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If a new heavy particle ϕ is produced in association with the top quark in a hadron collider, the production
cross section exhibits a collinear singularity of the form logðmϕ=mtÞ, which can be resummed by introducing
a top quark parton distribution function (PDF).We reassess the necessity of such resummation in the context
of a high-energy pp collider. We find that the introduction of a top PDF typically has a small effect atffiffiffi
S

p
∼ 100 TeV due to three factors: (1) αs at the scale μ ¼ mϕ, which is quite small when logðmϕ=mtÞ is

large, (2) the Bjorken x ≪ 1 for mϕ ≲ 10 TeV, and (3) the kinematic region where logðmϕ=mtÞ ≫ 1 is
suppressed by phase space.We consider the example ofpp → tHþ at next-to-leading logarithm (NLL) order
and show that, in terms of the total cross section, the effect of a top PDF is generically smaller than that of a
bottom PDF in the associated production of bϕ. However, in the pT distribution of the charged Higgs, the
NLL calculation using a top PDF is crucial to generate the pT distribution for pT ≲mt.

DOI: 10.1103/PhysRevD.90.014005 PACS numbers: 12.38.Bx, 14.65.Ha

I. INTRODUCTION

The production of heavy quarks in a hadronic scattering
process is interesting because it involves several hard
scales. The question of whether the bottom quark is
appropriately treated as a parton at the Large Hadron
Collider (LHC) has received significant theoretical atten-
tion [1–10]. A particularly noteworthy example is that of
Higgs production in association with b quarks, where at
scales Q ≪ mb, one can perform the calculation in a four-
flavor number scheme (FNS), with the lowest order process
being gg → bb̄H. In this scheme, the b quark mass is
included exactly in the final-state kinematics. However, for
scales Q ≫ mb, there are large logarithms of the form
logðQ2=m2

bÞ [1,11–13]. These logarithms can potentially
spoil the convergence of a fixed-order perturbative
calculation. Typically, the issue of large logarithms is
rectified by resumming these logarithms into a b quark
parton distribution function (PDF), leading to a 5FNS, in
which incoming b quarks are treated as massless partons
[11,12,14–17]. The 4FNS and 5FNS PDF schemes re-
present alternative ways of organizing perturbation theory,
and a correct treatment should interpolate between the two
schemes in the appropriate kinematic regimes [18]. If we
could calculate to all orders in αs, the results of the different
schemes would be identical. For processes involving the
production of b quarks, the calculations in the 5FNS are
simpler, while the calculations in the 4FNS include the
kinematics of the outgoing b quark at lowest order. For
the LHC, it has been demonstrated that consistent results
for both the total cross section and kinematic distributions
for Higgs production in association with b quarks can be
obtained in both PDF schemes [5,6,19–21].

In this paper, we examine the question of whether the
top quark should be treated as a parton at high center-of-
mass energy, which corresponds to a 6FNS. This question
was originally considered in the pioneering works of
Refs. [14,15], which predate the discovery of the top
quark. We reexamine the question in light of our knowledge
on the top mass as well as a potential

ffiffiffi
S

p
∼ 100 TeV pp

collider. We evaluate the impact of resumming collinear
logarithms involving the t quark at scales that would be
accessible at such a collider, testing the efficacy of using a
top PDF. Additionally, we compare with the case of lighter
quarks at lower collider energies. Our results are generi-
cally applicable to the production of heavy particles in
association with t quarks at hadron colliders.
Now, in the Standard Model, the rate for Higgs

boson production in association with a top quark is
quite small [22–27], and there are no large logarithms
to be resummed. In theories with extra Higgs multiplets,
however, the cross section for heavy Higgs production in
association with top quarks may be significant. For
instance, in type II two Higgs doublet models such as
the Minimal Supersymmetric Standard Model (MSSM),
heavy Higgs production can be enhanced for small values
of tan β [28–32]. As a concrete example of the relevance
of the top PDF, we consider charged Higgs production in
association with a top quark, although it is worth men-
tioning that the case of heavy neutral Higgs production in
association with top quarks can be studied in a similar
fashion. Charged Higgs production has been studied in the
past [14,15], and our contribution is to discuss the new
features which arise at partonic energies much larger than
the top quark mass,

ffiffiffî
s

p
≫ mt. In the 5FNS, where the top
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quark is not treated as a parton, the leading-order (LO)
process is gb̄ → t̄Hþ, while in the 6FNS it is tb̄ → Hþ.
We demonstrate the effects of the collinear logarithms of
the form logðQ2=m2

t Þ in the 6FNS and compare them to
the 5FNS. The NNPDF collaboration [33–35] has pro-
duced a set of 6FNS PDFs, which allows for a quantitative
analysis. We present both total and differential cross
sections, showing the effect of the top quark PDF
resummation of collinear logarithms for large charged
Higgs masses.
In Sec. II, we review the organization of perturbation

theory in schemes with different numbers of flavors,
describing how collinear logarithms may be resummed
into heavy quark PDFs. Next, Sec. III contains an
exploration of the quantitative effect of this resummation.
We examine the variation of its numerical impact with
heavy quark mass and collider energy, considering the
impact of the phase space of the collinear logarithm as
well. Section IV details the calculation of the cross section
for charged Higgs production in association with a single
top quark at leading logarithm (LL) and next-to-leading
logarithm (NLL). We compare our 6FNS results to the
5FNS calculation at LO in αs. Our conclusions are
in Sec. V.

II. COUNTING LOGARITHMS AND αs

Production of a new heavy particle ϕ in association
with heavy quarks,1 qh, is a nice illustration of multiscale
processes in quantum field theory. In the presence of two
distinct scales, mϕ and mq, perturbative calculations
exhibit potentially large logarithms logðmϕ=mqÞ and
power corrections in m2

q=m2
ϕ. When mϕ ≫ mq, power

corrections become less important while the large log-
arithms could potentially spoil the perturbative expansion
in the coupling constant [1]. In particular, because the
heavy quarks are much heavier than the proton, it is easy
to trace the origin of the logarithms to the process of a
gluon g splitting into a qhq̄h pair inside the proton
[14,15]:

gðpÞ → qhðkqÞ þ q̄hðkq̄Þ: ð1Þ

Obviously an on-shell massless particle cannot decay
into two massive particles that are both on shell, because
otherwise the rest frame of the two massive particles
would define a rest frame for the gluon, which does not
exist. One could, however, consider the kinematic region
where only two particles, for example g and qh, are on

shell, in which case q̄h cannot be an external state and
must be an internal line with the propagator [36,37]

1

ðp − kqÞ2 −m2
q
¼ −

1

2p · kq
: ð2Þ

If we go to a frame where

p ¼ ðE; 0; 0; EÞ;

kq ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
q þ j~kqj2

q
; j~kqj sin θ; 0; j~kqj cos θ

�
;

kq̄ ¼ p − kq; ð3Þ

the denominator of the propagator for q̄ is

2p · kq ¼ 2Ej~kqj

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

q

j~kqj2

vuut − cos θ

1
CA; ð4Þ

which never vanishes unless mq ¼ 0 and cos θ ¼ 1. This
is the famous collinear singularity in the three-body
kinematics, which we see explicitly is regulated by
the nonzero quark mass [38]. Upon integrating over
the phase space, the collinear singularity gives rise to the
factor logðQ2=m2

qÞ, where Q2 is the typical hard momen-
tum transfer in the process.2 For the production of a
new heavy particle ϕ, we expect Q2 ∼m2

ϕ. However, it is
important to emphasize that this is only an order-of-
magnitude estimate.
The existence of potentially large logarithms suggests

the necessity to reorganize the perturbative expansion. To
achieve this goal, it is conceptually clearest to introduce an
effective theory where the heavy quarks are treated as light
degrees of freedom when the typical hard scale in the
process satisfies Q2 ≫ m2

q. On the other hand, when
Q2 ≪ m2

q, the heavy quarks are treated as genuine heavy
degrees of freedom. This subject has a long history [39,40],
and in the present context, it was first discussed in
Refs. [14,15]. In particular, the approach where the heavy
quark is considered “heavy,” in the sense that it is not a
constituent of the proton, is called the ðnf − 1Þ FNS, where
nf ¼ 4; 5, and 6 for the charm, bottom, and top quarks,
respectively. On the other hand, in the nf FNS, the heavy
quark is treated as a “light” parton inside the proton.
In the ðnf − 1Þ FNS, the heavy quark never appears as

an initial state, and the LO process for the associated
production is given by

1We define heavy quarks to be those whose masses are large
enough for the running strong coupling αsðmqÞ to stay in the
perturbative regime. Therefore, the top and bottom quarks are
considered heavy quarks, while the charm quark is a borderline
case. Furthermore, we are interested in scenarios where
mϕ ≫ mq.

2There is a subtlety involving whether the splitting gluon is in
the initial state or the final state. In this work we are interested in
the initial state logarithms, as the final state logarithms can be
canceled by defining sufficiently inclusive observables or re-
summed by introducing a fragmentation function.
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gþ ql → ϕþ qh; ð5Þ

where ql represents a light constituent of the proton. A
representative Feynman diagram is shown in Fig. 1(a). The
cross section in perturbative QCD has the following series
expansion at each order in αs:

σnf−1 ∼ c11αsLþ c12αs

þ c21α2sL2 þ c22α2sLþ c23α2s

þ c31α3sL3 þ c32α3sL2 þ c33α3sLþ c34α3s

þ � � � ; ð6Þ

where L≡ logðQ2=m2
qÞ. It is then apparent that when

αsL ∼Oð1Þ, the perturbative expansion in the ðnf − 1Þ
FNS may be spoiled.
The dynamical origin of the logarithm comes from the

collinear region where both heavy quarks from the gluon
splitting are (approximately) collinear with the incoming
gluon, in which case the heavy quark produced in asso-
ciation with the new particle ϕ simply goes down the
beampipe, along with the remnants of the proton, and
cannot be detected. Therefore, in this region of phase
space, one should really think of the heavy quark as
part of the proton, i.e., a parton inside the proton. This
picture motivates the nf FNS where the heavy quark is
considered as a parton inside the proton and a PDF is
introduced. The logarithms in Eq. (6) are then resummed via
the Dokshitzer-Gribov-Lipatov-Altrarelli-Parisi (DGLAP)
equations [41] to all orders in αs, effectively reorganizing
the perturbative expansion. When computing the heavy
quark PDF, fqðx; μÞ, using the one-loop DGLAP evolution,
all cn1 terms, n ≥ 1, in Eq. (6) of the form ðαsLÞn are
resummed into fqðx; μÞ. This is the LL approximation.
At two-loop evolution, in addition to cn1, part of the cn2,
n ≥ 2, terms in Eq. (6), are also resummed into the top PDF.
The ðnf − 1Þ FNS and nf FNS are matched at the scale
μ ¼ mq, where

fqðx;mqÞ ¼ 0: ð7Þ

In this picture, the heavy quark can be an initial-state
particle, and the LO process for the production of ϕ is

ql þ q̄h → ϕ; ð8Þ

which is shown in Fig. 1(b). Again, it is worth emphasiz-
ing that the process qlq̄h → ϕ in the nf FNS is nothing but
the gql → qhϕ process in the ðnf − 1Þ FNS when the
final-state qh is collinear with g and has a small pT ,
thereby escaping detection. To account for all terms
proportional to αsðαsLÞn at NLL accuracy, one would
need to include OðαsÞ corrections to Eq. (8) as well as
new processes to be specified later.
It is instructive to consider approximate solutions of the

DGLAP evolution, truncated at finite orders in αs, where
only a finite number of the logarithms are included. For
example, at LO and NLO in αs, the one- and two-loop
approximate heavy quark PDFs in the nf FNS are given by

~fð1Þq ðx; μÞ ¼ αs
2π

log
μ2

m2
q

Z
1

x

dz
z
PqgðzÞfgðx=z; μÞ;

~fð2Þq ðx; μÞ ¼ ~fð1Þq ðx; μÞ þ
�
αs
4π

�
2

×
Z

1

x

dz
z
Σnf−1ðx=z; μÞaΣ;qðz; μ2=m2

qÞ ð9Þ

þ
�
αs
4π

�
2
Z

1

x

dz
z
fgðx=z; μÞag;qðz; μ2=m2

qÞ;

ð10Þ

where fgðx; μÞ and Σnf−1ðx; μÞ ¼
Pnf−1

i¼1 ðfqi þ fq̄iÞ are the
gluon and the singlet PDFs, respectively, computed to the
corresponding order in αs ¼ αsðμÞ. The LO gluon splitting
function is well known [41]:

PqgðzÞ ¼
1

2
½z2 þ ð1 − zÞ2�; ð11Þ

while the two-loop coefficient functions are computed in
Refs. [42,43] and collected in the appendix of Ref. [10],
whose notation we follow. Schematically, the two-loop
coefficients have the form

aΣ;qðz; μ2=m2
qÞ; ag;qðz; μ2=m2

qÞ ∼ log2
μ2

m2
q
þ log

μ2

m2
q
;

ð12Þ

where the coefficients of the logarithms are z dependent.
We see that ~fð1Þq captures the c11 contribution in Eq. (6),
which is included in a LO computation in the ðnf − 1Þ
FNS, while ~fð2Þq contains c11, c21 and parts of the c22 pieces.
If one were able to compute the cross section to all orders

in perturbation theory, then the ðnf − 1Þ FNS and nf FNS
would give the same answer. However, the expansion

(a) (b)

FIG. 1. (a) Feynman diagram for gql → qhϕ. (b) Feynman
diagram for qlq̄h → ϕ.
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parameters in the two schemes are different and, when
truncated at finite order, result in numerically different
cross sections. More specifically, the ðnf − 1Þ FNS is a
series expansion in αs, while the nf FNS is also an
expansion in L−1 since terms of the forms ðαsLÞn,
αsðαsLÞn−1, etc. are resummed at successive orders. This
power counting is the same as that in single top production
[44] and in Higgs production in association with bottom
quarks [1] in the 5FNS using b PDFs. The LO processes in
the ðnf − 1Þ and nf FNS for ϕ production in association
with a top quark are given by gql → qhϕ and qlq̄h → ϕ,
respectively, and contain the following contributions:

LOnf−1∶ c11αsLþ c12αs; ð13Þ

LOnf∶
X∞
n¼1

cn1ðαsLÞn: ð14Þ

The calculation at LO in the nf FNS, which only
involves a two-to-one process, is simpler than that in
the nf − 1 FNS, which is a two-to-two process, and
represents the LL approximation to the full cross section.
However, the two-to-one process is clearly inadequate if
the heavy quark in the final state has a significant
transverse momentum pT .
We work to NLL in the nf FNS to include the effects of

finite pT not present in the LL approximation. To NLL, one
computes the virtual and real corrections to qlq̄h → ϕ. In
the nf FNS, an NLL calculation requires not only the
virtual and real corrections to qlq̄h → ϕ, as well as the NLO
evolution of the heavy quark PDF using DGLAP equations,
but also the addition of the processes gql → qhϕ and
gq̄h → q̄lϕ, which now open up as new channels at this
order. The latter process contributes only terms that are
Oðα2sLÞ and higher, with no terms proportional to OðαsÞ
term as in the former process. Additionally, there is a
subtlety in incorporating these new processes. Note that the
gql → qhϕ process contains, in addition to the c21αs
contribution to the cross section, the c11αsL term that
has already been resummed into the heavy quark PDF at
LOnf . Therefore, naïvely adding the contribution of gql →
qhϕ to the LOnf result would result in a double counting of
the c11 term in the nf FNS. This double counting needs to
be subtracted properly [14,15] by using the one-loop
approximated PDF in Eq. (9). Once this is done, the
remaining component of the gql → ϕqh subprocess is only
OðαsÞ and down by L−1 when compared with qlq̄h → ϕ. In
the end, the NLL result in the nf FNS contains the desired
terms,

NLLnf∶
X∞
n¼1

cn1ðαsLÞn þ
X∞
n¼1

cn2αsðαsLÞn−1: ð15Þ

In the above, the c12 term comes from the subtracted gql →
qhϕ subprocess in the nf FNS; c22 is obtained from the

NLO PDF, gq̄h → q̄lϕ and the αs correction to the qlq̄h →
ϕ process; and the cn2, n ≥ 3, terms are reproduced in the
NLO heavy quark PDF.

III. THE THREE FACTORS

In this section we discuss the three factors determining
the importance of the collinear logarithms that are
resummed into the heavy quark PDFs. As is evident
from the discussion in the previous section, the most
important factor regarding the necessity of resumming
the initial state collinear logarithms is the size of
αsðμÞ log μ2=m2

q. In this regard it is informative to
consider the size of this logarithm for the charm, bottom
and top quarks, which we plot in Fig. 2. We see that
αsðμÞ log μ2=m2

q is significantly smaller at μ ¼ 100 ×mq
for q ¼ t than for q ¼ c; b:

αsð100 ×mcÞ logð104Þ ∼ 1.02

αsð100 ×mbÞ logð104Þ ∼ 0.89

αsð100 ×mtÞ logð104Þ ∼ 0.64; ð16Þ

where we use mc ¼ 1.41 GeV, mb ¼ 4.75 GeV, and
mt ¼ 175 GeV. Reference [10] studied the impact of
including a bottom quark PDF in order to resum collinear
logarithms and found significant differences between the
fully evolved b quark PDF, fbðx; μÞ, and the perturbative
approximations, ~fð1Þ;ð2Þb ðx; μÞ. This difference is signifi-
cantly smaller in the case of the charm quark [42,45].
We see that the reason is simply the asymptotic freedom
of QCD, which implies an even smaller effect from
resumming logarithms into a top quark PDF.
To evaluate the impact of resumming the logarithms in

the case of the top quark PDF explicitly, we follow
Ref. [10] and plot the ratio ~ftðx; μÞ=ftðx; μÞ, where
~ftðx; μÞ are the perturbative PDFs defined in Eqs. (9)

Charm

Bottom

Top

1 2 5 10 20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

mq

s
lo

g
2

m
q

2

FIG. 2 (color online). The size of αsðμÞ log μ2=m2
q over the

range mq ≤ μ ≤ 100mq for q ¼ c; b; t. We use NLO running of
αs with αsðmZÞ ¼ 0.119, mc ¼ 1.41 GeV, mb ¼ 4.75 GeV,
and mt ¼ 175 GeV.
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and (10) and ftðx; μÞ are the DGLAP-evolved top PDFs at
the corresponding perturbative order. In this ratio, we
expect that the uncertainties in the gluon and light-flavor
PDFs should largely cancel. The comparison is shown in
Figs. 3(a) and 3(b) for different values of Bjorken x. We see
that, at NLO, the difference between the two-loop approxi-
mated PDF, ~fð2Þt ðx; μÞ, and the fully evolved PDF, ftðx; μÞ,
is very small, of the order of the 5% level unless one
chooses very large μ ∼ 10 TeV. From this we conclude that
the subdominant logarithms in the DGLAP equations are
numerically small.
Figures 3(a) and 3(b) also show the second factor

affecting the impact of resumming collinear logarithms
into a top PDF, the Bjorken x. From the figures we see that
the effect of resummation is larger, relatively speaking, at
larger x. This feature can be understood from the evolution
equation for fqðx; μÞ:

d
dlogμ

fqðx;μÞ

¼αsðμÞ
π

Z
1

x

dy
y

�
Pqg

�
y
x
;μ

�
fgðx;μÞþPqq

�
y
x
;μ

�
fqðx;μÞ

�
;

ð17Þ

which is the simple statement that there are two possibilities
to produce a heavy quark qh in the nf FNS, the splitting of a
gluon into a qhq̄h pair, and the splitting of qh into gqh. The
gluon splitting function Pqg was given in Eq. (11) while the
quark splitting function is [36]

PqqðzÞ ¼
4

3

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
; ð18Þ

where the plus distribution is defined as

Z
dzfðzÞgðzÞþ ¼

Z
dz½fðzÞ − fð1Þ�gðzÞ: ð19Þ

The important observation here is that Pqq in Eq. (18)
has a peak at z ¼ 1. Therefore, the contribution of Pqq
to the evolution of ftðx; μÞ is more important near x ¼ 1,
resulting in a larger effect from the resummation of the
logarithms implicit in Eq. (17). In a hadron collider at
center-of-mass energy

ffiffiffi
S

p
, a new particle produced at

the rapidity y and mass mϕ probes the momentum
fractions

x1 ¼
mϕffiffiffi
S

p ey; x2 ¼
mϕffiffiffi
S

p e−y: ð20Þ

So for production of a particle with some fixed mass mϕ

at a given rapidity, a collider with a larger
ffiffiffi
S

p
would

require typically smaller values of x, where the top
quark PDF is well approximated by the NLO perturba-
tive result, as can be seen explicitly from Fig. 3(b). That
is, the perturbative expansion is expected to be more
accurate at higher

ffiffiffi
S

p
. This is the same observation as

in b-quark-initiated processes, such as single top and
hbb̄ production, where effects of resumming logarithms
into a b PDF are more pronounced at the Tevatron than
at the LHC [10].
The third factor is related to the fact that the hard

momentum transfer, Q2, although estimated to be of the
same order as m2

ϕ, is in reality slightly less than m2
ϕ due

to phase space suppression. This is emphasized and
demonstrated very clearly in Ref. [10] in the case of
the bottom quark. For the top quark the argument is no
different. In the ðnf − 1Þ FNS, where the production is
given by the two-to-two process gql → ϕqh, the hard
momentum transfer Q2 is a dynamical scale set on an
event-by-event basis as [10]
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FIG. 3 (color online). Ratios of the perturbatively evolved
top quark PDF, ~ftðx; μÞ, to the solution of the DGLAP equa-
tions for the top quark PDF, ftðx; μÞ, at LO and NLO. In (a)
we show the ratio using ~fð1Þt ðx; μÞ and the LO NNPDF set
NNPDF23_LO_AS_0119 [35]. In (b) we show the ratio using
~fð2Þt ðx; μÞ and the NLO NNPDF set NNPDF23_NLO_AS_0119
[35].
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Q2ðzÞ ¼ m2
ϕ

ð1 − zÞ2
z

; z ¼ m2
ϕ

ŝ
: ð21Þ

In other words, the cross section for gql → ϕqh in the
ðnf − 1Þ FNS in the collinear region reproduces qlq̄h →
ϕ convoluted not with Eq. (9) using μ2 ¼ m2

ϕ, but with
the following expression [10,14,15]:

αs
2π

Z
1

x

dz
z
PqgðzÞfgðx=z; μÞ log

�
m2

ϕ

m2
q

ð1 − zÞ2
z

�
: ð22Þ

The argument of the logarithm is smaller than the simple
ratio m2

ϕ=m
2
q. More specifically, comparing σðnf−1Þ in the

collinear region with σðnfÞ we have [10,14,15]

σðnf−1Þ → σ̂ðqlq̄h → ϕÞ
�Z

1

τ

dx
x
f
ðnf−1Þ
ql

�
τ

x
; μ
�

×
Z

1

x

dz
z
αs
2π

f
ðnf−1Þ
g

�
x
z
; μ

�
PqgðzÞ log

�
m2

ϕ

m2
qh

ð1 − zÞ2
z

�
þ
Z

1

τ

dx
x
f
ðnf−1Þ
ql ðx; μÞ

×
Z

1

x

dz
z
αs
2π

f
ðnf−1Þ
g

�
τ

xz
; μ

�
PqgðzÞ log

�
m2

ϕ

m2
qh

ð1 − zÞ2
z

��
; ð23Þ

σðnfÞ → σ̂ðqlq̄h → ϕÞ
�Z

1

τ

dx
x
f
ðnfÞ
ql

�
τ

x
; μ

�Z
1

x

dz
z
f
ðnfÞ
qh

�
x
z
; μ

�
þ
Z

1

τ

dx
x
f
ðnfÞ
ql ðx; μÞ

Z
1

x

dz
z
f
ðnfÞ
qh

�
τ

xz
; μ

��
; ð24Þ

where τ ¼ ðmq þmϕÞ2=S and σ̂ðqlq̄h → ϕÞ are the
partonic cross sections for the two-to-one process.
Taken together, these arguments demonstrate that the

effect of resumming collinear logarithms into a top quark
PDF at a high-energy hadron collider would be signifi-
cantly smaller than one might typically expect and indeed
less important than that of resumming analogous loga-
rithms into a bottom quark PDF at the LHC.

IV. AN EXAMPLE: THE CHARGED HIGGS
PRODUCTION

As an example of the effect of the resummation of
large logarithms into the top PDF, we now consider
inclusive charged Higgs production. Charged Higgs
production in association with a top and bottom quark
has been considered, both at LO and at NLO, previously
in the literature [14,15,28–32,46]. Here, we re-examine
the rate at

ffiffiffi
S

p ¼ 100 TeV in a 6FNS and numerically
assess the impact of resumming collinear logarithms into
a top quark PDF by comparing to a 5FNS calculation.
We consider a charged Higgs that couples with the Hþ t̄b
vertex,

Γ ¼ ig

2
ffiffiffi
2

p ðgLð1 − γ5Þ þ gRð1þ γ5ÞÞ: ð25Þ

In our results below, we take the MSSM couplings

gL ¼ mt

mW tan β
gR ¼ mb tan β

MW
; ð26Þ

with tan β ¼ 5 for illustration. We reproduce the relevant
contributions to the charged Higgs cross section here for
convenience.

A. LO

At LO in the 6FNS, there is only the tree-level con-
tribution from tb̄ → Hþ,

σ0 ¼
πg2

24ŝ
ðg2L þ g2RÞ

Z
1

0

dx

�
ftðxÞfb̄

�
τ

x

�
þ ft

�
τ

x

�
fb̄ðxÞ

�
;

ð27Þ

where t and b̄ are considered as massless partons. In the
language of the 5FNS, this is simply the leading log
approximation to the full cross section. It contains all
terms cn1ðαsLÞn and so is correct up to terms of order αs.

B. Comparing to the 5FNS

While the above calculation provides a better approxi-
mation to the full cross section than the 5FNS LO
calculation when the collinear logarithm arising from gluon
splitting is large, it is insufficient to describe charged Higgs
production at finite pT . In particular, the 5FNS LO
calculation includes the process gb̄ → t̄Hþ, which provides
the leading contribution to the Higgs pT distribution. To
compare our 6FNS calculation to the 5FNS, we now add
this process to the 6FNS LO calculation. The spin- and
color-averaged amplitude for charged Higgs production
gðpÞb̄ðp0Þ → t̄ðkÞHþðk0Þ is given by [14]
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σ̂gb ¼
1

16πŝ2

Z
tmax

tmin

jMj2dt

jMj2 ¼ 2π2ααSðg2L þ g2RÞ
3sin2θW

�
ŝ − 2m2

t

m2
t − t̂

þ 2m2
t ðm2

H − t̂Þ
ðm2

t − t̂Þ2

þm2
t − t̂
ŝ

−
2ðm2

H − t̂Þðŝþm2
t −m2

HÞ
ŝðm2

t − t̂Þ
�
; ð28Þ

where ŝ ¼ ðpþ p0Þ2, t̂ ¼ ðp − kÞ2, û ¼ ðp − k0Þ2. The
contribution to the hadronic cross section is

σ1 ¼
Z

dx1dx2σ̂gbðŝÞ½fgðx1Þfb̄ðx2Þ þ ð1↔2Þ�: ð29Þ

In this expression, b is taken as a massless parton, while the
top quark mass is retained, in agreement with the simplified
Aivazis-Collins-Olness-Tung (S-ACOT) scheme [17].
Equation (29) contains a contribution where the gluon

splits into a collinear tt̄ pair, followed by the top quark
scattering from the incoming b quark,

σS ¼
πg2

24ŝ
ðg2L þ g2RÞ

Z
1

0

dx

�
~fð1Þt ðxÞfb̄

�
τ

x

�

þ ~fð1Þt

�
τ

x

�
fb̄ðxÞ

�
; ð30Þ

where ~fð1Þt is the OðαsÞ perturbative approximation to the
top quark distribution of Eq. (9). This contribution is
already included in Eq. (27) and must be subtracted in
order to avoid double counting. The consistent total cross
section is

σOTðpp → HþXÞ ¼ σ0 þ σ1 − σS; ð31Þ

where the subscript indicates that this is the final result of
the authors of [15]. σOT contains all contributions of order
ðαsLÞn and αs and hence captures the LOþ LL calcu-
lation of the 5FNS. In Fig. 4, we show the three
contributions along with the final result as a function of
mH, for μF ¼ μR ¼ mH, using the 6FNS LO PDF set
NNPDF23_LO_AS_0119. The subtraction term nearly
cancels against the LO cross section for small mH.
Even for large mH where one expects the logarithms to
be large, the cancellation between the subtraction term and
the LO cross section is still quite effective, signaling the
effect of resumming logarithms into the top PDF to be
small. At large mH the difference between the 2 → 2 cross
section and the full result is in the order of 50%.
While σ0 is significantly larger than σ1, its influence is

canceled nearly completely by σS. The relative difference
between σ1 and σOT corresponds to the effect of the
c21; c31;… terms in the cross section that are obtained in
the 6FNS by using the top PDF. The difference is small up
to very large charged Higgs masses, indicating that a fairly

reliable prediction for charged Higgs production may be
obtained from the 5FNS, where the leading process
is gb̄ → t̄Hþ.

C. NLL

We now calculate the charged Higgs cross section at
NLL order, including all terms in the first two columns of
Eq. (6) consistently. In order to capture the effect of these
terms, we must refine the calculation of the previous section
as follows:

(i) We employ 6NFS NLO PDFs.
(ii) We include real and virtual corrections to the 6NFS

LO calculation.
(iii) We include the new process gt → bHþ.

The first of these changes is straightforward, and our results
below use the PDF set NNPDF23_NLO_AS_0119.3

The real and virtual corrections to tb̄ → Hþ may be
written [48]

σ̂αs0 ¼ σ̂0

�
δð1 − zÞ

�
1 −

4αs
3π

�
1 −

π2

3

��

þ 4αs
3π

�
1 − zþ ð1þ z2Þ

�
logð1 − zÞ2
ð1 − zÞ

�
þ

þ 1þ z2

ð1 − zÞþ
log

�
ŝ
μ2

���
; ð32Þ

where σ̂0 ¼ πg2ðg2L þ g2RÞ=ð24ŝÞ is the LO partonic cross
section and z ¼ m2

H=ŝ. This cross section may be con-
voluted with the PDFs in the usual way to give the hadronic
cross section σαs0 .
Finally, the cross section σ01 for gt → bHþ is given by

Eqs. (28) and (29) with t↔b. Here, t is taken as a massless
parton, again in accordance with the S-ACOT scheme. The

1000 1000050002000 30001500 7000

10 4
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0.1

1
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MH , GeV

,
pb

pp H , S 100 TeV

OT

S

1

0

FIG. 4 (color online). The calculation of the inclusive charged
Higgs cross section in the 6FNS using Eq. (31). All curves use the
PDF set NNPDF23_LO_AS_0119.

3The S-ACOT scheme is equivalent to the FONLL-A scheme
of the NNPDF collaboration [47] for the NLO PDF set [33].

REDUX ON “WHEN IS THE TOP QUARK A PARTON?” PHYSICAL REVIEW D 90, 014005 (2014)

014005-7



bmass is retained, although its effect is minimal. Just as the
expression for σ1 contains a contribution from a gluon
splitting into a collinear tt̄ pair, σ01 contains a contribution
from a gluon splitting into a collinear bb̄ pair, and so we
must subtract the double-counted term analogous to
Eq. (30) for consistency:

σ0S ¼
πg2

24ŝ
ðg2L þ g2RÞ

Z
1

0

dx

�
ftðxÞ ~fð1Þb̄

�
τ

x

�

þ ft

�
τ

x

�
~fð1Þ
b̄
ðxÞ

�
; ð33Þ

where now ~fð1Þ
b̄
ðxÞ is the one-loop bottom PDF defined

according to Eq. (9).
Putting everything together, we have the full NLL cross

section

σNLLðpp → HþXÞ ¼ σαs0 þ σ1 − σS þ σ01 − σ0S; ð34Þ

which contains all terms proportional to ðαsLÞn
and αsðαsLÞn.
The result of the full NLL calculation is compared with

those of the previous sections in Fig. 5. In this figure, we
also show the LO contribution in a 5FNS scheme from the
partonic scattering gb̄ → t̄Hþ, using 5FNS PDFs. While
the relative impact of switching from LO to NLO PDFs is
small, as we can see by comparing the LL curves in Figs. 4
and 5, the change to NLO PDFs significantly affects the
cancellation between σ0 and σS, as evidenced by the σOT
curves in these figures. Moreover, the effects of including
the new process gt → bHþ with the appropriate subtraction
and the QCD corrections to tb̄ → Hþ nearly cancel, as the
full NLL calculation is quite close to the LOþ LL result.
Our final NLL result varies from the LO 5NFS calculation
by a factor of ≈2–3, and this difference corresponds to the
effect of including the cross section terms proportional to

1000 1000050002000 30001500 7000

10 4

0.001

0.01

0.1

1

10

MH , GeV

,
pb

pp H , S 100 TeV

NF 5

NLL

OT

LL

FIG. 5 (color online). Comparison of the LL, LOþ LL, and
NLL cross sections for charged Higgs production. All 6FNS
curves use the PDF set NNPDF23_NLO_AS_0119, while the
“NF ¼ 5” curve uses the PDF set NNPDF23_NLO_FFN_
NF5_AS_0119.
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FIG. 6 (color online). pT distributions of the charged Higgs in
various processes contributing to its production.
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FIG. 7 (color online). The scale dependence of the full NLL
result for charged Higgs production. The three curves represent
the cross section at scales 0.5; 1; 2 ×mH.
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ðαsLÞnþ1 and αsðαsLÞn for n ≥ 1 by resumming collinear
logarithms into the top PDF.
We also study whether this cancellation occurs

consistently over the range of kinematic variables. In
Figs. 6(a) and 6(b), we plot dσ=dpT from the three 2 → 2
contributions to the full NLL cross section for mH ¼
300 GeV and mH ¼ 2 TeV, taking μ ¼ mH.

4 In the
6FNS, Higgses with small pT ≲mt mostly come from
gt → bHþ for mH ¼ 300 GeV and tb → gHþ for
mH ¼ 2 TeV, while those with large pT ≳mt are gen-
erated in the gb → tHþ channel. This can be easily
understood from the kinematics as the top is quite
massive and the bottom and the gluon are effectively
massless. Figure 6 also suggests that the LO result in
5FNS is not sufficient to describe the charged Higgs
production in the small pT ≲mt. In this regime one
should either switch to a 6FNS calculation at NLL order,
as is done in this work, or proceed to the NLO
calculation in the 5FNS, which is more involved than
the NLL computation presented here. Alternatively, one
could interpolate between the NLL 6FNS result at small
pT and the LO 5FNS result at large pT , switching over
at pT ∼mt.
It is also interesting to contrast the situation with the

associated production with a b quark. In this case, our
findings from Fig. 6 indicate that, at LO in 4FNS, the pT
spectrum produced by the two-to-two process should
agree with the spectrum from the NLL calculation in the
5FNS across a wide range of pT : pT ≳mb. In other
words, the pT distributions in both schemes arise from
the same two-to-two process in associated production
with a b quark, while in the case of top quark the pT
distribution at pT ≲mt is generated from processes in
6FNS that are not existent in the 5FNS; i.e., gt → bHþ
and tb → gHþ.
Finally, the scale dependence is shown in Fig. 7, where

we show a band obtained by varying mH=2 < μ < 2mH in
the strong coupling constant and all of the PDFs entering
the NLL cross section. The uncertainty corresponding to
scale variation is considerable compared to the difference
between the NLL result and the LO 5FNS cross section,
suggesting good agreement between the 5FNS and the
6FNS cross sections.

V. CONCLUSION

In this work we studied the production cross section of
a new heavy particle ϕ in association with a top quark in
a high-energy pp collider. The collinear singularity in the
cross section could be resummed into the top quark PDF
by treating the top as a parton inside the proton. This
topic was first considered in Refs. [14,15] before the
discovery of the top quark. Given the relatively large

mass for the top, we examined the necessity of intro-
ducing a top PDF in a future pp collider atffiffiffi
S

p ¼ 100 TeV. Our findings suggest that the effect of
resummation of the collinear logs is, in general, smaller
than that in the case of associated production with the
bottom or charm quark, for mϕ ≲ 10 TeV. In particular,
including the perturbative expansion of the collinear logs
to NLL in αs turned out to be a very good approximation
for the fully evolved NLO top PDF.
Using the production of a charged Higgs boson in the

MSSM as an example, we computed the cross section at
NLL in the 6FNS and compared it with the LO cross
section in the 5FNS. For the total cross section, we found
good agreement between the LO 5FNS and the NLL
6FNS results, after taking into account the uncertainty
resulting from the scale dependence. For the pT distri-
bution, however, our computation indicates that the 5FNS
distribution matches well with the 6FNS result only in
the region of pT ≫ mt. At pT ≪ mt, the LO 5FNS result
was significantly smaller than the NLL 6FNS because of
the large mt in the final state, which suggests that a NLO
5FNS calculation is needed in this regime. Alternatively,
one could also interpolate between the 6FNS computation
at pT ≲mt and the 5FNS computation at pT ≳mt. This
is in contrast with the associated production with a b
quark. Since mb is so small, the LO 4FNS result should
already be able to generate a pT distribution for a wide
range of pT .
One topic we have not studied in this work is the

inclusion of finite mt effects in the top PDF. They are
important only in the region Q2 ∼m2

t , where the collinear
logarithms are expected to be small. However, once a
discovery is made in the future, precision measurements
would require quantitative understanding of the finite mt
effects. We hope to return to this issue in a future work.
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APPENDIX: KINEMATICS

Here, we review the calculation of the pT distribution
for an arbitrary 2 → 2 process with massive particles in
the final state. The initial particles are assumed to be
massless.

4Our general expression for the differential pT distribution can
be found in the Appendix.
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For pa; pb → p1; p2 the partonic cross section from Peskin and Schroeder is [49]

σ̂ ¼ 1

ðx1
ffiffiffi
S

p Þðx2
ffiffiffi
S

p Þjva − vbj
Z

1

ð2πÞ6
d3p1

2E1

d3p2

2E2

ð2πÞ4δ4ðpa þ pb − p1 − p2ÞjMj2

¼ 1

2ŝ

Z
1

ð2πÞ3
d3p1

2E1

1

2E2

ð2πÞδð
ffiffiffî
s

p
− E1 − E2ÞjMj2

¼ 1

2ŝ

Z
1

ð2πÞ3
dpzpTdpTdϕ

2E1

1

2E2

ð2πÞδð
ffiffiffî
s

p
− E1 − E2ÞjMj2

¼ 1

32πŝ

Z
dpzdp2

T

E1E2

δð
ffiffiffî
s

p
− E1 − E2ÞjMj2; ðA1Þ

where S is the hadronic CM energy squared, x1 and x2 are the momentum fractions of partons pa and pb such that the
partonic CM energy squared is ŝ ¼ x1x2S, jMj2 is the spin- and color-averaged amplitude, pz is the longitudinal
momentum of particle 1, which may be positive or negative, and pT is the magnitude of the transverse momentum of either
particle, which is always positive. All kinematic quantities are assumed to be in the partonic center of mass frame. The delta
function may be written

δð
ffiffiffî
s

p
− E1 − E2Þ ¼ δ

� ffiffiffî
s

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpzÞ2 þ ðpTÞ2 þm2

1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpzÞ2 þ ðpTÞ2 þm2

2

q �
¼ δðfðpzÞÞ; ðA2Þ

where

fðpzÞ ¼
ffiffiffî
s

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpzÞ2 þ ðpTÞ2 þm2

1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpzÞ2 þ ðpTÞ2 þm2

2

q
ðA3Þ

df
dpz

¼ −
pz

E1

−
pz

E2

: ðA4Þ

Performing the pz integral yields

σ̂ ¼ 1

32πŝ

Z
dp2

T

E1E2

�jpzj
E1

þ jpzj
E2

�
−1
jMj2 ðA5Þ

dσ̂
dp2

T
¼ 1

32πŝ
1

E1E2

�jpzj
E1

þ jpzj
E2

�
−1
jMj2

¼ 1

32πŝ3=2jpzj
jMj2; ðA6Þ

where we must sum over both the positive and negative
solutions of fðpzÞ ¼ 0; that is, pz ¼ jpzj and pz ¼ −jpzj.
In the CM frame,

pa ¼ ð
ffiffiffî
s

p
=2; 0; 0;

ffiffiffî
s

p
=2Þ ðA7Þ

pb ¼ ð
ffiffiffî
s

p
=2; 0; 0;−

ffiffiffî
s

p
=2Þ ðA8Þ

p1 ¼ ðE1; pT cosϕ; pT sinϕ; pzÞ ðA9Þ

p2 ¼ ðE2;−pT cosϕ;−pT sinϕ;−pzÞ; ðA10Þ

and for the positive solution,

t̂ ¼ ðpa − p1Þ2
¼ ð

ffiffiffî
s

p
=2ÞðE1 − jpzjÞ≡ t̂− ðA11Þ

û ¼ ðpb − p1Þ2
¼ ð

ffiffiffî
s

p
=2ÞðE1 þ jpzjÞ≡ t̂þ: ðA12Þ

Keeping terms from both pz solutions then, it is often
convenient to write

dσ̂
dp2

T
¼ 1

32πŝ3=2jpzj
½jMj2ðŝ; t̂ ¼ t̂−; û ¼ t̂þÞ

þ jMj2ðŝ; t̂ ¼ t̂þ; û ¼ t̂−Þ�: ðA13Þ

We may express the kinematic variables in the above cross
section as

E1 ¼
ŝþm2

1 −m2
2

2
ffiffiffî
s

p ðA14Þ

jpzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðŝ; m2

1; m
2
2Þ

4ŝ
− p2

T

r
; ðA15Þ
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where λða;b; cÞ ¼ a2 þ b2 þ c2 − 2ab− 2ac− 2bc. Then,
for two colliding hadrons A and B, the hadronic differential
cross section for PA; PB → p1; p2 is

dσ
dp2

T
¼
X
a;b

Z
dx1dx2fa=Aðx1Þfb=Bðx2Þ

dσ̂ðpa;pb→p1;p2Þ
dp2

T
;

ðA16Þ

where the sum runs over all partons a; b with pa; pb
defined as above, and the integration runs over the
region

ðm2
1 þ p2

TÞ þ ðm2
2 þ p2

TÞ
S

< x1x2 < 1: ðA17Þ
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