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Error in Spoken Medication Orders

Abstract

Clinicians and patients often confuse drug names that sound alike (Hicks, Becker, & Cousins,
2008). We conducted auditory perception experiments to assess the impact of similarity, familiarity,
background noise and other factors on clinicians’ and laypersons’ ability to identify spoken drug names.
Accuracy increased significantly as the signal-to-noise (S/N) ratio increased, as subjective familiarity with
the name increased and as the national prescribing frequency of the name increased. For clinicians only,
similarity to other drug names reduced identification accuracy, especially when the neighboring names
were frequently prescribed. When one name was substituted for another, the substituted name was
almost always a more frequently prescribed drug. Objectively measurable properties of drug names can
be used to predict confusability. The magnitude of the noise and familiarity effects suggests that they

may be important targets for intervention.

Single Sentence Summary: The ability of clinicians and lay people to identify spoken drug names is
influenced by signal-to-noise ratio, subjective familiarity, prescribing frequency, and the similarity

neighborhoods of drug names.
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Introduction

In clinical medicine, the risks of misinterpretation of telephone orders are widely recognized
(Koczmara, Jelincic, & Perri, 2006; Pennsylvania Patient Safety Authority, 2006; The Joint Commission,
2008). The use of the telephone to communicate medication orders leads to error because of both
ambient noise and the limited bandwidth of most telephones (Aronson, 2004; Hoffman & Proulx, 2003;
Lambert, 2008; Rodman, 2003; Wiener, Liu, Nelson, & Hoffman, 2004). Telephones typically carry signals
between 300Hz and 3kHz, a much narrower bandwidth than that of FM radio (30Hz to 15kHz) or CD
audio (20Hz to 20kHz); whereas, much of the important acoustic information that allows people to
distinguish between similar consonant sounds lies above 3kHz and is missing entirely from the
telephone signal (Rodman, 2003). There are 3.8 billion prescriptions dispensed in outpatient pharmacies
annually in the United States (IMS Health, 2008). Telephone orders account for 3-4% of retail
prescription volume. This translates to 114 million telephone prescriptions annually, or 312,000 per day.
One study of 813 telephone orders to two chain pharmacies found that the wrong medication name was
transcribed in 1.4% of the orders (Camp, Hailemeskel, & Rogers, 2003). The 1.4% rate may not be a
generalizable estimate, but given the number of opportunities, even a very low error rate would

translate into a large number of errors.

Spoken orders were once common in inpatient settings also, although less so after accrediting
agencies pressed for their elimination. One 346-bed hospital counted 4197 medication-related verbal
orders in a seven day period (Wakefield, et al., 2008). Hospital pharmacists reported 35 minutes of every
8 hour shift were spent resolving problems with spoken orders (Allinson, Szeinbach, & Schneider, 2005).
Respondents identified “people talking in the background” and “background noise” as the greatest

barriers to the correct processing of spoken orders. Other factors included lack of familiarity with the
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patient’s clinical condition or the medication, bad connections and excessively rapid speech (Allinson, et

al., 2005).

The use of cell phones and voicemail and the noisy environments in which orders are sent and
received, increase the risk of spoken prescription orders being misperceived. There are many examples
of auditory perception errors, some with fatal consequences (e.g., Liquibid vs. Lithobid, Cardene vs.
codeine, Lopid vs. Slobid, erythromycin vs. azithromycin, Klonopin vs. clonidine, Viscerol vs. vistaril,
Orgaran vs. argatroban) (Allinson, et al., 2005; Dr. orders Liquibid--Lithobid dispensed--death results.
Case on point: Clifford v. Geritom Med., Inc., 681 N.W.2d 680 -MN (2004)," 2004; Koczmara, et al., 2006;

Pennsylvania Patient Safety Authority, 2006; Vivian, 2004).

Identifying the factors that influence accuracy in the perception of spoken drug names may
facilitate interventions designed to make telephone orders safer. The U.S. Food and Drug Administration
and the pharmaceutical industry have struggled to develop methods for evaluating the confusability of
new drug names (U. S. Food and Drug Administration, 2008). We have shown that objective measures of
similarity and prescribing frequency can reliably predict the probability that two names will be confused
in visual perception and short term memory (Lambert, 1997; Lambert, Chang, & Gupta, 2003; Lambert,
Chang, & Lin, 2001b; Lambert, Donderi, & Senders, 2002; Lambert, Lin, Gandhi, & Chang, 1999; Lambert,
Yu, & Thirumalai, 2004), and we have described processes for designing safer drug names (Lambert, Lin,
& Tan, 2005). One important part of that process is to use established experimental paradigms from
psycholinguistics to evaluate the confusability of proposed drug names in relevant tasks (e.g., auditory
perception, visual perception, and short term memory). An earlier study of noise and pharmacy
dispensing errors found, counter-intuitively, that noise improved performance, but recommended that
more controlled experiments be done to clarify the relationship between noise and error rates (Flynn,

Barker, Gibson, & others, 1996). In this study, we sought to demonstrate how this type of
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experimentation could shed light on the factors that influence auditory perception of drug names. Thus
one of the key challenges we addressed was to translate the basic science of auditory word perception
into the applied domain of drug name confusion. The work was designed to determine how and to what
extent characteristics of drug names, of order takers, and of practice environments affect a listener’s

ability to identify spoken drug names.

Auditory Word Perception

To explain auditory perceptual confusions, we use Luce’s Neighborhood Activation Model
(NAM) (Grossberg, 1986; Luce, Goldinger, Auer, & Vitevitch, 2000; Luce & Pisoni, 1998; Vitevitch & Luce,
1999). According to this model, stimulus input activates a set of similar sounding acoustic-phonetic
patterns in memory. The activation levels of the acoustic-phonetic patterns are a function of their
degree of match with the input. In turn, these patterns activate a set of word decision units tuned to the
acoustic-phonetic patterns. The word decision units compute probabilities for each pattern based on the
intelligibility and frequency of occurrence of the word to which the pattern corresponds and the
activation levels and frequencies of occurrence of all other similar sounding words in the system. The
word decision unit that computes the highest probability wins, and its word is what is heard. In short,
word decision units compute probability values based on the acoustic-phonetic similarity of the word to
the input, the frequency of the word, and the activation levels and frequencies of all other similar words
activated in memory.

The NAM predicts that multiple activation has consequences: Spoken words with many similar-
sounding, higher frequency (or more commonly occurring) neighbors will be processed more slowly and

less accurately than words with few neighbors. These predictions have been confirmed in
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many studies: Words in densely populated, high frequency similarity neighborhoods are indeed
processed less quickly and less accurately than words in low density, lower frequency neighborhoods,
and words with higher frequency of occurrence are processed more rapidly and accurately than lower
frequency words (Jusczyk & Luce, 2002; Lambert, et al., 2003).

The NAM employs an explicit mathematical function that attempts to predict auditory
perceptual errors based on the intelligibility of stimulus word, the frequency of occurrence of the
stimulus word, and the similarity and frequency of neighboring words. This function is known as
frequency-weighted neighborhood probability (FWNP). Detailed mathematical descriptions of the
function used to compute FWNP for each name are given elsewhere (Jusczyk & Luce, 2002; Lambert, Lin,
Toh, et al., 2005). Other things being equal, FWNP will increase as the number, similarity, and
prescribing frequency of neighbors decrease. The NAM provided the framework for the development of
several hypotheses about auditory perception: (1) Accuracy will increase as FWNP increases. (2)
Accuracy will increase as the signal-to-noise (S/N) ratio increases. (3) Accuracy will increase as objective
prescribing frequency of the target name increases and (4) Accuracy will increase as subjective

familiarity with the target name increases.

Although frequency and neighborhood effects are well established in the study of ordinary
words, we sought to extend this understanding in three ways. First, we planned to study proper names
from large, closed-set lexicon (drug names). Most previous work has been done in open-set conditions,
and it was not clear whether typical neighborhood effects would be present in a large, closed-set lexicon
condition (Clopper, Pisoni, & Tierney, 2006; Sommers, Kirk, & Pisoni, 1997). Second, we wished to study
multisyllabic words rather than the monosyllabic (often consonant-vowel-consonant) words that have
typically been used in studies of neighborhood effects. That required us to develop measures of

similarity and new measures of FWNP for multisyllabic words (Lambert, Lin, Toh, et al., 2005). Third, we



Error in Spoken Medication Orders

wished to see whether the neighborhood effects would be present in both experts (clinicians) and
novices (lay people). We expected neighborhood effects in experts because, presumably, they would
possess lexical representations of large numbers of drug names, and these representations would
compete in the manner described above. We thought neighborhood effects might be attenuated or
absent in lay people, who may lack representations for most drug names and hence would not

experience the competition that causes neighborhood effects.

Even if we were not making any original contribution to the basic science of auditory perception,
we believe that the NAM provides a powerful conceptual and experimental framework for
understanding drug name confusion, one which could advance worldwide efforts to predict and prevent
such errors. Thus the present paper is offered as an exemplar of translational research, where concepts

well-known to one community are applied to problems in a different domain (Woolf, 2008).

We attempted to control for a large set of factors that might be associated with name confusion
error rates. Among these was the type of name (brand or generic). One might expect brand names to be
more confusing since they are typically shorter (Lambert, Chang, & Lin, 2001a), and shorter names tend
to have more neighbors (Andrews, 1997; Luce & Pisoni, 1998; Storker, 2004). Conversely, generic names
use a common system of stems (i.e., suffixes) which tends to increase their average similarity to one
another, thereby increasing their confusability (Lambert, et al., 2001a). Either way, the distinction
between brand and generic names is an important one in practice, so we designed our experiments to

take it into account.
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Materials and Methods

Design

We used a within-participants design to examine the effect of S/N ratio, prescribing frequency,
subjective familiarity, and similarity neighborhoods on the ability to correctly identify spoken drug
names. All participants heard an equal number of drug names at all three S/N ratios and all of the drug
names appeared at all three S/N ratios. Three versions of the experiment ensured that drug names and
S/N ratios were counterbalanced across participants and that participants only heard one S/N ratio

version of each drug.

Participants

Participants were paid for participating. The experiment was approved by the institutional
review boards at the University of lllinois at Chicago and at Cleveland State University. Sixty-seven
pharmacists were recruited at the 2005 meeting of the American Pharmacists Association, 76 family
physicians at the 2005 meeting of the American Association of Family Physicians, and 74 nurses at the
2005 meeting of the Academy of Medical Surgical Nurses. Due to equipment malfunction or non-native
language accents, 5 pharmacists, 2 physicians, and 4 nurses were excluded, leaving N=62 pharmacists,
N=74 physicians and N=70 nurses for the main analysis. Forty-three lay people were recruited from the
community surrounding Cleveland State University." All clinicians were licensed and actively practicing

at the time of the data collection. Non-native speakers of American English, left-handed individuals,?

! In fact 60 lay people were recruited, but funds were available to transcribe only the first 43 sets of responses for
the main analysis.

ltis customary to exclude left-handed participants from language research because right-handers typically
represent and process language in their left hemisphere, and there is more variability in how left-handers
represent and process language. Hemispheric differences could have consequences for the speed and/or accuracy
with which language is processed. So, to reduce unnecessary noise in the data, left-handers are often excluded.
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and anyone with serious speech or hearing problems were excluded (Gonzalez & McLennan, 2007;

Hagmann, et al., 2006).

Stimulus Materials

We selected 99 brand and 99 generic drug names. Names and prescribing frequency
information were drawn from four sources: (1) the National Ambulatory Medical Care Survey
(NAMCS),(National Center for Health Statistics, 2001a). (2) the National Hospital Ambulatory Medical
Care Survey (HAMCS) (National Center for Health Statistics, 2001b), (3) the IMS-Health National
Prescription Drug Audit (NPDA) (IMS, 2001), and (4) the Solucient Hospital Drug Utilization Database

(Solucient Inc., 2003).

A frequency-weighted neighborhood probability (FWNP) was computed for each name,
according to a procedure described elsewhere (Lambert, Lin, Toh, et al., 2005). Names were stratified by
FWNP, with ten brand and ten generic names from each decile of FWNP. One brand name and one
generic name were removed to make the total evenly divisible into three S/N conditions. The names
were professionally recorded by a trained phonetician/phonologist. These reference pronunciations
were based on phonemic transcriptions from experienced clinicians, collected for a different project.
Each recorded name was edited into an AIFF audio file. To mimic the bandwidth limitations of telephone

audio, frequencies below 300Hz and above 3kHz were then digitally filtered (Rodman, 2003).

Stimulus degradation. Drug names were played back against a background of standard 20-
speaker babble (obtained from Auditec of St. Louis). The noise was played at a mean amplitude of 65dB

and was not bandwidth limited (Flynn, et al., 1996). The stimuli were played at either 63dB, 68dB, or
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73dB, resulting in three S/N conditions of -2dB, +3dB, and +8dB respectively.? A subgroup of 10 lay

participants completed the experiment “in the clear” with no added noise.

Experimental Procedure

Letters were mailed to attendees in advance, and individuals were approached at the
convention center and asked: (a) if they were licensed, practicing clinicians in the U.S. and (b) if they
were interested in participating in a study of drug name confusion. Participants consented, completed a
demographic questionnaire, and took a pure-tone hearing threshold test (pure tone thresholds of 50dB
or lower were accepted). Participants were seated at a Macintosh PowerBook computer and fitted with
headphones with an attached microphone (Beyerdynamic BT190). The participant then read the
instructions. Playback of the 20-speaker babble was initiated and continued for the duration of the

experiment.

The PsyScope experiment program (Cohen, MacWhinney, Flatt, & Provost, 1993) was used to
run the main experiment. The task began with 21 practice trials and continued with 198 trials in random
order as the main experiment. One name was subsequently dropped from the analysis due to an error in
recording. On each trial, participants were asked to repeat back the name they had heard. Spoken
responses were recorded through the laptop’s built in microphone. After completing the main
experiment, participants moved to another computer and read aloud the 198 experimental names as
they were visually presented on a computer screen. Participants rated their familiarity with each name

on a 7-point scale (extremely familiar—extremely unfamiliar).

3 During pilot testing on practicing pharmacists, these S/N ratios produced error rates of roughly 25%, 50%, and
75% at the low, medium and high S/N levels.
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Scoring Spoken Responses

Spoken responses were transcribed into the ARPAbet (Jurafsky & Martin, 2000). phonetic
alphabet by an experienced linguist (e.g., Zyvox was transcribed as /Z ‘1AY V 2AA K S/, where the
numerals “1” and “2” indicate stress level). Responses were scored as correct or incorrect by comparing
the transcribed responses to the reference transcriptions for each of the 197 stimulus names. Because
variation in pronunciation made verbatim matching to the reference transcription too strict a criterion,
we developed additional procedures to capture legitimate pronunciation variants. The first was a
computer program that applied generally accepted rules for pronunciation variation to the reference
pronunciations. For example, in fluent speech, unstressed vowel sounds are reduced to the schwa
sound. (Schwa is a short neutral vowel sound, the most common vowel sound in English, e.g. the first
phoneme in the word /again/.) Responses were scored as correct if they could be produced by applying
the variation rules to the reference pronunciations. Even after applying these rules, there still appeared
to be legitimate variants that were being scored as incorrect. So the linguist examined all incorrectly
scored responses, identified those deemed to be legitimate variants, and provided linguistic justification
for each case. In the end, a response was scored as correct if it matched the reference pronunciation
exactly, if it could be automatically generated as a rule-generated variant, or if it was recognized by our

expert in phonetics as a legitimate variant.

Analysis Plan

The goal of our analysis was to quantify the main effects of FWNP, noise, frequency and
familiarity on accuracy in auditory perception. Descriptive analyses were done using SAS version 9.1 and
to test the hypotheses, mixed effects logistic regression models were built with SuperMix (Hedeker &

Gibbons, 2008).
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The dependent variable was accuracy. Words correctly identified were scored as 1, and words
incorrectly identified were scored as 0. The independent variables were: (1) the FWNP score, a
continuous variable on the interval 0 to 1, reflecting the predicted probability of identification; (2) signal
to noise ratio, an ordinal variable with three levels (-2 dB, +3 dB, +8 dB); (3) familiarity, an ordinal
variable reflecting a participant’s subjective familiarity with the name (ranging from 1 to 7); (4)
prescribing frequency, a continuous variable representing the log (base 10) of the maximum frequency
from our multiple sources of prescribing frequency data; (5) phoneme frequency, a continuous variable
representing the frequency of a given consonant or vowel in a given position in the word, (6) biphone
frequency, a continuous variable representing the frequency of a two-phoneme sequence in a given
position in the word (Storker, 2004). The control variables were (1) participant demographics, including
age, gender, race, practice context, profession and years of experience; (2) pure tone threshold, eight
continuous variables reflecting the sensitivity of a participant’s hearing in each ear at 500Hz, 1kHz, 2kHz
and 3kHz; (3) length, an ordinal variable reflecting the number of phonemes in the word; and (4) trial, an
ordinal variable representing the sequential position of a given response within the set of 198
responses.

To test our hypotheses, we built a logistic regression model for the combined group of
clinicians (pharmacists, physicians and nurses) and a separate model for lay people, treating the
intercepts as a random effect. We also carried out subgroup analyses for each clinical profession, the
results of which are presented in selected tables and figures where space permits. We identified the
correct scale for each independent and control variable by plotting the log odds of error as a function of
each variable. If these plots were linear, terms were entered as linear. If the plot revealed an obvious
nonlinearity, we selected a scale to fit the nonlinear form of the function (Hosmer & Lemeshow, 1989;
Selvin, 1996). We used Kleinbaum’s method of backward elimination to decide which variables to

include in the final model (Kleinbaum, 1994). This method begins with a full model and proceeds to
12
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eliminate as many terms as possible, using likelihood ratio tests to decide which terms contribute
significantly to the model’s fit. All statistical tests used a = 0.05. Finally, we examined the fit between
observed and predicted accuracy rates for each of the 197 stimulus names. Observed rates were taken
directly from the data. For each participant, we used the parameter estimates from the fitted model and
covariate values from the data to generate a predicted proportion of correct identifications for each
name averaged across all participants.

Results

Each of the 239 participants responded to 197 stimuli, producing 47,083 total responses. Mean
accuracy on the perception task was 32.27% (s.d.=7.94, range=12.18%—-49.75%, also see Table 5).
Roughly 77% of correct responses were identified by verbatim matching, 9.5% by computer scoring of
alternative pronunciations and 13.5% by expert scoring of alternatives. This error rate is roughly two
orders of magnitude greater than what one would expect in real-world practice (Flynn, Barker, &
Carnahan, 2003). The task was intentionally designed to be difficult and to produce high error rates
because (a) we were interested in studying the errors themselves, and we wanted a large sample of
errors to analyze, and (b) due to statistical power considerations, the naturalistic error rate (perhaps
0.13%) (Flynn, et al., 2003) would have made it impossible to detect any differences in error rate across
experimental conditions. The task was not designed to estimate real-world error rates (that is best
achieved by direct observation). Rather, our goal was to understand the factors that affected the error
rate in a task that was analogous to, but more difficult than, the real-world task.

Table 1 describes participant demographics. Table 2 gives the means and standard deviations of
continuous predictors for correct and incorrect responses as well as results of bivariate tests of
association between each predictor and the log odds of a correct response. Table 2 provides the initial
indication of the beneficial effects of familiarity and prescribing frequency on accuracy for both

clinicians and lay people. For clinicians, frequency-weighted neighborhood probability (FWNP) and word
13
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length were also associated with increased accuracy. For lay people FWNP had no impact, and longer
names were actually perceived less accurately than shorter names. The number of phonemes helped
clinicians because each additional phoneme provided disambiguating information that aided them in
discriminating between similar alternatives in memory. For lay people, most of whom were unfamiliar
with the stimulus names, the task was really a bottom-up identification task, and additional phonemes
made that task harder. A similar analysis could be made in relation to FWNP. FWNP predicted clinician
performance because FWNP measures the extent to which a name is free of competition from similar
neighbors. But since lay people lacked mental representations for most of these words, FWNP was not a
relevant measure for them. Individual difference variables like hearing acuity, age or experience had
little or no impact on accuracy (especially for clinicians), whereas properties of the environment or the
stimulus names did.

Table 1-2 about here.

Table 3 gives the proportion of correct and incorrect responses in relation to the nominal
predictors, as well as results of tests of the bivariate association between predictors and accuracy. For
clinicians, accuracy more than tripled from the noisiest to the quietest condition. In lay people, the
effect was even stronger. For clinicians, gender, type of name (brand vs. generic), race and practice
context were significantly associated with accuracy in bivariate analyses, but many of these effects were
confounded with type of clinician and were not significant in multivariate analyses.

Table 3 about here.

Figure 1 illustrates the powerful effect of familiarity on accuracy. Performance on the most
familiar names was roughly three times better than on the least familiar names. This is a consequence of
the well known word frequency effect, which predicts that familiar words will be perceived more

accurately than unfamiliar words due either to higher resting activation levels or to decision biases that
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favor familiar items in memory (Howes, 1957). Figure 2 shows the equally dramatic effects of noise on
accuracy, again with performance improving by a factor of three for clinicians and by a factor of more
than 5 for lay people as S/N ratio increased from -2dB to +8dB. Figure 2 also shows that without noise,
lay people performed as well as pharmacists in the +8dB condition. There was a clear gradient in
accuracy, with pharmacists being most accurate, followed by physicians, nurses and lay people. As might
be expected, performance appeared to be determined by each group’s familiarity with drug names—
greater familiarity led to higher accuracy.

Figures 1 and 2 about here.

Table 4 gives the parameter estimates for the final random effect logistic regression models.
Clinicians and lay people produced different patterns of results, presumably because clinicians had
lexical representations for many of the names, but lay people did not. For clinicians, the task involved
(bottom-up) identification and (top-down) discrimination among similar competing alternatives. For lay
people, it was primarily a bottom-up identification task. S/N ratio was associated with significantly
improved accuracy in participants’ auditory perception of drug names. For clinicians, frequency-
weighted neighborhood probability was associated with increased accuracy. Names with fewer and less
frequently prescribed neighbors were heard more accurately than names with greater numbers of more
frequently prescribed neighbors. For both lay people and clinicians, familiar drug names were perceived
more accurately than unfamiliar names, although the relationship was nonlinear for clinicians. For
clinicians but not for lay people, names with high prescribing frequency were perceived more accurately
than names with low prescribing frequency. For clinicians, accuracy increased as the number of
phonemes per name increased while the opposite was true for lay people (for the reason described
above). For both clinicians and lay people, biphone frequency was positively associated with accuracy.

For clinicians the effect of biphone frequency was modified somewhat by phoneme frequency. Thus, the

15
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presence of common sound patterns made names easier recognize. For clinicians, S/N ratio interacted
significantly with familiarity, as did phoneme and biphone frequency.

Clinicians got slightly better at the task as they completed more trials. Brand name drugs were
perceived less accurately by clinicians than generic names, even after controlling for name length and
number of neighbors. In subgroup analyses (details not shown) this effect was restricted to physicians.
Physicians and nurses had lower accuracy scores than pharmacists. For lay people, age and hearing
acuity were associated with accuracy. For clinicians, only left ear pure tone threshold at 2000Hz was
associated with accuracy.

Table 5 about here.

To assess goodness of fit of the model, we compared the observed and predicted percent
correct for each of the 197 drug names. The root mean square error of prediction ranged from 15.3% to
18.5% (see Table 5). Several names were rarely identified correctly (e.g., sutilains, Kira, sparfloxacin, and
tromethamine), while others were rarely missed (e.g., hydrochlorothiazide, Zithromax, codeine). The
models accounted for between 32% and 49% of the variance in accuracy at the level of the individual
name.

Figure 4 about here.

Substitution errors. The most common type of error was an incorrect pronunciation of the
stimulus name (90%), but one in ten errors was a substitution error, where the response corresponded
to another real drug name. Substitutions produce potentially harmful wrong-drug errors. Models of
spoken word recognition, including NAM, predict that rare names will be misheard as common names
but not vice versa. We tested this hypothesis. Overwhelmingly, substitution errors went in the direction
of the more frequently prescribed name. There were 4692 substitution errors overall. In 2963 (63.2%) of

these errors, the substituted name had a higher prescribing frequency than the stimulus name. In 1411
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cases (30.1%), the substituted name was not in our prescribing frequency databases. Considering only
the cases with known prescribing frequency, errors went in the direction of the more frequently
prescribed drug 90.31% of the time. For clinicians, the mean difference in log prescribing frequency
between the substituted name and the target name was 2.40 (s.d.=1.82), meaning the substituted name
was, on average, prescribed 250 times more frequently than the target. For errors that went in the
direction of the more frequently prescribed name, the mean difference in log frequency was 2.75. For
errors that went in the direction of the lower frequency name, the mean difference in log prescribing
frequency was only 1.22. This suggests that confusions go in the direction of the less common name only
when the prescribing frequencies are relatively similar. As the difference in prescribing frequency
increases so does the tendency for the errors to go in the direction of the higher frequency name (see
Figure 3).
Discussion

Our goal was to identify factors that affect accuracy in auditory perception of drug names.
Results of our experiments supported our three specific hypotheses and our general model of auditory
perception: (1) Accuracy (for clinicians) was influenced by the similarity neighborhood of each drug
name (i.e., by the similarity and prescribing frequencies of neighboring names). Names with less similar
and less commonly prescribed neighbors were more accurately perceived than names with more similar
and more frequently prescribed neighbors. Names with fewer and less frequently prescribed neighbors
were subject to less competition during word recognition and were therefore perceived more
accurately. (2) Accuracy increased as S/N ratio increased. And (3) familiar, more frequently prescribed
names were perceived more accurately than unfamiliar, less frequently prescribed names.

Some of these associations were more complex than we had predicted. The relationship
between FWNP and accuracy was quadratic for clinicians, and the relationship between familiarity and

accuracy was cubic for clinicians. In both cases this is likely because some words (the low familiarity
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names) were simply unknown to the participants. These unknown words were processed as if they were
non-words, and the effects of many of our predictors on words and non-words are known to differ. For
analogous reasons, we saw interactions between familiarity and other predictors (e.g., S/N ratio,
phoneme frequency, and biphone frequency). These relationships need to be explored more thoroughly

in subsequent work.

Our models accounted for a substantial amount of the observed variance in item-level accuracy.
We believe such models would be useful to policy makers and drug companies as they evaluate the
confusability of new and existing drug names. We found confusions to be asymmetrical, with
substitutions overwhelmingly going in the direction of the more frequent name. Thus, when policy
makers consider the potential for harm related to a name confusion, they must consider the direction of
the error (i.e., which drug will be mistaken for which). More familiar and more frequently prescribed
drugs will tend to have lower error rates, but in thinking about harm, this must be weighed against their
higher number of opportunities for error (Lambert, et al., 2003).
Limitations

We measured subjective familiarity after the participants completed the auditory perception
task. Therefore, it is possible that our measure of subjective familiarity may have been influenced by
experience in the experiment itself. Although possible, we expect that this effect, if it existed at all, was
small, especially in comparison to the long-term priming effects of lifetime experience (or lack thereof)
with these stimulus names. Previous work on subjective familiarity suggests that it is an accurate
measure of lifetime exposure to words and that it is better than objective frequency for predicting word

recognition performance (Balota, Pilotti, & Cortese, 2001; Carroll, 1971; Gernsbacher, 1984).

We studied a convenience sample of right-handed, native English-speaking clinicians and lay

people. We studied only 197 drug names out of perhaps 11,000 or more drug names in use in the U.S.
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Generalizations to other clinicians and other drug names should be made cautiously. The level and type
of noise we used may not reflect real working conditions, especially because the noise was of a constant
type and amplitude.* Real world contexts experience unpredictable noise of varying types and
intensities. The lack of foreign language accents, distractions, interruptions and of clinical context was

also unrealistic. This work should be replicated under more realistic conditions.

CONCLUSION

Objectively measurable properties of drug names can be used to predict their confusability. The
ability to accurately identify spoken drug names is influenced by signal-to-noise ratio, subjective
familiarity, prescribing frequency, and the similarity neighborhoods of drug names. To minimize errors,
order takers should be able to increase the source volume, and should have noise-cancelling
headphones or quiet areas where they can take orders. Although not directly supported by these
experiments, it is generally agreed that spoken communication of drug names can be made safer by
using strategies like read-back, spelling out the name, providing the indication for the drug or using both
brand and generic names (especially for physicians who were more likely to misperceive brand than
generic names). The finding that lay persons, with no background noise, achieved recognition scores
about equal to those achieved by expert clinicians operating under moderate signal-to-noise ratios,
underscores the importance of reducing local and remote background noise and giving order takers the
ability to increase voice signal loudness. Since unfamiliar drug names are more likely to be misperceived
than familiar names, it may be possible to reduce drug name confusions by increasing clinicians’
familiarity with a wider array of drug names. It may also be possible to improve performance by having

people learn the distinguishing parts of similar drug names through repeated discrimination training.

* Nevertheless it may be of interest to note that a number of the professionals commented that the babble noise
was realistic.
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However, the effectiveness of both suggested interventions could have unintended consequences and
have yet to be evaluated. The experiments and models described above should prove useful to
regulatory agencies and drug manufacturers who must evaluate the confusability of drug names prior to

allowing them on the market.
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Table 1. Demographic characteristics
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Variable Pharmacists Physicians Nurses Lay People
(n=62) (n=74) (n=70) (n=43)
Age 39.1(10.7) 44.3 (10.9) 43.2 (7.7) 29.8 (12.3)
N % N % N % N %
Gender
Male 26 40.9 50 67.6 1 1.4 11 25.6
Female 36 58.1 24 324 69 98.6 32 74.4
Race
Asian 3 4.8 16 21.9 1 14 0 0
Pacific 1 1.6 0 0 0 3 7.1
Islander
Black 5 8.1 2 2.7 0 0 11 26.2
White 50 80.7 54 74.0 66 94.3 24 57.1
Multiracial 1 1.6 0 0 1 14 4 9.5
Other 2 3.2 1 1.4 2.9 1 0.2
Practice Context
Hospital 7 11.3 6 8.1 69 98.6 - -
Clinic 13 21.0 61 82.4 1 1.4 - -
Retail 33 53.2 0 0 0 0 - -
Community 9 14.5 0 0 0 0 - -
Other 0 0.0 7 9.5 0 0 - -
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Table 2. Mean (standard deviation) of continuous independent variables for correct and incorrect

responses
Clinicians (N=206) Lay People (N=33)
Variable Incorrect Correct P Incorrect Correct P
(n=26776)  (n=13806) (n=5111) (n=1390)

R500Hz 2592(8.32)  2607(8.60) 044  1294(474)  1265(487)  0.26
L500Hz 2412(1091) 2392(1053) 037  11.91(456)  1150(4.63)  0.09
R1000Hz 17.72(7.10)  17.43(7.06) 005  8.02(5.93) 8.07(6.35)  0.87
L1000Hz 16.03 (7.45) 15.86 (7.42) 0.26 6.92 (5.73) 6.45 (5.83) 0.14
R2000Hz 10.85(8.75)  10.71(8.17) 038  4.35(6.41) 3.83(6.40) 0.3
L2000Hz 10.89 (8.97) 10.64 (8.49) 0.15 4.66 (6.76) 4.83 (6.63) 0.57
R3000Hz 1096 (10.47)  11.14(10.12)  0.45 3.37(8.19) 2.49 (7.94) 0.04
L3000Hz 1172 (11.10)  11.73(10.89)  0.95 5.20 (8.19) 4.97 (7.86) 0.65
Phoneme Freq. -0.11(1.19)  -0.01(1.10) 000  -0.14(1.21) 0.07 (1.01) 0.00
Biphone Freq. -0.14 (1.03) 0.04 (1.02) 0.00 -0.14 (1.03) 0.08 (1.02) 0.00
Age 4243 (10.13)  42.18(10.06) 0.5  30.62(12.42) 30.41(11.86)  0.81
Experience 14.79 (10.19)  14.63 (10.15) 0.42

Familiarity 2.73(2.36) 457(265 000  1.61(L.44) 2.63(2.28)  0.00
FWNP 0.53(0.34) 060(0.36) 000  055(0.35) 056(0.35)  0.34
Rx Frequency 3.14 (1.65) 3.94 (1.76) 0.00 3.37 (1.75) 3.58 (1.65) 0.00
No. Phonemes 8.06 (2.29) 8.25 (2.80) 0.00 8.25 (2.53) 7.67 (2.22) 0.00
Trial 121.95(57.13) 123.62(57.22)  0.01  99.40 (547.09) 100.22 (57.39)  0.63

Note. R500Hz is the lowest number of decibels at which a 500Hz tone could still be heard in the right
ear. L500Hz is the left ear, etc. FWNP is frequency-weighted neighborhood probability. Rx Frequency is
the log (base 10) of the national prescribing frequency of the stimulus names. Mixed effects logistic
regression models were built with Supermix with only an intercept and one independent variable in the
model. P values come from Wald tests on the parameter estimate for the variable in question. Lay
results are for n=33 lay particpants in the condition with background noise. There were 197
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observations for each participant, so there were 12,214 pharmacist responses, 14,578 physician
responses, and 13,790 nurse responses. See text for details.
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Table 3. Percent correct and incorrect responses by nominal covariates

Clinicians (N=206) Lay People (N=33)
Variable
% Cor. % Inc. P % Cor. % Inc. P
S/N Ratio 0.0000 0.0000
-2dB 16.03 83.97 6.83 93.17
+3dB 36.10 63.90 21.32 78.68
+8dB 49.93 50.07 35.99 64.01
Gender 0.0000 031
Male 36.09 63.91 23.13 76.87
Female 32.78 67.22 20.91 79.09
Name Type 0.0000 0.83
Brand 31.30 68.70 21.27 78.73
Generic 36.76 63.24 21.49 78.51
Race 0.0000 0.09
White 34.44 65.56 22.73 77.27
Non-White 32.05 67.95 19.76 80.24
Context 0.0000
Hospital 30.28 69.72 -
Clinic 35.42 64.58 -
Retail 38.70 61.30 -
Other 36.88 63.12 -

Note. Probabilities (P) come from Wald tests on parameter estimates generated by SuperMix mixed
effects regression models with only one predictor variable entered at a time. Lay results are for n=33 lay
particpants in the condition with background noise. A dash indicates that varible was not included in the
analysis.
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Figure 1. Auditory perception accuracy as a function of familiarity. For each level of familiarity, the dark

bar represents the percent of incorrect responses as a percent of the total number of responses for that
participant group. The light bar represents the percent of correct responses at that familiarity level. The
line represents the percent correct at a given level of familiarity. For lay people, data are shown only

from participants in the condition with background noise.
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Figure 2. Effect of signal strength on accuracy for pharmacists, physicians, nurses and lay people. Noise
was played at mean 65dB amplitude for all participant groups, except where noted for lay people. So the
three signal-to-noise conditions corresponded to -2dB, +3dB and +8dB. Lay people were the only

subgroup tested without noise.
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Table 4. Parameter estimates for random effects logistic regression model of accuracy in auditory
perception for clinicians and lay people

Clinicians (n=206) Lay People (n=33)

Variable OR (95% Cl) P OR (95% Cl) P

Intercept 0.21(0.15-0.30) 0.0000 0.03 (0.1-0.8) 0.0000
S/N Ratio (dB) 1.23 (1.22-1.24) 0.0000 1.23(1.21-1.25) 0.0000
FWNP 0.83 (0.41-1.68) 0.60 - -
FWNP? 0.31 (0.06-1.60) 0.16 - -
FWNP? 4.34 (1.51-12.53) 0.01

Rx Frequency 0.99 (0.94-1.04) 0.69 - -
Rx Frequency? 1.02 (1.01-1.02) 0.0000 - -
Familiarity 2.09 (1.65-2.66) 0.0000 1.40 (1.35-1.46) 0.0000
Familiarity? 0.83 (0.78-0.90) 0.0000 -

Familairity® 1.02 (1.01-1.02) 0.0000 -

Num. Phonemes 0.82 (0.78-0.86) 0.0000 0.92 (0.89-0.94) 0.0000
Num. Phonemes? 1.01 (1.01-1.01) 0.0000 -

Phoneme Freq. 0.73 (0.68-0.78) 0.0000 -

Biphone Freq. 1.69 (1.58-1.82) 0.0000 1.29 (1.20-1.37) 0.0000
Familiarity x S/N Ratio 0.995 (0.993-0.998) 0.0001 - -
Familiarity x Phoneme Freq. 1.04 (1.03-1.06) 0.0000 - -
Familiarity x Biphone Freq. 0.95 (0.93-0.96) 0.0000 - -
Nonwhite 0.79 (0.70-0.89) 0.0001 - -
Trial 1.0009 (1.0005-1.0013) 0.0000 - -
Brand 0.93 (0.88-0.98) 0.01 - -
Physician 0.91 (0.82-1.01) 0.08 - -
Nurse 0.66 (0.59-0.74) 0.0000 - -
Age 1.11 (1.04-1.17) 0.0007
Age’ 0.999 (0.998-0.999) 0.002
R500Hz 0.96 (0.94-0.99 0.003
R1000Hz 1.03 (1.01-1.05) 0.01
R2000Hz 0.97 (0.95-0.99) 0.01
L2000Hz 0.99 (0.98-0.99) 0.0000 1.02 (1.00-1.04) 0.03
R3000Hz 0.98 (0.96-0.99) 0.02
L3000Hz 1.02 (1.00-1.04) 0.02
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Note. FWNP=frequency weighted neighborhood probability. Rx Frequency is the log base 10 of the
maximum frequency observed across 4 different prescription databases. S/N ratio is the signal to noise
ratio. For race, the reference group was and white (Caucasian). R500Hz is the lowest number of decibels
at which a 500Hz tone could still be heard in the right ear. L500Hz is the left ear, etc. A dash means the
variable was not significant in the model. Superscript numbers are exponents, e.g., FWNP>=FWNP

squared. See text for details.
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Table 5. Summary of auditory perception results for pharmacists, physicians, nurses and lay people.

Variable

All Clinicians
(n=206)

Pharmacists
(n=62)

Physicians
(n=74)

Nurses
(n=70)

Lay People
(n=33)

Accuracy (%)
Mean (s.d.)
Range

Goodness of Fit
Root mean
squared error
Mean
absolute
error
R? predicted
vs. observed

Substitution Errors
Number (% of
all responses)
% of incorrect
responses
No. with
known freq.
No. (%) in
direction of
higher
frequency
name
Mean (s.d.)
log freq.
difference
between
target and
substituted
name

34.23 (6.82)
13.71-49.75

17.23%

14.22%

0.47

4449 (10.96)
16.62
3128

2849 (91.1)

2.40 (1.80)

39.14 (5.83)
16.75-49.75

18.5%

15.5%

0.49

1780 (14.6)
23.95
1266

1163 (91.9)

2.57(1.80)

34.46 (5.52)
19.8-47.2

17.5%

14.7%

0.48

1404 (9.66)
14.69
975

883 (90.6)

2.27 (1.76)

29.02 (5.15)
13.71-38.58

17.8%

14.6%

0.42

1265 (9.17)
12.92
887

803 (90.5)

2.30(1.83)

21.38 (5.36)
12.18-30.46

15.3%

11.7%

0.32

243 (3.73)
4.75
153

114 (74.5)

1.54 (2.06)

Note. For lay people, data are shown only participants in the condition with background noise.
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Figure 3. Direction of substitution errors as a function of difference in log prescribing frequency. The bar
chart is a histogram of frequency differences between stimulus names and substituted names. The
bottom part of each vertical column represents the number of times the substituted name was less
frequently prescribed than the stimulus name (left axis). The top portion represents the number of
times the substituted name was more frequently prescribed than the stimulus name. The line
represents the percent of substitution errors wherein the substituted name was more frequently
prescribed than the stimulus name (right axis). The graphs show that when one name is mistaken for
another, the substituted name is almost always more frequently prescribed than the name which was
misheard. The probability of error is not a symmetrical function of similarity. Relatively low frequency

names are liable to be misheard as their higher frequency neighbors, but not vice versa.
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