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Disorder and quasiparticle interference in heavy-fermion materials
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2Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA

3Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, D-01187 Dresden, Germany
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Using a large-N approach, we study the effect of disorder in the Kondo-screened phase of heavy-fermion
materials. We demonstrate that the strong feedback between the hybridization and the conduction electron charge
density magnifies the effect of disorder, such that already small concentrations of defects strongly disorder
the materials’ local electronic structure, while only weakly affecting their spatially averaged, thermodynamic
properties. Finally, we show that the microscopic nature of defects can be identified through their characteristic
signatures in the hybridization and quasiparticle interference spectrum.
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Introduction. Heavy-fermion materials are characterized by
the presence of localized degrees of freedom, i.e., magnetic
moments residing on rare-earth or actinide ions and itinerant
spd-electronic states and the strong correlations between these
degrees of freedom.1 The resulting interplay gives rise to
a wide range of ground states ranging from magnetic and
superconducting phases2–4 to semiconducting and metallic
phases5 with strongly enhanced quasiparticle mass, or without
well-defined quasiparticles,6 and even to enigmatic phases
with yet unknown order parameters.7 Only recently, scanning
tunneling spectroscopy (STS) experiments have succeeded in
probing the local electronic structure of several heavy-fermion
compounds, such as URu2Si2,8–10 YbRh2Si2,11 CeRhIn5 and
CeCoIn5,12,13 at sufficiently low energy and temperature to
infer ground-state properties. In particular, by utilizing the
spatial oscillations in the differential conductance, dI/dV ,
induced by defects and performing a quasiparticle-interference
(QPI) analysis, it was possible to map out the electronic
band structure near the Fermi energy.8,12–14 STS experiments
also reported defect-induced spatial oscillations in the hy-
bridization possessing a wavelength that is determined by
the unhybridized, small Fermi surface of the conduction
band,10 thus confirming an earlier prediction by two of us.15

Surprisingly, the same STS experiments also found that already
a small, 1% concentration of defects strongly disorders the
hybridization in the entire system, while thermodynamic bulk
measurements are largely insensitive to doping levels up to a
few percent.16 Resolving this apparent contradiction between
STS and thermodynamics clearly requires a more microscopic
understanding of defect-induced effects in heavy-fermion
materials.

In this Rapid Communication, we address this issue by
computing the effects of finite impurity concentrations on
the electronic and magnetic properties of heavy-fermion
materials. We show that a strong feedback between the
defect-induced spatial oscillations in the hybridization and
the charge density of the conduction band leads to significant
disorder in the local electronic properties already for small
impurity concentrations. At the same time, thermodynamic
properties of the system, such as the specific heat, are only
weakly affected by defect concentrations of a few percent, thus
explaining the qualitatively different STS and thermodynamic

observations. Finally, our self-consistent treatment reveals that
the form of the hybridization oscillations and of the QPI
spectrum varies for different types of impurities. This result is
not only of great importance for the interpretation of ongoing
STM experiments,12,13 but can also be employed to gain insight
into the microscopic nature of disorder.

Model. To study the effects of defects in heavy-fermion
materials, we consider the Kondo-Heisenberg Hamiltonian

H = −t
∑

〈r,r′〉,σ
c†r,σ cr′,σ − μ

∑

r,σ

c†r,σ cr,σ

+ J
∑

r

SK
r · sc

r + I
∑

〈r,r′〉
SK

r · SK
r′ , (1)

where t is the hopping element between nearest-neighbor
sites in a two-dimensional square lattice describing the
light conduction band, and c

†
r,σ (cr,σ ) creates (destroys) a

conduction electron of spin σ at site r. We choose a chemical
potential of μ = −3.618t , resulting in a Fermi wavelength
λc

F = 10 (we set the lattice spacing, a0, to unity) and an
electron density of nc � 0.062 of the (decoupled) conduction
band. J > 0 is the Kondo coupling between the conduction
electron spin operator, sc

r, and SK
r , the S = 1/2 spin operator

of the magnetic atoms, and I is the strength of the nearest-
neighbors antiferromagnetic interaction between the magnetic
atoms, which is treated here as an independent coupling
constant.14 Moreover, we consider defects in the form of
missing magnetic atoms (i.e., vacancies), and nonmagnetic
atoms that are substituted for magnetic ones, where the latter
lead to a potential scattering term U

∑
R,σ c

†
R,σ cR,σ , at the sites

R of the nonmagnetic defects.
In the large-N approach,17–19 SK

r is represented by
pseudofermion operators f

†
r,σ , fr,σ whose occupation num-

ber n̂f (r) ≡ ∑
σ 〈f †

r,σ fr,σ 〉 obeys the constraint n̂f (r) =
N/2, with N = 2 for S = 1/2. By adding the term∑

r,α εf (r)f †
r,αfr,α to the Hamiltonian, the constraint

〈n̂f (r)〉 = N/2 can be enforced through the on-site energy
εf (r).20,21 The quartic interactions in Eq. (1) can then be
decoupled by introducing the mean fields15

s(r) = J

2

∑

α

〈f †
r,αcr,α〉, χ (r,r′) = I

2

∑

α

〈f †
r,αfr′,α〉 (2)
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describing the local hybridization and the nearest-neighbors
antiferromagnetic correlations, respectively. The resulting
quadratic Hamiltonian can be diagonalized in real space
[assuming periodic boundary conditions for an (L × L) lattice,
where below, we take L = 41], allowing a self-consistent
calculation of s(r), χ (r,r′), and εf (r). Below, we take for con-
creteness J = 2t , I = 0.002t , and temperature T = 0.00022t

(unless otherwise stated) and thus study systems well inside
the Kondo-screened regime where s(r) �= 0 for all sites and
magnetic fluctuations and the resulting corrections to the
mean-field level are expected to be weak.17,19

Results. We begin by considering a system with
17 vacancies20 (∼1% concentration of defects) and present
in Figs. 1(a) and 1(b) the relative variation of the hybridization
�s(r) = [s(r) − s0]/s0, where s0 is the hybridization of a clean
lattice, and the corresponding absolute value of its Fourier
transform (FT), |�s(q)|, respectively. As predicted earlier15

and recently confirmed by STS experiments on URu2Si2,10

�s(r) exhibits isotropic oscillations with wavelength λs =
λc

F /2 = 5 [see Fig. 1(a)], arising from the Fermi surface of
the unhybridized conduction band [see Fig. 1(c)].

To understand the general momentum dependence of
|�s(q)|, and the effects of random disorder, we present in
Fig. 1(d) |�s(q)| for a single vacancy. A comparison of |�s(q)|
in Figs. 1(b) and 1(d) shows that a finite concentration of
defects leads as expected to a less well-defined momentum
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FIG. 1. (Color online) Kondo lattice with 1% of vacancies.
Contour plot of (a) �s(r), and (b) the absolute value of its Fourier
transform, |�s(q)|. (c) Large and small Fermi surfaces for an
unperturbed lattice. (d) |�s(q)| and �s(r) (see inset) for a single
vacancy. Contour plot of (e) �χ (rm) and (f) |�χ (q)|.

structure of |�s(q)|. Moreover, a detailed analysis shows
that the momentum dependence of |�s(q)|, and in particular
its maxima at q = (π,π ), q = (0,π ), and q = (π,0), are
predominantly determined by the four strong peaks in �s(r) in
the immediate vicinity of the vacancy [see inset of Fig. 1(d)].
In |�s(q)|, these peaks completely overshadow the long-
distance, λc

F /2 oscillations in �s(r) (whose amplitude is
much smaller) such that their expected signature in |�s(q)|
at qs = 2π/λs ≈ 1.26 is not clearly observed [see Fig. 1(b)].
Finally, we present in Fig. 1(e) the relative variation of
the magnetic bond variable �χ (r,r′) ≡ [χ (r,r′) − χ0]/χ0
[plotted at rm = (r + r′)/2] where χ0 is the magnetic bond
variable for a clean lattice. As before,15 we find that �χ (r,r′)
exhibits strong oscillations along the lattice diagonal, arising
from the large degree of nesting of the hybridized FS.15 As a
result, the absolute value of the Fourier transform |�χ (qm)|
of �χ (rm) shown in Fig. 1(f) exhibits the anisotropic form of
the hybridized FS [see Fig. 1(c)] [note that �χ (rm) possesses
a lattice constant of a0/2, implying that for its first Brillouin
zone, one has −2π/a0 � q

(x,y)
m � 2π/a0].

We next consider the differential conductance dI/dV and
the absolute value of its FT, the QPI intensity |N (q)| (for a
derivation, see Ref. 14). It was previously shown22 that the
energy-dependent dI/dV line shape sensitively depends on
the ratio tf /tc (which is of the order of a few percent), where
tc and tf are the amplitudes for tunneling of electrons from the
STS tip into the conduction and f -electron bands, respectively.
While the overall magnitude of |N (q)| varies with tf /tc, we
find that its momentum dependence is rather insensitive to
tf /tc, and we therefore take for concreteness tf /tc = 0.03. In
Figs. 2(a) and 2(b) we present the QPI spectrum, obtained
for the system shown in Fig. 1, at two different energies.
The presence of randomly distributed defects smears out the
QPI spectra, as follows from a comparison with those spectra
obtained for a single defect, shown in Figs. 2(c) and 2(d). At
the Fermi level, E = 0, the QPI spectrum exhibits a peak at
q0 = (π,π ) [see Fig. 2(c)], arising from scattering between the
almost parallel portions of the FS, as shown in Fig. 2(e). With
decreasing energy, new peaks appear in the QPI spectrum away
from the diagonal [q2 in Figs. 2(b) and 2(d)] whose spectral
weight quickly becomes larger than that of the peaks, denoted
by q1, close to the diagonal [Fig. 2(e)]. This shift is a direct
consequence of the spatial variation of the hybridization, as
follows from a comparison with a QPI spectrum obtained
within the Born approximation14 where the hybridization is
spatially constant, and the main spectral weight still resides
with the peaks (at q1) close to the diagonal [see Fig. 2(f)]. We
thus conclude that the spatial oscillations in the hybridization
affect the QPI spectra, and in particular their spectral weight
distribution, which is of great importance for the interpretation
of experimentally obtained spectra, and the extraction of the
underlying electronic band structure.

The above results change qualitatively when one considers
a system with 1% of nonmagnetic defects (see Fig. 3)
with scattering strength U = −0.7t , where the defects are
located at the same positions as the vacancies of Fig. 1. A
comparison of �s(r) shown in Fig. 3(a) with that in Fig. 1(a)
demonstrates that the introduction of a nonmagnetic scattering
potential significantly alters the spatial pattern of hybridization
oscillations. In particular, the oscillations acquire a larger
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FIG. 2. (Color online) Contour plot of the QPI intensity |N (q)| for
(a), (b) the system of Fig. 1, and (c), (d) a system with a single defect,
for E = 0 and E = −0.001t . (e) Scattering vectors dominating the
QPI intensity and equal energy contours. (f) QPI intensity obtained
using the Born approximation.

amplitude, become much more isotropic, and the maxima in
�s(r) in the immediate vicinity of the defect are rotated by
π/4. These changes are particularly apparent in the Fourier
transform, |�s(q)|, shown in Fig. 3(b), which exhibits an
almost isotropic pattern. These changes arise from a strong
feedback effect of the charge density on the hybridization: The
s-wave form of the nonmagnetic scattering potential leads to
almost isotropic spatial oscillations of the conduction electron
charge density15 (not shown), which are reflected in those of
�s(r). As a result, the oscillations in |�s(q)| are dominated
by 2kF oscillations of the unhybridized Fermi surface [see
black line in Fig. 3(b)] reflecting the strongly coupled nature
of the system. The fact that the maximum intensity in |�s(q)|
is located at slightly larger momenta than 2kF arises from the
exponential envelope of the spatial oscillations in �s15 and
the short decay length (ξ ≈ 2.2). Thus, while both vacancies
and nonmagnetic defects lead to spatial oscillations in �s with
wavelength λs = λc

F /2, these oscillations only become visible
in the Fourier transform �s(q) if their amplitude is enhanced
by oscillations in the conduction electron charge density in-
duced by the nonmagnetic defects. These conclusions provide
insight into the microscopic nature of defects: In particular,
the recent observation of hybridization oscillations in 1%
Th-doped URu2Si2,10 where the same 2kF oscillations can be
found in �s(r) and �s(q), suggests that the Th atoms exert an
appreciable nonmagnetic scattering potential. The changes in
�s(q) are also reflected in the QPI spectra shown in Figs. 3(c)
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FIG. 3. (Color online) Kondo lattice with 1% of nonmagnetic
impurities with U = −0.7t . Contour plot of (a) �s(r), and (b) the
absolute value of its Fourier transform, |�s(q)|. QPI intensity for a
system with 1% of defects (c), (d) and with a single defect (e), (f).

and 3(d) [for comparison, we also present in Figs. 3(e) and 3(f)
the QPI spectra for a system with a single nonmagnetic defect],
which now differ significantly from those obtained in a system
with vacancies (see Fig. 2). In particular, new peaks emerge
in the QPI spectrum for E = 0 [see black line in Fig. 3(e)]
which reflect those peaks found in |N (q)| [see Fig. 3(b)]. We
note that in the area between two (closely) placed defects [see
yellow arrows in Fig. 3(a)] the spatial hybridization pattern is
strongly affected by nonlinear quantum interference effects. In
particular, comparing the local hybridization pattern with that
obtained by simply superposing the hybridization patterns of
single, noninterfering defects, we find that these nonlinearities
in general suppress large oscillations in the hybridization, i.e.,
in �s(r). Finally, we verified that the above results remain
qualitatively unchanged for defect concentrations up to 2%
and different spatial disorder realizations.

Next, we demonstrate that even well below the Kondo
temperature of the system, the spatial hybridization pattern
and the QPI spectra can exhibit a significant temperature
dependence. To this end, we again consider the system of
Fig. 1 with 1% of vacancies but with a smaller J = 1.47t and
I = 0.0002t . In Figs. 4(a) and 4(b) we present the resulting
�s(r) and |�s(q)|, respectively, at T1 = 0.00002t , which are
similar to the results shown in Fig. 1. However, upon raising the
temperature to T2 = 0.00022t , we find a qualitative change in
the spatial form of �s(r) [see Fig. 4(c)]: The spatial extent of
the oscillations as well as their overall amplitude increases
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FIG. 4. (Color online) Kondo lattice with 1% of vacancies.
Contour plot of (a) �s(r), and (b) |�s(q)| at T = T1 = 0.00002t .
(c) �s(r), and (d) |�s(q)| at T = T2 = 0.00022t . (e) Equal energy
contours at ±kBT1 (blue lines) and ±kBT2 (red lines). (f) QPI
spectrum for E = −0.001t at T = 0.00022t .

significantly. As a result, there also occurs a significant
redistribution of spectral weight in |�s(q)| [see Fig. 4(d)],
which is now dominated by four peaks along the bond
directions. The enhanced oscillations in the hybridization are
now directly reflected in the QPI spectra, as shown in Fig. 4(f)
where we present the QPI pattern for E = −0.001t which
exhibits a very similar structure to |�s(q)|. We note that these
drastic changes in the hybridization and the QPI spectra occur
well below the Kondo temperature TK , which we estimated
from the vanishing of the hybridization for a clean system as
TK ≈ 0.004t , such that T1 < T2 
 TK . To understand these
significant changes, it is necessary to consider the states in
the Brillouin zone (BZ), which are excited at T1,2, and which
(roughly) lie between the equal energy contours E = ±kBT1,2

shown in Fig. 4(e). At T1, states in only a small region of the

BZ are excited [between the blue lines in Fig. 4(e)], leading
to the pattern of �s(r) shown in Fig. 4(a). However, at T2,
states in a much larger portion of the BZ are excited (between
the red lines), leading to the significant changes in �s and the
QPI spectra shown in Figs. 4(c), 4(d), and 4(f), respectively.
The strong temperature dependence discussed here is mainly
an effect of the weak f -electron dispersion, resulting from a
small value of I , and will therefore decrease with increasing
strength of the antiferromagnetic interactions.

Our results discussed above possess two important experi-
mental implications. First, it is apparent from the contour plots
of �s in Figs. 3(a) and 4(c) that already a small concentration
of defects, indeed as small as 1%, can essentially disorder
the hybridization in the entire system. To quantify this, we
consider the hybridization s(r) at a site r disordered when it
deviates by more than 1% from its value in the clean system
(such a deviation corresponds to the experimental resolution
limit in measuring the resulting changes in the energy width
of the Kondo resonance13). We then find that for the case of
nonmagnetic defects shown in Fig. 3(a), 57.9% of the sites are
disordered, whereas for the case shown in Fig. 4(c), 78.2% of
the sites are disordered. This result provides an explanation
for the strong disorder effects observed by Hamidian et al.10

in (weakly) 1% Th-doped URu2Si2.
Second, while the hybridization can be strongly disordered

even for a small concentration of defects, the specific heat of
the system is hardly affected. The specific heat is proportional
to the spatially averaged density of states,1 〈Ntot(r,ω)〉 =
〈Nc(r,ω)〉 + 〈Nf (r,ω)〉 at ω = 0, where Nc,Nf are the density
of states of the c- and f -quasiparticle bands,14 respectively,
and 〈· · · 〉 denotes spatial averaging. For the two most disor-
dered cases shown in Figs. 3(a) and 4(c), the specific heat
decreases only by about 8% for the system in Fig. 3(a), while
the change is less than 0.1% for the case of Fig. 4(c). These
changes are quantitatively consistent with the changes seen
experimentally in the specific heat of heavy-fermion materials
with defect concentration of 1%.16 Thus, we conclude that
while the electronic structure of heavy-fermion materials
can be heavily disordered already by small concentration
of defects, the disorder’s main signature appears in the
hybridization and dI/dV patterns, while the spatially averaged
specific heat undergoes only modest changes, thus explain-
ing the apparent contradiction between spectroscopy and
thermodynamics.
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