Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Absolute configuration of naturally occurring glabridin

Charlotte Simmler, ${ }^{\text {a }}$ Frank R. Fronczek, ${ }^{\text {b }}$ Guido F. Pauli ${ }^{\text {a }}$ and Bernard D. Santarsiero ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Medicinal Chemistry and Pharmacognosy, and UIC/NIH Center for Botanical Dietary Supplements Research, MC-781, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, USA, ${ }^{\mathbf{b}}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, and ${ }^{\mathbf{C}}$ Center for Pharmaceutical Biotechnology and, Department of Medicinal Chemistry and Pharmacognosy, MC-870, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
Correspondence e-mail: bds@uic.edu

Received 28 June 2013
Accepted 8 July 2013
The title compound \{systematic name: $4-[(3 R)-8,8$-dimethyl-3,4-dihydro-2H-pyrano[2,3-f]chromen-3-yl]benzene-1,3-diol, commonly named glabridin\}, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$, is a species-specific biomarker from the roots Glycyrrhiza glabra L. (European licorice, Fabaceae). In the present study, this prenylated isoflavan has been purified from an enriched CHCl_{3} fraction of the extract of the root, using three steps of medium-pressure liquid chromatography (MPLC) by employing HW-40F, Sephadex LH-20 and LiChroCN as adsorbents. Pure glabridin was crystallized from an $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture ($95: 5 \mathrm{v} / \mathrm{v}$) to yield colorless crystals containing one molecule per asymmetric unit $\left(Z^{\prime}=1\right)$ in the space group $P 2_{1} 2_{1} 2_{1}$. Although the crystal structure has been reported before, the determination of the absolute configuration remained uncertain. Stereochemical analysis, including circular dichroism, NMR data and an X-ray diffraction data set with Bijvoet differences, confirms that glabridin, purified from its natural source, is found only in a C3 R configuration. These results can therefore be used as a reference for the assignment of the configuration and enantiopurity of any isolated or synthetic glabridin sample.

Keywords: crystal structure; absolute configuration; glabridin; natural compounds.

1. Introduction

Glabridin, (I), is a prenylated isoflavan, which has previously been isolated from the roots of Glycyrrhiza glabra (Shibata \& Saitoh, 1978; Zhang \& Ye, 2009). Interestingly, glabridin is one of the most studied licorice flavonoids, and has been widely considered to be a phytoestrogen with numerous biological activities including antioxidant (Vaya et al., 1997), antibacterial (Fukai et al., 2002), neuroprotective (Cui et al., 2008) and potential antitumorogenic properties (Tsai et al., 2010;

Hsu et al., 2011), as well as antinephritic, antibacterial and skin-whitening activities (Simmler et al., 2013a). The structure of glabridin was first characterized in 1976 (Saitoh et al., 1976) and subsequently more fully investigated by various spectroscopic methods (Kinoshita et al., 1996; Kim et al., 2009). The chemical synthesis was reported in 2007 (Yoo \& Nahm, 2007) and the X-ray crystal structure at 293 K was reported last year (Tantishaiyakul et al., 2012). However, the determination of the absolute stereochemistry and enantiopurity of natural glabridin remains uncertain.

(I)

2. Experimental

2.1. Synthesis and crystallization

The CHCl_{3} extract (4.97 g) from G. glabra roots was fractionated on an HW-40F column ($2.5 \times 60 \mathrm{~cm}$) with 100% MeOH elution at a flow rate of $2.5 \mathrm{ml} \mathrm{min}^{-1}$, to yield seven fractions. The fourth fraction $(1.92 \mathrm{~g})$ was further separated on a Sephadex LH-20 column ($1.1 \times 9 \mathrm{~m}$) eluted with 100% MeOH at a flow rate of $1 \mathrm{ml} \mathrm{min}{ }^{-1}$, to give a glabridin-enriched fraction (234 mg). The final purification step was carried out on a LiChroCN $(1.1 \times 30 \mathrm{~cm})$ column using an isocratic elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5 \mathrm{v} / \mathrm{v}$). After drying under vacuum, the purified glabridin (10 mg), (I), was dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{ml}, 95: 5 \mathrm{v} / \mathrm{v})$ and left in a round-bottomed flask at room temperature for 24 h in order to obtain clear colorless crystals.

The ${ }^{1} \mathrm{H}$ NMR spectra (600 MHz in DMSO- d_{6} and in CDCl_{3} at $10 \mathrm{~m} M$) were acquired under quantitative conditions and recorded on a Bruker AVANCE 600 MHz spectrometer equipped with a 5 mm TXI cryoprobe. Off-line data processing was performed using the TOPSPIN 3.0.b. 8 software package (Bruker BioSpin GmbH), and PERCH NMR software (Laatikainen et al., 1996) was employed for the full spinsystem analysis. The NMR and circular dichroism (CD; 230330 nm , in acetonitrile at $50 \mu M$) data obtained for this secondary metabolite were in accordance with previously published data (Kinoshita et al., 1996; Kim et al., 2009; Yoo \& Nahm, 2007). Chiral one-dimensional ${ }^{1} \mathrm{H}$ NMR was performed by adding a $\mathrm{D}_{2} \mathrm{O}$ solution (20 mM) of a chiral reagent \{sodium [(R)-1,2-diaminopropane- $N, N, N^{\prime}, N^{\prime}$-tetraacetato]samarate(III) hydrate; TCI Co. Ltd\} to the crystalline sample dissolved in DMSO- $d_{6}(12 \mathrm{mM})$. Spectra were acquired at 600 MHz . Chiral ${ }^{1} \mathrm{H}$ NMR data processing was done following a Lorentzian-toGaussian modification ($\mathrm{LB}=-2.5 \mathrm{~Hz}, \mathrm{GF}=0.06$), as reported previously (Jaki et al., 2004). If the sample were to contain two enantiomers, a split in the proton resonance near the chiral

Table 1
Experimental details.
Crystal data

Crystal data	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$
Chemical formula	324.36
M_{r}	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Crystal system, space group	92
Temperature (K)	$6.3744(10), 11.961(2), 21.041(3)$
$a, b, c(\AA)$	$1604.3(4)$
$V\left(\AA^{3}\right)$	4
Z	Cu K α
Radiation type	0.76
$\mu\left(\mathrm{~mm}^{-1}\right)$	$0.15 \times 0.05 \times 0.03$
Crystal size (mm)	
Data collection	Bruker Kappa APEXII DUO CCD
Diffractometer	area-detector diffractometer
	Multi-scan $(S A D A B S ;$ Sheldrick,
Absorption correction	$2004)$
	$0.895,0.978$
$T_{\text {min }}, T_{\text {max }}$	$47918,2879,2708$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.046
R int	0.603
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.026,0.061,1.03$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2879
No. of reflections	277
No. of parameters	Only H-atom coordinates refined
H-atom treatment	
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$0.13,-0.13$
Absolute structure	Flack x parameter determined
	using 1096 quotients
	$\left.\left[I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
Absolute structure parameter	$($Parsons et al., 2013)
	$-0.03(6)$

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).
center would be observed. The signal split should be all the more significant as the proportion of chiral reagent in the NMR sample increases. The chiral NMR method was previously assessed using a racemic sample of liquiritigenin (Part No. 00012290; Chromadex Inc.), from which the recorded CD spectrum ($40 \mu M$ in acetonitrile) gave a flat line: $25 \mu \mathrm{l}$ of samarate solution at $20 \mathrm{~m} M$ in $\mathrm{D}_{2} \mathrm{O}$ added to $200 \mu \mathrm{l}$ of a liquiritigenin solution at $10 \mathrm{~m} M$ in DMSO- d_{6} led to splitting of the signals from protons H2 (chiral center) and H3 (adjacent to the chiral center).

Chiral high-performance liquid chromatography (HPLC) was carried out on different types of stationary phases: permethylated B cyclodextrins (Nucleodex $\beta-\mathrm{OH}$, and $\alpha-, \beta$ and γ-PM; Macherey Nagel, GmbH \& Co.); sodium magnesium silicate particles and anion exchange with ruthenium (Ceramospher RU-2; Shiseido Co. Ltd); and derivatized cellulose or amylose tris(3,5-dimenthylphenylcarbamate) (Chiralpak 1B and 1A, respectively; Chiral Technolgies, Inc.). Different elution conditions using various solvent mixtures, such as $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}$ and n-hexane- EtOH , and various flow rates from 0.7 to $1 \mathrm{ml} \mathrm{min}^{-1}$, were also tested according to the type of stationary phase.

Several crystals were selected and screened, and complete X-ray data sets were collected on the LS-CAT beamline 21-ID-D (APS, Argonne, USA) at $0.7 \AA$ to determine crystal quality. One small colorless crystal was selected for further
data collection. An Ewald sphere of intensity data was collected and averaged to a quadrant in the Bravais lattice (Pmmm). The final unit-cell parameters were obtained from refinement using 9904 reflections to a maximum Bragg angle of 68.81°.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The space group was identified as $P 2_{1} 2_{1} 2_{1}$ based upon systematic absences and intensity statistics, with a final total of 2879 unique observations. The positions of the H atoms were evident in a difference electron-density map, and were then freely refined, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (parent atom) for hydroxy and methyl H atoms or $1.2 U_{\text {eq }}$ (parent atom) otherwise. The structure has been deposited with the Cambridge Crystallographic Data Centre (deposition No. 918747).

3. Results and discussion

After the final step of the medium-pressure liquid chromatography (MPLC) purification process, natural glabridin was crystallized from a mixture of methanol and water to give clear colorless crystals of (I) containing one molecule per asymmetric unit ($Z^{\prime}=1$) in the space group $P 2_{1} 2_{1} 2_{1}$ (Fig. 1). A comparison of bond lengths obtained for this and the previous determination is given in the Supplementary materials. An intermolecular hydrogen bond is observed between atom O1B ($\mathrm{O} 1^{\prime \prime}$ according to the biogenetic labeling) and atom $\mathrm{H} 4 A$ on atom $\mathrm{O} 4 A\left(\mathrm{O}^{\prime}\right)$ of an adjacent molecule, with an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of $178(2)^{\circ}$ (Table 2). In addition, it has been reported (Tantishaiyakul et al., 2012) that there is a putative $\mathrm{O}-\mathrm{H} \cdots \pi$ interaction between the hydroxy group on atom $\mathrm{O} 2 A$ and $\mathrm{C} 1 A-\mathrm{C} 6 A$ aromatic ring of a neighboring molecule (Table 2).

The one-dimensional ${ }^{1} \mathrm{H}$ NMR spectra $(600 \mathrm{MHz}$, in DMSO- d_{6} and CDCl_{3}; see Supplementary materials) obtained for the present sample of glabridin are in accordance with previously published data (Kinoshita et al., 1996; Kim et al., 2009). The two-dimensional NMR spectra (HSQC and HMBC recorded at 600 MHz in DMSO- d_{6}) further confirmed the structural assignments. Additionally, the enantiopurity of the crystalline sample has been evaluated by means of chiral HPLC, using different types of stationary phases and elution systems. Under all of these conditions, the glabridin sample eluted only as a single enantiomer. Moreover, chiral ${ }^{1} \mathrm{H}$ NMR in DMSO- d_{6} was also performed using a chiral water-soluble reagent (samarate). Even after adding 50% molar concentration of the samarate, no splitting of glabridin ${ }^{1} \mathrm{H}$ NMR

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.
$C g A$ is the centroid of the $\mathrm{C} 1 A-\mathrm{C} 6 A$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.86 (3)	1.96 (3)	2.8214 (19)	178 (2)
$\mathrm{O} 2 A-\mathrm{H} 2 A \cdots C g A^{\text {ii }}$	0.84 (3)	2.46 (2)	3.1505 (16)	139 (2)

Figure 1

The hydrogen-bonding scheme of glabridin in the unit cell. Dashed lines indicate hydrogen bonds.
signals was observed, suggesting that only one enantiomer was present in the NMR tube. Taken together, these observations suggest that the collected sample was enantiopure.

The stereochemistry of glabridin was determined using $\mathrm{Cu} K \alpha$ radiation and by carefully measuring a large number of Bijvoet differences. We assert that the isolated glabridin crystallized as a pure C3 R enantiomer (Fig. 2). The Flack parameter (Flack, 1983) refined to -0.14 (19) for the 'hole-inone' fit, and to -0.03 (6) for the 1096 selected quotients from Parsons' method (Parsons et al., 2013). PLATON (Spek, 2009) was also used to analyze the 1096 Bijvoet differences (Hooft et al., 2008) and suggested that the glabridin structure is enantiopure: the probability $P 2($ true $)=P 3($ true $)=1.000$ with

Figure 2
The molecular structure of glabridin, showing the atom-labeling scheme according to the crystallographic coordinates. Displacement ellipsoids are drawn at the 50% probability level. The biogenetic labeling scheme relates to the crystallographic atom labels as follows: ' A ' corresponds to primed (') labels and 'B' corresponds to double primed (") labels, e.g. $\mathrm{C} 3 A$ is $\mathrm{C} 3^{\prime}$ and $\mathrm{C} 3 B$ is $\mathrm{C} 3^{\prime \prime}$.
$P 3($ racemate-twin $)=5.0 \times 10^{-27}, P 3($ false $)=1.0 \times 10^{-97}, G=$ 1.09 (10), and the Hooft parameter $y=-0.05$ (5) for the C3 R enantiomer. CRYSTALS (Betteridge et al., 2003) was also used to refine the structure. It reported a Flack parameter of -0.13 (16), a G parameter of 1.03 (12) and a Hooft parameter of -0.01 (6).

The determination of absolute structure, and the relative uncertainties in the measurement of the intensities of the Friedel pairs, has been revisited (Flack, 2013; Parsons et al., 2012; Flack et al., 2011). In particular, it has been noted that the average of the observed intensities between Friedel pairs, $2 A_{\mathrm{o}}=\left|F_{\mathrm{o}}(h k l)^{2}\right|+\left|F_{\mathrm{o}}(\overline{h k l})^{2}\right|$, can be in good agreement with the corresponding average of the calculated intensities of the model, $2 A_{\mathrm{c}}=\left|F_{\mathrm{c}}(h k l)^{2}\right|+\left|F_{\mathrm{c}}(\overline{h k l})^{2}\right|$, but the differences between the observed intensities of the Friedel pairs, $D_{\text {o }}=$ $\left|F_{\mathrm{o}}(h k l)^{2}\right|-\left|F_{\mathrm{o}}(\overline{h k l})^{2}\right|$, can be overwhelmed by random and systematic errors in the measurements when compared with the corresponding differences between the calculated intensities of the model, $D_{\mathrm{c}}=\left|F_{\mathrm{c}}(h k l)^{2}\right|-\left|F_{\mathrm{c}}(\overline{h k l})^{2}\right|$ (Flack, 2013). Ideally, the plots of $2 A_{\mathrm{o}}$ versus $2 A_{\mathrm{c}}$ and of D_{o} versus D_{c} would each yield linear fits with slopes of 1 and intercepts at zero. From Fig. 3(a), we see that $2 A_{\mathrm{o}}$ is in good agreement with $2 A_{\mathrm{c}}$, with a slope near 1 , but this is clearly not true for Fig. $3(b)$ with $D_{\text {o }}$ plotted against D_{c}. However, the slope of the linear fit in Fig. $3(b)$ is near 0.2 , suggesting a weak resonant-scattering contribution and the correct absolute structure assignment. Indeed, a plot of $D_{\text {o }}$ versus $D_{\text {c }}$ for $D_{\text {o }}>4 \sigma$ results in a slope near 0.2 with a correlation coefficient of 0.77 (Fig. 3c). Likewise, various assessment factors employing A and D can be defined to ascertain the magnitude of the resonant-scattering contributions to the Friedel pair differences: $R_{A}=$ $\Sigma\left|2 A_{\mathrm{o}}-2 A_{\mathrm{c}}\right| / \Sigma\left|2 A_{\mathrm{o}}\right|=3.5 \%, R_{D}=\Sigma\left|D_{\mathrm{o}}-D_{\mathrm{c}}\right| / \Sigma\left|D_{\mathrm{o}}\right|=92.0 \%$, $R_{A D}=\Sigma\left|D_{\mathrm{o}}\right| / \Sigma\left|A_{\mathrm{o}}\right|=1.5 \%$ and $\left\langle D_{\mathrm{o}} / \sigma\right\rangle=(1 / n) \Sigma\left|D_{\mathrm{o}}\right| / \sigma=1.9$. These assessment factors suggest that the resonant-scattering

Figure 3
$2 A$ and D plots of (a) $2 A_{\mathrm{o}}$ versus $2 A_{\mathrm{c}}$, (b) D_{o} versus D_{c} for all data and (c) D_{o} versus D_{c} for all Friedel pairs with $D_{\mathrm{o}}>4 \sigma$.
contributions to the observed intensities are weak, but still significant enough to assign the absolute structure correctly.

Circular dichroism (CD) of flavonoids can indicate the configuration of a sample regardless of its enantiopurity (Slade et al., 2005). If a sample is defined by an enantiomeric excess, its CD spectrum will only indicate the configuration of the enantiomer present in excess (Simmler et al., 2013b). Given that the enantiopurity and stereochemistry of the present glabridin sample have been determined by means of complementary techniques (chiral HPLC, NMR and X-ray diffraction), the CD spectrum recorded from the crystalline sample ($50 \mu M$ in acetonitrile) displays the molecular ellipti-

Figure 4
The CD spectrum of C3 R enantiopure glabridin at $50 \mu M$ in acetonitrile.
city of an enantiopure glabridin in a C3 R configuration (Kim et al., 2009) (Fig. 4).

4. Conclusions

The present description of the crystal structure of glabridin complements existing spectroscopic data, and confirms that glabridin naturally occurs in the C3 R configuration. From this stereochemical point of view, it is important to consider that all the biological activities reported for natural glabridin are likely obtained from the R enantiomer. Therefore, the reported CD spectrum can be used as a reference for further characterization and elucidation of the enantiopurity of an isolated or synthetic glabridin sample. The results presented herein provide an unequivocal foundation for the structural characterization of this phytochemical and biological marker of European licorice, G. glabra L.

This research was supported by NCCAM and ODS through grant No. P50 AT000155. The authors acknowledge use of the Life Sciences Collaborative Access Team (LS-CAT) beamline 21-ID-D for the initial data collection; use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Upgrade of the diffractometer was made possible by grant No. LEQSF(2011-12)-ENH-TR-01, administered by the Louisiana Board of Regents. Finally, we thank Dr José Napolitano, UIC Chicago (Illinois), and Matthias Niemitz, Perch Solutions Ltd, Kuopio (Finland), for helpful NMR discussions and PERCH support.

[^0]
References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

pharmaceuticals and natural products

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cui, Y.-M., Ao, M.-Z., Li, W. \& Yu, L.-J. (2008). Planta Med. 74, 377-380.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. (2013). Acta Cryst. C69, 803-807.
Flack, H. D., Sadki, M., Thompson, A. L. \& Watkin, D. J. (2011). Acta Cryst. A67, 21-34.
Fukai, T., Marumo, A., Kaitou, K., Kanda, T. \& Nomura, T. (2002). Life Sci. 71, 1449-1463.
Hooft, R. W. W., Straver, L. H. \& Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.
Hsu, Y.-L., Wu, L.-Y., Hou, M.-F., Tsai, E.-M., Lee, J.-N., Liang, H.-L., Jong, Y.-J., Hung, C.-H. \& Kuo, P.-L. (2011). Mol. Nutr. Food Res. 55, 318-327.

Jaki, B., Franzblau, S. G. \& Pauli, G. F. (2004). Phytochem. Anal. 15, 213219.

Kim, M., Kim, S.-U., Kim, Y.-U. \& Han, J. (2009). Bull. Korean Chem. Soc. 30, 415-418.
Kinoshita, T., Kajiyama, K., Hiraga, Y., Takahashi, K., Tamura, Y. \& Mizutani, K. (1996). Heterocycles, 83, 581-588.

Laatikainen, R., Niemitz, M., Weber, U., Sundelin, J., Hassinen, T. \& Vepsäläinen, J. (1996). J. Magn. Reson. 120, 1-10.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249-259.
Parsons, S., Pattison, P. \& Flack, H. D. (2012). Acta Cryst. A68, 736-749.
Saitoh, T., Kinoshita, T. \& Shibata, S. (1976). Chem. Pharm. Bull. 24, 752-754.
Sheldrick, G. M. (2004). SABABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shibata, S. \& Saitoh, T. (1978). J. Indian Chem. Soc. 55, 1184-1191.
Simmler, C., Pauli, G. F. \& Chen, S.-N. (2013a). Fitoterapia, 90, 160-184.
Simmler, C., Hajirahimkhan, A., Lankin, D. C., Bolton, J. L., Jones, T., Soejarto, D. D., Chen, S.-N. \& Pauli, G. F. (2013b). J. Agric. Food Chem. 61, 2146-2157.
Slade, D., Ferreira, D. \& Marais, J. P. J. (2005). Phytochemistry, 66, 2177-2215. Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tantishaiyakul, V., Suknuntha, K., Saithong, S. \& Pakawatchai, C. (2012). Acta Cryst. E68, o3501.
Tsai, Y.-M., Yang, C.-J., Hsu, Y.-L., Wu, L.-Y., Tsai, Y.-C., Hung, J.-Y., Lien, C.-T., Huang, M.-S. \& Kuo, P.-L. (2010). Integr. Cancer Ther. 20, 1-9.

Vaya, J., Belinky, P. A. \& Aviram, M. (1997). Free Radical Biol. Med. 23, 302313.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yoo, S.-K. \& Nahm, K. (2007). Bull. Korean Chem. Soc. 28, 481-484.
Zhang, Q. \& Ye, M. (2009). J. Chromatogr. A, 1216, 1954-1969.

supplementary materials

Acta Cryst. (2013). C69, 1212-1216 [doi:10.1107/S0108270113018842]

Absolute configuration of naturally occurring glabridin

Charlotte Simmler, Frank R. Fronczek, Guido F. Pauli and Bernard D. Santarsiero

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

4-[(3R)-8,8-Dimethyl-3,4-dihydro-2H-pyrano[2,3-f]chromen-3-yl]benzene-1,3-diol

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$
$M_{r}=324.36$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.3744$ (10) \AA
$b=11.961$ (2) \AA
$c=21.041$ (3) \AA
$V=1604.3(4) \AA^{3}$
$Z=4$
$F(000)=688$

Data collection

Bruker Kappa APEXII DUO CCD aea-detector diffractometer
Radiation source: $\mathrm{I} \mu \mathrm{S}$ microfocus
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.895, T_{\text {max }}=0.978$
47918 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.061$
$S=1.03$
2879 reflections
277 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$D_{\mathrm{x}}=1.343 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 9904 reflections
$\theta=4.2-68.6^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=92 \mathrm{~K}$
Needle, colourless
$0.15 \times 0.05 \times 0.03 \mathrm{~mm}$

2879 independent reflections
2708 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=68.5^{\circ}, \theta_{\min }=4.2^{\circ}$
$h=-7 \rightarrow 7$
$k=0 \rightarrow 14$
$l=0 \rightarrow 24$

Hydrogen site location: difference Fourier map
Only H -atom coordinates refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0324 P)^{2}+0.3419 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.13$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}
Absolute structure: Flack x parameter
determined using 1096 quotients
$[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons et al., 2013)
Absolute structure parameter: -0.03 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1A	0.5348 (3)	0.41798 (14)	0.46350 (8)	0.0178 (4)
C2A	0.3549 (3)	0.34964 (15)	0.46223 (8)	0.0179 (4)
O2A	0.2046 (2)	0.37100 (11)	0.50754 (6)	0.0235 (3)
H2A	0.119 (4)	0.317 (2)	0.5091 (11)	0.035*
C3A	0.3301 (3)	0.26477 (15)	0.41751 (9)	0.0183 (4)
H3A	0.209 (4)	0.2201 (17)	0.4177 (9)	0.022*
C4A	0.4854 (3)	0.24727 (15)	0.37179 (8)	0.0189 (4)
O4A	0.4515 (2)	0.16339 (11)	0.32871 (6)	0.0243 (3)
H4A	0.550 (4)	0.161 (2)	0.3009 (11)	0.036*
C5A	0.6645 (3)	0.31343 (16)	0.37152 (9)	0.0211 (4)
H5A	0.774 (4)	0.3022 (18)	0.3398 (9)	0.025*
C6A	0.6871 (3)	0.39709 (15)	0.41730 (9)	0.0203 (4)
H6A	0.814 (4)	0.4403 (17)	0.4177 (10)	0.024*
O1	0.4235 (2)	0.69199 (10)	0.54946 (6)	0.0214 (3)
C2	0.4297 (3)	0.61178 (16)	0.49751 (9)	0.0203 (4)
H21	0.487 (4)	0.6480 (17)	0.4591 (10)	0.024*
H22	0.280 (4)	0.5939 (18)	0.4886 (10)	0.024*
C3	0.5547 (3)	0.50714 (15)	0.51435 (8)	0.0182 (4)
H3	0.493 (3)	0.4770 (17)	0.5531 (10)	0.022*
C4	0.7802 (3)	0.54459 (15)	0.52873 (9)	0.0205 (4)
H41	0.865 (3)	0.4797 (19)	0.5424 (10)	0.025*
H42	0.838 (3)	0.5780 (18)	0.4902 (10)	0.025*
C5	0.9300 (3)	0.63739 (16)	0.62720 (9)	0.0217 (4)
H5	1.051 (4)	0.5890 (18)	0.6218 (9)	0.026*
C6	0.9161 (3)	0.70976 (16)	0.67885 (9)	0.0217 (4)
H6	1.029 (4)	0.7158 (18)	0.7106 (9)	0.026*
C7	0.7389 (3)	0.77578 (14)	0.68483 (8)	0.0180 (4)
C8	0.5746 (3)	0.77139 (15)	0.64067 (8)	0.0177 (4)
C9	0.5938 (3)	0.69660 (15)	0.58945 (8)	0.0176 (4)
C10	0.7716 (3)	0.62927 (14)	0.58174 (8)	0.0183 (4)
O1B	0.7192 (2)	0.84092 (10)	0.73914 (6)	0.0208 (3)
C2B	0.5885 (3)	0.94209 (15)	0.73530 (9)	0.0205 (4)
C3B	0.3909 (3)	0.91720 (16)	0.69821 (9)	0.0219 (4)
H3B	0.269 (4)	0.9652 (18)	0.7094 (10)	0.026*
C4B	0.3886 (3)	0.83923 (16)	0.65271 (8)	0.0204 (4)
H4B	0.264 (4)	0.8230 (17)	0.6288 (10)	0.024*
C5B	0.5396 (3)	0.97127 (19)	0.80411 (9)	0.0266 (4)
H51B	0.455 (4)	1.043 (2)	0.8066 (11)	0.040*
H52B	0.672 (4)	0.982 (2)	0.8270 (11)	0.040*
H53B	0.451 (4)	0.914 (2)	0.8248 (11)	0.040*

C6B	$0.7177(4)$	$1.03343(17)$	$0.70313(10)$	$0.0289(5)$
H61B	$0.756(4)$	$1.010(2)$	$0.6609(12)$	0.043^{*}
H62B	$0.849(4)$	$1.049(2)$	$0.7261(12)$	0.043^{*}
H63B	$0.631(4)$	$1.107(2)$	$0.7017(11)$	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	$0.0214(9)$	$0.0164(8)$	$0.0156(9)$	$0.0009(8)$	$-0.0006(8)$	$0.0026(7)$
C2A	$0.0188(9)$	$0.0191(9)$	$0.0159(9)$	$0.0031(7)$	$0.0031(7)$	$0.0042(7)$
O2A	$0.0217(7)$	$0.0227(7)$	$0.0262(7)$	$-0.0035(6)$	$0.0081(6)$	$-0.0026(5)$
C3A	$0.0187(9)$	$0.0162(8)$	$0.0201(9)$	$-0.0009(7)$	$-0.0010(8)$	$0.0025(7)$
C4A	$0.0239(10)$	$0.0167(9)$	$0.0160(9)$	$0.0016(8)$	$-0.0021(7)$	$0.0007(7)$
O4A	$0.0280(7)$	$0.0241(7)$	$0.0207(7)$	$-0.0048(6)$	$0.0051(6)$	$-0.0061(5)$
C5A	$0.0231(10)$	$0.0221(9)$	$0.0181(9)$	$0.0010(8)$	$0.0037(8)$	$0.0007(7)$
C6A	$0.0211(9)$	$0.0196(9)$	$0.0202(9)$	$-0.0021(8)$	$0.0015(8)$	$0.0015(7)$
O1	$0.0215(7)$	$0.0226(7)$	$0.0201(6)$	$0.0047(6)$	$-0.0051(6)$	$-0.0058(5)$
C2	$0.0244(10)$	$0.0211(9)$	$0.0155(9)$	$0.0023(8)$	$-0.0016(8)$	$-0.0038(7)$
C3	$0.0201(9)$	$0.0191(9)$	$0.0154(9)$	$0.0002(7)$	$0.0018(7)$	$0.0003(7)$
C4	$0.0203(9)$	$0.0200(9)$	$0.0214(9)$	$0.0014(8)$	$0.0013(8)$	$-0.0006(8)$
C5	$0.0193(9)$	$0.0200(9)$	$0.0258(10)$	$0.0010(8)$	$-0.0008(8)$	$0.0000(8)$
C6	$0.0207(9)$	$0.0226(10)$	$0.0219(10)$	$-0.0008(8)$	$-0.0047(8)$	$0.0007(7)$
C7	$0.0227(9)$	$0.0163(9)$	$0.0151(9)$	$-0.0044(7)$	$-0.0003(7)$	$0.0014(7)$
C8	$0.0200(9)$	$0.0164(8)$	$0.0168(9)$	$-0.0022(7)$	$0.0010(7)$	$0.0034(7)$
C9	$0.0193(9)$	$0.0176(8)$	$0.0158(9)$	$-0.0030(7)$	$-0.0013(7)$	$0.0038(7)$
C10	$0.0187(9)$	$0.0169(8)$	$0.0193(9)$	$-0.0017(7)$	$0.0022(7)$	$0.0029(7)$
O1B	$0.0244(7)$	$0.0198(6)$	$0.0182(6)$	$0.0014(5)$	$-0.0035(5)$	$-0.0016(5)$
C2B	$0.0227(9)$	$0.0182(9)$	$0.0206(9)$	$0.0022(8)$	$-0.0002(8)$	$-0.0003(7)$
C3B	$0.0234(10)$	$0.0216(10)$	$0.0209(10)$	$0.0032(8)$	$0.0008(8)$	$0.0014(8)$
C4B	$0.0202(9)$	$0.0222(9)$	$0.0188(9)$	$0.0013(7)$	$-0.0015(8)$	$0.0008(7)$
C5B	$0.0269(11)$	$0.0312(11)$	$0.0217(10)$	$-0.0014(10)$	$0.0001(9)$	$-0.0056(8)$
C6B	$0.0348(12)$	$0.0217(10)$	$0.0302(11)$	$-0.0034(9)$	$0.0042(10)$	$0.0010(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.396(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.392(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.408(2)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.394(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3$	$1.516(2)$	$\mathrm{C} 5-\mathrm{H} 5$	$0.97(2)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$1.376(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.384(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.393(3)$	$\mathrm{C} 6-\mathrm{H} 6$	$0.98(2)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	$0.84(3)$	$\mathrm{C} 7-\mathrm{O} 1 \mathrm{~B}$	$1.389(2)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.396(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.401(3)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	$0.94(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.406(2)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 4 \mathrm{~A}$	$1.369(2)$	$\mathrm{C} 8-\mathrm{C} 4 \mathrm{~B}$	$1.459(3)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$1.389(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.400(3)$
$\mathrm{O} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	$0.86(3)$	$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$1.471(2)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.396(3)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$1.512(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A}$	$0.97(2)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$1.521(3)$
C6A-H6A	$0.96(2)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$1.526(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.375(2)$	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$1.337(3)$

$\mathrm{O} 1-\mathrm{C} 2$	$1.455(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.525(3)$
$\mathrm{C} 2-\mathrm{H} 21$	$0.99(2)$
$\mathrm{C} 2-\mathrm{H} 22$	$1.00(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.536(3)$
$\mathrm{C} 3-\mathrm{H} 3$	$0.97(2)$
$\mathrm{C} 4-\mathrm{C} 10$	$1.508(2)$
$\mathrm{C} 4-\mathrm{H} 41$	$0.99(2)$
$\mathrm{C} 4-\mathrm{H} 42$	$0.98(2)$

$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$
C6A-C1A-C3
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$
O4A-C4A-C5A
O4A-C4A-C3A
C5A-C4A-C3A
C4A-O4A-H4A
C4A-C5A-C6A
C4A-C5A-H5A
C6A-C5A-H5A
C5A-C6A-C1A
C5A-C6A-H6A
C1A-C6A-H6A
C9-O1-C2
O1-C2-C3
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 21$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 21$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 22$
C3-C2-H22
$\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 22$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2$
C1A-C3-C4
C2-C3-C4
C1A-C3-H3
C2-C3-H3
C4-C3-H3
C10-C4-C3
C10-C4-H41
C3-C4-H41
C10-C4-H42
C3-C4-H42
H41-C4—H42
116.68 (16)
123.98 (16)
119.33 (16)
121.62 (16)
116.49 (15)
121.89 (16)
109.7 (16)
119.60 (17)
120.3 (12)
120.1 (12)
122.99 (16)
117.00 (16)
120.01 (16)
111.3 (17)
119.34 (17)
120.7 (13)
119.9 (13)
122.47 (18)
118.6 (13)
118.9 (13)
117.69 (14)
112.39 (14)
109.6 (12)
111.0 (12)
104.9 (12)
111.6 (12)
107.1 (18)
111.68 (14)
115.00 (15)
107.17 (15)
107.3 (12)
106.7 (12)
108.7 (12)
107.92 (15)
109.3 (12)
109.9 (12)
110.7 (13)
108.1 (12)
110.9 (17)

C3B-H3B	$1.00(2)$
C4B-H4B	$0.96(2)$
C5B-H51B	$1.01(3)$
C5B-H52B	$0.98(3)$
C5B-H53B	$0.99(3)$
C6B-H61B	$0.96(3)$
C6B-H62B	$0.99(3)$
C6B-H63B	$1.04(3)$

$\mathrm{C} 10-\mathrm{C} 5-\mathrm{H} 5$	$116.9(12)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$118.54(17)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	$119.5(12)$
C5-C6-H6	$122.0(12)$
C6-C7-O1B	$117.95(15)$
C6-C7-C8	$121.89(16)$
O1B-C7-C8	$119.96(16)$

117.87 (17)
118.12 (16)
123.89 (16)
123.05 (16)
115.22 (16)
121.69 (16)
117.82 (16)
121.88 (16)
120.12 (16)
117.87 (13)
109.77 (14)
104.62 (15)
111.45 (16)
107.92 (16)
111.20 (16)
111.62 (17)
121.07 (17)
124.2 (13)
114.7 (12)
120.24 (17)
121.8 (13)
117.9 (13)
110.6 (13)
108.8 (14)

109 (2)
112.0 (14)
105.2 (19)

111 (2)
109.9 (16)
112.3 (15)

107 (2)
109.4 (14)

C6-C5-C10
C6-C5-H5
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$
$\mathrm{C} 3-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$
C6A-C1A-C2A-C3A
$\mathrm{C} 3-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 4 \mathrm{~A}$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$
O4A-C4A-C5A-C6A
C3A-C4A-C5A-C6A
C4A-C5A-C6A-C1A
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$
$\mathrm{C} 3-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$
C9-O1-C2-C3
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2$
C6A-C1A-C3-C4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1 \mathrm{~A}$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
C1A-C3-C4-C10
C2-C3-C4-C10
C10-C5-C6-C7
C5-C6-C7-O1B
C5-C6-C7-C8
C6-C7-C8-C9
O1B-C7-C8-C9
122.20 (18)
120.9 (12)
$-179.56(15)$
1.4 (2)
0.5 (2)
-178.56 (16)
179.01 (16)
-1.0 (3)
-179.39 (16)
0.8 (3)
$-179.83(17)$
0.0 (3)
-0.6 (3)
0.3 (3)
179.32 (16)
31.4 (2)
100.6 (2)
-80.5 (2)
-21.8 (2)
157.13 (16)
172.12 (15)
-61.09 (19)
-177.75 (14)
57.45 (18)
-0.2 (3)
174.93 (16)
0.1 (3)
0.4 (3)
-174.32 (15)

$\mathrm{H} 61 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 63 \mathrm{~B}$	$111(2)$
$\mathrm{H} 62 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 63 \mathrm{~B}$	$107(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 4 \mathrm{~B}$	$176.53(17)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 4 \mathrm{~B}$	$1.8(2)$
$\mathrm{C} 2-\mathrm{O}-\mathrm{C}-\mathrm{C} 10$	$0.9(2)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$-176.83(15)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$	$176.92(15)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$	$1.0(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.9(2)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-176.78(17)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-0.3(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 4$	$-175.28(17)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-176.79(16)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$0.8(2)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$-1.7(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$175.90(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$146.12(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$-28.8(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$154.92(16)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$-30.2(2)$
$\mathrm{C} 7-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$42.0(2)$
$\mathrm{C} 7-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$161.71(15)$
$\mathrm{C} 7-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-79.32(19)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-29.3(2)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-144.71(18)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$90.1(2)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 8$	$3.9(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$11.4(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-172.65(17)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
CgA is the centroid of the $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	$0.86(3)$	$1.96(3)$	$2.8214(19)$	$178(2)$
$\mathrm{O} 2 A — \mathrm{H} 2 A \cdots \mathrm{CgA}^{\mathrm{ii}}$	$0.84(3)$	$2.46(2)$	$3.1505(16)$	$139(2)$

Symmetry codes: (i) $-x+3 / 2,-y+1, z-1 / 2$; (ii) $x+1 / 2,-y+3 / 2,-z$.

One-dimensional ${ }^{1} H$ NMR data $\left[\delta_{H},(m, J\right.$ in Hz$\left.)\right]$ of glabridin in $D M S O d_{6}$ and $\mathrm{CDCl}_{3}(600 \mathrm{MHz})$

Protons	DMSO d_{6}	CDCl_{3}
$\mathrm{H}-2($ pro-S $) \mathrm{a}$	$3.94\left(t, \mathrm{~J}_{\mathrm{H}-3}=10.26\right)$	$4.01\left(t, \mathrm{~J}_{\mathrm{H}-3}=10.56\right)$
$\mathrm{H}-2($ pro-R $) \mathrm{b}$	$4.23\left(d t, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=2.61, \mathrm{~J}_{\mathrm{gem}}=-10.20\right)$	$4.37\left(d t, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=2.55, \mathrm{~J}_{\mathrm{gem}}=-10.56\right)$
$\mathrm{H}-3$	$3.29(m)$	$3.48(m)$
$\mathrm{H}-4($ pro-S $) \mathrm{a}$	$2.69\left(d d d, \mathrm{~J}_{\mathrm{H}-2 \mathrm{~b}}=1.76, \mathrm{~J}_{\mathrm{H}-3}=4.77, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~b}}\right.$	$2.86\left(d d d, \mathrm{~J}_{\mathrm{H}-2 \mathrm{~b}}=1.57, \mathrm{~J}_{\mathrm{H}-3}=4.71, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~b}}\right.$
$\mathrm{H}-4($ pro-R $) \mathrm{b}$	$=15.52)$	$=15.62)$
$\mathrm{H}-5$	$2.89\left(d d, \mathrm{~J}_{\mathrm{H}-3}=11.36, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=15.52\right)$	$2.97\left(d d, \mathrm{~J}_{\mathrm{H}-3}=10.77, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=15.62\right)$
	$6.83\left(d, \mathrm{~J}_{\mathrm{H}-6}=8.22\right)$	$6.82\left(d, \mathrm{~J}_{\mathrm{H}-6}=8.23\right)$

H-6	$6.29\left(d, \mathrm{~J}_{\mathrm{H}-5}=8.22\right)$	$6.36\left(d, \mathrm{~J}_{\mathrm{H}-5}=8.23\right)$
H-3A	$6.33\left(d, \mathrm{~J}_{\mathrm{H}-5 \mathrm{~A}}=2.40\right)$	$6.33\left(d, \mathrm{~J}_{\mathrm{H}-5 \mathrm{~A}}=2.30\right)$
H-5A	$6.19\left(d d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~A}}=2.40, \mathrm{~J}_{\mathrm{H}-6 \mathrm{~A}}=8.32\right)$	$6.38\left(d d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~A}}=2.30, \mathrm{~J}_{\mathrm{H}-6 \mathrm{~A}}=8.37\right)$
H-6A	$6.86\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-5 \mathrm{~A}}=8.32\right)$	$6.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-5 \mathrm{~A}}=8.37\right)$
2A-OH	$9.11(s)$	
4A-OH	$9.39(s)$	
H-3B	$5.65\left(d, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~B}}=9.90\right)$	$5.55\left(d, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~B}}=9.90\right)$
H-4B	$6.54\left(d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~B}}=9.90\right)$	$6.64\left(d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~B}}=9.90\right)$
$\mathrm{H}_{3}-5 \mathrm{~B}$	$1.33(s)$	$1.40(s)$
$\mathrm{H}_{3}-6 \mathrm{~B}$	$1.34(s)$	$1.42(s)$

Chemical shifts δ in p.p.m.. Coupling patterns are given in parentheses (J in Hz). All assignments were confirmed by gHSQC and qHMBC.

Results of one-dimensional ${ }^{l} H$ NMR full-spin analysis of glabridin in DMSO $d_{6}\left(\delta_{H}, m, J\right.$ in Hz$)$

Protons	DMSO d_{6}
H-2 (pro-S) a	$4.271\left(t, \mathrm{~J}_{\mathrm{H}-3}=10.29, \mathrm{~J}_{\mathrm{gem}}=-10.25\right)$
$\mathrm{H}-2($ pro-R) b	$4.319\left(d t, \mathrm{~J}_{\mathrm{H}-3}=3.49 \mathrm{~J}_{\mathrm{gem}}=-10.25, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=2.11\right)$
H-3	$\begin{aligned} & 3.359\left(d d d d, \mathrm{~J}_{\mathrm{H}-2 \mathrm{a}}=10.29, \mathrm{~J}_{\mathrm{H}-2 \mathrm{~b}}=3.49, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=4.85, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~b}}=\right. \\ & 11.36) \end{aligned}$
H-4 (pro-S) a	$2.703\left(d d d, \mathrm{~J}_{\mathrm{H}-2 \mathrm{~b}}=2.11, \mathrm{~J}_{\mathrm{H}-3}=4.85, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~b}}=15.59\right)$
H-4 (pro-R) b	$2.776\left(d d, \mathrm{~J}_{\mathrm{H}-3}=11.36, \mathrm{~J}_{\mathrm{H}-4 \mathrm{a}}=15.59, \mathrm{~J}_{\mathrm{H}-5}=-0.90\right)$
H-5	$7.140\left(d, \mathrm{~J}_{\mathrm{H}-6}=8.22\right)$
H-6	$6.487\left(d, \mathrm{~J}_{\mathrm{H}-5}=8.22\right)$
H-3A	$6.356\left(d d, \mathrm{~J}_{\mathrm{H}-5 \mathrm{~A}}=2.40, \mathrm{~J}_{\mathrm{H}-6 \mathrm{~A}}=0.44\right)$
H-5A	$6.330\left(d d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~A}}=2.40, \mathrm{~J}_{\mathrm{H}-6 \mathrm{~A}}=8.32\right)$
H-6A	$7.036\left(d d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~A}}=0.44, \mathrm{~J}_{\mathrm{H}-5 \mathrm{~A}}=8.32\right)$
2A-OH	9.418 (s)
4A-OH	9.919 (s)
H-3B	$6.337\left(d, \mathrm{~J}_{\mathrm{H}-4 \mathrm{~B}}=9.91\right)$
H-4B	$7.111\left(d, \mathrm{~J}_{\mathrm{H}-3 \mathrm{~B}}=9.91\right)$
$\mathrm{H}_{3}-5 \mathrm{~B}$	1.392 (s)
$\underline{\mathrm{H}_{3}-6 \mathrm{~B}}$	1.405 (s)

Comparison of bond lengths (Å) for glabridin in this work and with those from Tantishaiyakul et al. (2012)

Atom	Atom 2	This work	Tantishaiyakul et al.
C1A	C6A	$1.396(3)$	$1.388(3)$
C1A	C2A	$1.408(2)$	$1.398(3)$
C1A	C3	$1.516(2)$	$1.506(3)$
C2A	O2A	$1.376(2)$	$1.369(3)$
C2A	C3A	$1.393(2)$	$1.383(3)$
C3A	C4A	$1.396(3)$	$1.380(3)$
C4A	O4A	$1.369(2)$	$1.361(3)$
C4A	C5A	$1.389(3)$	$1.377(3)$
C5A	C6A	$1.396(3)$	$1.384(3)$
O1	C9	$1.375(2)$	$1.372(3)$
O1	C2	$1.455(2)$	$1.442(2)$
C2	C3	$1.525(3)$	$1.516(3)$
C3	C4	$1.536(3)$	$1.528(3)$
C4	C10	$1.508(2)$	$1.501(3)$

supplementary materials

C5	C10	$1.394(3)$	$1.385(3)$
C5	C6	$1.392(3)$	$1.386(3)$
C6	C7	$1.384(3)$	$1.370(3)$
C7	O1B	$1.389(2)$	$1.380(3)$
C7	C8	$1.401(3)$	$1.400(3)$
C8	C9	$1.406(2)$	$1.449(3)$
C8	C4B	$1.459(3)$	$1.386(3)$
C9	C10	$1.400(3)$	$1.463(3)$
O1B	C2B	$1.471(2)$	$1.493(4)$
C2B	C3B	$1.512(3)$	$1.516(3)$
C2B	C5B	$1.521(3)$	$1.524(4)$
C2B	C6B	$1.526(3)$	$1.321(3)$
C3B	C4B	$1.337(3)$	$0.802(17)$
O2A	H2A	$0.84(3)$	0.93
C3A	H3A	$0.97(2)$	$0.820(17)$
O4A	H4A	$0.86(3)$	0.93
C5A	H5A	$0.97(2)$	0.93
C6A	H6A	$0.96(2)$	0.97
C2	H21	$0.99(2)$	0.97
C2	H22	$1.00(2)$	0.98
C3	H3	$0.97(2)$	0.97
C4	H41	$0.99(2)$	0.97
C4	H42	$0.98(2)$	0.93
C5	H5	$0.97(2)$	0.93
C6	H6	$0.98(2)$	0.93
C3B	H3B	$1.00(2)$	0.93
C4B	H4B	$0.96(2)$	0.96
C5B	H5B1	$1.01(3)$	0.96
C5B	H5B2	$0.98(3)$	0.96
C5B	H5B3	$0.99(3)$	0.96
C6B	H6B1	$0.96(3)$	0.96
C6B	H6B2	$0.99(3)$	
C6B	H6B3	$1.04(3)$	
			109

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN3162). Services for accessing these data are described at the back of the journal.

