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We compute one of the second order transport coefficients arising from the chiral anomaly in a high-
temperature weakly coupled regime of quark-gluon plasma. This transport coefficient is responsible for the
CP-odd current that is proportional to the time derivative of the magnetic field, and can be considered as a
first correction to the chiral magnetic conductivity at finite, small frequency. We observe that this transport
coefficient has a nonanalytic dependence on the coupling as ~1/(g*log(1/g)) at the weak coupling regime,
which necessitates a resummation of infinite ladder diagrams with leading pinch singularities to get a
correct leading log result, a feature quite similar to what one finds in the computation of electric
conductivity. We formulate and solve the relevant CP-odd Schwinger-Dyson equation in real-time
perturbation theory that reduces to a coupled set of second order differential equations at leading log order.
Our result for this second order transport coefficient indicates that chiral magnetic current has some
resistance to the time change of the magnetic field; this shall be called the “chiral induction effect.” We also

discuss the case of color current induced by a color magnetic field.
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I. INTRODUCTION

The chiral anomaly is an intriguing quantum mechanical
phenomenon arising from an interplay between charge and
chirality of massless particles such as chiral fermions. It has
recently been appreciated that the chiral anomaly may
induce interesting parity-odd transport phenomena in the
plasmas of such particles [1-5]; at the lowest order in
derivative expansion of hydrodynamics (that is, at the first
order) it has been shown that the second law of thermo-
dynamics dictates the existence of such phenomena [6],
including the chiral magnetic effect [3] and the chiral
vortical effect [7,8]. Moreover, the magnitudes of these
transport phenomena in the static, homogeneous limit are
fixed by underlying anomaly coefficients and are not
renormalized by interactions. This universality has been
confirmed explicitly in both weak [9-12] and strong
[13-17] coupling computations, and has been proven in
hydrostatic constraints analysis [18-20]. There is also
evidence in favor of them in lattice simulations [21-25].
Recent results from heavy-ion experiments at the RHIC
[26-30] and the LHC [31] seem consistent with the
predictions from chiral magnetic and vortical effects
[32,33] (as well as chiral magnetic wave [34-38]), and,
quite interestingly, there has been a successful experimental
test of the chiral magnetic effect in Dirac/Weyl semimetals
that feature chiral fermionic excitations [39] (the spin
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degree of freedom in this case arises from an internal
degeneracy; in other words, it is a pseudospin). Therefore,
the existence and the magnitudes of these transport phe-
nomena at lowest order (i.e., first order) in derivative
expansion seem by now quite robust. One can also general-
ize them to all even space-time dimensions higher than four
[40-46].

As we go beyond the lowest order in derivatives, the
possible anomaly-induced transport phenomena become
numerous: in four dimensions there are 13 possible second
order anomalous transport coefficients in the current and
energy-momentum tensor in a conformal plasma [40] (and
more in nonconformal plasma [47]), while the second law
of thermodynamics seems to constrain only eight combi-
nations of them [40]. Some of these constraints have been
confirmed in a strong coupling computation [48].
Interestingly, the values of these anomalous second order
transport coefficients, although they are proportional to
anomaly coefficients, do depend on the dynamics of the
microscopic theory up to the mentioned constraints; there-
fore, computing them in weak and strong coupling regimes
is a nontrivial, but worthwhile, task in any theoretical
model.

The purpose of this work is to take a small step in
computing these second order anomalous transport coef-
ficients in weakly coupled gauge theories, with QCD and
electroweak theory in mind. Our current study will be based
on diagrammatic techniques, and we hope to address a
similar computation in a chiral kinetic theory frame-
work [49-53] in a separate work. We will show that one
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particular second order anomalous transport coefficient in
the charge current has a nonanalytic dependence on the
coupling constant, ~1/¢*log(1/g), which is similar to
what one finds in the shear viscosity and electric conduc-
tivity [54,55] (and in the chiral electric separation conduc-
tivity [56] as well)." This transport coefficient appears in
the second derivative correction to the current constitutive
relation as

I/l;2> ~ §5€”UaﬁMyDaEﬂ, (11)
where E, = F,, u” is the electric field strength in a local
fluid rest frame defined by #*, and we followed the notation
introduced in Ref. [40] to denote the transport coefficient
&s. Using the Bianchi identity, one can replace e***u, D E Y,
with u*D,B*, where B* =3e¢**Pu,F,; is the magnetic
field strength in the local rest frame; this means that &5 can
be viewed as a first correction to the static chiral magnetic
effect at finite frequency. More explicitly, it appears in the
anomalous part of the current density as

-
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where o, is the topologically protected value of chiral
magnetic conductivity at zero frequency. &5 is parity (P) and
charge conjugation-parity (CP) odd, so it must arise from
the chiral anomaly.

As was observed first by Jeon [57], in diagrammatic
language, the nonanalytic behavior in the coupling depend-
ence is signaled by the presence of pinch singularities in
multiloop ladder diagrams of two-point correlation func-
tions; this necessitates a resummation of all ladder graphs,
by solving a Schwinger-Dyson-type equation, to get a
leading log result. It was previously observed in Ref. [12]
that the zero frequency-momentum limit of the P-odd part
of the one-loop correlation function does not have pinch
singularity, reproducing the correct static value of chiral
magnetic conductivity. We first motivate our study by
observing an appearance of pinch singularity in the
P-odd part of a one-loop diagram at first order in frequency,
which enters in the Kubo formula for &s. Following
intuitions from the computation of electric conductivity
[58—60], we then identify multiloop ladder graphs whose P-
odd parts contain a chain of pinch singularities that have to
be resummed to get a correct leading log result for &s. The
emerging Schwinger-Dyson equation is more difficult to
solve than that for the electric conductivity, because we

'Our definition of transport coefficients does not include a
trivial e? factor from the definition of electromagnetic current,
which is e times the fermion number current. Therefore, all
quantities in our work are defined with the fermion number
current. For example, the electric conductivity will be
~1/(e*1log(1/e)) and the chiral magnetic conductivity at zero

frequency for a single right-handed Weyl fermion is o, = /*>.
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need to keep finite external momentum & (up to first order
in k) to extract the P-odd part of the correlation function. In
Sec. IV, we prove an important fact that all £ dependence in
the denominators of pinching propagators do not contrib-
ute, up to first order in k, to the P-odd part that we are
interested in, allowing us to neglect them in the denom-
inators of pinching propagators. The necessary k depend-
ence for P-odd correlation functions arises only from the
spinor projection part of the fermion propagators. With this
important simplification, we are able to reduce the leading
log part of the P-odd Schwinger-Dyson equation into a
coupled set of second order differential equations, which
can be solved numerically. Along the way, we develop and
use the sum rule for the P-odd part of hard thermal loop
(HTL) photon spectral density, which is summarized in
Appendix A.

For most of our presentation, we will consider a single
species of Weyl fermion in quantum electrodynamics
(QED) for simplicity; a generalization to a finite number
of species of Weyl and Dirac fermions, as well as to a non-
Abelian SU(N ) gauge theory, is trivial at our leading log
order. We will describe this generalization in our discussion
section at the end. Our results are summarized as follows:
For QED with a single right-handed Weyl fermion, we have

-3.006

& ~eflog(1/e) T

(1.3)

For two-flavor massless QCD (N, = 3) with Q,, = 3/2 and
Q, = —1/3, our result is

-3.6 M -2.003 U
QCD 2 2 A A
= QM + Q A1 1N A1 17 N
> ( d) g410g(1/g) 1 9410g(1/g) 1
(1. )

where p, is an axial chemical potential. The sign of s
compared to the zero-frequency value o, (= 4"7 for QED) is
a meaningful dynamical result. A relative negative sign
between the two means that the chiral magnetic current has
some resistance to the change of the magnetic field. We
shall call this the “chiral induction effect.”

I1. PINCH SINGULARITY IN THE P-ODD PART
AT ONE LOOP

In this section, let us motivate our work by observing an
appearance of pinch singularity in the P-odd part of a one-
loop diagram at first order in frequency w. It will also serve
to fix our notations and conventions. For simplicity, we will
consider the case of a single Weyl fermion species of unit
charge in QED plasma at finite equilibrium temperature 7',
as the generalization to multiflavors or non-Abelian gauge
groups is simple (we will summarize it at the end of the
paper). Throughout our analysis, we will use the real-time
Schwinger-Keldysh formalism in “ra” basis to compute the
retarded current-current correlation function that contains
the chiral magnetic conductivity o, (k) in its P-odd part,
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FIG. 1.

(JH(k)JI (—k))Eodd = iax(k)eiﬂkl, (2.1)
where italic letters run over the three spatial dimensions and
k = (kK°, k) = (w,k) is an external four-momentum. Note
that in ra basis, the retarded two-point function is equal to

(T (k) (k) g = (=) (TLR)T4(=k)sic = (=D)G{L,, (k).

where the subscript SK in the second term emphasizes that
it is computed in the Schwinger-Keldysh path integral with
J,=1/2(J; +J,) and J,=J; —J, (1 and 2 denote the
two time contours in the Schwinger-Keldysh formalism).
We follow the notations in Ref. [12] for consistency.2
Explicitly,

T = wic'y, + wio'y,.,
(2.3)

1 .
T =o'y, + a0y,

with ¢# = (1,,,,06) in terms of a two-component Weyl
spinor field y. Therefore, the task is to compute the P-odd
part (or antisymmetric part in i,j indices) of the (ra)
correlator Gé’r a)(k) for small frequency momentum.

The zero frequency-momentum limit of o, (k) has been
shown to be universally

= H*
e =g

(2.4)
and, in particular, no pinch singularity appears in this limit,
as shown in Ref. [12]. Our &5 appears in first order
expansion in @ = k° (while still taking the zero momentum
limit k — 0),

’In literature, the retarded function is often chosen to be
denoted by G, which we find confusing.
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Srr(p)

Sra(P+ k)

Diagrams responsible for the retarded response at one loop in the ra basis.

li k
k0 X ()

- 4“7 — itsw + O(w?). (2.5)

However, since the P-odd part of szr 2) contains a linear
term in k in defining o, (k),

GIPY (k) = —a, (k)e'k,

i (2.6)

we have to keep the k dependence in Gz]r a)(k) up to first

order in k, and then take the k — O limit of the P-odd
coefficient o, (k). This essentially means that we need to
keep finite k in the Schwinger-Dyson equation for ladder
resummation; this is in contrast to the case of electric
conductivity, where one can set k = 0 from the very outset,
greatly simplifying the analysis. Despite this difficulty, we
will be able to solve the Schwinger-Dyson equation for the
P-odd part of GEJr 2) (k) and extract the coefficient £5. At one

loop there are two Feynman diagrams for G’(’r a)(k) in real-

time formalism, as depicted in Fig. 1. The fermion

propagators are given by

Sa(p) = Zmﬂ@)’ (2.7)
Sar(p p() S|P| ZC/2 (p) (28)
S.(p) = (% 0o @9)

where n, (p°) = 1/(e#P*F4) 4 1), the spectral density p is

p(p) = ( Pip). (2.10)

t==%

¢
P’ —tpl)* + (£/2)?
and we introduce the damping rate { ~ ¢g* log(1/¢)T in the
propagators, which will be needed to regularize possible
pinch singularities (this is essential in order to have a
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nonanalytic dependence on the coupling constant). It is
important to observe a thermal relation

$0(0) = (310 ) Salp) = Sup)). 211

which plays a central role in our analysis. The projection
operators P (p) are defined as

ri=3(1250) -

where 6# = (1,—6) and p', = (£[p|.p). Our metric con-
vention is (—, +, +, +). The operators P (p) project onto
particle and antiparticle states, respectively, with given
momentum p, and the (s,7) summation in the above
physically represents distinctive contributions from par-
ticles and antiparticles. -

The one-loop expression for G, (k) from the two
Feynman diagrams is

(2.12)

4
(1) [ GEele'Suo + 05, (1)

+0'S,,(p + K)o S, (). (2.13)

where the (—1) in front comes from fermion statistics. In
Ref. [12] it was shown that after extracting e"/'k’ for the
P-odd part, the limit k - 0 and @ — 0 commutes and
produces the correct result u/4z%, without featuring pinch
singularity. However, we will see that the @ — 0 limit hides
the pinch singularity that appears at first order in @ for &s.
Using the thermal relation (2.11) to replace S, with
(S,4 — S.), we have several combinations of §,, and
S,,. From the well-known fact (see Ref. [57]) that the
pinch singularity appears only from the pair of S,, and S,
sharing a same momentum,” let us select only terms that
potentially contain pinch singularity; this results in

ij,Pinch o d4P 0
Gy (k)= [ —=5(n,.(p" + o)
(ra) (27)

—ny (po))tr[O'iSm(p + k)o-jSar(p)]'

It is clear from this expression that the @ — 0 limit does not
produce a pinch singularity, because (n,(p°+ w)—
n, (p°) = (dn,(p°)/dp®)w + O(w?) already gives a
linear factor in w. Moreover, one can set w — 0 in the
rest expression, as we are only interested in the linear term
in w for &5. In computing the above using (2.7) and (2.8) for
S, and S,,, let us recall that the chosen s = =+, represent-
ing a particle or an antiparticle from S,,, must be the same s

(2.14)

3This is because S,, (S,,) has particle poles slightly below
(above) the real axis by an amount +i{/2, so that the residue of
their product contains a factor of 1/{, which is the (regularized)
pinch singularity. This also means that s = &£ in (2.7) and (2.8)
must be common in the S,, and S,, pair, which causes a pinch
singularity.
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chosen in S, in order to obtain a pinch singularity in their
product. Therefore, we have

Gij,PinCh(k) ~ 60/ d4p dnJr (po)
(ra) (27T)4 de

X tr[aiS,a(p + k)UjSar(P)]

N "”/ éjf)?“ (%)Z

y (o’ Py(p —l-;c)ajps(p)]
(P° = slp + k| +i¢/2)(p° = slp| = i¢/2)°

(2.15)

To identify the P-odd structure containing e’k in the
small k — 0 limit, we first note that there are two possible
sources of k dependence: one is from the denominator and
the other is from the projection operators in the numerator.
Recall that we need only up to first order in k because we
take the k — O limit after extracting the ¢'//k piece. If one
expands the denominator to linear order in k, we then need
to put k = 0 in the projection operators. The resulting trace
using (2.12) gives

i

p'p
P>
(2.16)

.

o PP Pp)] = ol (7 p)ol(a - )] =

where we use

tr[o*5" 65" = 2(¢ g™ — g gP + P ) + 2ieb
(2.17)

and p? = 0. It is clear that this contribution does not lead to
a P-odd contribution that should be antisymmetric in i and
Jj. Hence, we can ignore k dependence in the denominator,
which allows us to use the ordinary techniques dealing with
pinch singularity in the £ = 0 limit. In Sec. 1V, we will
prove that this simplification generalizes to all order ladder
diagrams; that is, the k dependences in the denominators
appearing in the ladder diagrams do not contribute to a
P-odd part of the correlation function up to first order in k,
and, hence, can be ignored.

In computing P-odd k dependence in tr[c'P,(p +
k)o/P,(p)] using (2.12), one can replace P (p +k) =
—s6 - (p+Kk);/(2lp +k|) with —s6-(p +k),/(2|p|) by
the same reason as above; we have

tr[c'Ps(p + k)o/P(p)]

- ﬁtr[ai(ﬁ (p+K),)0 (5 py)]

2i

Alpl?

~

" ((p +Kk)s),(Ps)ys (2.18)
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where in the second line, we use the fact that the P-odd
contribution can come only from the last P-odd term in the
o-matrix trace (2.17). Our symbol ~ cares only for the
P-odd part that is linear in k. When ¢ = 0 and v = [, we
have

clllp +k|p' ~s ell(p-k)p! ~s—e‘flk[

6lp|

l l
2P 20pf

(2.19)

where we use |p + k|~ |p| + (p - k)/|p| + O(k?*), and we
replace p"p! — (1/3)5™|p|* because the angular p inte-
gration in the final expression (2.15) is isotropic. When
u=1and v =0, we have

i
~—s—— k!,

2lp|

Therefore, summing these two possibilities gives us the
P-odd part of tr[¢'P(p + k)o/P,(p)] as

(2.20)

tr[6'Py(p + k)o' Py (p)] ~ —s3;ll)|€ij’kl, (2.21)
and from (2.15) we have
i - d*p (dn. (p°)\ 1
GIP " ~ iell'k! / — <7+ ) Y
(ra) 2n)*\ dp® ) 3lp|=~
s
X ; - . 2.22
sl sl -t

The remaining computation is a standard procedure
dealing with pinch singularity appearing in the denomi-
nators of (2.22). The p° integration can be done in the
complex p? plane by closing the contour in either the upper
or lower half-plane. The leading singularity appears from
the pole p° = s|p| £ i¢/2, where the residue contains a
factor of 1/(=£i{); this gives a leading order contribution at
the weak coupling limit since ¢ ~ g*log(1/g)T. Once this
1/¢ term is identified from the residue of the denominators
in (2.22), one can neglect ¢ in the pole location p° ~ s|p|
for all other terms, as it engenders only higher order terms
in g. This is because the p integration has its dominant
support in the region |p| ~ T while ¢ ~ ¢>log(1/9)T < |p|.
Therefore, one can effectively replace the two denomina-
tors in (2.22) with

1 2ri

- — 0_g
(p° = slp| +i¢/2)(p° = slp| — i¢/2) i s(p° = slp|),

(2.23)

which will be used frequently in the following sections.
This gives us

PHYSICAL REVIEW D 92, 014023 (2015)

dp 1 dn
z/ Pmch ,/lkl / p ( + )
iwe E
(re) ¢ )*3lp| & dp®

p=slp|
(2.24)

where we ignore the momentum dependence of ¢ for now,
which is not strictly valid (we will be more precise in our
full ladder resummation in the next section). From
dn(p°)/dp® = —pn. (p°)(1 =n(p°)) and n,(=|p|) =
1 — n_(|p|), the integral becomes

dp 1~ (dni(p°)
(2ﬂ)33lp\;< dp” )

+

p'=spl

_ g [dp L _n

=1 [ b5 (D1 = o))
~ (n_(lpl) (1 = n_(p]))

p
=2 ), " dplip| (n. () (1 = n..(p]))
—(n-(lp(1 = n_(Ip))))
u
=—-—, 2.25
67 ( )
and we finally have a one-loop expression
Gz(’]r',;)inch ~ C Ulkl za)fl loop ,]lkl
lloop /’l 226
5 6”26 ( . )

Although the overall sign of &5 depends on the chirality, the
relative negative sign compared to the static value of chiral
magnetic conductivity o, (0) = u/ 47? does not depend on
chirality and is a meanlngful dynamical result. Holographic
computations produce the same negative sign between
0,(0) and &s.

The above exercise shows quite a similar feature to what
one finds in the electric conductivity, and one can follow the
lessons we have learned from the computation of electric
conductivity. The 1/ dependence from a pair of pinching
propagators S,,(p)S,.(p) signals a nonanalytic dependence
on the coupling constant. In a multiloop ladder diagram
shown, for example, in Fig. 2, each pair of pinching
propagators sharing the same momentum produces a factor
of 1/¢~1/(g*1log(1/g)T) that compensates a g> from an
extra gauge boson exchange, making the diagram of the same
order as the one-loop diagram in the power counting of the
coupling constant. Hence, one needs to sum up all multiloop
ladder diagrams to get a correct leading order result for &s;
this can be achieved by solving a Schwinger-Dyson-type
integral equation, which we will describe in the next section.
More elaborate power counting [58,60] shows that the
leading contribution comes from the soft region of gauge
boson momentum Q ~ g7, so one needs a HTL-resummed
gauge boson propagator [61,62] for the internal gauge boson
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p
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P+k~p

FIG. 2. A generic ladder diagram that contributes to the leading
log result.

exchange lines. The fermion momentum stays hard ~7', so
fermion lines and all vertices are bare ones.

From the one-loop result of &7'°P with 1/¢~
1/(g*log(1/9)T) dependence, the leading log result for
&s from solving the Schwinger-Dyson equation might be
expected to be ~1/(g*log(1/g)T). However, the correct
dependence turns out to be ~1/(g*log(1/g)T); this is the
same as in the electric conductivity. In both cases, a physics
reason behind this is that small angle scatterings (0 < g)
by transverse spacelike thermal gauge boson excitations
(whose nonzero thermal spectral density is due to Landau
damping physics) cannot affect the charge transport phe-
nomena much, since they deflect charged fermion trajecto-
ries responsible for charge transports only slightly by small
angles. On the other hand, these small angle scatterings by
ultrasoft (p ~ ¢°T) transverse gauge bosons is the dominant
source for the total decay rate ¢ ~ g* log(1/g)T, where the
log comes from log(mp/AR) ~log(1/g) with A ~ g*T
being the nonperturbative IR cutoff for the transverse
magnetic sector, and mp ~ g7 is the characteristic soft scale.
This means that the effective IR regulator for the pinch
singularities that is meaningful for the final conductivities is
not given by the total damping rate £, butis provided by larger
angle scatterings (6 > g) and fermion conversion to gauge
bosons, which are governed by the g* log(1/¢)T rate. In the
latter, the origin of the log is completely different: it is from
log(T/mp) ~log(1/g). In our diagrammatic approach of
the Schwinger-Dyson equation, this physics manifests itself
in a nice cancellation of the leading log part of { in the
equation that we will see in the following sections; what
remains is indeed something of g*log(1/g)T coming from
the rate of fermion conversion to gauge boson.

We end this section by recalling that the situation is quite
different for color conductivity, where even small angle
scatterings by thermal transverse gluons can change the
color charge of charge carriers (either fermion or gauge
boson) due to the non-Abelian nature of color charges [63];
thus, the same rate responsible for the leading log damping

PHYSICAL REVIEW D 92, 014023 (2015)

rate also governs the color conductivity, leading to its
1/(g*log(1/g)) behavior [64,65].

III. LADDER RESUMMATION OF P-ODD PINCH
SINGULARITIES IN RA BASIS

In this section, we set up the Schwinger-Dyson equation
that sums up all-loop ladder diagrams with leading order
pinch singularities. The idea is essentially similar to the one
in the diagrammatic computations of shear viscosity or
electric conductivity [58,59], except that we have to keep a
finite external momentum k up to first order in & to extract a
P-odd part [however, we can still set @ = 0 from the outset
since one factor of @ comes out from kinematics, see (2.14)
and (2.15)]. We choose to work in the real-time Schwinger-
Keldysh formalism in ra basis for our convenience, rather
than the Euclidean formalism with subsequent analytic
continuation as used in some previous literature. For the
electrical conductivity, we check that the correct result is
obtained with this formalism.

As we are computing Ger o (k). the vertex at the far right
in any ladder diagram is an a type, with one fermion leg r
type and the other a type. Since there is no aa propagator,
the a-type leg should have an r-type leg in the other end on
its left. Because a pinch singularity can appear only from a
pair of S,, and S,,, the r-type leg from the vertex should
have an r-type leg on the other end on its left, since having
a-type on the other end gives the same type of fermion
propagator to the one from the former, and does not give a
pinch singularity. See Fig. 3 for an exemplary ladder
diagram that can give a leading pinch singularity. In our
convention, one reads ra types of a fermion propagator
along the reversed direction of its momentum arrow, which
can be seen in Fig. 3. The reason why having a rr-type
propagator in the diagram can give rise to a pinch
singularity is the thermal relation (2.11),

Srr(p) = <% - n-‘r(po)) (Sra<p) - Sar(p))'

One can therefore choose either the S,, or S,, piece from
S, to obtain a pair of S,, and S, that gives a pinch
singularity. It is clear, then, that the rest of a ladder diagram
on the left, other than the far right vertex, should have two
final fermion legs of r type on its right, in order to create a
leading order pinch singularity: that is, it has to be an
effective rr-type vertex. At one-loop order, this was
automatic since it is a bare J. vertex. What we have to
do is to sum up all-loop ladder diagrams for this effective rr
vertex that appears on the left side of the diagram.

Denoting by A(p,k) the resulting summed vertex,
which is a 2 x 2 matrix acting on the spinor space, where
p is the loop momentum and k is the (small) external
momentum, the final G ’ap)mh(k) is obtained from two
possible Feynman diagrams in Fig. 4; note that they look
similar to those in Fig. 1 except that the vertex on the left is
now Al(p, k) instead of o',

(3.1)
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A(p, k) Ai(p, k)
Sar(p)
r ar\P T Spr(p)
k a k k ok
< < < <
r a
" Su(p+ k) " Sap+ k)
FIG. 3. Exemplar real time Feynman diagrams that can give leading pinch singularity.

T[N (. k)(S,u(p 4+ k)o’S,.(p)

ij,Pincl d
)6’ Sar(P))]-

+Sr,(p+k (3.2)

Using (3.1) and picking up only pairs of §,, and S, for a
pinch singularity, expanding it in @ with the same manipu-
lation that led to (2.15), gives, up to first order in w,

ij,Pinch
Gl (K)

- —w d*p (dn,(p°)
a / (2ﬂ)4< dp° >2
tr[A (p,k)Ps(p + K)o/ Py(p)]

“ = slp K|+ iy /2) (PO — slp| — iy s/2)
(3.3)

where we set external frequency @ = k° = 0 in the effec-
tive vertex A’(p, k) and other places since we already have
one @ factor in front. Note also that the damping rate {,
depends on the on-shell momentum as well as s = =+ (that
is, whether 1t is a particle or antiparticle) as indicated in the
expression. * We will be concerned only with this object
A (p,k) after setting @ = 0 in the following.

The summation of all multiloop ladder diagrams for this
effective rr-type vertex, starting from the bare one
Ji = wylc'y,, can be achieved by solving the associated
Schwinger-Dyson-type equation, which is depicted in
Fig. 5. The “kernel,” which is made of two internal fermion
lines and one soft gauge boson (we call it a photon)
exchange, can have three possible Feynman diagrams that
can give a leading pinch singularity, as shown in Fig. 6. The
resulting Schwinger-Dyson equation5 is written as (note
that in the following we denote the QED coupling constant
by e instead of g)

1088 (p + Q)N (p + Q.K)S,u(p + Q + k)o"Gly (Q)

00 [ S50+ QN (p+ QKIS+ 0+ G (O
10 [ £LetS, 0+ QN (p+ QRIS (p + 0 +RIFGL Q) (34)
where G\ (a.b = r or a) are the photon propagators in Schwinger-Keldysh contour
Gy = (A (Q)A] (-0)) s
- / d'xe= (AL (x) A (0)) sk (3.5)

“The dependence on s comes via the combination sy in the presence of the chemical potential x that we are considering. See

Apspendlx B for a detailed discussion.

In [59] it was shown that the Ward identity requires the addition of an extra term in Fig. 5 involving soft fermion lines. This diagram
gives a subleading contribution to the electric conductivity, and we expect the same for our &s. We leave the explicit computation to a

future work.
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Sr(p+ k)

PHYSICAL REVIEW D 92, 014023 (2015)
S,0(p)

Sra(p+ k)

FIG. 4. The diagrams that need to be computed to obtain the retarded response function to leading log order. The effective vertex on

the left includes an infinite number of ladder diagrams.

b P p+Q
k o k k
— < = =< + — < lQ
p+k p+k p+Q+k

FIG. 5.

The Schwinger-Dyson equation for the effective vertex A(p, k).

FIG. 6. The three real-time diagrams with leading pinch singularity for the kernel in the Schwinger-Dyson equation depicted in Fig. 5.
The effective vertex connects only to r-type endings of fermion propagators.

including HTL photon self-energy (that is, JJ correlation
functions) since the photon momentum Q is soft. We will
work in the Coulomb gauge, as it separates longitudinal and
. (ab) «
transverse modes in a clear way. A summary of G in this
gauge, including the P-odd part coming from the P-odd part
of HTL photon self-energy, is given in Appendix A, where
we also find some useful sum rules for the P-odd part of
their spectral density, which will be important for later use.
Using (3.1) and a similar thermal relation for photons (see
Appendix A),

647 = (5 + mla") ) (G5(@) - 615 (@)
= (5 mle) )i,

where the photon spectral density is defined by

P(0) = (G (0) - G5 (). (3.7)

and ng(q°) = 1/(e4" — 1), the pinch singularity part of the
integral equation becomes

i i . \2 d*Q B i
Npd) =+ e [ E51085., 0+ O
X (p+ Q.K)S,u(p + 0+ K)o"

X PO (p° + °) + ng(q”))].

(3.8)

Note that the photon spectral density pff/‘}(Q) is Hermitian in
(a, ) indices, but not necessarily real. In fact, the P-odd
self-energy leads to a purely imaginary, antisymmetric
contribution to the spectral density. We refer the reader
to Appendix A for a detailed exposition.
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From the pair S,,.(p + 0)S,.(p + O + k) in (3.8) for the small k limit, one can extract the leading pinch singularity,

Sur(p+ Q)N (p+ Q.k)S,.(p+ Q + k)

-y PPip + @A (p+ Q. K)P(p+ g +k)
0 0 H 0 0 H .
=+ (p + q — t@ + q| - lngrq,t/z) (p + q — t[p + q + k| + lé’p+q+k,t/2)

Because the photon momentum Q is soft, O < |p| ~ T, and

the pinch singularity in the final equation for szr ’aP)mCh(k) in
(3.3) necessitates the loop momentum p to be on-shell,
p° = s|p|, the only possible way to have a pinch singularity
for soft ¢° integration in (3.8) is to choose only the ¢ = s
piece in the expression (3.9). This means that in a ladder
diagram the leading pinch singular contribution comes from
aparticle loop or an antiparticle loop without any “transition”
|

(3.9)

|
between particle and antiparticle throughout the diagram.
Physically, it is obvious that a nearly on-shell particle
(antiparticle) cannot change to an antiparticle (particle) with
soft photon scatterings. Therefore, for a given choice of s in
(3.3), we keep only the ¢ = s piece of (3.9) in the integral
equation (3.8), and the solution of the resulting integral
equation we also label by s: A;(p,k). The more correct
expression for (3.3) is then

wA§(p. k)P (p + k)o' P, (p)]

ijPinch 7y d*p <d”+(P ))
Gy (0) w/@ﬂ4 D)2 o+ K £ Gy 2) (P =l =y ]2

where Ai(p,k) satisfies the integral equation

&0
(27)*

Mp k) =o'+ [

PRS0 (s (p° + 4°) + np(q?))

(3.10)

[MR@+@M@+Q@P@+q+mw

X : - .
(PO + qo - S[P + ‘I| - le+q,s/2>(Po + qo - SIP +q+ k| + le+q+k,s/2)

The rest of the paper will focus on solving the integral
equation (3.11) in leading logarithmic order in the coupling
constant e.

Because our transport coefficient &5 is obtained from the
P-odd part of G"™" (k) via

Gij,Pinch.P—odd(w’ k) _ ia)55€iﬂk1 4 O(w2’k2)’

we would like to expand (3.10) in k up to first order,
focusing only on the P-odd e”//k! structure at the same time.
Since &5 is CP-odd, and shares the same quantum number
with the (axial) chemical potential u, it can only contain
odd powers in u, as seen in the one-loop computation in the
preceding section. In our work, we will only compute &5 up
to linear order in g in the small-u limit, neglecting higher
order terms of x* and beyond. Therefore, we will only be
interested in a linear y dependence of (3.10) and (3.11) in
the following.

IV. AN IMPORTANT SIMPLIFICATION

In solving (3.11) up to linear order in k, and using it to
compute (3.10), there are various sources of k dependence
appearing in the equations. The problematic source is the k
dependence in the denominators of the equations (3.10) and
(3.11). For example, in (3.10), we have

(3.11)

[
pO _SIP +k| +i§p+k.s/2
%po—slp| +ié‘p,‘v/z_sﬁ'k"'i(aé‘p,s/ap) 'k/2+""

(4.1)
giving rise to, up to linear order in k,
1
PO - SIP +k| =+ iCp+k,S/2
N 1 sp -k —i(0,/0p) -k/2
pO_SII’|+iCp,s/2 (PO_SW|+iCp.s/2)2
(4.2)

The second term is a double pole, and when used in (3.10)
it engenders a ~1/¢? dependence, which is larger than the
usual 1/ pinch singularity. The same is true for the k
dependence in the denominators of the integral equa-
tion (3.11). For the P-even part, this may be what one
encounters when trying to include a finite k in the current
correlation functions, which seems to be related to the
expected appearance of diffusion pole structure

2

c c ) k
el N_el+laelD_2+,
0]

o 4'3
w—iDk* o (4.3)
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Al(pv k) Sar(p) A]( ak)
1 1

R k
< E e

Sra(p+ k)

FIG. 7. Generic ladder diagram that gives rise to a leading log
contribution. The ladders can be codified in effective vertices
A, AN

since the Einstein relation gives D = o,;/y (v is the charge
susceptibility) and the k dependence is quadratic in electric
conductivity, ,; ~ T2 /e*log(1/e). However, such a dif-
fusion pole structure is not expected in the P-odd part that
we are interested in [12],6 and it is natural to expect that
these k dependences from the denominators in (3.10) and
(3.11) do not contribute to our P-odd structure e“//k'. Let us
show this important simplification in the following. As a
consequence, one can ignore all k’s in the denominators of
the equations, and the only interesting k dependence comes
from the projection operators in the numerators.

Let us consider a generic multiloop ladder diagram
depicted in Fig. 7, and let us choose an arbitrary internal
S5, pair from the “side rail” that can give rise to a pinch
singularity in the small k limit. By shifting the loop
momentum p, the momentum that flows in §,, can be
set as p +k; then, the momentum of S, is p. The
denominator of S,,(p + k) contains a k-linear piece as
in (4.1). We would like to show that this k dependence does
not lead to the P-odd structure '//k!.

Once we get a term like (4.2), that is linear in k, from
expanding the denominator of S,,(p + k), we should set
k =0 in all other parts of the diagram, since it already
saturates the linear k dependence we are looking at. These
include the projection operators in the numerators of
S,o(p+k)and S, (p), Ps(p +k) and P(p) (recall that
we need to have the same s throughout the diagram for the
leading pinch singularity), as well as the remaining parts of
the diagram other than the chosen S,,(p +k)S,,(p) pair,

®A diffusion pole structure in the P-odd part could arise if one
considers the coupling to the energy-momentum sector of the
theory, leading to “chiral magnetic energy flow.” However, when
expanded in k it would give a term of &> or higher [66,67]. Also,
the coupling to the energy-momentum sector is of order u?, and
the resulting P-odd effect is of order ,u3 [66,67]. Therefore, we can
ignore this possibility in our work.

PHYSICAL REVIEW D 92, 014023 (2015)

which we call the effective vertices; let us call the part on
the left A’(p.k) and the part on the right A’(p.k), see
Fig. 7. The value of the diagram is then proportional to (the
p integral of)

w[A(p)Py(p)N (p)P;(p)] xtr[A'(p)(&- ps)N () (G- ps)].

(4.4)
where Ai(p) = Al(p,k=0), N(p)=N(p.k=0), etc.
All ij index structure comes from this spinor trace.

The effective vertex A’(p) is a 2 x 2 matrix in the spinor
space; since o# = (1,6) forms a basis for any 2 x 2
matrices, we write A’(p) = ¢*4,(p). By invoking rota-
tional invariance, we generally have

A(p) = fo(P°. Ip)p'.
A(p) = £1(p% P8 + £2(p% i’ + £3(p°. Ip])ei"p,.
(4.5)

where f; are functions only on p® and |p|. Similarly, we
have for A/(p) = 6“2, (p) with

H(p)=F1(p° )& + F2(p" P Dpp’ + F3(p°. Ip))e]"Pon-
(4.6)

Inserting these representations of A/(p) and N (p) into the
above (4.4), and using the trace formula we repeat here,

tr[6ﬂ6u6a5ﬂ] :Z(gyuga/i_guaguﬁ _|_g#/)’gva)+2i€ﬂva/}’ (4.7)

we immediately see that the last e-tensor term in (4.7) does
not contribute since p, appears twice in (4.4), and we have

tw[A(p) G- p )N (p)G - p,)] = 4(X(p) - p ) (p) - py).

(4.8)
where we use p? = 0. Then, we have
A (p) - ps = slpldy(p) +p'4(p)
= (slplfo(p’. Ip) + £1(p°. Ip])
+ P20 )P, (4.9)

which is proportional to p’. Note that the piece involving f3
drops out. The same conclusion is true, that is, A’/(p)-
P ~ p’; hence, the result for the trace in (4.4) is proportional
top'p’. Since it is symmetric with respect to i, it is clear that
the result cannot contribute to the P-odd part of ¢//k’. In
summary, we have shown that k dependence from the
denominator of any internal fermion line in leading pinch
singularity limit does not contribute to the P-odd structure
€''k!, and, hence, we can neglect all k’s appearing in the
denominators, especially in our equations (3.10) and (3.11).

014023-10



SECOND ORDER TRANSPORT COEFFICIENT FROM THE ...

Once we remove all k’s from the denominators, we have

PHYSICAL REVIEW D 92, 014023 (2015)

. pi d'p (dn,(p°) twr[A§(p. k)P (p + k)o' P, (p)]
G (k) = —w / ( - ) ST — : 4.10
0 0 =0 [ ap ") 20 sl + Gy 2050 = lpl - i/ 10
and
. L, (A0, .
As(p.k) =o'+ e 2n) Py(p +q)Ni(p + Q.k)P,(p + q + k)o*
§ Pip(Q)(n (P +¢°) + na(a°)) )
(pO + q() - Slp + q| - iCpH],S/Z)(pO + q() - SV’ + q| + i¢p+q,s/2) . .
The p° integration in (4.10) can be computed in the leading pinch singularity limit by replacing
1 2n
= ——8(p° = slpl). (4.12)

(P” = slpl + i, s/2)(P° = slp| =0, /2)  Gps

which enforces the on-shell condition p® = s|p| on the p appearing in the integral equation (4.13). We will assume this on-
shell condition throughout our computation in the following sections. Then, the integral equation becomes

d*0

Mmm=a+8/4Jﬂ@+ﬁM@+¢@ﬂ@+www“

(27)

() (. (slp| + ¢°) + np(q")

G Sl = sl a0l = iGprgs /(@ + Slp] —slp + 4]+ iGprqn/2)]

(4.13)

where Al(p. k) = Ai(p. k)| »'—spp|- The reason why we can also replace Ai(p + Q.k) in the integral kernel with its on-shell
value Al(p + q.k) is that the pinch singularity in the kernel of the integral equation

1

2w

5(p° +q°—slp +4ql). (4.14)

—
(pO + qO - S[p + q| - iCp+q,s/2)(p0 + qO - SIP + q| + iCp+q,s/2) Cp+q,s

will impose the on-shell condition p° + ¢° = s|p + q| as well. With this replacement of (4.14) in (4.13), we finally have

4

A§(p,k):6i+ez/(2”)4

X ph(Q)(n (slp| + ¢°) + n5(¢°))(2m)3(q" + slp| = slp + 1)/ Sprq.s)-

which is our starting point in solving the integral equation
in leading logarithmic order in the next section.

V. LEADING LOG COMPUTATION

The integral equation (4.15) obtained in the leading
pinch singularity limit is a matrix equation, and it is
desirable to transform it into a scalar equation. In fact,
we do not need its full matrix structure: what we need at the
end in (4.10) is the trace

w[AS(p. )Py (p + K)o/ Py (p)]

— [P, AP + K)ol (5.1)

Q10D (p + N (p + 4. k)P (p + g + K)o

(4.15)

|

and it is obvious that we only need the component of
Ai(p,k) projected onto the eigenspace of the projection
operator P, (p) on the left and P, (p + k) on the right, that is,

Ps(p)As(p. k)P (p + k).

Since the spinor space is two dimensional, the above
projected matrix is essentially a single number. This fact
manifests itself by the following statement: for any 2 x 2
matrix A, the projected matrix P(p)AP,(p + k) must be
proportional to the matrix P (p)P,(p + k) composed only
of the projection operators. The proportionality constant,
which contains the information on A, is easily found by
comparing traces of the expected relation,

(5.2)
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tr[P,(p)AP,(p + k)]
[P, (p)Py(p + k)]
[P (p)AP;(p + k)]
Y1 +p-p+k)

Py(p)AP(p +k) =

P(p)P;(p + k)

P,(p)Ps(p + k).
(5.3)

where p=p/lpl. and t[P,(p)P,(p + k)] = (1 + -
p + k). Using this, it is straightforward to convert our matrix
integral equation into a scalar equation; for this purpose, let
us introduce three scalar functions Di(p, k), 2% (p, k), and

Fy(p;q.k) by
Pi(p)Ai(p. k)Ps(p + k)
= Di(p.k)P,(p)Ps(p + k),
P,(p)c*Ps(p + k)
= X5 (p.k)Ps(p)Ps(p + k),
Pyp)Ps(p +q)Ps(p +q+k)Ps(p + k)
= F(p:q.k)Ps(p)Ps(p + k).

PHYSICAL REVIEW D 92, 014023 (2015)

The expressions for X (p,k) and F(p;q,k) can easily be
found by computing the necessary traces involved; for
example, we have

X (p.k) = 1.Z{(p. k)

s+ (p/—i—\k) ) —ie'p
(1+p-p+k)

P+ k),

. (55

and the expression for F(p;q,k) can be found in
Appendix C. Using the fact that ¢# is Hermitian, we also
have

Ps(p +k)6MPs (P) =

(5(p.k))"Ps(p +k)Ps(p). (5.6)

The scalar function Di (p, k) is what we would like to find by
solving the integral equation; once it is found, the final

Gl(jr;lmh(k) 0)/ (

expression for the correlation function G- PlnCh(k) is given
(5-4) from (4.10) by v
<dn+( ) tr[P,(p)Ai(p, k)P, (p + k)o’]
d]) = p _S|p| +1Cps/2)(p _Slpl lgp,s/z)
_ —w/ <dn+( %) ) Di(p,k)t[Py(p +k)o'P(p)]
(27 dp® )= (p° = slp| + i, /2)(p° = slp| = i, /2)
:_w/ <d" +(p 0> Dl(Pk(ZJ(Pk))*l(1+ﬁ p+k)
Qm)*\ dp® )= (P° = slpl + i, /2)(P° = slp| = iC, ,/2)
. d’p dn_(p°) J . Di(p. k)
S / o Z( W) Eer = (5.7)

where we use (5.4),(5.6) in the second and third lines, and replace (I+p-p+ k) with unity in the last line, sincep - p + k=1
up to negligible O(k?) corrections. As the last expression 1nv01ves the combination Di(p.k)/{, . let us also define

#ip. k) =200

5.8
L (5.8)

Applying projection operators P, (p) and P,(p + k) on the left and right, respectively, to our integral equation (4.15), and
using (5.4), (5.6), we finally obtain the following scalar integral equation to be solved for ¢i(p,k):

d*0
(27)*

cﬁ@@szxwkme{/

Q)PP+ q.k)(Z(p + k. q)) F,(p;q.k)

x p(Q)(n (slp| + ¢°) + n5(¢°)) (2m)3(¢" + slp| = slp +q)

=Xi(p.k) +e2/ éﬂ%

with an integral kernel K, (p,k; Q) defined as

Ks(pa k; Q)

=X (p.q)(Z(p +k.q)) Py (Q)F, (p: 4. k) (n (slp| + ¢°) + ng(q")).

)#5(p +q.%)(27)5(q° + slp| — slp + q]. (5.9)

(5.10)
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Our task is to find a solution for ¢’ (p, k) up to first order in
k that can give rise to the P-odd structure €'k’ in the
expression (5.7) for G{J,"" (k). We will be interested in
only the leading loganthmlc order in e.

The structure of ¢’ (p, k) expanded up to first order in k
can be severely constrained by rotational invariance,

¢5(p.k) = x(p) + f5 (p)K!
= 2:(IPDP' + as(IpDk' + by(Ip))p' (B - k)

c,(lp|)e™p'km, (5.11)

+i !
P —
p
with four scalar functions y,, ay, b, ¢, that depend only on
Ip|. Using the expansion of (Z(p,k))" up to first order in k,

i
Impl
—e/"p'k™,

(Bl (p.k))" = sp/ + = (&' — pip k! + T3l

2lp|
(5.12)

ij,Pinch

the expression for G (k) from (5.7) can be computed

to first order in k to fmd the P-odd structure proportional to

ek as
dn
o [ n (et

x (Z(p, k)) 5 (p.k)

ij,Pinch

pO=slp|

i (27T )? Z (d"+ ) poslpﬁ
xGmw%ymm}W% (5.13)

where the ~ in the above expression is only concerned
with P-odd terms. Note that the two functions (ay, b,) do
not contribute to our P-odd term, so we do not need to
compute them. Therefore, in the following we will focus on
xs and ¢, only.

A. Computation of y,(|p|)

The function y,(|p|) has already been known in previous
computations of electric conductivity, though we will see
that there is an important correction to it when linear in y
that is relevant to our final value of &5. It satisfies the
integral equation (5.9) after setting k = 0,

N N da*Q
@mWW—wwﬁf@y&
x (p,0;Q)x(lp +q)p +4'

x 27)8(¢° + slp| = slp +ql).  (5.14)

PHYSICAL REVIEW D 92, 014023 (2015)

Our treatment for y,(|p|) that follows is mostly the same as
that found in Refs. [58,59], and our computation for y, will
confirm previous results in the literature. Let us, however,
present some details along with which we can introduce
several key elements that will be needed in our next
treatment for ¢, (|p|), which is new and more to our interest.

First, it is important to observe that the integral that
appears in the above equation,

¢ / gﬁ

is precisely equal to the contribution to the fermion
damping rate from soft photon scatterings at full order,
which contains the leading ~e?log(1/e)T part of the total
damping rate. We reconfirm this fact explicitly in
Appendix B including the P-odd spectral density of the
soft photon propagator. Denoting this by ;% (following the
notation in Ref. [59]), and writing the total damping rate as
Cps = Cps + OF where G is the other remaining con-
tribution to the damping rate arising from soft fermion
scatterings (or, more precisely, hard fermions making
converting to hard photons and soft fermions) which is
of order e* log(1/e)T, the integral equation (5.14) takes the
form

)(27)5(¢° + s|p| ),

(5.15)

Gl (P!
. d*
=sp' + 62/—(2754 Ks(p.0:q)

* Jrs(lp +alp +4' = x,(p))p)

x (27)8(q° + slp| - slp + q|). (5.16)

where we no longer have {7 ~ e?log(1/e)T explicitly in
the equation, and what remains will be shown to be only of
order ~e*log(1/e)T. This cancellation of e?log(1/e)T
dependence due to the identity of (5.15) with & is the
diagrammatic manifestation of the physics discussion at the
end of Sec. II: the relevant part of the damping rate that is
responsible for fermionic charge transport phenomena is not
the total damping rate governed by small-angle scatterings
with ultrasoft transverse photons, but is the part arising from
fermion conversions to photons with soft fermion scatter-
ings, that is, C ' . In Appendix B, we present a computation
of &y sf_to leading log order [see Eq. (B48)], with special care
for its su dependence, which we will need later.

Introducing a variable z = cos @ where ¢ is the angle
between p and ¢, one can show that [59]

5(¢° + slp| = slp +ql)

s 0
=@ﬁﬁ)m—mw#—ww,<mn
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where ©(x) is the Heaviside theta function, and

(') - laf*

] (5.18)

2olgl =p-q=s4"+

Using this, one can transform the Q integration into
d*0
| G )t + sl = sl + a)
la| dq

/d|q||q| ~la| ( < q|)

where one needs to replace any p -q appearing in the
integrand by s¢° + ((¢°)* = |4I*)/(2lp|). As Q0 = (¢°.q) ~
eT is soft and p ~ T is hard for the leading log contribution
(which can be seen in retrospect), we expand the integrand
in the integral equation (5.16) in powers of (¢°,q)/|p|. For
example, after some algebra, we have up to O(Q?)

22’
7]

p-q—sq° +

(P +a)p+q —x,(Ip))p'
02 _ 1,12
zﬁ’(m'qlxs(lpl)ﬂq (pl) +4(a"x wn)

(5.20)

where we use the replacement p-q — sqo + ((q0>2 —_
lg1?)/(2lp|) in the middle of the computation, and
x+(x) = dy,(x)/dx, etc. Similarly, we need an expansion
of K,(p,0;q), as follows. With

- lpl + 4%+ ma(e) = 5+ () = 3) + Ofe?)
(5.21)

and

(1+p-p+q) =1+0(g?), (522

l\.)l>—‘

F(p;q.0) =

what remains in /C;(p, 0;q) is the polarization-contracted
photon spectral density

Phy(0)(Z4(p.0) = (p.q). (5.23)

where we need to expand the polarization part
(=(p.q)) =L (p.q) up to first order in ¢ for our leading
log computation. In Coulomb gauge, pg?(Q) =0
(i=1,2.3) and p(Q) = p,(Q) is the longitudinal part
of spectral density. The transverse part is
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g’

() = <Q>(6,~,~ ‘|"|’2>+zpodd<Q>efﬂqz, (5.24)

where the second term is the P-odd contribution propor-
tional to u that arises from the P-odd part of current-
current correlation function (or photon self-energy) in the
HTL limit, whose expression can be found in Appendix A.
Note that it is purely imaginary, but antisymmetric in i, j, S0
it is a Hermitian matrix in i, j. For our purposes, we would
only need its sum rules derived in Appendix A, Egs. (A26)
and (A27),

lal dg® 1 u 1
/|(2ﬂ') opodd(Q):_——+""
—lg

lal dq 0 0
o = —+ cee
/_q (277:) q p dd(Q) |q|2

(5.25)
up to less singular terms in the small |¢| < eT limit. All
functions (p; ., pr. poda) are odd in ¢° = —¢°, so we need an
extra odd power of ¢° in the final integrand to have a
nonvanishing ¢° integral over [—|q|,+|g|]. The only u
dependence in the usual spectral densities p;,7(Q) is
through the Debye mass, which is m? = *T?/6 +
e’u?/(27%) for a single Weyl fermion. Because we are
looking at only up to linear u dependence, we can safely
neglect y corrections in m? and use the y = 0 results for
pryT(Q). After some algebra, we have up to O(q)

Pos(0)(Z(p.q)) 2 (p.q)

() + (1 _ <|‘fl°|f)pT<Q> —wpm@,

(5.26)

where the last contribution from the P-odd spectral density,
though quadratic in ¢, is presented because its power
counting is something new and different from those of
pryr(Q) as can be seen in (5.25), and should be checked
carefully.

Let us first estimate this contribution from the P-odd
spectral density in the integral equation (5.16). Collecting
everything presented above, the contribution from the
P-odd spectral density to the integral in (5.16) becomes

dlqllq|

5 |G Lo (+57)
(et s (o =3) ) (@2 - P

0N2 .12
(L) + s )+ (722 D)
X Podd(Q)s

(5.27)
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and, using the sum rules derived in Appendix A [(A26),
(A27)], it is easy to find that the result is at most of order
~e* without any logarithmic enhancement. Note that the |g|
integration should have an UV cutoff ~7 because we use a
HTL approximation for soft momentum Q <« 7. In any
case, these are of higher order than e*log(1/e), which is
what we are interested in, and so can be neglected.
Although we find that p.qq(Q) does not affect the leading
log equation for y,(|p|), we will find shortly that it does
give an important contribution to the equation for ¢ (|p|) at
leading log, which is more to our interest.

The integral equation (5.16) then takes a form at leading

log order as
[0
(Gt s(mled-3))
( ﬁf)m(@)

< (mi©)
x( Uil [T )
+3

szs)(s(lp‘) =

(4 Y’%WD) (5.28)

The remaining computation of various integrals of spectral
densities is achieved at leading order using the well-known
sum rules of p; ;7(Q) [68]. The leading log contribution
will come from the region m; < |q| < T; following the
notations in Ref. [59] by defining

lal dg® _
Jﬁ/TE/ 2—(q0)2" IPL/T(Q)s (5.29)
a| (27)
we have for |g| > mp, the sum rules’
2 2 Qlg2
Jh ~ NE ng—mD4 <log |¢12| - 1),
4q| mp
m ma 8lq|?
JE~ D JT D <log —3),
L7 3lgf? P dlgP T mp
m? m? 8lg)* 11
Jhx=2 JIx=P(log—5——|. 5.30
5 22\ % T3 (5.30)

Using these in (5.28), one encounters a logarithmic
divergence

/ dlq|
my la|

"The sum rules for the case |q| < m,, take different forms, and
it can be checked that the ultrasoft region |g| < m, does not give
rise to logarithmic divergences.

= log(T/mp) ~log(1/e), (5.31)
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where the IR cutoff is m ), because the sum rule expressions
used are valid only for |g| > m (see our footnote); the
UV cutoff is T, as we assume soft Q < T throughout
our treatment, and therefore the modification for hard Q
will dampen away the UV divergences. Picking up the
logarithmically enhanced terms in the integral, we finally
obtain the differential equation

82m2 [(0) e
Dlg“/’(ﬂépxan

(ﬁm| o) =3 )40 - 55

&ras(lpl) =

20 ).

(5.32)

which agrees with the known result in the literature for the
case 4 = 0. Note, however, the important 4 dependence via
ny(|p|) in the differential equation for y(|p|),

(o) =

Al

+ Sﬂ'u—(eﬂll" n 1)2 + O(;ﬂ),

as well as in
Eq. (B48)],

1, s» which we compute in Appendix B [see

g € mflog(l/e)

p.s 47[ |p| ( B(IpD + n—s(o))

2m210 1/e
g(/)<n3([p|) 1 pu

4” |]7| ‘f‘E—SZ) +O(M2).

(5.34)

These give rise to an s-independent, linear-in-y part in
xs(|p|) in addition to the usual p-independent part propor-
tional to s. Here m7 = (e?/4)(T? 4 y?/x*) is the asymp-
totic thermal mass of fermions.
expanded in u then takes the form

The solution when

xs(IP) = sx 0

y(p)) + 0. (5.35)

y(Ip) + mx

and both y ) and y(;) give separate contributions of the
same leading order to the final expression for &5 in (5.13).
In fact, this 4 dependence via n(|p|) and £, in (5.32)
[i.e., the y(;) in Eq. (5.35)] also makes a contribution
to the u?> dependence of the electric conductivity in
leading log order, which seems to have been missed in
some previous literature. Our analysis in the above
(with full expressions for mj, and m7) contains all the

necessary elements that allow us to compute the full z?
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correction to electric conductivity; we present the correct
computation of the y? correction to the electric conduc-
tivity in Appendix D

B. Computation of ¢,(|p|)

Let us next describe our analysis for c¢,(|p|), which
appears as the P-odd component of ¢i(p,k) ~ ¢i(p,0) +
i(c;(Ip))/|p))e™p'k™ when expanded in linear k
[see (5.11)], and which satisfies our original integral
equation (5.9) with a finite k. Expanding the kernel
|

ic;(IP)) i I - / d'Q
ellm km — _ llm lkm +e
p| 20p| (2m)*

d*Q
2
+e / (2”)4

gp,s

V& Q) (Ip + g)p + ¢’ 2r)5(¢° + slp| — slp +ql),

PHYSICAL REVIEW D 92, 014023 (2015)

function /C;(p,k; Q) defined by (5.10) up to linear
order in k,

Ky(p.:0) = K,y (p,0;0) + K\ (p,k; Q) + O(K?),  (5.36)
where K (p,0; Q) is something we have already used
[see Egs. (5.14) and (5.15)] to determine the zeroth order
solution ¢%(p,0) = y,(|p|)p’, the part of the integral
equation in (5.9) that is linear in k gives the integral

equation for ¢(|p|). This takes the form

icy(lp +4)

ey 1+ q'k" (22)8(q° + slp| — slp +¢q
P 1l (27)5( p| = slp +4ql)

)

(5.37)

where in the last term we understand that we extract only the P-odd term that has the same structure of emplim,
The first term on the right arises from the fact that X! (p, k) as given by (5.5) contains the P-odd term when expanded
linear in k,

‘ i
Ti(p. k) ~———€"plkm. (5.38)
2lp|
As before, it is important to use the fact that the integral
) [ d*0 0
e 7 )(27)8(¢" + s|p| ): (5.39)
(2n)

which appears in the second term on the right side, is precisely equal to the contribution to the fermion damping rate arising
from soft photon scatterings, {';. Therefore, one can transform the above integral equation into the form

icg I i . d* icy g e icg T
CISst [(plrl) €zlmplkm — _2_|p|€zlmplkm + 62 / (2”?4 )< [(p|p+—';|q|) ezlmp i qlkm _ [;If') ezlmplkm>
4
< o)l + sl = slp +al)+ ¢ [ SEK 0.k O + ) F 4 2m)ols”
+ slp| )s (5.40)

where the CI‘, s that appears on the left is the damping rate contribution arising from soft fermion scatterings only, which is of
order e*log(1/e) rather than e*log(1/e).

The computation of the first integral on the right side of (5.40) at leading log order is almost identical to that of the
previous integral in (5.16). Expanding up to quadratic order in Q, with the replacement g/ — (p - g)p’ due to rotational
invariance of the ¢ integral, we get, after some algebra,

.Ip +a) A0 g _ (L=l

€llmp—|— lkm_
lp+al p| 2lp|?

2
L2, + 5401 + 3 (672 ) )3 + O().
(5.41)

where ¢,(x) = c¢,(x)/x. Comparing this with the previous expansion (5.20) for y,(|p|), we find the identical structure
appearing; therefore, we can simply use the previous result of the integral in (5.16) [see Eq. (5.32)] and replace y, with

¢y(x) = ¢;(x)/x to get
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¢ / (fzg“

ie,(1p +q)
)< P+l

= SR (L) - (e ) - 3) 4 -
— =i L) (o) - (nsm)—%)(4(@)—“"@“(”)—ics<w>) ke,

%log (1/e)

up to leading log order.

The evaluation of the second integral in (5.40) is more
complicated. Let us first look at the term y,(|p +¢|)p + ¢'
in the integrand. Defining j,(x) = y,(x)/x, and using the
fact that the & function in the integrand imposes
lp +q| = Ip| + s¢°, we have

2(p+alp+a' =7l +s¢")p' +4).  (5.43)
Since what we need is the P-odd structure €'”p'k™, it is
clear that the first term proportional to p' cannot possibly
generate such a structure; therefore, it is sufficient to
consider only the second piece proportional to g,

1(p+ap+4a = 7(p| + sq°)q'. (5.44)
in the integral of (5.40). On the other hand, because

ICE-I)(p,k; Q) is a rotationally scalar function linear in k,
rotational invariance dictates that it can only have three
possible structures,

(P k Q) (as P +b q" -|—C( )elmnp q”)k
(5.45)
where (agl), bgl), c§l>) are some coefficient functions that

depend only on (p°
facts, and considering the rotational invariance of ¢
integration, one can easily find that the only way to have
the resulting P-odd structure e/p'k™ from the second
integral in (5.40) is via the third term in (5.45); that is, we
only need to find the part of ICEI)(p,k; Q) that is propor-
tional to e”"p"q"k! = e p'qk". This greatly simplifies
our computation.

Since (5.44) is already linear in Q, for a leading log
contribution we only need to expand ICEI)(p,k; Q) up to
linear order in Q, which is already saturated by the structure
of interest ¢/'p'qk". This in turn implies that one can
neglect the sq¢° correction in (5.44) to have

x2s(p))
pl ?

zs(p+ahp+4a = z:(lp)a’ = (5.46)

gilm D+ qlkm _

PHYSICAL REVIEW D 92, 014023 (2015)

ics(Ipl)
p

’k’”)( 25(q° + slp| - slp + q))
~//(Ip|)>€ilmﬁlkm

(5.42)

|
in the integral of (5.40). Given the expressions for X! (p, k)

and F(p;q.k) in (5.5) and Appendix C, as well as the
photon spectral density given in (5.24),
pho = r(Q),
ph o q qj ijl
Pij (0) —PT(Q) 5ij q |2 + ipoaa(Q)e'qy, (5-47)

it is straightforward to find, after some amount of algebra,
that

K (.1 Q) = (n(slp| + ¢°) + n(4°))

< (o (m@- (1+ (quf)m@)

i R
mpodd(Q)) €lmnpl¢1mk"

+ (5.48)

up to linear order in Q, which will contribute to the
leading log result of the integral in (5.40). Note that we
have a non-negligible contribution from the P-odd part of
the spectral density pyqq(Q): from its sum rule given in
(5.25) one can easily see that this term engenders a leading
log contribution to the integral. When combining

K" (p.k; Q) with (5.46) in the integral of (5.40), one
has to replace ¢"q' with

) 1 .
m i —gm 2
q9"q' — 55"l

1

=50"(lal* = (p-9)*) =5 (lal* = (¢°)).  (549)

N[ =

where g7 is the perpendicular component of ¢ to p,
and where we use (5.18) in the last equality. This
comes from the rotational invariance of the ¢ integral
around the p axis. Collecting all these and following the
same steps as in the leading log computation of y,(|p|), we
finally have the second integral of (5.40), given by, at
leading log order,
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&0
(27)*

d|qllq|

PHYSICAL REVIEW D 92, 014023 (2015)

K (p.k; Q)x,(lp + al)p + ¢' 27)8(¢° + slp| - slp + q])

== [ :|<dq>(”s;|><ﬂl #5(meh =)
x (m (pL<Q> - (1 +%)m<g>) +§|podd<Q>)<|q2 — (q0P)eplien
Sl R (o (o (=8 = get) =t ) o () v

_ .2 xs(l))
4 plpl?

ilmﬁlkm ,

e’
log(1/e) 22 €

where we use the sum rules (5.30), (A26), and (A27).
Interestingly, it turns out that the contributions from
the P-even spectral densities p;,r cancel each other
exactly. We do not have a good understanding of
whether this must be the case by some symmetry
reason, or whether it is just by accident. Therefore,
the only contribution to the second integral in (5.40) at
leading log order [that is, e¢*log(1/e)] comes from the
P-odd part of the soft (HTL) photon spectral density
podd(Q). Note that for this contribution, we have equal
logarithmic contributions from both €T < |q| < mp
and T > |q| > mp, which add up together in the final
result.

From the integral equation (5.40) with (5.42) and (5.50),
we finally obtain the second order differential equation for

¢s(lpl) as

e*log(1/e)py,(Ip))
pscs(lpl) =- 5 (4n)27>  flp]

DRI (o - (o) -5 )

(et -=0) et s

(5.50)

|

where the first line is an inhomogeneous source—
especially the second term, which is in terms of y,(|p|)
and which should be obtained by solving the differential
equation (5.32). We would need the expansion of ¢,(|p|) up
to first order in chemical potential yu,

es(pl) = c)(p]) + sueq)(Ip]) + O?).

which can be found by solving the above differential
equation order by order in u. We reemphasize that there
are linear y dependences coming from ¢y and n(|p|) in
the above differential equation; to get a correct leading log
answer, these should not be missed. After finding y,(|p|)
and ¢,(|p|) from the differential equations given above, we
compute our transport coefficient &5 by (5.13) with

Gl(ij)mChP odd(k) za)fseijlkl.

(5.52)

C. Numerical evaluation

As a first step in computing the explicit value of &5, we
solve numerically the equations for (y,(|p|),c,(|p|)) in
(5. 32) and (5.51). In order to do so, we define ¥ (|p|/T) =
amp,log(1/e)c(Ip[)/T and @,(|p|/T) = amj, log(1/e)x

2s(Ip|)/T where a = ¢?/4r. Defining y=|p|/T, Eq. (5.51)
can be rewritten as

() = tah(y/2)9405) = 2 (o372 — anb(/2) + )

=1-

Gsu (s05(y) 7 Ws()
7T y 8 y

In addition, we have the equation for the even vertex, y,(|p|) in (5.32),

20+ (- (/2 ) 2,00 - (5422022 ),

3ud,(y)

:—2—
STary Tt

2
s?e"h 2(y /2) <‘I’y(y )_ \Ifg(y)). (5.53)
2y
sechz(y/Z)CIJ (y). (5.54)

8Strictly speaking, QED does not possess the ultrasoft magnetic cutoff ~e>T. Since we have in mind the generalization to non-
Abelian QCD as discussed in Sec. V, we simply assume this at this point.
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In the above, we expand the y dependence from ¢ Is,f_s and n,(|p|) up to linear order in . We then expand the solution to first

order in y as

U, =, + s%\IIB +O(2), (5.55)
D, = 5D, + %% +OW?), (5.56)
from which we have a coupled set of differential equations
Wii(y) — tanh(y/2) ¥ (y) - ‘I’AT(y) @ coth(y/2) — tanh(y/2) + %) =1L
W) = anh(y/2505) - 2 (comn(y/2) ~ tann(y/2) + 2) = - S 24002 20)
sech22(y/2) <\IIA(y) B \Ilg(y)>,
#0)+ (3 - anhy/2) o) - (5 + 2502 )@, 2,
2 2 3coth(y/2 30 1
DY(y) + <; - tanh(y/2)> Dp(y) — <)7 + %) Dp(y) =— Z% ~3 sech?(y/2)®, (y). (5.57)

We solve the above equations by an iterative method
with vanishing boundary conditions at the IR (y = 0) and
the UV (y = o). The last step is then to obtain the
expression for the transport coefficient &5 as an integral
of the above quantities. After computing the sum over
s = = and performing angular integrations in (5.13), we
obtain the result for the retarded propagator as an integral of

‘I’A/B()’) and q)A/B(Y)’

. -l -

G0 = Tacrngrifr 7 ((4600-%5)
1 D4(y)

x cosh?(y/2) * <\IJA(y) ) >

tanh(y/2)
GROrm)

(5.58)

From the identification szr ’aP)inCh'P'Odd(k) = iwése'k!, we
find

3.006  u

&= etlog(1/e) T (5:59)

VI. DISCUSSION

It is easy to generalize the above to the case of N
species of Dirac fermions in an SU(N.) gauge theory
[though the current and magnetic field are still with respect
to the global U(1) flavor symmetry]. The chemical

|
potential appearing in the integral equation is simply the
axial chemical potential y4. The Debye mass and asymp-
totic thermal mass are changed to

2T2 2T2Ng—1
m%):gT<2Nc+NF)7 g

The soft-fermion contribution to the hard photon damping
rate is given by

AN —1mlog(1/g)

D.S :E 2NC @| (nB(|p|)+n—S(0))

(6.2)

In the integral equations (5.32) and (5.51), the €% log(1/e)
in the kernel part should be replaced by

N2 -1
2N,

g*log(1/g) (6.3)

In the second source term in the first line of (5.51), which is
proportional to e*log(1/e), this e*log(1/e) should be
replaced by

N2 -1
2N,

g*log(1/g)Np (6.4)

This is because one factor of e¢?> coming from the spectral
density poq(Q) is replaced by g>Nj, while the other e?
coming from fermion-gluon couplings in the kernel is
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replaced by ¢>(N? —1)/(2N.,). Finally, the expression for
G ’(S‘"Ch(k) from (5.13), or, equivalently, our & from y,(|p|)

and c,(|p|), must be multiplied by the fermion degeneracy
2NC S ZQZ ’
F

where Q are charges of F flavors in units of e [for (u, d)-
quarks, it is Q, =2/3 and Q, = —1/3]. For two-flavor
massless QCD (N, = 3) with 9, =2/3 and Q, = —1/3,
the result for &5 then becomes

(6.5)

QCD __ 2.003 ﬁ
’ g*log(1/g)T
As mentioned at the end of Sec. II, the color conductivity

o, for non-Abelian gauge theory that appears in the low-
energy effective theory at the scale Q < ¢°7,

(6.6)

J¢ =0 E*+ &, (6.7)
where a denotes adjoint color charge and &“ is the thermal
noise via fluctuation-dissipation relation to o, is governed
by scatterings with ultrasoft transverse thermal gluons of
momenta Q < gT with the rate ~g* log(1/g); this leads to
6.~ 1/(*log(1/g)) ~1/log(1/g).” To obtain a cor-
rect leading log result for this, one needs a similar
diagrammatic resummation with essentially the same tech-
nique as in our computation, except that charge carriers
include gluons as well as quarks, and there is no longer a
precise cancellation of the g? log(1/g) terms in the integral
equation; this is due to the absence of the U(1) Ward
identity (replaced by a non-Abelian version of the Slavnov-
Taylor identity) that ensures the cancellation of these terms
[59]. The diagrammatic resummation (done in Ref. [69])
for this is, therefore, somewhat simpler than that for the
electric conductivity, since one does not need to go to the
next order of g*log(1/g). In fact, one has an algebraic
equation to solve, rather than a differential equation. The
same resummation can also be achieved in the language of
Bodecker’s approach [64] as well as in kinetic theory [65].
In the presence of the axial charge, u,, which breaks CP
symmetry, Ref. [70] recently obtained, via Bodecker’s
approach, a CP-odd contribution to the color current

HaN ng

Jo= o B g

B, (6.8)
which is a colored analogue of the chiral magnetic effect
consistent with the U(1),SU(3)? triangle anomaly. Since
the triangle anomaly is topological, this contribution should
be saturated at one loop diagrammatically, without the need

°Note that we now put an extra ¢> in the definition of color
conductivities to follow the convention in the literature.

PHYSICAL REVIEW D 92, 014023 (2015)

for the resummation of ladder diagrams. From our com-
putation in the text, the quantity that needs a ladder
resummation, and which is sensitive to the same ultrasoft
scale dynamics of the ¢* log(1/g) rate to which the color
conductivity is also sensitive, appears when one goes to the
next order in the derivative,

uAN ng dB"
Bll
472 +& dt

J*=o0.E°+ & + (6.9)
It is clear that &, a colored analogue of our &5, will be of
order

&~g° - 1/(g°log(1/9))(ua/T) ~ (1/10g(1/9))(pa/T)

(6.10)

due to the absence of the precise cancellation of the
g*log(1/g) terms in the integral equations. The computa-
tion of &5 at leading log order is doable, following the same
steps that we present in our work and keeping only the
g*log(1/g) terms in the integral equations (note that it
receives contributions only from quarks, not from gluons).
The leading order fermion damping rate from soft gluon
scatterings is

sp__ N% - 192 IOg(l/g)T
P 2N, 2n ’

(6.11)

and the solution of the integral equations that become
algebraic is

s 4ns
x5(pl) = 211\/ 9210g2;/y N.g*log(1/9)T
¢s(lpl) = =3:(Ip))- (6.12)
This gives our result for &,
C 92NF d”+ 1
&5 =— 3 / 21)} & Z Ozsww
« (seuo) —ym(lﬂ))
__2Np 1 (6.13)

3z N.log(l/g) T

The same resummation should also be achievable via
Bodecker’s approach, presented in Ref. [70], by going to
the next order in time derivatives.

It is of the utmost importance to implement the correct
value of the chiral magnetic current in the presence of a
time-varying magnetic field in any realistic simulation of
the chiral magnetic effect (or any other anomaly-induced
transport phenomena) in heavy-ion collisions. In the weak
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coupling picture, our results should be an important step
toward taking into account the time-varying nature of the
magnetic field in heavy-ion collisions, and they will be
instrumental in the quantitative studies of the chiral
anomaly-induced phenomena in the experiments at the
RHIC and the LHC.
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APPENDIX A: SUM RULES FOR THE P-ODD
PARAT OF HTL PHOTON SPECTRAL DENSITY

Let us start from the thermal relation

Gita) = (3 + mo(d") ) (Gitta) - Gigla). (A1)

where G4P(x) = (A4(x)AL(0))sk (a.b = r,a) are correla-
tion functions in the Schwinger-Keldysh path integral, and
Gi(x) = (Ai(x)A}(0))sk = Glji(—x),  (A2)

where we use the translational invariance of the system.
Since what we encounter in writing down our integral
equations in the main text is the combination [G};(q)—
G,‘j,f(q)], let us naturally define the photon spectral density
(including possible P-odd contributions in general)

h - ,

Pw(q) = Gii(q) = G (q). (A3)

We will show that pEE (g) is in general a Hermitian matrix in
terms of uv indices. For diagonal components that come
from the usual P-even contributions, pht™ " (g) is there-
fore real. For the P-odd contribution that turns out to be
antisymmetric in spatial ij indices (there is no P-odd
contribution to the timelike component, at least up to

linear order in u), we thus have pfjh’P’eve“(q) as purely

imaginary.
To show that pl(¢) is a Hermitian matrix, recall that the
usual retarded propagator is defined as

Gji(x) = =i0(x")([A, (x). A, (0)]) = —iGji(x). (A4)
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It is not difficult to show, using the Hermiticity of A,, that
GR(x) is real valued; this is what it should be since the
retarded propagator gives the response of the system in real
time, which must be real valued. Therefore, in Fourier
space, one has

Gi(=q) = (Gi(q))" (AS)
which in turn gives
Gii(—q) = —=(Gii(q))". (A6)
On the other hand, from (A2) we have
Giv(q) = Gri(—q) = —=(Gi(q))". (A7)

where we use (A6) in the last equality. Therefore
h ra ar — ra ra *
() = Gyi(q) = Gii(a) = Gyi(q) + (Giji(q))". (A8)

which proves that pEE(q) is indeed a Hermitian matrix.

The P-odd part of the retarded current-current correlation
functions, which is the retarded photon self-energy, has
been recently computed in the literature in the HTL limit
[71,72]. We will work in the Coulomb gauge where G{! =
0 (i =1,2,3). The P-odd contribution appears only in the
spatial transverse part of the correlation functions; there-
fore, we will discuss only the spatial transverse part of
current correlation functions in the following. In matrix
notation, the spatial part of the HTL resummed photon
propagator is

(@ (@) = (G la)™ ~ @) (A9)
where Gfg)(q) is the bare propagator given by
—iPli(q)
G(rg)ij(Q) = . (AIO)

 —(¢" +ie)* + |g

The HTL self-energy %(q) including the P-odd contribu-
tion is given by

25'(51) = HT(Q)P,'T/(Q) + iHodd(Q>€iﬂqlv (A11)

where
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mp ((¢°)  ((d")
) = (2 ()
2 \ lgP? lal?
0 0_ ;
(£l )
2lgl "\q" +lg| + ie
(o) = -4 (1-40 - ({2 £
° 4z’ lal>  \ lql? 2q|
0 _ .
g7l 1))
q’ + |q| + ie
with m?, = €*(T%/6 + u?/(22%)). From this, while keep-
ing terms only up to linear order in x4, we have

(A12)

~iP};(q)
—(¢°)* + lg* - 1z (q)
o44(q)
(—=(q°)* + lgI* = Tr(q))?

Gij(q) =

-
e'q’,

+ (A13)

where the first term is the usual P-even HTL photon
propagator, and the second term is the new P-odd con-

tribution. The HTL photon spectral density p?}](q) is then
given by

P21 (q) = pr(q)PT(q) + ipoaa(q)e'q’, (A14)

with

1
pr(q) = 2Im<_<q0)2 + g - HT(Q))’

Moaa(q) )
(—=(¢°)* + lgI* =TIr(q))* )

(A15)

Podd(q) = 2Im<

It is easy to see that pyaq(q) is an odd function in ¢°, and
what we need in the main text is the value of the integral

9 dg° | 5o
J%"dz/ 53 (@) poaa(q). n=0.1.2.....

q (27)
(A16)

One can compute them using the well-known sum-rule
techniques exploring analytic properties of the function
Aoqa(gq) defined by

aa(q)
(—=(g°)* + lgI> = TIr(q))*

Aoaalq) = (A17)

We briefly sketch the procedure and present the results in
two different regimes, |q| < mp and |g| > mp.

The starting point is the fact that A yq(g) in the complex
¢" plane is analytic in the upper half-plane due to the causal
nature of a retarded function. Thus, the integral

PHYSICAL REVIEW D 92, 014023 (2015)

/°°dq0 1
oo 27 ¢° —w + i€

vanishes for any real number @ by closing the contour with
the upper hemicircle at infinity [and with A,gq(g) — O
sufficiently fast as |¢°| — oo]. From 1/(¢° — @ + ie) =
P1/(q° — w) — in5(q° — ), where P is the principal
integration, we have

Aoua(q) =0 (A18)

wdg® 1 i
P/ %qo — ondd(f]) —EAodd(O), q]) = 0.

(A19)

Considering the imaginary part of the above, we obtain one
of the Kramers-Kronig dispersion relations for a retarded
function (the real part gives the other dispersion relation),

P/_md_qo#Podd(fI) = Re[Ay(@, |q])].  (A20)

w21 ¢" —w

Setting @ = 0 and using A.4q(0, |q|) = —e?u/ (47%|q|*),

one obtains a sum rule

©dg® 1 e’u
E?ﬂodd(tn =

. _477r2|q|4' (A21)

Other sum rules are obtained from (A20) by expanding
both sides in @ — oo. The left-hand side becomes

0 1 /oo qu 0
- n+1 —(q )n/’odd(CI),
;w T 27

while the right-hand side when expanded in large w is
—e?u/(127%w*) + O(1/@%); this gives two other sum
rules,

(A22)

) dqo
/ —qopodd(CI) =0,

o 27
0 qu 62/4
/ 5(90)3%@(@ =122 (A23)

The sum rules (A21) and (A23) are not precisely J9%¢ as
defined in (A16), because the integration range for J3% is
[—|ql, +g|], not [—oo, +o0]. The imaginary part of A(g)
[that is, poaq(g)] consists of two distinct parts: one part
coming from a branch cut just below the real line along the
interval ¢° € [—|q|,+|q|] from the logarithms in (A12)
(originated from the Landau damping), and the other part
from the two poles 4w, satisfying —(wg)* + |gq|> —
II7(wy, |g|) = O corresponding to the timelike transverse
photons in the medium. The former has a continuous
support in the interval ¢° € [~|q|, +|g|], and hence con-
tributes to J9U, while the latter’s pole contributions sit
outside the interval, @, > |q|, and so do not contribute to
J94  Therefore, the only difference between the sum rule
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values in (A21), (A23) and the J9% is simply the latter’s
pole contributions, which we can compute.

Near the pole location ¢°~ w, —ie, we have the
expansion

A B
0 2n—12A ~
(C] ) odd(‘I) (6]0 —w+ i€)2 qo —wy+ ie
+ {regular}, (A24)
where
_ 2(wg)*" ' Mogq(wp)
(2wo + I () )
IT 2n—1 2 + 114
o (Malon)  Gn=1) 2 Wlon) ) -
Moqa (@) o 200 + Iy (@)

with IT;(¢°) = dl1;(¢°, |q])/dq°, etc. The first double pole
does not contribute to the imaginary part in the ¢ — 0 limit,
while the second part contributes to (¢°)*"~!poqa(q) as
—1B5(q° — wy) x 2 = —272B5(q° — w,) (the factor of 2
comes from having two poles +w,). This leads to the
difference between the sum rules values in (A21), (A23)
and the J9% as given by —B; that is, J%¢ is obtained by
adding B to the sum rule values in (A21), (A23).

In the case |gq] <mp, the pole location is
wo ~/1/3mp(1+(9/5)|q>/m3) + -+, and an explicit
computation of B gives the values of /9% in this regime as

2 3€2ﬂ
T~ = s g Oal/mb).

an’lq|*  4n*mi, °

u\q|2
L R +0(Iq\ /mp).

3362u\ql4
J$M = o+ O(lg[°/m). (A26)
2 7007%m3, b

On the other hand, in the regime |q| > mp, the poles are
located in wy = |q| + (1/4)m3%/|q| + - - -, and we have the
results in this regime |q| > mp as

2 2
P N
P S SiaP
2 2
Mg (3 (ge) )
~ +lo og
b7 8 g 8|q[*
11 m2
Jodd L EH (20 D A27
: 843+°QH2 (A27)

The above results (A26) and (A27) will be used in the main
text in Sec. IIIL.
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APPENDIX B: HARD FERMION DAMPING RATE

In this Appendix, we compute the damping rate of hard
fermions including the possible dependence on the chemi-
cal potential u. Our primary objective is twofold: First, we
would like to confirm that the integral we have in (5.15) is
indeed precisely equal to the damping rate induced by soft
photon scatterings at full order in e and u, which was
instrumental in rewriting the integral equation to take the
form (5.16) that contains only e*log(1/e) terms. Our
second objective is to find a linear sy dependence in the

p ,, that is, in the damping rate induced by soft fermion
scatterings (or, equivalently, fermion conversion-to-photon
processes). This su dependence in C;,fs is important for
finding the correct ¢ dependence in the solution of differ-
ential equation (5.32) for y,(|p|), which is crucial to obtain
the correct result for &5 as well as the y? correction to the
usual electric conductivity.

Let us start with the self-energy resummed ra propagator
(which is equal to i times the retarded propagator)

§7(p) = 874 (p) + S8, (P)Z"(p)STE () + -+
1

:S(r(c)l)(p)l_zm(p)sfg)(p)’ (B1)
which gives

(5(p)~" = (S8 (p) " = =%(p). (B2
where

Sm Z 0 — S|P| T lGPS(p) (B3)

is the bare ra propagator, and the self-energy X (p) (which
is a2 x 2 matrix in the spinor space) at naive lowest order in
the coupling is given by two Feynman diagrams in Fig. 8 in
real-time formalism with the expression

&
2 (p) = hdzu/cﬁ[QMQBWp+Q)

+Ggp(Q)8" (p + Q)lo” (B4)
with the photon propagators Gaﬂ(Q) (a,b=r,a) (see
Appendix A for our notational conventions). In the above
expression, we have not specified whether the propagators
appearing in the loop are bare or HTL-resummed ones,
because, depending on the situations, we can consider
different approximations for them to obtain the right leading
order quantities. For example, if the external momentum p is
soft and one is interested in the HTL approximation, it is
enough to consider hard loop momentum (, and both
propagators in the loop are bare ones. On the other hand,
in the case of damping rate with a hard momentum p, which
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a(Q)

(ie)o* ¢ " (ie)o?

S..(p+Q)

FIG. 8.

is proportional to the imaginary part of the self-energy,
the leading contribution comes from when one of the two
loop propagators carries soft momentum (that is, either
Q or p + Q); the soft propagator must then be the HTL
resummed propagator, while the other hard propagator is the
bare one.

Rotational invariance dictates the self-energy to take a
form

x(p) = A(p°.|pl) + B(p®.Ip|)p - 6 = ZER
(B5)
where
2 (p) = —i(A(p" Ip|) +sB(p°.Ip])).  (BO)
From this and (B2), we have
P =25 —sw = e )

In deriving the above, we use the following properties of
the projection operators to find the inverse of $“(p):

P, +P_=1, PL="P., P,P_=P_P,.=0.

(B8)

By comparing the above expression for §7(p) with the one
in (2.7), we see that the damping rate is given by the
imaginary part of retarded self-energy XX(p) at on-shell
momentum

Z.:p,s = ZIm[Zlf (p)”pozsw' (B9)

In the following, we will hence only concern ourselves with
the imaginary part of X¥(p). From (B5) and tr[P,] = 1, we
have

(ie)o® " " (ie)o?

S.(p+Q)

Real-time Feynman diagrams for the retarded fermion self-energy.

i (p) = (=D)u[P,(p)z"(p)]
— ic’tr [Ps(p)a/f / (‘;ﬂ%
X [Gip(Q)S™(p + Q) + G5 (Q)S™ (p + Q)o”|,

(B10)

which will be the starting point of our computation.

For a soft p, if one uses the HTL approximation to the
retarded self-energy X (p), the result is the HTL fermion
propagator. For a hard p, the HTL self-energy is subleading
in 2, so it can be negligible; moreover, its imaginary part at
on-shell momentum p° = s|p|, which would give a damp-
ing rate that could regularize pinch singularities, vanishes
due to kinematic constraints. The leading contribution to
the imaginary part of £X(p) at on-shell momentum arises
when either Q or p + Q is soft, so that the corresponding
propagator in the loop is the HTL-resummed one. Calling
the case of soft Q the soft-photon contribution, &', and the
other case of soft p + Q the soft-fermion contribution,

;f,x, the total damping rate is the sum of the two,
Z.:p,s = lsll?s + Z:;fs

Let us discuss ;s first. Because the fermion propagator
is the bare one, we have, after setting the on-shell
momentum p° = s|p|,

ra — i

t=+

:Z[Psww‘)—tlpwl

+78(slp+q° —tlp + q)) | P.(p + q).

(B11)

where P denotes the principal value. Similarly,
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57(p+0) = (5-n. (ol + )

2
szn slel+ 4" — tlp +a)P.(p + 9).
(B12)

Looking at the structure of (B10), we have a spinor trace
appearing,

[P, (p)o"P.(p + q)0"] = HY (p.q), (B13)

which is a Hermitian matrix in terms of af indices (this can
be shown easily using the Hermitian nature of 6% and P_.).
Because

Gi5(@) = (5-+mala)) (G5(0) - GE5(©)

= (5 mi@) )iz (B14)

is also a Hermitian matrix with (G5(Q))" =

—Ga(Q), as
shown in Appendix A, we see that Hf;’(p,q)ng(Q) is a
real number. Therefore, one sees that the imaginary part of
>R(p) given in (B10) arises only from the second &

function term in (B11) when it is used in the first term
of (B10). Similarly, from

(Hy (p.q)G5(0))" = —H\'(p.q)Gi4(Q)  (BIS)
and
HY (p.q)ply(Q)
= (HY(p.q)G3(Q) — Hf (p.9)G%(Q)).  (B16)

we see that the real part of Hsf’(p,q)G‘"(Q) is equal to
—(1/2)HY (p.q)p%5(Q). With (B12) the imaginary part of
>R(p) from the second term in (B10) only comes from the
real part of Hy; (p,q) Gg3(Q); therefore, we can effectively
replace Gg;(Q) appearing in (B10) with —(1/ Z)Pa/;( Q) for
the purpose of damping rate computation. One then
observes that the pieces in (B11) and (B12) that contribute
to the damping rate are all proportional to the § function
5(s|p| + ¢° — t|p + gq|), which has a nonzero support only
for t = s because Q is assumed to be soft while p is hard.
After collecting all these pieces contributing to the imagi-
nary part of ¥%(p), we finally have after some algebra,
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Cps = 2Im[ZF (p)]

4
=& [ S nala) 4 ol + )
x (0. )3(Q)Cr)o(slpl + ¢ = lp + )
where

Hﬂa<p7 q)SS

(B17)

= tr[Ps (I’)Uﬂps(l’ + q)aa}

= (p.q)(Z(p.9)) 5(1+p-p+q). (BIS)

| —

2

using the notations introduced in (5.4). From the fact that
F,(p:q.0) introduced in (5.4) is equal to § (1 + p p+q),
and recalling our definition of kernel function in (5.10),

Ky(p.0; Q) = ¥ (p.q)(Z2(p.q)) P25 (Q)F,

x (p:q.0)(ny.(slp| + ¢°) + np(¢%)). (B19)

we see that £, is indeed equal to

Z:;)ps =

ez/( ? K, (p.0; 0)(21)8(slp| + ¢° = slp + q).

(B20)

which is precisely what appears in (5.15) and in the integral
equation, which is crucial in order to obtain (5.16).

Although we do not need the value of £’ in this work, it
is easy to compute it from the above expression. From
(5.19),

d4
/ 5 )4<2n>5<suu|+q ~slp+ 4]
al dg

/dlqllql |q(2n( sq|)

and the small Q expansion of K;(p, 0; Q),

(@22’
p-q—sq O 2]

(B21)

)

(B22)

K0.0:0) % 1 (0@ + pr(@) (1 -

R
Bq°

where p;,7(Q) are P-even longitudinal and transverse
photon spectral densities defined by

Ph(Q) = pL(0),
9.4,

p€P<Q>=ﬂT<Q>(5u ||z)+wodd<Q>efﬂqz, (B23)

we have
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o0 x / lql dq 1
Cpas

g (27) pg°

x (mQ) @ (1-140)).

The rest of the computation involves using the sum rules for
prr(Q) that can be derived in the same way that we derive
the sum rules for the P-odd part in Appendix A [68]. The
leading log arises from the momentum region |q| < mp,
from the transverse part only, for which we have

/ |:|<dq2ql°”@ q|2+0<ml%)>’

dlqllql

(B24)

lal dg” o 3|q[? IqI4
7’pr(Q) = +0 : (B25)
/_q ) sm3 " \m
This gives
o _ o1 [modlqllgl 1 e*log(1/e)T
e ~ el (Bog
PR ) WP 2n (B26)

where we set an IR cutoff of order A ~ e?T. Strictly
speaking, the e>T (or ¢>T for non-Abelian theory) magnetic
confinement scale exists only for non-Abelian theory, while
an Abelian QED that becomes free at Q << m; does not
possess any IR cutoff. In this case, the damping rate % is
not a useful concept [73], and the effective IR cutoff is
provided by the time scale one is looking at, so the hard
fermions decay in time ¢ as [73]

e_g;?xt 2

2| gt ™~ (B27)

(mpt) 5.
Because we are ultimately interested in QCD (see our
discussion in Sec. VI), we do not worry about this any
longer. In addition, in realistic situations, the free nature of
QED at Q < eT means that this scale is never thermalized
anyway. As the damping rate arises from the scattering of
fermions with thermally excited soft photons in this scale
[recall ng(q°) ~1/4° term in the above], we would not
have these contributions in realistic situations in any case.
This also justifies our use of A ~ €T in the above.

Let us next compute the soft-fermion contribution to the
damping rate, CIS,‘TS, with our main objective being to find a
linear su dependence. Since p + Q is soft, it is convenient
to shift the loop momentum Q — Q — p to have

d*0
(27)*

G (0 - p)S”(Q)]G“],

SR(p) = ieztr[Ps(p)Gﬂ [ 52 60-pise©)
(B28)

where Q is now soft, and we need to use HTL-resummed
fermion propagators while the bare propagators are used for
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photon propagators. The HTL-resummed fermion ra
propagator is written as

Sra(Q (B29)

=Yg g

where Zf'HTL(Q) is the HTL self-energy. An explicit
computation gives [in fact, one uses the same expression
(B28) with both Q and p + Q now hard]

()

m2 0 0 .
__r (2,+ (1 _ tq_> 1Og<w>>,
4lq| lq| q’ —lq| + ie
(B30)

where

2 2
m? = % <T2 + ;’—2> (B31)
is the asymptotic thermal mass of fermions for a single
Weyl fermion system. Since x4 dependence is only quadratic
for =R (), we can ignore this dependence in the HTL
self-energy to use the y = 0 result of TXHT™(Q). This
means that $7(Q) and S = —(5"(Q)) can be replaced
by their 4 = 0 values up to linear order in the chemical

potential ¢, which is the order of our interest. On the other
hand, the 1r propagator, which is given by

57(Q) = (1— n (" >) (57(Q) - 5(Q)).  (B32)

does contain a linear x dependence via its statistical factor
in front, n,(¢"). We will indeed shortly find that this will
be the (only) source of the final sy dependence of g’;f.s.

Becase the HTL-resummed ra propagator (B29) is
analytic in the upper ¢° complex plane, one can introduce
real spectral densities p, (Q) by

1 B / e (dw pi(@.q)

" —tlg| + =L))o (27) @0 — @ + e

_ P/°° do p(o,q)
o (27) ¢ — @
i
— 504" q). (B33)
or, equivalently,
(0) ZIm[ ! } (B34)
P = - s
’ q° ~ tlg| + ZH(Q)

in terms of which we have
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570) = (31 Srl@Pla. (B39

Introducing

L5 (p.q) = u[Py(p)o" P, ()", (B36)

which is a Hermitian matrix, a similar discussion to that
which we have above leads us to replace

$(Q) ~ 32(Q)P:(4) (837)

for computing the imaginary part of X¥(p) in (B28).
On the other hand, the hard photon propagators in (B28)
are bare ones. In the Coulomb gauge we have

~iPlj(p)

(" +ie) + P
(B38)

G (p) Gi(p) =

i
P>

where Pg(p) = 0;; —pp; is the transverse projection
operator, from which we have the bare photon spectral
density as

Pho(p) =0,

P2 (p) = (20) Pl (p)sign(p)3((p°)> - IpI?).  (B39)

with Gjy(p) = (1/2+ nB(pO))pEE(p). As before, for the
imaginary part of ¥(p) in (B28), we can replace

1
Gop(Q=p) = —30kp(@=p).  (B4O)

Collecting all these elements, the expression for é’j,f,x
becomes

G _ 2 d*Q i T 0
=Y / Gonys L. 0) Pl (a =) 1 (a” = sp)

+n.(¢°)p,(Q)sign(q” = slp|)(27)5((s|p|

-4¢") - lp—qP). (B41)

Because Q is soft while p is hard, we have sign(¢° — s|p|) =
—s and

8((slp| = ¢°)* = lp — qI?)

I SRS

), (B42)

and, using the identity
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np(q° = slpl) + n,.(¢°)

= (=5)(np(Ipl = 5¢°) + n_(=s4°)).  (B43)

we have

4 .
=y / %Lm,qwﬁ(q —p)(na(lp| - 5¢°)

+ n—s(_sqo))pl(Q)M

x (27)5(slp| — 4° = slp — ql).

It is straightforward to compute the leading log part of the
above integral by expanding the integrand in powers of Q/T
or Q/|p|, the same procedure we have used several times
before. From Lﬁ(p,q)PiTj(q -p)~1-— stBe 4 o) =

lq|
1= t% +0(0) and ng(p| = s¢°) + n_y(—sq®)~
nB([pD +n_g (0> + (9(Q>, the leading log comes from the

expression

i _ = dlqllql
= gy sl )Y [T

(B44)

lal dq° ( qo)
x [ o= 1=t—=]p/(0Q). (B45)
/—|q 2r lal)"
and, using the sum rules'’
m> 4|qg|?
Ji=—1 <10 i 1),
4lq| ny
mi (- 4gP?
JE=+_L (1 - 3), B46
BTN (B4
where
al dg
si= [T @rea@. (847
_lq| 27
we finally have
;  e2milog(l/e)
s :ET("B(V’D‘F”—S(O))' (B43)

There exists sy dependence in the result (B48) via
n_y(0) =1—-ny(0) ~ 1/2 = (1/4)spu, which can be easily
understood as follows. The soft-fermion contribution to the
damping rate comes from the process where a hard fermion
(of type s) becomes a soft fermion (of the same type s) by

1Owe point out that what is called m? in Ref. [59] is in fact
plasmino frequency w}, which is equal to mJ%/ 2 in terms of
asymptotic thermal mass mj%
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emitting a hard photon with almost the same momentum.
The rate is proportional to (ngz(|p|) + 1)(1 — n,(0)) where
(1 —ng(0)) is the Pauli blocking factor of the final soft-
fermion state, where we can set zero for soft momentum at
leading order in coupling. In a similar process, a hard
fermion (of type s) meets with a soft antifermion (of the
type —s) to become a hard photon; this rate is proportional
to (ng(|p|) + 1)n_,(0) where n_g(0) is the number density
of the soft antifermion. The time-reversed processes also
add up to the damping rate, which is a property of the
fermionic case. These are each proportional to ng(|p|)n,(0)
and np(|p|)(1 —n_4(0)). Using n_y(0) 4+ ny(0) = 1, the
total sum can be found to be

(ng(lpl) + 1)(1 = ny(0)) + (np(lp[) + 1)n_,(0)
+ ng(lp)ns(0) + np(lp[) (1 - n_,(0))
= 2(ng(lpl) + n,(0)),

which nicely explains our result (B48).

(B49)

APPENDIX C: EXPRESSION OF F(p.q;k)
The function F(p, q;k) is given by

A
Fpal = 41 +p-p+K)plp +qllp +kllp +q + k|
(C1)
where
= (pllp + 4l + lp/* +p - ¢)(Ip +kllp + & +q|
+p+k*+(p+k)-q) + (pllp + k|
+pP?+p-k)(lp+4qlp +q+kl + p + g
++4q)-k)—(pllp+q+kl—p-(p+q+k))
x(lp+qllp +kl - (p+q)- (p+k))
+is(lp|+1p+q|+1Ip+k|
+lp +q +k|)e'pig/k!. (C2)

For the reasons mentioned in the main text, we are only
interested in this quantity to linear order in the external
momentum k and to second order in the loop momentum g.
To this order the function F,(p,q;k) is given by

Fy(p.q:k) ~ 1 lq?) +

siellp, q ik

1
2T
+ﬁ@.k<|q|z_2<,,.q>z)+(,,.k)<,,.q>

—3sielpq ik (p - q)).

+ﬁ<w>2—

(C3)
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APPENDIX D: x> CORRECTION TO ELECTRIC
CONDUCTIVITY

Our analysis in this work contains all the necessary
ingredients to compute the full 4 correction to the usual P-
even electric conductivity at leading log order. The electric
conductivity is given from y,(|p|) by

_ __/ (dm(f‘)))

where y,(|p|) satisfies the second order differential equa-
tion written in (5.32),

2m2 e
plosll/e) (ﬂhj,'zxs(w)

(i mleh - 3)leh - o

), (D)

Xs
pO=slp|

Z.:;fs)(s(lpb =

20 ).

(D2)

where the soft-fermion contribution to the damping rate ¢ ;,fs
is given by (B48),

o € mflog(l/e)

T

To correctly take into account u? corrections, we need to
restore full expressions for m? and mjz, including

(n5(lp[) +1n-5(0)).  (D3)

corrections,

2 3)“2 2 IMZ
6 <T2_|_ ﬂ2>’ ]Zc 4 <T2+ﬂ2), (D4)

Also, we have to expand n,(|p|) in (D2) and n_(0) in (D3)
up to second order in p,

2 _ ¢
mp = —

ns(Ip[) = no(lp| = su) = no(lp|) = spny(Ipl)

1
+ ol (D3)
and n_ (0)~1/2 —spu/4+ O(?), where ny(x) =1/
(e’ +1). The resulting y,(|p|) should be found up to
u? order as

xs(Ipl) = sx)(pl) + wz) (D) + 5?22 (Ipl) + O),
(D6)
where (o). x(1)» ;((2)) can be obtained from (D2) by

solving it order by order in u.
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