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We investigate the properties of the collective plasmon excitations in Dirac semimetals by using the
methods of relativistic field theory. We find a strong and narrow plasmon excitation whose frequency is in
the terahertz (THz) range which may be important for practical applications. The properties of the plasmon
appear universal for all Dirac semimetals, due to the large degeneracy of the quasiparticles and the small
Fermi velocity, vF ≪ c. This universality is closely analogous to the phenomenon of “dimensional
transmutation” that is responsible for the emergence of dimensionful scales in relativistic field theories such
as quantum chromodynamics.
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The recent experimental discovery of Cd3As2 [1,2] and
Na3Bi [3] Dirac semimetals enables the study of the
properties of chiral quasiparticles in three spatial dimen-
sions. As demonstrated by photoemission [1–3], Dirac
semimetals are characterized by a linear dispersion rela-
tion for fermion quasiparticles, and thus represent three
dimensional analogs of graphene. While the distinctive
behavior of chiral fermions (e.g., Klein tunneling) is
already evident in two dimensional graphene, the physics
of chirality in three dimensions opens a number of new
possibilities. In particular, the presence of the chiral
anomaly in ð3þ 1Þ dimensional theory should make it
possible to observe “chiral magnetic effect (CME)”—a
nondissipative current induced by parallel electric and
magnetic fields—in such systems; for a review, see [4].
See Refs. [5–7] for other studies of chiral anomaly in Weyl
semimetals. The studies of magnetotransport in Cd3As2
have already begun [8].
The linear spectrum of quasiparticles also opens

new possibilities for photonics or plasmonics. In
graphene, which is two dimensional (2D), the plasmon
mode does not appear in the random phase approximation
(RPA) [9]. A plasmon does arise after doping, or the
inclusion of electron-electron interactions, with a
plasmon frequency that is in the terahertz (THz) range
of frequency [10]. This range is important for diverse
practical applications ranging from medical imaging to
security.
In this Letter, we investigate the properties of the

collective plasmon excitation in three dimensional (3D)
Dirac semimetals. Relative to 2D graphene, because of the
extra spatial dimension, a strong and narrow plasmon peak
already appears in the random phase approximation. At
zero chemical potential and for a broad range in temper-
ature, the plasmon frequency is approximately linear in T
and is in the THz range at room temperature.

Dirac semimetals are characterized by strong coupling
and a large fermion degeneracy, N. We show that this leads
to universal properties of the plasmon excitation: the
plasmon spectrum does not depend on the value of the
coupling constant nor upon the degeneracy, N, of the Dirac
point. The reason underlying this universality is the
quantum scale anomaly of relativistic field theory, where
it is known as “dimensional transmutation”. In quantum
chromodynamics (QCD), this phenomenon is responsible
for the masses of all strongly interacting particles and thus
for ∼95% of the mass of the visible Universe.
To compute the plasmon spectrum, we need a method

valid at strong coupling. This is because for both 3D Dirac
semimetals and for 2D graphene, the role of the fine
structure constant αem ¼ e2=ð4πℏcÞ is played by the
effective coupling α ¼ e2=ð4πℏvÞ, where v ≪ c is the
Fermi velocity. The Fermi velocity in Cd3As2 was exper-
imentally determined [8] to be v≃ 9.3 × 105 m=s≃
1=300c, close to the value in graphene. Because of this,
the effective coupling constant α≃ 2.2 is very large. This is
comparable to the value of the strong coupling constant in
the quark-gluon plasma, near the deconfining transition
in QCD.
Generally, the photon propagator cannot be computed

perturbatively in strong coupling. However, there is an
alternate expansion possible. The degeneracy factor of
fermion quasiparticles is large: due to the degeneracy in
the electron spin and double valleys, N ¼ 4 for both 3D
Dirac semimetals and for graphene. We can then use a large
N expansion to compute the photon propagator to leading
order in 1=N. At nonzero temperature and density, the
result for the photon propagator is similar to that obtained
in the hard thermal loop (HTL) approach to the quark-gluon
plasma [11,12]. The HTL approximation is used, e.g., to
compute the rate of electromagnetic radiation from the
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quark-gluon plasma [13]. In this Letter, we employ similar
methods for evaluating the plasmon spectrum and damping
rate in Dirac semimetals.
When the number of fermions species N is large, the

photon dynamics is dominated by dressing the photon with
the one loop fermion diagrams. More precisely, in the
effective largeN action for the photon, the dominant kinetic
term is provided by the large N enhanced self-energy
arising from one loop fermion diagram, which gives the
leading photon propagator in the large N perturbation
scheme. As a result, the photon propagator is suppressed
by 1=N, and photon-mediated interactions are suppressed
by 1=N, so the fermion dynamics are those of a free theory.
As long as N is sufficiently large, this remains true even at
strong coupling [14]. A similar large N suppression also
holds true for higher photon vertices generated by fermion
one loop diagrams. Further, we can neglect the scale
dependence of the Fermi velocity, as that originates from
loop corrections to the fermion propagator. Indeed, for
graphene, the suppression of the dependence of the velocity
scale with 1=N is manifest [15]. One needs to include
these 1=N corrections to correctly estimate the quality of
large N approximation; we leave these studies for future
investigations.
In the one loop approximation at large N, the longi-

tudinal Coulomb and the transverse sectors of the plasmon
decouple from one another. In the following, we focus on
the Coulomb sector. (We note, however, that in the static
limit in which we compute, the transverse and Coulomb
plasmons are degenerate.) From the above discussion, the
effective coupling in the Coulomb sector is

λðΛcÞ≡ Ne2ðΛcÞ
v

: ð1Þ

We emphasize here the dependence on the physical UV
lattice cutoffΛc at which the observed value of the coupling
is defined:

e2ðΛcÞ≃ 1

137
× ð4πÞ ≈ 0.1: ð2Þ

It is well-known that in a gauge theory with massless
fermions, there is no intrinsic notion of the coupling
constant: the coupling constant changes, or “runs”, as
the length scale at which it is probed changes. Hence,
one can trade the value of the coupling constant for the
dimensionful scale at which it is defined, which is known as
“dimensional transmutation”. For our purposes, we can
define this scale as that where the coupling blows up, at the
Landau pole ΛL. The physical observables then depend
only upon the ratio of an external scale, Q, at which the
coupling is measured toΛL. At one loop order, the coupling
λðQÞ at a scale Q is given by

λðQÞ ¼ λðΛcÞ
1 − λðΛcÞ

12π2
log

�
Q2

Λ2
c

� ¼ 12π2

log
�
Λ2
L

Q2

� : ð3Þ

The first equality in Eq. (3) contains a Landau pole at
ΛL ≡ Λc exp½6π2=λðΛcÞ�, which is where the coupling
constant diverges. We can then rewrite this as the second
equality in Eq. (3), which shows that the coupling is a
function solely of the ratioQ=ΛL. That is, Λc and λðΛcÞ are
transmuted to a single scale ΛL, which is the only
dimensionful parameter of the theory. This means that at
nonzero temperature T and chemical potential μ, any
observable in the photon sector is of the form

TΔf

�
T
ΛL

;
μ

T

�
: ð4Þ

Here, Δ is the mass dimension of the observable; in this
Letter, it is the plasmon frequency, with Δ ¼ 1. The
function fðx; yÞ depends upon the observable in question,
but is otherwise universal: all of the dependence on Λc and
λðΛcÞ is included in the single parameter, ΛL. It is worth
emphasizing that neither N or v appears in the function
fðx; yÞ. This is most powerful, as it is then possible to find
fðx; yÞ with ease in the one-loop approximation valid at
large N. In this Letter, we compute the universal function
fðx; yÞ for the plasmon frequency at zero spatial momen-
tum. It is worth emphasizing that the “vacuum” contribu-
tion to the one loop diagram, from zero temperature and
density, plays a crucial role in realizing this universality.
(This is not captured by the hard thermal loop limit, which
neglects the vacuum contribution.)
The limit of strong coupling is defined as follows. Given

the physical lattice cutoff, Λc, with a fixed e2ðΛcÞ ≈ 0.1, a
large value of N=v can give a large value of λðΛcÞ. Thus, in
the strong coupling limit, ΛL ¼ e6π

2=λðΛcÞΛc ≈ Λc, any
observable in the photon sector at nonzero T and μ becomes

TΔf

�
T
Λc

;
μ

T

�
; ð5Þ

with the same function fðx; yÞ. That is, the result is
independent of the values of N, v, or e2ðΛcÞ ≈ 0.1. We
call this a universality of strong coupling.
For N ¼ 4 and 1=v ¼ 300, we have

λðΛcÞ=6π2 ≈ 2; ð6Þ

so that

ΛL ≈ 1.65Λc: ð7Þ

In spite of the uncertainty in the value of Λc, it is thus
reasonable to assume that the strong coupling limit, and so
Eq. (5), are justified.
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Our main novel result is a complete determination of the
function fðx; yÞ for the plasmon frequency (Δ ¼ 1) at zero
spatial momentum in one-loop large N approximation. The
resulting plasmon exhibits the scaling behavior expected
from the quantum dimensional transmutation phenomenon.
Our result gives a concrete prediction for the plasmon
frequency in Dirac semimetals which has a universal form.
We now turn to a summary of the details of the

computation of the plasmon frequency. The plasmon arises
from the singularity in the longitudinal component of the

retarded photon propagator. In Coulomb gauge, ~∇ · ~A ¼ 0,
this propagator is

Π00
R ðpÞ≡ hA0ðpÞA0ð−pÞi ¼ i

jpj2 − ΠL
RðpÞ

;

ΠL
RðpÞ≡ hJ0ðpÞJ0ð−pÞiR: ð8Þ

The one-loop expression for the longitudinal retarded self-
energy ΠL

RðpÞ consists of two parts: the first in vacuum, at
T ¼ μ ¼ 0, and the second from T, μ ≠ 0. The contribution
in vacuum is

Πvac
R ðpÞ ¼ Ne2ðΛcÞjpj2

12π2v
log

�
−p2

Λ2
c

�����
p0→p0þiϵ

; ð9Þ

where the square of the four momentum is p2 ¼ ðp0Þ2 −
v2jpj2 and Λc ≈ 5 eV ≈ 105 K for Cd3As2 is the ultraviolet
cutoff in the energy spectrum of chiral quasiparticles,
which is the maximum energy at the boundary of
Brillouin zone measured in angle-resolved photoemission
spectroscopy (ARPES) experiments. The second part from
T, μ ≠ 0, after rescaling the spatial momentum integration
variable from k to k=v, is given by

Πth
R ðpÞ ¼

Ne2ðΛcÞ
2π2v3

Z
∞

0

dkk2N ðkÞIðp; kÞ; ð10Þ

where

Iðp; kÞ

¼
Z

1

−1
dx

�
2kþ p0 þ vjpjx

ðp0Þ2 − v2jpj2 þ 2p0k − 2vjpjkxþ iϵðkþ p0Þ

−
2k − p0 − vjpjx

−ðp0Þ2 þ v2jpj2 þ 2p0k − 2vjpjkxþ iϵðk − p0Þ
�
;

ð11Þ

and N ðkÞ ¼ ½eðk−μÞ=T þ 1�−1 þ ½eðkþμÞ=T þ 1�−1 is the sum
of the Fermi-Dirac statistical distribution functions for
particles and antiparticles (holes). In the limit of small
spatial momenta, p → 0, that we focus on, Iðp; kÞ becomes

Iðp; kÞ → 4

3

kv2p2

ðp0Þ2ðkþ p0

2
þ iϵÞðk − p0

2
− iϵÞ

þO(ðp2Þ2)

ð12Þ

The equation for the plasmon frequency, p0 ¼ ωpl, after
changing the integration variable k → k̄ ¼ k=T and intro-
ducing μ̄ ¼ μ=T, is

ðp̄0Þ2 log
�
−ðp̄0 þ iϵÞ2 · T

2

Λ2
L

�

þ 8

Z
∞

0

dk̄k̄3
�

1

ek̄−μ̄ þ 1
þ 1

ek̄þμ̄ þ 1

�

×
1

ðk̄þ p̄0

2
þ iϵÞðk̄ − p̄0

2
− iϵÞ

¼ 0; ð13Þ

where p̄0 ¼ p0=T. In this expression, all other parameters
disappear and are replaced by the single scale ΛL ¼
e6π

2=λðΛcÞΛc ≈ 1.65Λc as discussed before. This shows that
the solution for the plasmon frequency takes the form

ωplðTÞ ¼ TfðT=ΛL; μ=TÞ; ð14Þ

where the function fðx; yÞ is universal, independent of the
values of the coupling constant e2ðΛcÞ, degeneracy N, and
the Fermi velocity v.
For small x≡ T=ΛL and xy≡ μ=ΛL, the function fðx; yÞ

can be found to agree with the HTL method with running
coupling constant, depending on the value of y ¼ μ=T. In
the case y ≪ 1, the result is

fðx; yÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðπ2

3
þ y2Þ

logð1=xÞ

s
; y ≪ 1; x ≪ 1; ð15Þ

and in the case of y ≫ 1,

fðx; yÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2y2

log ð1=xyÞ

s
; y ≫ 1; xy ≪ 1: ð16Þ

For a general x and y, fðx; yÞ is complex valued; we have
evaluated it numerically. The imaginary part of fðx; yÞ is
consistently smaller than its real part, which allows us to
find the imaginary part in first order perturbation to the real
part. Writing

fðx; yÞ ¼ p̄0 ¼ ωpl

T
− i

γ

T
≡ ω̄pl − iγ̄; ð17Þ

the equation for the real part of ω̄pl > 0 is
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ω̄2
plðlog xþ log ω̄plÞ þ 4P

Z
∞

0

dk̄

�
1

ek̄−y þ 1
þ 1

ek̄þy þ 1

�

×
k̄3

ðk̄þ ω̄pl=2Þðk̄ − ω̄pl=2Þ
¼ 0; ð18Þ

where P denotes a principal value integration. With ω̄pl

found, in linear approximation, the damping rate γ is

γ̄ ¼ −
π

4

ω̄pl

ðlog xþ log ω̄plÞ

×

�
1 −

1

eðω̄pl=2−yÞ þ 1
−

1

eðω̄pl=2þyÞ þ 1

�
: ð19Þ

The resulting real and imaginary parts of the plasmon
energy, normalized to the temperature T, are presented in
Fig. 1 as a function of logðΛL=TÞ ¼ logð1=xÞ when
y ¼ μ̄ ¼ 0.
In Fig. 2, we present the plasmon frequency in physical

units of terahertz (THz) as a function of temperature at zero
chemical potential and at a chemical potential of μ ¼
200 meV with Λc ≃ 5 eV≃ 5.8 × 104 K, which is char-
acteristic for Cd3As2 [1,2]. For the case of zero chemical

potential, we see that by changing the temperature, the
plasmon frequency can be tuned from the radio wave to the
near infrared range of the spectrum. In this entire frequency
range, the damping of the plasmon is weak, with
γ=ωpl < 0.05, so the plasmon peak is very narrow.
Let us first estimate numerically the magnitude of the

plasmon frequency that we have derived. The UV cutoff in
the energy spectrum of quasiparticles indicated by the
ARPES measurements in Cd3As2 is Λc ≃ 5 eV≃
5.8 × 104 K. For the dimensionful scale ΛL, we thus get
ΛL ≃ 1.65Λc ≃ 105 K, see Eq. (7). For the room temper-
ature of T ≃ 300 K, we get logðΛL=TÞ≃ 5.7. Figure 1 then
yields the plasmon frequency of ωpl ≃ T ≃ 6 THz≃
0.5 mm−1. We have thus found that for room temperature
Cd3As2 possesses the plasmon in the terahertz frequency
range, which may have important applications for THz
imaging. It is known that Cd3As2 undergoes a phase change
at the temperature of T ≃ 888 K [16]. For this temperature,
we get logðΛL=TÞ≃ 4.7, and from Fig. 1, the plasmon
frequency is still ωpl ≃ T, which at this higher temperature
yields a higher frequency ωpl ≃ 18 THz. At a low temper-
ature of T ¼ 3 K, we get logðΛL=TÞ≃ 10.4, and from
Fig. 1, the plasmon frequency is ωpl ≃ T which yields a
low frequency of ωpl ≃ 60 GHz≃ 1 cm−1 which is in the
radio frequency range.
We should point out that our analysis neglects possible

additional contributions to screening, or equivalently, the
value of the effective coupling constant at the infrared scale,
that are not captured by the quasiparticles with linear
dispersion relations. With a typical infrared cutoff ΛIR ¼
10 meV provided either by chemical potential or by the
(small) gap in the dispersion relation, our prediction for the
dielectric constant from Eq. (3) is

ϵ≡ e2ðΛcÞ
e2ðΛIRÞ

¼ Ne2ðΛcÞ
12π2v

log

�
Λ2
L

Λ2
IR

�
≈ 11.6; ð20Þ

which is about a factor of 3 smaller than the experimental
measurement of dielectric constant in Ref. [17]. Since the
plasmon frequency depends on these additional screening

FIG. 1 (color online). The real (left) and imaginary (right) parts of the plasmon energy, divided by the temperature,
fðxÞ≡ ωpl=T − iγ=T, as a function of logðΛL=TÞ ¼ logð1=xÞ.

FIG. 2 (color online). The plasmon frequency ωpl as a function
of temperature T.
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effects, only through the value of the coupling constant at
the infrared scale, we can accommodate them by effectively
rescaling our predictions by 1=

ffiffiffi
3

p
≈ 0.6.

Our predictions can be tested experimentally by meas-
uring the plasmon frequency at different temperatures. In
realistic systems, there can be several effects that may
invalidate our treatment that assumes the absence of mass
scales other than dimensional transmutation: for example, a
small correction to the linear dispersion relation
p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jpj2 þ ðmþ Bjpj2Þ2

p
. The presence of such terms

involving m and B will affect the result when T ≤ m or
T ≥ v2=B, but should be irrelevant for v2=B ≫ T ≫ m. We
expect that the temperature range that we discuss lies in this
validity regime, since the dispersion relation from ARPES
measurements looks quite linear in the corresponding
energy range. The dominant electron excitations for the
plasmon oscillation have the momentum p ∼ T=v with
Compton wavelength Δx ∼ v=T ∼ 270 Å, and the system
size should be larger than this to neglect possible finite size
effects. We also point out that our scaling relation Eq. (4) is
expected to be violated in the case of Weyl semimetals
where the separation of Weyl points in momentum space in
general introduces an additional scale in the problem. The
plasmon spectrum in Weyl semimetals presents an inter-
esting open problem.
In summary, plasmons in Dirac semimetals provide a

link between the quantum dynamics of relativistic field
theories and photonics. Depending on the chemical poten-
tial, which can be controlled by doping, Dirac semimetals
can be used as sensors or emitters of electromagnetic
radiation in a broad frequency range, between radio waves,
∼100 GHz, and near infrared, 50 THz.

We thank D. Son and M. Stephanov for discussions. This
work was supported in part by the U.S. Department of
Energy under Contracts No. DE-FG- 88ER40388 and
No. DE-AC02-98CH10886.

Note added.—Recently, Ref. [18] appeared which also
observed several key features presented in our work.
They also considered finite momentum dispersion of
plasmons. There also appeared after our preprint an
experimental determination of the plasmon frequency in

ZrTe5 [19] (a known Dirac semimetal [20]), which shows
approximately linear dependence of the plasmon frequency
in the temperature range between 100 K and 300 K [see
Fig. 3(a) of that paper] in agreement with our prediction.
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