Σ2(Rx) = RΣ2(x)R
T and the spherical symmetry is preserved. This ansatz

was used to construct a spherically symmetric skyrmion in the littlest Higgs model in [20].

It is however unclear how to interpret this solution since the field configuration Φ2 has

actually winding number two, and thus Σ2 is a topologically trivial field configuration in

the SU(5)/SO(5) coset, as can be seen using eq. (2.10).5

Nevertheless, a spherically symmetric ansatz of winding number one exists for

SU(N)/SO(N) with N ≥ 4. This is because the SU(N ≥ 4) groups are large enough

to embed two commuting SU(2) subgroups whose generators are transposed to each other.

This is in particular realised by the gauge group of the littlest Higgs model: the Q
(1,2)
i

defined above in eq. (2.2) are related through Q
(1)T
i = −Q(2)

i , and satisfy [Q
(1)
i , Q

(2)
j ] = 0

and TrQ
(1)
i Q

(2)
j = 0. With the ansatz

Φ(x) = exp
[
2iF (r)x̂iQ

(1)
i

]
(3.14)

(note that taking Q
(2)
i for the generators yields exactly the same results), the commuta-

tion relations of the group generators also imply commutations rules for the currents :

[Xμ,X
T
ν ] = 0. Rearranging eq. (3.13), we obtain

L = 2

(
−f2

4
TrXμX

μ +
1

32e2
Tr [Xμ,Xν ] [X

μ,Xν ]

)
. (3.15)

This Lagrangian is obviously invariant under spatial rotations according to the transfor-

mation rule for the currents. It is exactly twice the Lagrangian one would obtain starting

from a sigma model with the SU(5)-valued field Φ(x) instead of Σ(x). Therefore, the mass

of the SU(5)/SO(5) coset skyrmion is twice the mass of a corresponding SU(5) skyrmion

of winding number one. Finally, in terms of the profile function F (r), the Lagrangian reads

LΣ = −f2

(
F ′2 + 2

sin2 F

r2

)
, LSkyrme = − 1

e2
sin2 F

r2

(
2F ′2 +

sin2 F

r2

)
, (3.16)

4Notice however that this is not the case of solutions of winding number larger than one. For monopoles,

it has been proved in ref. [39] that only the unit winding number solutions preserve the spherical symmetry,

since the mass of a spherically symmetric configuration of magnetic charge n > 1 is larger than n times the

mass of the solution of magnetic charge one.
5Note that this is not a problem in the SU(3)/SO(3) case since π3(SU(3)/SO(3)) = Z4.
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Figure 1. The profile function F (left) and the radial energy density ρ = −4πr2L (right) as

functions of r.

so that the energy E = − ∫
d3x L of this static field configuration is given by

E[F ] = 4π
f

e

∞∫
0

dr̃

[(
r̃2 + 2 sin2 F

)
F ′2 +

(
2r̃2 + sin2 F

) sin2 F
r̃2

]
. (3.17)

In the last equation we have performed the rescaling r = r̃/(fe). The lowest energy

configuration is then obtained by solving numerically the Euler-Lagrange equation for F ,

(
r̃2 + 2 sin2 F

)
F ′′ + 2r̃F ′ + sin 2F

(
F ′2 − 1− sin2 F

r̃2

)
= 0, (3.18)

with the boundary conditions F (0) = π and F (r → ∞) = 0. The profile function F is

shown on Fig. 1, together with the corresponding energy density. The mass of the ungauged

skyrmion is found to be

M0 = 145.8 f/e, (3.19)

twice the mass of the original SU(2) skyrmion [9].6 Using eq. (3.2) we obtain the mean

square radius of the skyrmion:

〈r2〉 ≡
∫

d3x r2B0 =

(
1.058

1

fe

)2

. (3.20)

The scaling of the skyrmion mass with the coefficient of the Skyrme term is particularly

interesting. There is actually no upper bound on the constant e from phenomenological

arguments, so the mass of the skyrmion is, in principle, a free parameter of the theory.

It would require knowledge of the UV completion of the littlest Higgs model to obtain an

estimate of its value. Assuming a QCD like UV completion it might be reasonable to use

e ∼ 5, which is obtained from a fit to nucleon properties [9]. With a symmetry breaking

scale f around 500 GeV this gives a mass of the order of 15 TeV for the skyrmion.

Naive dimensional analysis (NDA) gives a pre-factor of cs/(4π)
2 for the Skyrme term

where cs is an order one coefficient. This also seems to motivate 1 � e � 10. We will see

in the next chapter that the inclusion of gauge interactions modifies the dependence of the

skyrmion mass on the parameter e.

6An additional factor of two is due to a difference in the normalisation between [9] and the present work.
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3.4 Gauged solution

Turning on the gauge fields can only reduce the mass of the skyrmion. We are actually

looking for field configurations which have η(Φ) = 1 and are topologically equivalent to a

configuration with zero gauge fields, so that they satisfy N(W
(1)
μ ) = N(W

(2)
μ ) = 0. This

choice will ensure a non-trivial topological charge B = 1. Such a configuration can be

gauge-equivalent to another configuration with η(Φ) = 0 and N = 1, but it would take a

huge amount of time for the first configuration to evolve into the second, so that we can

consider the first case to be quasi-stable.

The condition N = 0 implies that one can always perform a gauge transformation

A0 → V A0V
†+ iV ∂0V

† = 0 with η(V ) = 0, so that η(Φ) is unchanged. In other words, we

can always work in the temporal gauge A0 = 0.

The ansatz (3.14) used for the ungauged solution above spans only a 4 × 4 block of

the whole SU(5). While the embedding has no influence when the gauge fields are set to

zero, it does have an importance for non-vanishing gauge fields. If the generators of the

SU(2) subgroup used in the ansatz (3.14) do not match the gauge generators (2.2), the

spherical symmetry would be broken by the gauge fields. We therefore assume that the

lowest energy configuration is indeed correctly described by the ansatz (3.14) made above.

Since the U(1) gauge generators Y (1,2) commute with the SU(2) gauge generators, the

contribution of the Bμ and Bμ fields to the field energy is simply given by their mass term.

In order to reach the lowest energy configuration, Bμ has then to be zero everywhere, while

Bμ being massless is free and does not contribute to the mass of the skyrmion. An ansatz

for the fields W a
μ and W

a
μ preserving the spherical symmetry can be made by writing the

most general tensor decomposition in terms of the angular variables x̂i:

W a
i =

1

gr
[(δia − x̂ix̂a) a1(r) + x̂ix̂aa2(r) + εiakx̂ka3(r)] ,

W
a
i =

1

gr
[(δia − x̂ix̂a) b1(r) + x̂ix̂ab2(r) + εiakx̂kb3(r)] . (3.21)

Note that the factor 1/gr is purely conventional, and that we work in the temporal gauge,

so W a
0 = W

a
0 = 0. Plugging this ansatz into the Lagrangian, we obtain

LΣ = −f2 1

r2
(2A+B) , LSkyrme = − 1

e2
1

r4
A (A+ 2B) , (3.22)

where we have defined

A = [(1 + a3) sinF − b1 cosF ]2 + [a1 sinF + b3 cosF ]2 , B =
[
rF ′ − b2

]2
. (3.23)

The spherical symmetry is here completely explicit, since the Lagrangian density depends

only on r. The Lagrangian also contains the usual kinetic term for the gauge fields,

LYM = −1

4
F a
ijF

a
ij −

1

4
F

a
ijF

a
ij (3.24)

where

F a
ij = ∂iW

a
j − ∂jW

a
i + gεabc(W b

i W
c
j +W

b
iW

c
j), (3.25)

F
a
ij = ∂iW

a
j − ∂jW

a
i + gεabc(W b

i W
c
j +W

b
iW

c
j ). (3.26)
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With our ansatz, this is

LYM = − 1

g2r4

[(
ra′1 − a2(1 + a3)− b2b3

)2
+

(
ra′3 + a1a2 + b1b2

)2
+

(
rb′1 − b2(1 + a3)− a2b3

)2
+

(
rb′3 + a1b2 + b1a2

)2
+

1

2

(
a21 + (1 + a3)

2 + b21 + b23 − 1
)2

+ 2 (a1b1 + (1 + a3)b3)
2

]
.(3.27)

The lowest energy configuration is then obtained by solving the corresponding Euler-

Lagrange equations. One should not forget however that the winding numbers N for the

gauge fields as defined in eq. (3.6) have to remain zero. This translates into the following

constraints on the profile functions:

∞∫
0

dr
[
a1a

′
3 − a′1a3 +

a2
r

(
a21 + (1 + a3)

2 + b21 + b23 − 1
)

+b1b
′
3 − b′1b3 + 2

b2
r
(a1b1 + (1 + a3)b3)

]
= 0, (3.28)

∞∫
0

dr

[
a1b

′
3 − a′1b3 +

b2
r

(
a21 + (1 + a3)

2 + b21 + b23 − 1
)

+b1a
′
3 − b′1a3 + 2

a2
r
(a1b1 + (1 + a3)b3)

]
= 0. (3.29)

The profile functions ai(r), bi(r) are moreover constrained by the form of the ansatz (3.21).

To obtain a finite energy solution, ai(r), bi(r) must approach a constant value as r → ∞.

Definiteness at the origin furthermore implies a3(0) = 0 and a1(0) = a2(0), and similarly

for the bi(r).

The Euler-Lagrange equations for a1, a2 and b3 are satisfied by setting these three fields

to zero. With this choice, the constraint (3.28) is automatically fulfilled. There is then a

non-trivial solution with zero-energy corresponding to a3 = −(1+cosF ), b1 = − sinF and

b2 = rF ′, but this solution does not satisfy eq. (3.29), the left-hand side being non-zero.

There are actually two obvious ways to satisfy the constraint (3.29):

(I) The first possibility it to set a3 = b1 = 0, and turn on only b2. In this case the

energy functional becomes

EI [F, b2] = 4π
f

e

∞∫
0

dr̃

[
sin2 F

(
2 +

sin2 F

r̃2
+

2(r̃F ′ − b2)
2

r̃2

)
+ (r̃F ′ − b2)

2 +
e2

g2
b22
r̃2

]
,

(3.30)

where we have used again the rescaled variable r̃ = fe r. Since the energy functional

does not depend on the derivative of b2, the Euler-Lagrange equation for b2 yields

directly

b2(r) = r̃F ′
(
1− 1

1 + (g/e)2(r̃2 + 2 sin2 F )

)
. (3.31)
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Figure 2. The profile functions F (r), b2(r) and a(r) for different values of the parameter e, for

ansatz I (left) and ansatz II (right). On the right-hand side, the parameter ω is chosen to yield the

lowest possible mass, namely ω = 0 for e = 0.5, ω = −0.27 for e = 1 and ω = −1.13 for e = 5.

b2 automatically satisfies its boundary conditions. Substituting into eq. (3.30), we

get

EI [F ] = 4π
f

e

∞∫
0

dr̃

[
sin2 F

(
2 +

sin2 F

r̃2

)
+ F ′2

(r̃2 + 2 sin2 F )

1 + (g/e)2(r̃2 + 2 sin2 F )

]
, (3.32)

and the Euler-Lagrange equation for F becomes

(
1 + (g/e)2(r̃2 + 2 sin2 F )

) (
r̃2 + 2 sin2 F

)
F ′′ + 2r̃F ′

+sin 2F

[
F ′2 − (

1 + (g/e)2(r̃2 + 2 sin2 F )
)2 (

1 +
sin2 F

r̃2

)]
= 0. (3.33)

As one can see, the mass of the skyrmion scales with f and 1/e, but depends also

in a non-trivial way on the ratio g/e. The gauge coupling g is fixed by its standard

model value. For the numerical studies we use g = 0.653.7 The solution of the

Euler-Lagrange equation for F (r) with F (0) = π and F (r → ∞) = 0 is shown on

Fig. 2 for different values of e. Notice in this case that at large values of r, F is

now vanishing exponentially as F (r) ∝ exp(−√2fgr), in strong contrast with the

ungauged solution where F decreases as 1/r2.

(II) The alternative consists in setting b2 = 0 and fixing a3 and b1 to be proportional to

each other: a3(r) = a(r) cosω, b1(r) = a(r) sinω, where ω is an arbitrary constant

parameter. The energy functional is then

EII [F, a] = 4π
f

e

∞∫
0

dr̃

[(
r̃2 + 2C2

)
F ′2 + 2C2 +

C4

r̃2
+

e2

g2

(
a′2 +

a2(a+ 2cos ω)2

2r̃2

)]
,

(3.34)

7We use the value of g at the scale μ = MZ . Our results do not depend significantly on this choice of

scale, in particular in the region of interest corresponding to e � 1.
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Figure 3. Left: the mass of the type II solution as a function of e and ω (the thick blue line

corresponds to the lowest mass for each value of e). Right: comparison of the ungauged solution

M0 = 145.8f/e (dotted line), the type I ansatz (blue solid line) and the type II ansatz (orange

band, with ω free to vary) as functions of e.

where we denoted C = sinF + a sin(F − ω). The corresponding Euler-Lagrange

equations for F (r) and a(r) are

(
r̃2 + 2C2

)
F ′′ + 2r̃F ′ + 4 sin(F − ω)CF ′a′

+2C(cosF + a cos(F − ω))

(
F ′2 − 1− C2

r̃2

)
= 0, (3.35)

a′′ − a(a+ cosω)(a+ 2cos ω)

r̃2
−

(g
e

)2
2C sin(F − ω)

(
F ′2 + 1 +

C2

r̃2

)
= 0. (3.36)

The numerical solutions for F (r) and a(r) with F (0) = π, F (r →∞) = 0, a(0) = 0

and a(r → ∞) = const. are shown in Fig. 2. In general, the dependence on ω is

completely non-trivial. Nevertheless, for small e, the lowest mass is obtained for

ω ∼= 0 and the profile function a(r) goes to -1 as r goes to infinity.

If one chooses ω = 0, only a3 is turned on and our ansatz resembles the so-called

Skyrme-Wu-Yang ansatz used for a SU(2) gauged skyrmion in ref. [41].

Although looking very different, the two ansätze yield very similar masses, as can be

seen on Fig. 3. For e � 10, the lowest energy solution is obtained using the type I ansatz,

while for e � 10 the two choices give approximately equal masses, both very close to the

ungauged case. For e � 5, the mass of the gauged solution is at least 97% of the mass of

the ungauged one, the profile function F is very close to the ungauged case value, and the

gauge field is extremely small. In this regime, the ungauged solution can be considered a

reasonable approximation.

However, the mass of the gauged skyrmion can be significantly reduced compared to

the ungauged solution at small e. In particular, the mass of the skyrmion within the ansatz

of type I has a well defined limit at e→ 0, namely

Me→0 = 16
√
2π

f

g
∼= 108.9 f, (3.37)
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Figure 4. Left: the skyrmion mass corresponding to the ansätze of type I (blue solid line) and

II (orange band) compared to the ungauged mass (dotted line) diverging as 1/e; for e � 0.5, the

convergence of the numerical method is poor, but it agrees with the analytical limit of eq. (3.37).

Right: the profile function F as computed numerically (black points) in the type I ansatz for e = 0.4,

compared with the analytical result of eq. (A.5) with r∗ = 4.06 (green line).

as illustrated on Fig. 4. This bound is due to the fact that the dominance of the Skyrme

term induced by a small e allows for a very sharp profile for F , going eventually towards

a step function, as explained in the appendix. In this regime, the radius of the skyrmion

becomes infinitely large, but its mass remains finite. It is however still large compared

to the symmetry breaking scale f , so that the small e limit can not provide a physically

interesting dark matter candidate.

3.5 Lifetime of the Littlest Skyrmion

We have seen above that a gauge transformation acts on Φ as a left multiplication with

a matrix V , where V lies in the 5 × 5 representation of the gauge group [SU(2) × U(1)]2.

Since the winding number of eq. (2.9) is additive, the effect of such a gauge transformation

on the winding number of the skyrmion is to add a quantity equal to η(V ), the winding

number of V . A gauge transformation with η(V ) = −1 (or any odd integer value) therefore

takes our skyrmion configuration to a topologically trivial field configuration.

With the ansatz (3.14), there is an obvious SU(2) gauge transformation V = Φ† =

exp[−2iF (r)x̂iQ
(1)
i ] taking the winding number one field configuration Φ to the vacuum,

i.e. the identity matrix. This field configuration takes the gauge field W
(1)
μ to a pure gauge

configuration, W
(1)
μ = i

gV ∂μV
† = i

gΦ
†∂μΦ. The energy is left unchanged. The winding

of Φ in SU(5) is actually transferred to the gauge field: η is taken from 1 to 0, whereas

N(W
(1)
μ ) is taken from 0 to 1, so that B is preserved as required.

Let us now consider a single skyrmion configuration at t = −∞, namely a configuration

with η(Φ) = 1 and N1 = N2 = 0. Although we have seen that the lowest energy solution

is obtained with non-zero gauge fields, we can consider here for simplicity the ungauged

solution without loss of generality. As we have just seen, this configuration is equivalent

to a topologically trivial scalar field configuration where the gauge field is in a pure gauge

configuration, Wμ = i
gΦ

†∂μΦ. This pure gauge configuration at t = −∞ can tunnel through

an instanton into a configuration with zero gauge fields at t = +∞. In other words, the
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skyrmion can unwind with the help of an instanton. This mechanism was already studied

in ref. [31] in the case of the standard model SU(2) gauge group. The decay matrix element

of the skyrmion is associated with the tunnelling probability, which was computed in [32]

and found to be of the order of exp(−8π2/g2). Using this result the lifetime of the skyrmion

can be estimated as8

τ =
1

Γ
∼ e16π

2/g2

M0
� τuniverse . (3.38)

It follows that the skyrmion can be considered stable on cosmological timescales, and

thus if its mass and couplings are appropriated, it can serve as a potential dark matter

candidate.

3.6 Quantisation

The mass of the skyrmion so far is obtained following a classical procedure. In order to

compute other physical properties of the skyrmion, like its coupling to the gauge fields,

one should quantise the model. The quantisation procedure is however a tedious task and

will not be presented in this work. In particular, the bosonic or fermionic nature of the

skyrmion may not only depend on the low-energy effective model described here, but also

on the UV completion of the Littlest Higgs model. The skyrmion mass is also affected by

the quantisation procedure. While the mass of the lowest skyrmion state should remain

close to the classical mass computed here — at least if the skyrmion is a scalar —, excited

states of higher mass are also expected, as in the original Skyrme model [9]. Moreover, large

quantum loop corrections might supposedly lower the mass of the skyrmion, although an

exact computation of them is not possible [43]. Those issues will be addressed in a future

work.

4 Skyrmion interactions and constraints from cosmology

The skyrmion is a massive stable particle with at most weak couplings to standard model

particles, and thus a potential dark matter candidate. A precise analysis of its proper-

ties and direct and indirect detection constraints would require the quantisation of the

skyrmion, as mentioned in the previous section.

However, we can already discuss some constraints coming from the skyrmion classical

properties. For example, one can check if the relic abundance of skyrmions may indeed

satisfy the constraints coming from cosmology. In the early universe the littlest Higgs

skyrmions will be thermally produced just like any other state in the particle spectrum. In

contrast to protons, they may pair annihilate due to their topological Z2 quantum number.

Therefore, the relic abundance of skyrmions is directly determined by their annihilation

cross section.

8Note that the decay rate may be enhanced for large skyrmion masses, as pointed out in [42]. We do not

consider those effects here, since in the concerned region of small e the skyrmion mass is largely reduced

due to the presence of gauge fields.
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4.1 Skyrmion-Skyrmion potential and long range forces

Let us first show that long range forces between widely separated skyrmions are negligible

at the classical level.

In the absence of gauge fields, the potential energy binding two skyrmions can be com-

puted precisely as long as the distance between them is much larger than their radius [44].

In this case, we can assume that they behave locally like single skyrmions and that the

overall field configuration is simply described by a multiplicative ansatz Σ12 = Σ1Σ2, where

Σ1 and Σ2 correspond to skyrmion configurations located around two points x1 and x2 in

space, separated by a distance d. If the distance d is of the same size as the skyrmion ra-

dius or smaller, the presence of one skyrmion will significantly distort the second skyrmion

from its hedgehog shape, prohibiting an analytical calculation of the binding force between

them. However, we can assume that at close distances skyrmions attract each other: due

to the Z2 topology of the SU(5)/SO(5) coset, the superposition of two skyrmions yields

a topologically trivial field configuration, which is favoured by energy considerations. At

distances much larger than the skyrmion radius, the potential energy between the two

skyrmions can be computed employing the multiplicative ansatz for the difference in en-

ergy between the two-skyrmions field configuration and two single-skyrmion configurations:

V = E[Σ12]−E[Σ1]−E[Σ2]. In this limit, the potential has been shown in [44] to be pro-

portional to the inverse of the distance cubed: V ∼ d−3. The form of this potential is

actually only determined by the large distance behaviour of the two single skyrmion solu-

tions, which depends in turn on the asymptotic behaviour of the profile function F (r). For

the ungauged solution, this function scales as 1/r2 at large r.9

For the gauged solutions, an analogous multiplicative ansatz for the two-skyrmion

state cannot be employed directly, since the gauge field also contributes to the energy.

However, we expect as for the ungauged solution that the potential only depends on the

asymptotic behaviour of the profile functions F , ai and bi. For the gauged type I solution,

which is always lighter than the ungauged and type II solutions, the profile functions vanish

exponentially at large r:

F (r)
r→∞−−−→ c e−

√
2fgr,

b2(r)
r→∞−−−→ −√2 f g c r e−

√
2fgr,

(4.1)

where c is a numerical factor depending of the value of the Skyrme coupling e. We can

hence safely expect the strength of the interaction to be exponentially suppressed with the

distance, and therefore no large attractive or repulsive force is present at large distances,

despite the fact that any two skyrmions can annihilate into light particles. Note finally

that after quantisation, the skyrmion might be charged under the electroweak gauge group,

and that a potential falling off as exp(−mW d) due to the exchange of gauge bosons can be

present and of equal importance.

9Note that the exact large distance potential also depends on the relative isospin orientation between

the two skyrmions. The sign of the interaction depends on this relative orientation, and in particular the

potential vanishes if the isospins of the two skyrmions are aligned.
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4.2 Estimate of the relic density

It is safe to assume that the skyrmions are in thermal equilibrium in the early universe, at

temperatures T > M0. The relic density then depends crucially on the pair annihilation

cross section. A reasonable first estimate for this quantity is the geometric cross section

σA = π〈r2〉 ∼= π

(fe)2
. (4.2)

A comparison with proton anti-proton annihilation in the original Skyrme model shows

that the geometric cross section yields at least the correct order of magnitude for this

process at intermediate energies [45]. To parametrize the remaining uncertainty, we let the

cross section vary by an order of magnitude, i.e. we take σ = 10±1σA for the numerical

analyses.

In addition to the cross section also the dominant final states of the annihilation process

are unknown. To circumvent this problem, and to make a numerical analysis feasible, we

introduce effective couplings of the skyrmion, which we assume to be a scalar, to the degrees

of freedom of the littlest Higgs. To estimate the uncertainty introduced by this procedure

we consider two distinct possibilities:

(a) The first possibility we consider is to couple the skyrmion directly to the Goldstone

sector using the gauge invariant effective operator

Lint = −1

8
GΣ SS Tr(DμΣD

μΣ†) , (4.3)

where S describes the skyrmion. This terms yields an infinite number of interactions

with an arbitrary number of external legs. For simplicity we only consider the four

particle operators that mediate the annihilation of skyrmion pairs into heavy and light

gauge bosons, heavy triplets φ and into little Higgses h. All of these annihilation

channels give approximately the same contribution to the cross-section, as long as the

mass of the final states is small compared to the skyrmion mass M0:

σSS→hh =
G2

ΣM
2
0

128πf4

βh(1 + β2
h)

2

βS(1− β2
S)
∼= G2

ΣM
2
0

32πf4

1

βS(1− β2
S)

, (4.4)

and similarly for the other scalars and vector bosons. Here, βS and βh are the rela-

tivistic velocities of the annihilating skyrmions and the produced Higgses, respectively,

in the center-of-mass frame. The cross-section diverges at small and large energies, in

a similar fashion as the proton-antiproton annihilation cross-section. To make connec-

tion with the estimate (4.2) for the total cross section, we determine the parameter

GΣ such that the annihilation cross section for momenta |p| ∼ 1√
2
M0, i.e. βS = 1√

3
,

agrees with (4.2). This translates into

G2
Σ =

64π2〈r2〉
3
√
3Nb

f4

M2
0

, (4.5)

where Nb = 14 is the number of bosons entering eq. (4.3). GΣ is independent on f and

e, due to the scaling properties of M0 and 〈r2〉, and hence takes the constant value
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Figure 5. The value of the Skyrme coupling e (upper plots) and of the corresponding skyrmion

mass M0 (lower plots) matching the observed dark matter relic density as a function of the sym-

metry breaking scale f . The left-hand side corresponds to coupling the skyrmion with the Nambu-

Goldstone sector as in eq. (4.3), and the right-hand side to coupling it to the standard model quarks

and leptons as in eq. (4.6). The coloured band corresponds to fixing the coupling constant G so

that the skyrmion annihilation cross-section σ is in the range 1

10
σA < σ < 10σA, with the thick line

corresponding to the middle value σ = σA. The dark grey regions are excluded since they predict

a too large dark matter relic density.

GΣ
∼= 0.024. The left panel of figure 5 shows the region in the f − e plane where

the skyrmion relic density agrees with the observed value. The correct dark matter

abundance is obtained for relatively large values of e, due to the 1/e scaling of the

geometric cross section. For small values of f this corresponds to a skyrmion mass

in the low TeV range, which raises some hope that these particles can be observed at

the LHC. The freeze-out temperature and relic density were obtained using the littlest

Higgs implementation of ref. [46] in the cosmology code micrOMEGAs [47].

(b) To reduce the uncertainty from the unknown final states of the annihilation, we consider

a second, purely phenomenological interaction of the form

Lint = −1

2
Gψ SSψψ , (4.6)

where again S denotes the skyrmion and ψ any of the standard model quarks or leptons.

The coupling Gψ is taken to be

G2
ψ =

8π2〈r2〉
Nf

, (4.7)
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where Nf = 24 is the number of standard model fermions. The partial cross-section

into any quark or lepton pair decreases with increasing energy as

σSS→ψψ =
G2

ψ

8π

β3
ψ

βS
∼=

G2
ψ

8π

1

βS
, (4.8)

where βψ is the relativistic velocity of the produced fermions in the center-of-mass

frame. The second equality holds when the mass M0 of the skyrmion is much larger

than the massmψ of the quarks and leptons. With this choice, the sum over all standard

model fermions again yields the geometric cross section. The resulting constraints on

f and e are shown in the right panel of figure 5.

Both models lead to similar constraints on the parameter space, the main difference

being due to the different energy behaviour of the annihilation cross sections. Another

check can be performed using the famous formula of ref. [48] that relates the relic density

to the annihilation cross-section of the dark matter particles,

Ωh2 ∼= 3 · 10−27cm3/s

〈σv〉
∼= 0.1. (4.9)

Using the naive estimate σ ∼ σA, and taking the average velocity of the skyrmions to be

v ∼ 1
2c, this yields the constraint

fe ∼ 35 TeV, (4.10)

which is in complete agreement with the favoured regions of Fig. 5.

An important consequence of the preceding results is that the parameter e is bounded

from above, which implies a lower bound on the skyrmion mass. For small values of the

symmetry breaking scale f the bound is rather weak, but it leads to the constraint M0 > f

for f � 1 TeV. If the skyrmions were lighter than these bounds, they would be massively

produced in the early universe and their annihilation cross-section would be small, so

that their relic abundance at present day would exceed the observed dark matter density.

Conversely, for moderate values of the Skyrme parameter, 10 � e � 100, the skyrmion can

account for the observed dark matter relic density.

There is however no lower bound on e to be read from cosmological considerations. In

other words, the skyrmion is allowed to be really heavy, since in this case its large mass and

important annihilation cross-section makes it completely absent from our present universe.

In this case, the dark matter has to be of different origin.

5 Skyrmions in other realisations of the little Higgs

There are a number of variations of little Higgs models in the literature which use different

symmetry breaking patterns. Depending on the third homotopy group of the coset, different

types of skyrmions may emerge. For the examples to be discussed, the third homotopy

groups of the various coset are computed in [24].
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SU(N)/SO(N)

The most prominent example of this class is the littlest Higgs model itself. For N ≥ 4

we have that π3(SU(N)/SO(N)) = Z2 and therefore models based on this coset will

have skyrmion solutions very similar to those discussed in the present paper. One could

in principle envision a model based on the SU(3)/SO(3) coset. In that case the third

homotopy group is Z4 and the skyrmion would be distinct from its antiskyrmion.

SU(N)× SU(N)/SU(N)

This QCD like symmetry breaking pattern with N = 3 is realised in the minimal moose

model [2, 18], where four copies of the coset are used. The third homotopy group is

π3[SU(N) × SU(N)/SU(N)] = Z. In this case skyrmion-skyrmion annihilation is not

possible, and the conserved topological charge acts like the baryon number in QCD. To

obtain the required relic density, it might be necessary to generate an asymmetry in the

topological charge, as it is required for baryogenesis in the standard model. The advantage

of such a scenario is that the dark matter density can be independent of the Skyrme

parameter e.

Since four copies of the coset are present in the model there will be four distinct

skyrmions that carry their own conserved charge. This could have interesting consequences

for dark matter searches since each skyrmion might provide a fraction of the total dark

matter density in the universe.

SO(N)× SO(N)/SO(N)

Examples for these models are the minimal moose with custodial symmetry [4] with N = 5

and the bestest little Higgs [5] with N = 6. For N ≥ 5 the third homotopy group is Z.

These cases are similar to the models based on SU(N)× SU(N)/SU(N).

SU(N)/Sp(N) and SU(N)/SU(N − 1)

For these symmetry breaking patterns the third homotopy group vanishes for N > 3.

Therefore no stable skyrmions are present in these models. Note that Sp(N) only exists

for even N .

6 Conclusions

We have studied in detail the classical properties of skyrmions which are naturally present

in most little Higgs models. These skyrmions are the equivalent of the baryons of QCD:

from the point of view of a strongly coupled UV completion, they are bound states of techni-

fermions which were discussed as potential dark matter candidates already in ref. [49]. In

terms of the low-energy theory, skyrmions are built out of the numerous bosonic fields which

appear in little Higgs models. The stability of the skyrmion is ensured by a topologically

conserved quantity, a direct consequence of the various symmetry breaking patterns in

little Higgs models. We showed that this quantity can be made gauge invariant, without

spoiling the stability of the skyrmion on time scales larger than the age of the universe.
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We found a spherically symmetric ansatz for skyrmions in SU(N)/SO(N) cosets with

N ≥ 4, and solved the differential equation for the profile function. Using those results

we obtained the classical mass and the radius of the skyrmion in the littlest Higgs model.

Next we considered the effects of gauge interactions on the prediction of the skyrmion mass.

The rich gauge structure of the littlest Higgs model leads to highly nonlinear differential

equations subject to additional topological constraints. The equations are solved for two

special cases, and we show that the mass of the skyrmion is reduced when gauge interactions

are taken into account. We are able to establish an upper bound on the skyrmion mass in

the limit of e→ 0, in agreement with previous findings.

For phenomenological applications, the large e regime is more interesting, since there

the mass of the skyrmion can be lowered down to the 1 TeV scale. In this regime the effects

of gauge interactions on the skyrmion profile can be neglected.

We argued that long range forces are absent for pairs of skyrmions. This, together

with its stability and weak scale interactions with ordinary matter, makes the skyrmion a

potential dark matter candidate. Using the geometric cross section as an estimate for the

annihilation rate, we determined the parameters f and e for which the relic density agrees

with the observed dark matter density.

The skyrmion can account for all of the dark matter in the universe, provided that e is

large enough. This in turn implies a relatively small mass. For low values of the symmetry

breaking scale, f ≤ 1 TeV, the skyrmion can be light enough to be produced at the LHC.

The results obtained so far are only at the classical level. It would be of great interest

to study the effects of quantisation on the skyrmion mass and on its coupling to ordinary

matter. Moreover, since we saw that the skyrmion might be as light as the TeV scale, it

could be produced in pairs at hadron colliders. In particular, it might be interesting to

compare the results of the present work to modern models of technibaryons, both in terms

of collider signatures and of consequences in cosmology.
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A Appendix: Small e limit of the gauged solution

The limit of small e in eq. (3.32) is not easy to take numerically. For e � 1 the profile

function F has a finite negative slope at r = 0, as visible on Fig. 2. In this parameter range,

the Euler-Lagrange equation (3.33) can be solved employing for example a shooting or a

relaxation method. However, at small e, the profile function F tends to be very flat around

the boundary r = 0. Here, our shooting implementation becomes increasingly unstable.

Instead, we resort to a relaxation algorithm, which produces reliable results for the profile
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functions down to values of e not much smaller than 0.4. For even smaller values of e it

becomes increasingly difficult to obtain precise results, also with the relaxation method.

Nevertheless, the limit in which e goes to zero can be taken analytically by making the

following observations:

(a) The fraction in the last term of eq. (3.32) tends towards e2/g2 as e→ 0. The resulting

term e2/g2(F ′)2 can however still be large, since F tends to become a step function,

and hence F ′ is large around the step.

(b) The term sin4 F/r2 becomes subdominant in comparison with 2 sin2 F , since the sine

is small everywhere except around the step of F , and the factor 1/r2 makes the con-

tribution around the step small, due to the large value of r there.

With those two observations, the energy functional (3.32) can be approximated as

EI,e→0[F ] = 4π
f

e

∞∫
0

dr

[
2 sin2 F +

e2

g2
F ′2

]
, (A.1)

yielding the Euler-Lagrange equation for F

e2

g2
F ′′ = sin 2F. (A.2)

Since this equation is indepent on r, it can be integrated, giving

e2

g2
F ′2 = 2 sin2 F + C, (A.3)

where C is a constant. Requiring F ′(r →∞) = 0 fixes the constant to C = 0. This value

of C also implies that at r = 0, where F (0) = π, the derivative of F vanishes, as observed

numerically. Since F has to be decreasing between π and 0, the equation for F becomes

F ′ = −
√
2
g

e
sinF, (A.4)

which is solved by the function

F (r) = 2 arctan
[
exp

(
−
√
2
g

e
(r − r∗)

)]
. (A.5)

r∗ is a constant fixing the position of the step, which is supposedly going to infinity at

small values of e. However, the energy obtained with this F is independent on r∗: using

eq. (A.4), one can rewrite the energy functional (A.1) as

EI,e→0[F ] = 8
√
2π

f

g

∞∫
0

dr(− sinF )F ′ = 8
√
2π

f

g

0∫
π

dF cosF = 16
√
2π

f

g
, (A.6)

which is exactly the limit given in eq. (3.37). Fig. (4) shows that both the mass (3.37) and

the step function given by eq. (A.5) are in good agreement with the full numerical solution

for e ∼= 0.4 already.
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