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Abstract

Background: In most biological experiments, especially infectious disease, the exposure-response relationship is
interrelated by a multitude of factors rather than many independent factors. Little is known about the suitability
of ordinary, categorical exposures, and logarithmic transformation which have been presented in logistic regression
models to assess the likelihood of an infectious disease as a function of a risk or exposure. This study aims to examine
and compare the current approaches.

Methods: A simulated human immunodeficiency virus (HIV) population, dynamic infection data for 100,000 individuals
with 1% initial prevalence and 2% infectivity, was created. Using the Monte Carlo method (computational algorithm) to
repeat random sampling to obtain numerical results, linearity between log odds and exposure, and suitability in
practice were examined in the three model approaches.

Results: Despite diverse population prevalence, the linearity was not satisfied between log odds and raw
exposures. Logarithmic transformation of exposures improved the linearity to a certain extent, and categorical
exposures satisfied the linear assumption (which was important for modelling). When the population prevalence
was low (assumed < 10%), performances of the three models were significantly different. Comparing to ordinary
logistic regression, the logarithmic transformation approach demonstrated better accuracy of estimation except
that at the two inflection points: likelihood of infection increased from slowly to sharply, then slowly again. The
approach using categorical exposures had better estimations around the real values, but the measurement was
coarse due to categorization.

Conclusions: It is not suitable to directly use ordinary logistic regression to explore the exposure-response relationship of
HIV as an infectious disease. This study provides some recommendations for practical implementations including: 1) utilize
categorical exposure if a large sample size and low population prevalence are provided; 2) utilize a logarithmic transformed
exposure if the sample size is insufficient or the population prevalence is too high (such as 30%).
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Background
Motivating example
Our motivating example arises from a study of the
exposure-response relationship between the number of
sex partners and prevalent HIV infection among men
who have sex with men (MSM), leading to methodo-
logical challenges. Data were collected on 1,072 MSM
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from a retrospective epidemiological survey in Shanghai
during the period between April 2008 and September
2009, including the binary response variable Y (current
HIV status), a quantitative risk factor X (number of sex
partners in the past 6 months), and other covariates Z
(social-economic factors, pattern of sex partners and
condom use).
The primary challenge in this analysis was the fact that

the distribution of X was not normal, but approximately
negative binomial (Figure 1). The negative binomial dis-
tribution supposes there is a sequence of independent
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Figure 1 Distribution of sex partners in the past six months (truncated by 50).
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Bernoulli trials (or binomial trials), each trial having two
potential outcomes called “success” and “failure”. In each
trial the probability of success is p and of failure is (1-p).
This sequence is observing until a predefined number r
of failures has occurred. Then the observed random
number of successes, X, will have the negative binomial
distribution [1,2]. In this study, the “success” and “failure”
are the success and failure of having a sex partner at each
contact, respectively. The probability function of negative
binomial distribution is

f k; r; pð Þ≡Pr X ¼ kð Þ ¼ k þ r−1
k

� �
pk 1−pð Þr f or k ¼ 0; 1; 2;…

For this reason, it might fail to meet the linearity assump-
tion between the log odds [logitPr(Y = 1|X)] and the con-
tinuous covariate (X) if logistic regression is used to analyze
this data [3]. For this reason, two approaches were found in
the previous studies: 1) group X into a categorical variable
[4,5], and 2) use of a logarithmic transformation of ln(X + 1)
[6]. However, little is known about the accuracy and suitabil-
ity of these approaches under these circumstances.

Introduction
Logistic regression is widely used to assess the likelihood
of an infectious disease as a function of a risk or expos-
ure factor (and covariates), to illustrate the exposure-
response relationship [4-8]. However, it should be noted
that logistic regression assumes a linear relationship be-
tween independent variables and log odds [3]. Whilst it
does not require the dependent and independent vari-
ables to be related linearly, it requires that the independ-
ent variables are linearly related to the log odds.
Do the studies of infectious disease satisfy the linear as-

sumption? For infectious diseases, the exposure of individ-
ual is not independent yet, and the exposure-response
relationship is an intricate net instead of independent fac-
tors. The data of exposure is usually present with a skewed
distribution and heterogeneity of variance [9-13]. In our
motivating example, it was an approximate negative bino-
mial distribution. Thus, it is critical to examine the linear
assumption before we apply logistic regression to analyze
the exposure-response relation.
But, it is still unclear which approach has a better cali-

bration, and minimizes the errors between the predicted
values and the real data. Therefore, this study aims to com-
pare the suitability of these approaches which have been
broadly used to study the exposure-response relationship
of infection disease using simulated and real-world data.

Methods
Simulation of infected population
We used PROC IML in SAS 9.3 to create a dynamic
HIV infection model among 100,000 enclosed MSM in-
dividuals under certain conditions (Additional file 1).
The initial prevalence and the infectivity rate in the
population were set as 1% and 2%, respectively [4,14].
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The infectivity rate here could be a little higher than that
in the real-world MSM population because we wanted
to save the runtime of SAS. During an incubation
period, the number of persons (including infected and
non-infected) whom each individual could contact was
assumed to be a negative binomial distribution (p = 0.1,
r = 1) because we assumed the chance of exposure was
not equal for everyone (such as HIV infection). The model
was stopped when it reached a targeted prevalence (10%,
20%, 30% and 40%). The immunization, treatment and
intervention were not considered in this simulation, so the
disease status would be permanent once a person became
infected. The simulation process is described as below:
We set a closed population with 100,000 individuals,

and 1% of them with HIV positive.
We randomly set a number of sex partners (exposure)

for each individual based on a negative binomial distri-
bution (p = 0.1, r = 1), so that the distribution of sex
partners liked that Figure 1 showed.
A dynamic HIV infection started. Each person randomly

selected his own sex partners according to the number of
sex partners which was set in the step 2. For example, if a
person was set 0 sex partner, he was not allowed to find
any sex partner. If a person was set 2 sex partners, he could
select two sex partners who were available. It called one
generation when all individuals had reached the preset
number of sex partners. Then a new generation started. A
person was considered HIV positive when the individual
had ≥50 sex contacts with HIV positive persons.
The model stopped when it reached the preset tar-

geted prevalence (10%, 20%, 30% or 40%).
The outcome was a binary dependent Y (infection or

non-infection), and the continuous covariate X was de-
fined as the number of exposures (contact other per-
sons) during an incubation period. We didn’t define X as
the number of exact exposures (only contact patients)
because we might not know whether the contacted per-
sons are infected in the real world. Thus, based on this
simulated data, the population exposure-response rela-
tionship between Y and X could be easily drawn. Also, it
would be possible to examine the linear assumption be-
tween the log odds and the exposure variable.

Logistic regression models with maximum likelihood
estimation
We attempted three approaches of logistic regression to
analyze the simulated data as below.
Model A: Raw X was used as a predictor to estimate

the parameter (β), i.e.,

logitPr Y ¼ 1 XÞ ¼ αþ βXjð

Model B: A categorical variable Xc was put in the
model instead of raw X, which was grouped as 0-2, 3-5,
6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40 and > =41.
The function was similar with the model A,

logitPr Y ¼ 1 XÞ ¼ αþ βXcjð

where Xc was considered as a dummy/nominal variable.
Model C: A logarithmic transformation was used to

transform raw X, i.e.,

logitPr Y ¼ 1 XÞ ¼ αþ βln X þ 1ð Þjð

Monte Carlo experiment for comparison of models
We repeated the simulation 3000 times to randomly se-
lect 10% of population. In order to estimate the popula-
tion parameter (β), the three models (A, B and C) were
all run for each sample, then each model had 3000 sample
statistics (β). PROC LOGISTIC, PROC SQL and %MACRO
in SAS 9.3 were used for this experiment (Additional file 2).
The means and standard deviations of sample statistics

βs were recorded, and the predicted probability (likeli-
hood of HIV infection given a certain number of sex
partners) was scored by each model. A model would be
considered better if it could satisfy the following criteria:
1) predicted values were closer to the true values, and 2)
smaller standard deviation.

Real-world data for validation
This study also used real-world data to validate the findings
of simulation. A total of 1,072 MSM were recruited in
Shanghai through the snowball sampling method [15] dur-
ing the period between April 2008 and September 2009.
The survey questionnaire was based on that used in

the National Sentinel Surveillance Program since 1995,
with modifications based on Chinese MSM community
feedback. Local Centers for Disease Control and Preven-
tion (CDC) staff who conducted the surveys by interview
were given intensive training and a detailed protocol.
Interview settings had at least one private interview/
counseling room, a testing room, and a waiting room,
and were usually located within a hospital or local CDC
facility. Blood samples were collected from each subject,
and tested in the laboratory of Shanghai CDC for HIV.
Counseling was provided before and after testing. Partic-
ipants who tested negative were noticed by local CDC
staff, whereas those who tested positive were referred to the
National AIDS Program and/or a local hospital or clinic.
The primary measure of this study was to examine the

prevalence changes of HIV (outcome) along with an in-
crease of the number of sex partners (exposure), control-
ling other confounders (such as age, marital status, race,
highest education level achieved, monthly income, self-
identified sexual orientation, condom use, commercial
sex behavior and sexual activity with a female).
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Ethical approval
The real-world data in this study was the Shanghai com-
ponent of the national cross-sectional survey of 61 cities
in China [4]. The national survey was reviewed and ap-
proved by the Institutional Review Board of the National
Center for AIDS/STD Control and Prevention, China
CDC. All participants provided informed consent that
information from surveys and blood tests could be used
for scientific studies when they were recruited, and all
the data in the study were de-identified. So, this study is
in compliance with the Helsinki Declaration.

Results
Target exposure-response curves
As Figure 2 depicted, the prevalence of infection imme-
diately jumped up when the exposure was up to a cer-
tain number. Given population prevalence 30%, the risk
of infection increased rapidly at seven exposures, and
approached the asymptote 100% at twenty exposures.
Overall, the exposure-response relationship was an ap-
proximate generalized logistic curve.

Linear assumption of logistic regression
Despite diverse population prevalence, the linearity was not
satisfied between the log odds and exposures (Figure 3a).
Although it improved the linearity in a certain extent, the
logarithmic transformation of exposures still failed to deal
Figure 2 Simulated infections among 100,000 enclosed individuals. In
incubation period, the number of persons (including infected and non-infe
negative binomial (p = 0.1, r = 1). The model was paused when it reache
with the linear issue when the log odds were extremely
small or large (Figure 3b).
To categorize, the exposure was another way of address-

ing linearity. Linear assumption of logistic regression was
satisfied when the exposure factor was measured as a cat-
egorical/dummy variable.

Comparison of logistic regression models
As Figure 4 depicted, the performances of the three
models were very close when the population preva-
lence was up to 40%. However, they were significantly
different when the population prevalence was low,
such as 10%.
All the three models worked very well when the exposure-

response relationship was at the rising phase, where the risk
of infection was increased sharply (Figure 4a,b). Given a low
population prevalence, Model B demonstrated its advantages
at the inflection points of the curves comparing to Model A
and Model C. However, the measurement of Model B was
coarse due to categorization. Overall, Model C showed rea-
sonable accuracy of estimation except at the two inflection
points.
Table 1 also indicated that Model B had higher variabil-

ity because the coefficients of variation were greater com-
pared to Model A and Model C. Direct comparisons of
the model coefficient was not possible due to the differ-
ence in units and transformations.
itial prevalence 1% and infectivity rate 2% were set. During an
cted) whom each individual could contact was assumed to be
d a targeted prevalence (10%, 20%, 30% and 40%).



Figure 3 Linear assumption of logistic regression. (a) indicated the relationship of log odds and exposures, whereas (b) showed the
relationship of log odds and transformed exposures [log(x + 1)] instead of real exposures.

Figure 4 Comparison of logistic regression models based on simulated data. The predictor (number of exposures) was raw, categorical and
transformed exposures in the model A, B and C, respectively. (a) indicated that the infectivity was 2% and the population prevalence was 10%,
(b) indicated that the infectivity was 2% and the population prevalence was 20%, whereas (c) indicated that the infectivity was 2% and the
population prevalence was 40%.
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Table 1 Means and standard deviations of 3000 sample
statistics (HIV prevalence = 10%)

Models Parameters Mean Standard
deviation

Coefficient
of variation

A (Ordinary) Intercept (α) −5.24 0.10 −2%

Coefficient (β) 0.23 0.01 4%

B (Categorical) Intercept (α) −0.66 0.41 −62%

0-2 partners Coefficient (β) Ref Ref

3-5 partners Coefficient (β) −0.14 0.29 −207%

6-10 partners Coefficient (β) −0.14 0.28 −200%

11-15 partners Coefficient (β) 2.06 0.52 25%

16-20 partners Coefficient (β) 4.06 0.52 13%

21-25 partners Coefficient (β) 4.67 0.53 11%

26-30 partners Coefficient (β) 5.26 0.53 10%

31-35 partners Coefficient (β) 5.97 0.55 9%

36-40 partners Coefficient (β) 6.91 0.73 11%

> = 41 partners Coefficient (β) 10.02 3.78 38%

C (Log transformation) Intercept (α) 10.95 0.46 −4%

Coefficient (β) 3.46 0.16 5%
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Validation of real-world data
The prevalence of HIV was 7.8% among this MSM popu-
lation. As Figure 5 depicted, Model B and Model C had a
similar trend of prediction in the real-world data, but
Model B fluctuated greatly. The relationship between HIV
Figure 5 Comparison of logistic regression models based on real-wor
was raw, categorical and transformed exposures in the model A, B and C, r
infection and number of sex partners was almost linear in
Model A, which was far away from the truth. Overall, it
supported our findings in the simulated data.
Meanwhile, we found that the exposure-response curves

in the real-world data were different from that in the sim-
ulated data. The former was an approximate exponential
curve, and the latter was a generalized logistic curve.

Discussion and conclusion
This study focused on assessing the risk of using logistic
regression to illustrate an exposure-response relationship
of HIV as an infectious disease, which is different from
previous simulation studies discussed diverse measure-
ment errors in logistic regression [16-21]. Logistic regres-
sion requires a linearity between independent variables
and log odds [3]. However, this study found that the linear
assumption usually could not be satisfied when an or-
dinary logistic regression was used to explore the
exposure-response relationship of HIV as an infectious
disease. Although it could improve the linearity in a
certain extent, logarithmic transformation might not
correct the linearity when the exposure is very little or
huge. So, the performance of these logistic regression
models would certainly be affected by the non-linear
circumstance. In order to overcome the linear issue,
categorical exposures (dummy variables) are used in
logistic regression because dummy variables are only
expressed by 0 and 1.
ld data about HIV infection. The predictor (number of exposures)
espectively.
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In this study, we found that the non-linear circumstance
(two inflection points) mainly affected the prediction of
Model A (raw exposure) and Model C (logarithmic trans-
formation) when the population prevalence was low. If the
prevalence rate is high, individuals could be more likely to
be infected even if they have a few exposures, so that the
infectious disease could spread quickly. That is to say, the
first inflection point in Figure 3 should be closer to zero,
which would improve the linearity. Therefore, it is not
surprise to see the three models are very similar in
Figure 4c.
It was proved that Model B (categorical exposure) was

not related to the linear assumption in this study. So,
Model B could get appropriate estimates whatever the
population rate would be. However, Model B is not a
perfect solution either, because different studies could
have different categorical rules and we might have to use
a coarse category due to a small sample size. And it
should be noted that an inappropriate categorization
could significantly underestimate or overestimate the
real odds ratio.
In this study, the real-world data about HIV infection

among MSM supported our findings in the simulated
data overall, but we also found that the exposure-
response curves were obviously different between the
two data. The reason could be related to more risk fac-
tors and confounders in the real-world data. We could
not get the same benchmark between the two data, al-
though the logistic regression models adjusted some
confounders (such as demographics and sexual behav-
iors). The simulated data was pure because the number
of exposures was a risk factor only. But, there are many
known and unknown factors which could affect HIV in-
fection in the real world even if there were no sex part-
ners in the past six months.
This study provides lots of valuable findings, neverthe-

less there are limitations to consider when the results
are interpreted. Primarily, the simulated data couldn’t
consider all circumstances (such as observation errors),
so this study only simulated different population preva-
lence with fixed infectivity and other conditions. Secondly,
this study still couldn’t provide an optimal solution about
this linear issue, but some recommendations for practical
implementations could be concluded: 1) utilize categorical
exposure if a large sample size and low population preva-
lence are provided; 2) utilize a logarithmic transformed
exposure if the sample size is insufficient or the popula-
tion prevalence is too high (such as 30%).
Additional files

Additional file 1: SAS codes for simulation of infected population.
Additional file 2: SAS codes for comparison of logistic regress
models.
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