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ABSTRACT 23 

OrthoList, a compendium of C. elegans genes with human orthologs compiled in 2011 by a 24 

meta-analysis of four orthology-prediction methods, has been a popular tool for identifying 25 

conserved genes for research into biological and disease mechanisms. However, the efficacy 26 

of orthology prediction depends on the accuracy of gene model predictions, an ongoing 27 

process, and orthology-prediction algorithms have also been updated over time. Here we 28 

present OrthoList 2 (OL2), a new comparative genomic analysis between C. elegans and 29 

humans, and the first assessment of how changes over time affect the landscape of predicted 30 

orthologs between two species. Although we find that updates to the orthology-prediction 31 

methods significantly changed the landscape of C. elegans-human orthologs predicted by 32 

individual programs, and, unexpectedly, reduced agreement amongst them, we also show that 33 

our meta-analysis approach “buffered” against changes in gene content. We show that adding 34 

results from more programs did not lead to many additions to the list, and discuss reasons to 35 

avoid assigning "scores" based on support by individual orthology prediction programs, the 36 

treatment of "legacy" genes no longer predicted by these programs, and the practical 37 

difficulties of updating due to encountering deprecated, changed, or retired gene IDs.  In 38 

addition, we consider what other criteria may support claims of orthology, and alternative 39 

approaches to find potential orthologs that elude identification by these programs.  Finally, we 40 

created a new web-based tool that allows for rapid searches of OL2 by gene identifiers, protein 41 

domains (InterPro and SMART), or human-disease associations (OMIM), and also includes 42 

available RNAi resources to facilitate potential translational cross-species studies.  43 
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INTRODUCTION 44 

 Studies in C. elegans have illuminated many mechanisms relevant to human biology 45 

and disease. Forward genetic screens based on phenotype have identified genes homologous 46 

to human disease-associated genes, illuminating fundamental properties about their roles and 47 

mechanisms of action (e.g., Greenwald 2012; Sundaram 2013; Golden 2017; van der Bliek et 48 

al. 2017). Reverse genetic methods have expanded the repertoire of possible genetic 49 

approaches. These methods include the ability to phenocopy loss-of-function mutations by 50 

feeding worms bacteria expressing double-stranded RNA (Fire et al. 1998; Timmons and Fire 51 

1998). The efficiency of RNAi in C. elegans has allowed for genome-wide screens (Fraser et 52 

al. 2000; Kamath et al. 2003; O'Reilly et al. 2016), or screens targeted to specific conserved 53 

genes, such as human disease genes (e.g., Sin et al. 2014; Vahdati Nia et al. 2017; Nordquist 54 

et al. 2018) or those involved in fundamental biological processes (e.g., Balklava et al. 2007; 55 

Dunn et al. 2010; Firnhaber and Hammarlund 2013; Allen et al. 2014; Du et al. 2015). Other 56 

efficient reverse genetic methods in C. elegans include the large-scale generation of deletion 57 

and point-mutations for functional genetic analysis (Moerman and Barstead 2008; Thompson 58 

et al. 2013), transgenesis to engineer models for gain-of-function mutations associated with 59 

disease (Markaki and Tavernarakis 2010; Tucci et al. 2011), and now CRISPR/Cas9-based 60 

genome engineering for manipulation of endogenous genes (Dickinson and Goldstein 2016).   61 

 To facilitate cross-platform studies, we created OrthoList, a compendium of C. elegans 62 

genes with human orthologs that was originally published in the form of an Excel spreadsheet 63 

(Shaye and Greenwald 2011). Subsequently, we created a minimal, unpublished, online tool 64 

distributed through informal C. elegans community channels to enhance its accessibility and 65 

utility. OrthoList has indeed both facilitated the identification of orthology (e.g., Firnhaber and 66 
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Hammarlund 2013; Du et al. 2015; Vahdati Nia et al. 2017) and has been used as the basis for 67 

streamlining RNAi screens (e.g., Gillard et al. 2015; Hernando-Rodriguez et al. 2018; 68 

Nordquist et al. 2018). 69 

To generate OrthoList, we used a meta-analysis strategy in which we compiled the 70 

results of different orthology prediction programs.  Because each sequence analysis method at 71 

the base of these programs has its strengths and weaknesses, each leading to a different 72 

trade-off between precision (true vs. false positive rate) and recall (true vs. false negative rate), 73 

we expected a meta-analysis to capture the greatest number of potential orthologs, with high 74 

precision and recall. Our expectation was subsequently supported by independent 75 

assessments (Pryszcz et al. 2011; Pereira et al. 2014), and now, by our new results below.   76 

Genome annotation in both C. elegans and humans is an ongoing process, and the 77 

efficacy of genome-wide orthology prediction approaches depends on the accuracy of the 78 

gene models in the genomes under scrutiny.  Thus, we have now performed a new meta-79 

analysis using current information to generate OrthoList 2, an up-to-date compendium of 80 

genes with C. elegans and human orthologs.  In addition, we have created an improved online 81 

tool associated with OrthoList 2 (found at ortholist.shaye-lab.org) with features that facilitate 82 

genetic analysis in C. elegans by containing links to the complete “feeding RNAi” clone set 83 

(Fraser et al. 2000; Kamath et al. 2003) as well as multiple data input options, links to other 84 

databases (SMART and InterPro for protein domains (Finn et al. 2017; Letunic and Bork 85 

2018), OMIM  for disease associations (McKusick 2007), and more flexibility in accessing 86 

results. We analyze the changes in content between OrthoList 1 and 2, and demonstrate the 87 

robustness of the meta-analysis strategy, including examples of the strengths and limitations of 88 

this approach that have emerged during this update. Our analysis highlights the importance of 89 
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assessing orthology by meta-analysis, rather than relying on a single “snapshot” in time or a 90 

single program to obtain a comprehensive list of genes conserved between C. elegans and 91 

humans. 92 

 93 

MATERIALS AND METHODS 94 

 A detailed description, and accompanying source code, of how we obtained and 95 

compiled the data underlying OrthoList can be found at 96 

https://github.com/danshaye/OrthoList2, and a freeze of the underlying code is provided as File 97 

S8. Briefly, for all methods, except Ensembl Compara, we downloaded and analyzed results 98 

from the most current release available. For details on the source data underlying each of the 99 

orthology prediction methods queried see Supplemental Table S1. For Compara, which is 100 

updated every 2-3 months, we noticed a great deal of fluidity in results (see Fig. S1) within the 101 

3 versions that were released as we compiled OrthoList 2 (Ensembl Compara v87, v88 and 102 

v89), so that only ~85% of the worm-human orthologs predicted were common between the 103 

three versions. For example, the update from v87 to v88 led to a loss of 294 worm genes, of 104 

which about half (158) were re-added upon update to v89 (Fig. S1). Similarly, the update from 105 

v88 to v89 led to a loss of 320 genes, of which 178 had been supported in both v87 and v88. 106 

Given these differences, and in order to ensure the most comprehensive results from Ensembl 107 

Compara, we decided to keep all genes found by the three versions released as we compiled 108 

and analyzed OrthoList 2. 109 

 Data comparisons and Venn diagrams were done with the web-based program Venny, 110 

found at http://bioinfogp.cnb.csic.es/tools/venny/index.html (Oliveros 2007-2015). Statistical 111 

analyses were conducted using resources from the Handbook of Biological Statistics 112 

https://github.com/danshaye/OrthoList2
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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(McDonald 2014), found at http://www.biostathandbook.com, and with GraphPad Prism 113 

Software, v6.0. 114 

  The authors affirm that all data necessary for confirming the conclusions of the article 115 

are present within the article, figures, tables, supplementary materials uploaded to figshare, 116 

and at the online repository located at https://github.com/danshaye/OrthoList2. 117 

 118 

RESULTS 119 

Addressing changes to gene predictions in the C. elegans genome  120 

 Each time a genome sequence database is updated, there are changes in gene 121 

predictions.  Some of the changes are “correct” and will endure, while others may fluctuate as 122 

prediction algorithms continue to evolve and more sequencing data becomes available.  We 123 

previously hypothesized that such changes to gene predictions would have a minor effect on 124 

the integrity of OrthoList (hereafter OL1), because conserved genes would be the most likely to 125 

be accurately represented in genome releases (Shaye and Greenwald 2011). The analysis in 126 

this and the next section supports this hypothesis, as only ~0.9% of C. elegans and ~0.1% of 127 

human genes in OL1 were removed, or "deprecated", due to updated gene predictions.   128 

We analyzed alterations in C. elegans gene predictions by cross-checking the 7,663 129 

genes in OL1, which was built using WormBase version WS210 (released in 2009), to 130 

WormBase WS257 (released in 2017). We found that only 151 worm genes changed due to 131 

updated predictions. Most (67/151) resulted from their re-classification as pseudogenes, 132 

ncRNA, being transposon-derived, or killed due to lack of evidence (Type I change, File S1). It 133 

is only this type of change, representing ~0.9% (67 of 7,663) of worm genes in OL1, that 134 

results in deprecation of a C. elegans gene previously believed to be conserved in humans. 135 

http://www.biostathandbook.com/
https://github.com/danshaye/OrthoList2
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A second type of change, seen with 43 worm genes, resulted from combining, or 136 

“merging”, two or more genes that had each, separately, been found to have a human 137 

ortholog. This type of change (Type II, File S1) led to a net loss of 22 genes. Together, Type I 138 

and Type II changes led to a removal of 88 worm genes from OL1. Our analysis below 139 

addressing updates to human gene predictions led to removal of an additional 6 worm genes 140 

from OL1, leading to an updated final number of 7,569 worm genes predicted to have human 141 

orthologs in OL1 (Fig. 1 and File S2). 142 

The final 41 worm genes that changed since OL1 were assigned new IDs, either 143 

because experimental evidence suggested that they should be merged to genes that were 144 

previously not in OL1 (16/41), or due to addition of previously unpredicted gene segments 145 

(25/41) leading to a new ID (Type III, File S1). This last type of change does not affect the total 146 

number of C. elegans genes in OL1.  147 

 148 

Addressing changes to gene predictions in the human genome  149 

One of the major challenges we encountered in our analysis was accommodating 150 

changes to the human gene annotation. We compiled OL1 using the Ensembl genome 151 

browser (Vilella et al. 2009) to obtain human genes, and their associated ENSG IDs, because 152 

Ensembl provides strong support for comparative genomic studies via its BioMart tool for 153 

large-scale data mining and analysis (Kasprzyk 2011). Based on Ensembl data, OL1 appeared 154 

to include 11,416 predicted human genes (ENSG IDs from Ensembl v57, 2010; File S3, tab A). 155 

However, we noticed that in some cases a single gene had multiple ENSG IDs associated with 156 

it (e.g., the gene NOTCH4 has 7 associated IDs). These alternative IDs occur when new 157 

sequence differs from the primary assembly, due to new allelic sequences (haplotypes and 158 
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novel patches) or fix patches. Novel patches represent new allelic loci, but not necessarily 159 

haplotypes. Fix patches occur when the primary assembly was found to be incorrect, and the 160 

patch reflects the corrected sequence (for details see the Genome Reference Consortium 161 

page at https://www.ncbi.nlm.nih.gov/grc). Regardless of source, the fact that some genes 162 

have multiple IDs prevents us from making an accurate assessment of how many human 163 

genes were in OL1. Henceforth when discussing human genes, we use the number of ENSG 164 

IDs as an approximation for the number of human genes in OL, and consider the gene 165 

estimate further in the section describing the gene content of OrthoList 2.  166 

To begin addressing changes to gene predictions in the human genome, we cross-167 

checked the 11,416 ENSG IDs from OL1 with a recent release of Ensembl (v89, 2017) and 168 

found that 574 IDs appeared to be lost (File S3, tab A). Although this is a small fraction of the 169 

IDs in OL1 (~5%), this number seemed high in light of our hypothesis that conserved genes 170 

should be stable. Unfortunately, Ensembl does not provide details of ENSG ID curation. 171 

Instead they make available a “version history” that describes changes and indicates when an 172 

ID was “retired” (File S3, tab B). However, as discussed below, our manual curation suggests 173 

that most of the ENSG ID marked as retired represent genes that still exist in the human 174 

genome assembly with a different ID. 175 

To ask whether the 574 retired ENSG IDs represented genes that were truly 176 

deprecated, we undertook a cross-species comparison. We extracted the 624 worm orthologs 177 

of these apparently-deprecated human genes from OL1. Based on our analysis discussed 178 

above, six of these worm genes had changed: two were themselves deprecated (Type I 179 

change, File S1), so it is likely that the two human genes that matched to these were 180 

themselves also truly deprecated (File S3, tab D). The remaining four worm genes were 181 

https://www.ncbi.nlm.nih.gov/grc
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updated (Type II and Type III changes, File S1), and these are considered further with respect 182 

to their relationship to apparently-deprecated human genes. 183 

Of the 622 current worm genes that matched apparently-deprecated human genes 184 

almost all (616/622 or ~99%) continue to have human orthologs with current ENSG IDs. 185 

Manual inspection of a randomly selected subset (n=20) of these human-worm pairs showed 186 

that, in all cases, the underlying human gene that appeared to be deprecated because its 187 

ENSG ID had been "retired" actually has another current ENSG ID assigned to it, and in 188 

almost all cases (19 of 20 in the sampled set) the current ENSG ID is not linked to the retired 189 

one (File S3, tab C. POLDIP2, the only gene within this set for which its retired ENSG ID is 190 

linked to its current one, is shown in bold). Therefore, it appears that in most, if not all, cases 191 

where a worm gene matched an apparently-deprecated human gene in OL1, the human gene 192 

actually still exists with a new ID that is not linked to the retired one. An alternative, not 193 

mutually-exclusive, possibility is that worm genes that matched apparently deprecated human 194 

genes remain matched to one, or more, paralogs of the original human gene. However, since 195 

Ensembl does not make available a detailed history of ID changes, we are unable to address 196 

this possibility. Regardless, based on the continued extensive orthology between C. elegans 197 

genes and erroneously-deprecated human genes, we are only able to confirm deprecation of 198 

16 ENSG IDs from OL1 (see below). 199 

The last 6 of 622, worm genes that matched apparently-deprecated human genes had 200 

as sole orthologs 14 human genes that appear to be truly lost, as these worm genes do not 201 

match any current ENSG ID (File S3, tab D). Moreover, these 6 worm genes do not pick up 202 

any human sequences even by simple BLAST searches (File S3, tab D). Therefore, these 6 203 

worm genes no longer have human orthologs and were thus removed from OL1 (resulting in 204 
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the final number of 7,569 worm genes in OL1. Fig. 1 and File S2), and their 14 cognate human 205 

genes are truly deprecated. If we add the 2 human ENSG IDs that matched deprecated C. 206 

elegans genes (see above) to the 14 ENSG IDs discussed here, the total number of confirmed 207 

deprecated IDs is 16, or just ~0.1% of the ENSG IDs in OL1 (File S3, tab D and Fig. 1).  208 

This analysis supports our hypothesis that conserved genes are stable, and 209 

demonstrates there are some difficulties with human gene annotations that need to be taken 210 

into account when performing genome-wide homology analyses. Given these deficiencies in 211 

annotation, we are unable to reliably address the changes in gene content of the human 212 

portion of OrthoList. Therefore, to avoid confounding effects that arise from differences in the 213 

quality of genome annotation, hereafter our analysis will focus on the C. elegans content of 214 

OrthoList.  215 

 216 

Updates to the individual orthology-prediction methods used in OL1 change the 217 

landscape of C. elegans-human orthologs in the absence of meta-analysis 218 

 Orthology prediction methods can be classified into three general categories: graph-219 

based, tree-based or hybrid strategies, although recent analysis suggest there is no obvious 220 

systematic difference in performance between these strategies per se, even while there are 221 

differences in performance of individual programs  (Altenhoff et al. 2016; Sutphin et al. 2016). 222 

Graph-based programs begin with pairwise alignments between all protein sequences from 223 

two species to identify the most-likely orthologous pair, followed by different clustering criteria. 224 

Tree-based strategies take advantage of the evolutionary relationships between species, 225 

simultaneously aligning sequences from multiple species to build phylogenetic trees for each 226 

protein. Hybrid strategies combine aspects of both graph and tree-based approaches, applying 227 
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graph-based clustering methods at the nodes of phylogenetic trees to generate ortholog 228 

predictions. To generate OL1 we combined data from four programs: 1) InParanoid (Remm et 229 

al. 2001), a graph-based approach that clusters orthologs between two species, and defines 230 

paralogs, based on reciprocal-best BLAST hit (RBH) scores, 2) OrthoMCL (Li et al. 2003), a 231 

graph-based approach that generates a similarity matrix using RBH scores within species, and 232 

between species, followed by Markov clustering, to produce inter-species ortholog groups, 3) 233 

Ensembl Compara (Vilella et al. 2009), a tree-based approach, and 4) HomoloGene (Wheeler 234 

et al. 2007), a hybrid approach.  235 

 We wanted to assess the effects that updates to the orthology-prediction methods used 236 

to generate OL1 would have on the landscape of worm-human orthologs. The previously-used 237 

programs have been updated with varying regularity since OL1 was compiled (Table 1): 238 

InParanoid and OrthoMCL have been updated once, HomoloGene has been updated four 239 

times (the latest version, which we use here, released in 2014), and Ensembl Compara is 240 

updated every 2-3 months. As discussed in "Methods", here we use combined data from three 241 

recent Ensembl releases (v87, 88 and 89, Dec 2016-May 2017). 242 

As shown in Tables 1 and 2, at first glance the net number of worm genes with human 243 

orthologs predicted by each program did not appear to change greatly between versions of the 244 

orthology-prediction methods: the mean change in worm genes with predicted human 245 

orthologs was -0.5% (±3.0% s.e.m). However, closer examination showed that the change in 246 

gene content, i.e., the actual genes in the results, is larger than reflected by the change in net 247 

numbers (Fig. 2 and Table 2).  248 

The average decrease in C. elegans genes with predicted human orthologs resulting 249 

from updates to orthology-prediction methods was 7.9% (±3.6% s.e.m. Table 2), 250 
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corresponding to a predicted loss of 598 (±272) worm genes from OL1. As discussed above, 251 

updates in gene predictions resulted in a loss of only 95 worm genes from OL1; therefore, it 252 

appears that updates to orthology-prediction methods causes ~6x more losses, suggesting 253 

that changes in orthology-prediction algorithms over time have a greater effect on the 254 

landscape of worm-human orthologs than do changes in underlying gene models. Updates 255 

also appear to increase sensitivity, because there was an average increase of 7.4% (±2.6% 256 

s.e.m.) C. elegans genes with predicted human ortholog (Table 2), corresponding to a 257 

predicted gain of 568 (±197) worm genes. 258 

Taken together, our analysis in this section suggests that updates to individual 259 

orthology-prediction methods over time have a drastic effect on the landscape of orthologs 260 

between worms and humans, on the order of ~16% change in total gene content. However, as 261 

shown below, the meta-analysis approach of combining results from the different orthology-262 

methods appears to buffer some of this change, in particular when it comes to apparent loss of 263 

orthology. The documentation associated with updates to the four previously-used orthology-264 

prediction programs does not provide details of the changes to their algorithms that might have 265 

led to the large changes in gene content despite the minor changes in gene structure 266 

predictions that we found in both species (see sections above). We speculate that one 267 

possible reason behind the larger change in the landscape of orthologs after updates may be 268 

related to the inclusion of more sequenced genomes when orthology-prediction methods were 269 

updated. For example, in updating InParanoid from v7 (which was used for OL1) to v8 270 

(analyzed here) the number of species included to generate ortholog groups increased from 271 

100 to 273, leading to an increase in the number of ortholog groups of 423% (from 1.5 to 8.0 272 

million) and orthologous proteins by 141%, from 1.2 to 3.0 million (Sonnhammer and Ostlund 273 
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2015). Such large-scale changes in orthology assignments seem likely to be the cause of the 274 

large shift in the landscape of orthologs predicted by the four previously-used methods. 275 

 276 

Updates to orthology-prediction methods do not lead to greater agreement between 277 

them 278 

Less than half of the worm genes in OL1 were supported by all four programs queried, 279 

suggesting a low degree of agreement between individual prediction methods. Moreover, 280 

~20% of worm genes in OL1 were found by a single orthology-prediction method, and hence 281 

we term these genes “uniques” (Shaye and Greenwald 2011. See also Fig. S2).  If updates to 282 

the orthology prediction programs generally resulted in improved prediction power, we 283 

reasoned that there should be greater agreement among them (i.e., an increase in worm 284 

genes found by all programs and/or a reduction in "uniques"). To this end, we performed the 285 

same meta-analysis on the results from updated versions of the previously-used orthology-286 

prediction methods to generate OL1.1, which contains 7,812 worm genes (Fig. 3A-C and File 287 

S4). 288 

Surprisingly, we found that updates to orthology-prediction methods actually resulted in 289 

less convergence among their results (Figs. 3A, B and S2): the proportion of C. elegans genes 290 

scored as having human orthologs by all four methods declined from 44.7% to 41.7% 291 

(p=6.5x10-8. Statistical analysis here, and below, were done via two-tailed chi-square 292 

goodness-of-fit tests with Yates correction). Conversely, the proportion of "uniques" increased 293 

from 21.8% to 23.8% (p=1.2x10-5). 294 

Not only were the results from these programs less convergent after updating, but 295 

updates did not seem to provide stronger support for predictions. The majority of OL1 genes 296 
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(5,487 of 7,569, or 72.5%) remained in the same "class" (i.e., "unique", "found by two 297 

programs", "found by three programs", or "found by all") after updating to OL1.1 (Table 3 and 298 

Fig. 3D), suggesting the same level of support. However, among the genes that changed 299 

class, the number that lost support (e.g., went from being supported by all, to being supported 300 

by three, two or one, or those that went from unique to not being supported at all, etc.) 301 

outnumbered those that gained it: 1,285 genes (17.0%) lost support, while 797 genes (10.5%) 302 

gained it (Table 3). This difference is statistically significant (p<0.001), consistent with the 303 

decreased convergence in results from the different methods sampled. 304 

We also note that the class a gene belonged to in OL1 does not appear to be a 305 

predictor of increased or decreased support after updates (Table 3 and Fig. 3D). Among genes 306 

that did not change support after updates, the most represented type (~52% of this class) were 307 

those predicted by all four methods before and after updates, however, the next most 308 

numerous class were those that remained unique (~21% of this class). By this metric, genes 309 

supported by two or three programs seem to be less stable. Among genes that lost support, 310 

the vast majority (~93%) only changed by one “level” (i.e., unique to lost, two to unique, three 311 

to two or all to three. Fig. 3D and Table 3). Somewhat surprisingly, the largest contributing set 312 

of genes to the class that lost support was the subset that was predicted by all four methods in 313 

OL1, suggesting that genes predicted by all methods are not necessarily the most likely to 314 

retain the highest level of support after updates. 315 

In sum, our analysis shows that updates to orthology-prediction methods do not 316 

necessarily lead to greater agreement among them, nor do these updates unambiguously or 317 

consistently provide stronger support for specific predictions. These observations demonstrate 318 

the difficulty of assessing a priori which orthology prediction method is the most accurate, a 319 
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question that continues to be debated in the field of orthology prediction (Altenhoff et al. 2016). 320 

Thus, favoring one method over another, and relying on results from a single version in time of 321 

an orthology-prediction method, can introduce unintended bias and increase false-negative 322 

rates when compiling a comprehensive list of orthologs between species. A corollary that we 323 

discuss further below is that using the number of programs that support a prediction as a proxy 324 

for how good the prediction is, as several meta-analysis-based methods do (Hu et al. 2011; 325 

Pryszcz et al. 2011; Sutphin et al. 2016), is an uncertain metric, since the degree of support 326 

appears to be fluid. As we show in the next section, the meta-analysis approach also appears 327 

to guard against these potential problems. 328 

 329 

Meta-analysis “buffers” against losses resulting from updates to individual orthology-330 

prediction methods 331 

When we compiled OL1 there was no ‘‘gold standard’’ for identifying a set of orthologs 332 

between two species. We argued that a meta-analysis would insure high recall and precision, 333 

resulting in the most accurate picture of C. elegans and human orthologs (Shaye and 334 

Greenwald 2011). Other studies (Pryszcz et al. 2011; Pereira et al. 2014) supported this 335 

inference, and show that the meta-analysis approach results in a higher level of accurately 336 

predicted ortholog groups than individual methods.  Here, we provide additional support for this 337 

view by demonstrating that a meta-analysis effectively buffers against losses resulting from 338 

changes over time in individual prediction methods. 339 

The meta-analysis used to generate OL1.1 led to a gain of 530 worm genes when 340 

compared to OL1 (Fig. 1 and 3C). As mentioned above, the mean gain in gene content when 341 

analyzing individual programs was 7.3%, corresponding to a predicted gain of ~568 worm 342 
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genes (Fig. 1 and File S3). Therefore, gains obtained with the meta-analysis are close (within 343 

the s.e.m) of the expected. This shows that, with respect to gene gains, the meta-analysis 344 

does not differ greatly from the variability seen within individual programs. 345 

On the other hand, the meta-analysis resulted in a loss of just 287 genes (Figs. 1 and 346 

2C). This contrasts with the mean loss in gene content seen with individual programs, which 347 

was 7.9%, corresponding to a predicted loss of ~598 genes (Fig. 1 and File S3). Thus, the 348 

number of genes lost using the meta-analysis is much less than what would be expected due 349 

to losses in individual programs. This suggests that the meta-analysis approach provides a 350 

“buffer” against loss in gene content due to changes in orthology-prediction methods over time. 351 

The majority of worm genes lost after updating to OL1.1 (260 of 287, or ~90%) were 352 

"uniques" in OL1 (File S2, tab C and File S4, tabs D, E), suggesting that this class is the most 353 

likely to lose orthology after updates to prediction methods. However, two other considerations 354 

indicate that genes predicted by a single method should be included in OrthoList to ensure the 355 

most accurate representation of orthology:  (1) it is important to note that the 260 lost genes 356 

represent just a small fraction (~16%) of the 1,650 "uniques" in OL1 (Fig. S2, File S2, tab B, 357 

and File S4, tab E), and (2) we found that a similar fraction of OL1 "uniques" (222 genes, or 358 

~13%) are now supported by two, or more, programs used to compile OL1.1 (File S4, tab E.) 359 

 360 

Adding more orthology-prediction methods has only a low impact on the landscape of 361 

human-worm orthologs identified in OL1.1 362 

 In choosing the prediction programs to generate OL1 we focused on those that, at the 363 

time, were rated highly by publications that analyzed the performance of orthology-prediction 364 

methods (Hulsen et al. 2006; Chen et al. 2007; Altenhoff and Dessimoz 2009) and were 365 
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amenable to extraction of genome-scale data. A more recent assessment of 15 orthology-366 

prediction methods (Altenhoff et al. 2016), which did not include OrthoMCL or HomoloGene, 367 

continues to support InParanoid as a solid performer (i.e., generating results that balance 368 

precision with recall), while Ensembl Compara performed less well. We note that, in regard to 369 

the C. elegans-human set of orthologs, this assessment fits our observations: InParanoid 370 

seemed to be more stable over time, showing fewer changes in total gene number and 371 

content, when compared to Ensembl Compara (Table 2).  372 

 Our finding that OL1.1 displayed a gain of 530 and a loss of 287 genes when compared 373 

to OL1 led us to test if including results from additional orthology-prediction methods would 374 

support these changes, or reveal shortcomings in the methods used previously.  We chose two 375 

additional orthology-prediction methods, the Orthologous Matrix (OMA) project (Roth et al. 376 

2008) and OrthoInspector (Linard et al. 2011; Linard et al. 2015)  (see Table 1) for their ease 377 

when it came to obtaining genome-wide data, and for their accuracy when compared to other 378 

orthology-prediction methods. In terms of recall and precision, among the 15 programs 379 

assessed by Altenhoff et al. 2016 OMA appears to be the most stringent, exhibiting the highest 380 

precision but with low recall (few false positives, but may miss true hits), while OrthoInspector 381 

typically exhibited the most well-balanced set of results with respect to precision and recall, 382 

being most similar in these respects to InParanoid. 383 

 OMA defines orthologs using a three-step process: first it analyzes full proteome 384 

sequences using all-against-all Smith-Waterman alignments. Second, to identify orthologous 385 

pairs from within significant alignment matches, closest homologs are identified based on 386 

evolutionary distance, taking into account an estimation of uncertainty, the possibility for 387 

differential gene losses, and identifying paralogs based on third-party proteome sequences as 388 
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"witnesses of non-orthology". Finally, ortholog groups are built using a maximum-weight clique 389 

algorithm.  For our analysis, we downloaded the Humans-C. elegans “Genome Pair View” 390 

dataset from the OMA website.  391 

  The OrthoInspector algorithm is also divided into three main steps. First, the results of 392 

a BLAST all-versus-all alignment are parsed to find all the BLAST best hits for each protein 393 

within an organism, which is used to create groups of inparalogs. Second, the inparalog 394 

groups of each organism are compared in a pairwise fashion to define potential orthologs and 395 

inparalogs. Third, best hits that contradict the potential orthology between entities are detected 396 

and annotated. Unlike InParanoid and OrthoMCL, OrthoInspector does not consider reciprocal-397 

best BLAST hits as a preliminary condition to detect potential inparalogs. Instead, inparalog 398 

groups are inferred directly in each organism, and these groups are then compared between 399 

organisms. This approach allows for exploration of a larger search space to discover potential 400 

orthologs. 401 

 When we compared results from OMA and OrthoInspector to OL1.1, we found that the 402 

addition of these two programs did not greatly change the landscape of human-worm orthologs 403 

predicted by the four previously-used methods (Fig. 4A, File S5). Of the 3,881 worm genes 404 

with human orthologs predicted by OMA, 3,768 (97.0%) were already present in OL1.1. 405 

Similarly, of the 5,361 worm genes predicted to have human orthologs by OrthoInspector, 406 

5,343 (99.7%) were already present in OL1.1. Therefore, these two programs at first glance 407 

appear to have added 131 more predicted orthologs to OrthoList. However, we note that 31 of 408 

the 131 genes added by OMA and OrthoInspector were actually in OL1, but had been lost after 409 

the updates to the original orthology prediction methods that yielded OL1.1 (Fig. 1, 4B). 410 
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Therefore, the new content added by OMA and OrthoInspector is actually only 100 genes, or 411 

+1.3% of what was already present in OL1.1. 412 

 413 

The final gene content of OrthoList 2  414 

 To generate OL2, we summed the content of OL1.1 and the 101 additional genes 415 

identified by OMA and OrthoInspector. As in our original meta-analysis, we included genes 416 

found by even a single program as a conservative approach to maximize the inclusion of 417 

genes with potential conservation, especially with the view of using OL2 as a guide for RNAi 418 

screens. Taken together, OL2 includes a total of 7,943 C. elegans genes, or ~41% of the 419 

protein-coding genome (Fig. 4C and File S5, Tab C).  420 

 After compiling OL2 we were left with 256 C. elegans genes that were previously 421 

predicted to have human orthologs, and thus were in OL1, but are not supported by current 422 

versions of orthology-prediction programs (Fig.4B, C, and File S5, Tab C). Below we discuss 423 

this gene set, which we term “legacy”, and why we chose to retain them in our searchable 424 

database even though they no longer score as orthologs in analysis programs. 425 

As we noted above, there is some redundancy in Ensembl human gene entries.  In the 426 

version used to compile OL2 (v89) Ensembl contained 20,310 protein coding genes and 2,751 427 

alternative sequences (which are the ones that give rise to the extra IDs for genes like 428 

NOTCH4, as described above). Thus, there were a total of 23,061 human ENSG IDs, of which 429 

~13.5% were alternative sequences.  OL2 has 12,345 ENSG IDs, which, given the numbers 430 

above, we estimate corresponds to ~10,678 bona fide protein-coding genes and ~1,667 431 

alternative sequences. These considerations indicate that ~52.6% (10,678/20,310) of the 432 

human protein-coding genome has recognizable worm orthologs supported by current versions 433 
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of orthology-prediction methods. 434 

 435 

The “legacy gene” set 436 

 We found that 256 C. elegans genes that were present in OL1 were not identified either 437 

in OL1.1, using updates of the four original programs, or by OMA or OrthoInspector (File S5, 438 

tab C, and S6 tab A). Thus, they would not be considered “orthologs” as conventionally 439 

defined. Many (205/256, or ~80%) of these genes have functional domains recognized by 440 

programs such as SMART (Letunic and Bork 2018) and InterPro (Finn et al. 2017), while 441 

others have been placed in protein families based on other criteria; e.g., the C/EBP protein 442 

homolog cebp-1 (Yan et al. 2009; Bounoutas et al. 2011; Kim et al. 2016; McEwan et al. 2016), 443 

or several hedgehog-related genes, called “groundhog” or grd in C. elegans, (Burglin and 444 

Kuwabara 2006) (see File S6, tab A).  In addition, some of these genes have been discussed 445 

as orthologs in the literature, based on their inclusion in OL1 or by independent analyses using 446 

the underlying prediction programs or other methods.  We therefore needed to consider how to 447 

deal with such genes in our new meta-analysis here, and as will be described below, we 448 

concluded that we needed a special designation for such “legacy genes” that would recognize 449 

their history without considering them current orthologs.  450 

 We give here four examples of C. elegans genes that illustrate properties of these 451 

“legacy” genes and complications of orthology prediction. All four were included in OL1 based 452 

on Ensembl Compara, a program that performed less well in the assessment of Altenhoff et al. 453 

(2016), and which was also the least congruent with the others,  and thus provided the most 454 

unique hits in OL1 (Shaye and Greenwald 2011. See also Fig. S2).  455 
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 (i) C. elegans cdk-2 is not predicted by any of the six programs used here.  456 

Nevertheless, cdk-2 is functionally related to human CDK2 in that it regulates cell cycle 457 

progression from G1-S phase (Fox et al. 2011; Korzelius et al. 2011). BLAST analysis 458 

indicates that C. elegans CDK-2 is 52% identical to human CDK2 and has a low "e-value”, but 459 

CDK-2 would not be predicted as an "ortholog" by Reciprocal Best Hits (RBH), a simple 460 

assessment of orthology (Altenhoff et al. 2016) because if C. elegans CDK-2 is used as the 461 

query in a BLAST search of the human database, CDK3 and CDK1 have higher e-values, 462 

whereas if human CDK2 is used as a query of C. elegans, CDK-1 and CDK-5 have higher e-463 

values.   This situation may be relatively rare, but underscores the complexity of ascertaining 464 

phylogenetic relationships of individual genes of gene families. 465 

 (ii) C. elegans ceh-51 encodes a homeodomain-containing transcription factor that 466 

functions in mesoderm (Broitman-Maduro et al. 2009).  In OL1 it was called as the ortholog of 467 

VENTX, a homeodomain transcription factor that functions in the human mesodermal 468 

derivatives of the myeloid lineage (Rawat et al. 2010; Wu et al. 2011; Gao et al. 2012; Wu et 469 

al. 2014).  In OL2, four other C. elegans homeodomain (ceh) genes are now called as VENTX 470 

orthologs, underscoring how adjustments to the prediction programs may lead to shifts in 471 

which possible paralogs in C. elegans are called as orthologs of human genes.  472 

 (iii) C. elegans FOS-1 is a transcription factor required for the gonadal anchor cell to 473 

breach a basement membrane during vulval development (Sherwood et al. 2005).  In OL1, 474 

ENSEMBL Compara predicted a total of six genes as potential orthologs:  c-FOS and five 475 

additional FOS-related genes, all bZIP proteins containing a "BRLZ" domain according to 476 

SMART (Letunic and Bork 2018).  In contrast to ceh-51, where there seemed to be a shift in 477 



 22 

the orthology call, here, none of the paralogs or other proteins with BRLZ domains in humans 478 

were called as fos-1 orthologs in OL2. 479 

 (iv) C. elegans SEL-8, a core component of the Notch signaling system, is a glutamine-480 

rich protein that appears to be homologous to the glutamine-rich human MAML proteins based 481 

on its equivalent role in a ternary complex with the Notch intracellular domain and the LAG-482 

1/CSL DNA binding protein, even though there is no primary sequence similarity or any 483 

recognizable domains (Doyle et al. 2000; Petcherski and Kimble 2000; Wu et al. 2000).  484 

However, in OL1, Compara predicted SEL-8 to be homologous to MED15, a component of the 485 

Mediator complex (Allen and Taatjes 2015), while InParanoid uniquely predicted C. elegans 486 

MDT-15 as the ortholog of human MED15, a relationship that is also consistent with the 487 

SMART protein domain prediction. 488 

The 256 worm genes that comprise the legacy set were previously found to be 489 

orthologous to 382 human ENSG IDs. Of these, 217 (~57%) continue to have worm orthologs, 490 

and thus are included in OL2. The remaining ENSG IDs, corresponding to 165 individual 491 

human genes, do not have currently-supported worm orthologs, and thus represent the human 492 

legacy set of genes (File S6, tab B). 493 

Given that one of the incentives for compiling OrthoList was to obtain the most 494 

comprehensive set of functionally similar human-worm homologs for cross-species studies, 495 

and to acknowledge the publication history of these genes as orthologs if questions arose in 496 

the future, we have retained these worm and human genes as a "legacy set" (File S6), clearly 497 

indicating that they were not found as orthologs per se by current programs. Their change of 498 

status underscores the difficulty of identifying orthologs between C. elegans and humans, 499 

which have such a distant evolutionary relationship.  500 
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 501 

An OrthoList 2 online tool with enhanced search capabilities and links to external 502 

databases 503 

 OL1 was originally published in the form of a set of Excel spreadsheets (Shaye and 504 

Greenwald 2011).  However, this form limited its utility, and may have led to some confusion 505 

when searching for worm genes with human orthologs, as evidenced by publications that 506 

referenced OL1, but missed genes that were in the spreadsheet and thus reported a lower 507 

degree of reliability for this list [e.g. (Roy et al. 2014)]. To facilitate access, we subsequently 508 

developed a basic online tool, which was never formally published but instead publicized 509 

through a reader comment at the original journal website and announcements in C. elegans 510 

venues.  This simple tool allowed C. elegans genes to be input (through their gene or locus 511 

name, or WormBase ID), and human genes to be input via ENSG ID, and outputs were 512 

similarly displayed. 513 

To access OL2, we have developed a significantly improved online tool 514 

(http://ortholist.shaye-lab.org) with several features (Fig. 5A) not present in the original version 515 

made available informally to the community. As before, searches may be conducted using C. 516 

elegans or human gene identifiers, but importantly, this feature is now augmented by the ability 517 

to search using HGNC names (Yates et al., 2017) and the ability to permit partial matches to 518 

facilitate searches when there are multiple paralogs, such as "NOTCH," for the four paralogs 519 

NOTCH1-4 when the "partial match allowed" option is selected. Additionally, we now include 520 

the ability to query the database based on InterPro (Finn et al. 2017) and SMART (Letunic and 521 

Bork 2018) protein domain annotations, and human-disease associations provided by the 522 

OMIM database (McKusick 2007). We also provide the option to restrict searches based on a 523 

http://ortholist.shaye-lab.org/
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given number of programs that predict an orthologous relationship, but as we discuss below, 524 

we believe that “unique” hits in OL2 should be viewed as orthologs since they fit the criteria 525 

used by the most recent version of a validated program. The “legacy” genes described above 526 

are also found in this online tool, and can be included in searches by selecting “no minimum” in 527 

the “No. of programs” field.  Finally, we include an “Instructions, Tips and Feedback” section, 528 

which we can update in response to user feedback. 529 

In the results page (Fig. 5B), users will find the number of programs that call a particular 530 

C. elegans-human ortholog prediction (Fig. 5B). If the result displays a “0” in this column, the 531 

genes returned are from the “legacy” set, and are not considered “orthologs” at this time (see 532 

"Discussion" of legacy genes below).  If a result displays 1 or more programs, hovering over 533 

the "?" symbol shows which program(s) called a particular orthology relationship. The results 534 

may be sorted by clicking at the top of the columns for any of the names (WormBase ID, 535 

Common Name Locus ID, Ensembl ID, or HGNC Symbol) or the number of programs.  Finally, 536 

we include links to SMART and InterPro protein domain descriptions, as well as to OMIM 537 

entries for human disease associations.  Clicking on “toggle” displays links for the entire 538 

column; clicking on “view” displays the links for a given gene.   539 

One of the rationales for creating OrthoList was to facilitate RNAi screens by pre-540 

selecting genes with human orthologs (Shaye and Greenwald 2011). To this end we had 541 

incorporated identifiers for the most utilized and extensive set of “feeding RNAi” clones (Fraser 542 

et al. 2000; Kamath et al. 2003) to our informally-released online tool. When initially produced, 543 

the feeding library targeted ~72% of C. elegans genes. More recently a collection of new 544 

bacterial strains was produced to supplement and enhance this library, which now targets 545 

~87% of currently-annotated genes (https://www.sourcebioscience.com/products/life-sciences-546 
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research/clones/rnai-resources/c-elegans-rnai-collection-ahringer/). We have now added clone 547 

identifiers for this newly-released supplemental RNAi set to our database in order to provide 548 

the most up-to-date resource for finding RNAi clones that target genes conserved in humans.  549 

 550 

DISCUSSION 551 

C. elegans is a powerful experimental system for using genetic approaches to address 552 

biological problems of relevance to human development, physiology, and disease.  Harnessing 553 

the full power of the system is enhanced by the knowledge of evolutionarily related genes 554 

(homologs) between C. elegans and humans. Homologs across species are often divided into 555 

those that originated through speciation (orthologs) and those that originated through 556 

duplication (paralogs). Although orthology is an evolutionary, and not necessarily a functional, 557 

definition, the “ortholog conjecture” proposes that orthologs tend to maintain function, whereas 558 

paralogs, are more diverged. However, recent work suggests that even paralogs retain 559 

significant functional similarity (Altenhoff et al. 2012; Gabaldon and Koonin 2013; Dunn et al. 560 

2018). Therefore, as a proxy for functional conservation, establishing the orthology relationship 561 

among genes in different species has served as a useful tool to identify candidates for cross-562 

species and translational studies.  However, identifying homologs is not a simple undertaking, 563 

and a wide variety of methods exist, with different balances between precision (positive 564 

predictive value) and recall (true positive rate) (Altenhoff et al. 2016).  Furthermore, there are 565 

different versions of genome sequence databases and curation of predicted genes, and 566 

different versions of prediction programs.  567 

 We had previously used a meta-analysis approach to compile OrthoList, a compendium 568 

of C. elegans genes with human orthologs (Shaye and Greenwald 2011).  Initially compiled for 569 
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the practical purpose of streamlining RNAi screens, it also had value as a study of the 570 

relationship between the two genomes.  Here, we have created OrthoList 2 (OL2), a new 571 

meta-analysis, which has similar value as both a practical tool and for insights into the 572 

genomes.  We consider three main topics in this Discussion.  First, we discuss how our 573 

longitudinal analysis here reveals that the meta-analysis approach is not just more accurate as 574 

a snapshot view of the relationship between the genomes, but also means that OL2 will remain 575 

a practical tool for facilitating cross-platform studies for many years to come.  Next, we discuss 576 

how our results suggest that assigning reliability scores in meta-analysis approaches, a 577 

common component of studies that followed OrthoList, may be misleading.   Finally, we 578 

provide a practicum on what to do when a gene of interest is, or is not, found in OL2. 579 

 580 

The meta-analysis approach results in a stable landscape of orthologs 581 

The initial rationale for performing a meta-analysis to generate a compendium of 582 

human-worm orthologs was based on the fact that, at the time we compiled OL1, there was no 583 

reliable benchmark that defined which orthology-prediction method was the “best”. Another 584 

publication that used meta-analysis to study genome-wide orthology, published at the same 585 

time as OL1 (Pryszcz et al. 2011), generated the "Meta-Phylogeny-Based Orthologs 586 

(MetaPhOrs)" database (now offline), and a subsequent study (Pereira et al. 2014) that 587 

developed a "Meta-Approach Requiring Intersections for Ortholog predictions (MARIO)" further 588 

supported the idea that a meta-analysis results in a higher level of accurately predicted 589 

ortholog groups than individual methods.  590 

Our work here not only shows that the meta-analysis approach provides more accurate 591 

predictions, but also generates a robust set of orthologs that withstand the test of time. Indeed, 592 
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to our knowledge, this study is the first to assess how changes in gene structure and orthology 593 

prediction methods over time (a longitudinal analysis) affects the landscape of orthologs 594 

between two species, and the effect that the meta-analysis approach has on these changes. 595 

Although very few of the worm-human orthologs predicted in OL1 (<1%) were lost due to 596 

changes in underlying gene predictions over the last ~7 years, we find that there have been 597 

significant changes in gene content within individual orthology-prediction methods over time, 598 

indicating that genome-wide orthology inference based on a single version of any individual 599 

orthology-prediction method will miss orthology relationships. Furthermore, these changes did 600 

not lead to greater agreement between methods. However, our meta-analysis approach 601 

buffered against ortholog losses that led to this divergence between methods, demonstrating a 602 

further, unexpected advantage of this approach.  603 

This stability means that OL2 will remain a practical tool for facilitating cross-platform 604 

studies for many more years.  This observation is important because there is a large labor cost 605 

to the manual curation and quality control steps required to ensure that results from new 606 

methods are appropriately vetted. For example, we found that a bottleneck of manual curation 607 

was required to ensure that gene IDs for C. elegans and humans were not deprecated, 608 

changed or retired. We also needed to take manual curation steps in order to confirm that no 609 

errors were introduced upon large-scale conversion of gene IDs (which tend to be different for 610 

each program) to forms that can be directly compared.  We note that it is not clear from the 611 

published reports if these steps were taken for other published meta-analysis approaches. 612 

 613 

Evaluating the utility of reliability scores in meta-analysis approaches  614 
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Two different approaches have been used to infer reliability of predictions in meta-615 

analyses.  One is to use the number of methods that support an orthology prediction as a 616 

"simple score" for the reliability of the prediction.  The other is to use different “weighting” 617 

approaches to emphasize predictions of some methods over others. However, our results here 618 

raise doubts as to whether either of these approaches is an appropriate scoring methodology, 619 

because the level of support is not only dependent on which programs are used, but also on 620 

when these programs were sampled. Furthermore, our work, and that of Pryszcz et al., 621 

demonstrates that increasing the number of orthology-prediction methods does not have a 622 

major impact on the performance of a meta-analysis. The study that generated the MetaPhOrs 623 

database (Pryszcz et al. 2011) noted a significant increase in recall (fewer false negatives) 624 

when results from two orthology-prediction programs were combined, compared to when 625 

individual programs were sampled. However, there was little difference in recall, or precision, 626 

metrics when results from a third program were added to the combinations of two. Our results 627 

here support this observation, as addition of two more programs (OMA and OrthoInspector) to 628 

the four already used for OL1 did not greatly increase recall, leading to addition of only ~100 629 

worm genes to OrthoList. Given the lack of correlation between having more programs in the 630 

meta-analysis, and increased recall or precision, we caution researchers against discarding 631 

hits with lower simple scores, for example “"uniques"”, as it would lead to a higher false-632 

negative rate when performing large-scale studies using meta-analysis-derived databases.   633 

Two other meta-analyses, DIOPT (Hu et al. 2011), which samples 15 different 634 

orthology-prediction methods, and WORMHOLE (Sutphin et al. 2016), which samples 14 635 

methods, use alternative, weighted, approaches to score reliability. DIOPT assigns a different 636 

weight to each underlying orthology-prediction program based on how well each performs in a 637 
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"functional" assessment; namely, the degree of semantic similarity between high quality GO 638 

molecular function annotations of fly-human ortholog pairs predicted by each method 639 

sampled. Unfortunately, several reports have shown that GO annotation congruence as a 640 

proxy for functional similarity is a problematic metric (Chen and Zhang 2012; Thomas et al. 641 

2012). Moreover, it is not clear how GO semantic similarity applied to fly-human ortholog pairs 642 

translates to other species, particularly C. elegans and humans. Therefore, it is not clear that 643 

this weighing approach is better than the "simple scoring" approach, and, as discussed above, 644 

even the “simple scoring” approach can introduce a higher level of false negative calls.  645 

WORMHOLE developed a "scaled" confidence score based on a supervised 646 

learning model that analyzes data for classification purposes called a support vector machine 647 

(SVM) classifier system. An SVM uses a set of training examples, each marked as belonging 648 

to one or another of two categories (in the case of WORMHOLE, the categories were: being a 649 

least-diverged ortholog (LDO) vs. not), then the SVM training algorithm builds a model to 650 

assign new examples (i.e. putative ortholog pairs) to one category or the other. WORMHOLE 651 

used the PANTHER LDO dataset (Mi et al. 2013) as reference for training their SVM. This 652 

training set includes all one-to-one orthologs, as well as the single least divergent gene pair in 653 

one-to-many and many-to-many ortholog groups within the broader PANTHER ortholog 654 

dataset. PANTHER LDOs perform well in orthology benchmarking assessments, however this 655 

set tends to be very conservative (Altenhoff et al. 2016): consistently showing high precision, 656 

but low recall (i.e., missing a lot of possible orthologs compared to other programs). Therefore, 657 

using the PANTHER LDO set as the "training" algorithm to generate a confidence score has 658 

the potential of missing bona fide orthologs.  659 
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We have included the number and identity of programs for each gene in OL2 for 660 

reference, but given the various difficulties of current scoring systems we consider here, we 661 

believe that the best approach is to avoid using scoring criteria to support, or contradict, 662 

orthology assignments achieved via meta-analysis, and to consider any gene identified by at 663 

least one program as an ortholog for all practical purposes.  664 

A gene is, or is not, in OL2:  what does that mean? 665 

 OrthoList has proven to be a useful way to streamline RNAi screens and to ask 666 

questions about the genome, particularly as a first step to ask if a gene of interest in one 667 

system has an ortholog in the other. However, the vast evolutionary distance between C. 668 

elegans and humans has allowed for extensive sequence divergence, as well as for larger-669 

scale genomic alterations, such as domain shuffling and local, or genome-scale, duplications 670 

(Babushok et al. 2007). Given the existence of such mechanisms for genome divergence, 671 

which can impact the ways that phylogenetic relationships are inferred by orthology-prediction 672 

programs, the presence or absence of a gene in OL2 should not be the only consideration 673 

when deciding about homology. We consider here some common scenarios we have observed 674 

when using a worm gene to query OL2, other tests and extensions to support claims of 675 

orthology, and other approaches to find potential orthologs that elude identification by the 676 

programs used here, even though, as described above, they are generally high-performing and 677 

use different criteria in assessing orthology relationships. The same scenarios could apply in 678 

principle when a human gene is used to identify the worm ortholog(s). 679 

(i) using a worm gene as the query returns a set of human paralogs.  E.g. wnk-1 elicits 680 

the four paralogs, WNK1, WNK2, WNK3 and WNK4.  The C. elegans gene is the ortholog of 681 

all four of these paralogous human genes, not just the eponymous WNK1. Thus, functional 682 
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information about C. elegans wnk-1 may be applied to any of the four human genes, and vice 683 

versa.  684 

 (ii) using a worm gene as the query returns a set of non-paralogous human genes.  This 685 

may occur when proteins share a domain but differ otherwise. For example, entering C. 686 

elegans lin-12 identifies the four human NOTCH genes, as expected.  However, two programs 687 

also call the gene EYS, and two single programs (Compara or OrthoMCL) call ten additional 688 

non-paralogous human genes. These additional genes encode proteins with EGF-like motifs, 689 

which are also found in bona fide NOTCH proteins, but lack the other hallmark domains of 690 

NOTCH. The real NOTCH proteins, including LIN-12, have a similar domain architecture with 691 

several identifiable domains in a similar arrangement, and therefore can easily be 692 

distinguished from the proteins that contain EGF-like motifs, but are otherwise dissimilar, by 693 

using a domain architecture program such as SMART. However, for proteins with single 694 

identifiable domains, domain architecture will not resolve which of the set of non-paralogous 695 

genes is the "ortholog."   696 

(iii) using a worm gene as the query only identifies “legacy” relationships.  Because the 697 

longitudinal analysis presented here has not been performed before, we devised the concept 698 

of “legacy genes” as a category for genes that were called orthologs in OL1 but are no longer 699 

called as such in OL2.   When a gene is no longer called as an ortholog by contemporary 700 

programs, it cannot be considered an ortholog in the phylogenetic sense presented at the 701 

outset of this Discussion.  Nevertheless, we retained "legacy” genes in the searchable 702 

database because many have recognizable functional domains (File S6, Tab A), and, in some 703 

cases, additional work has established conserved function (e.g. cdk-2 and sel-8 discussed 704 

above), suggesting that additional work on other "legacy" genes may yet support “orthology”. 705 
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Thus, if a gene of interest only exists in the legacy set, it will likely have a domain that gives 706 

some clue as to its function, or it may be that future work will establish conserved function 707 

even in the absence of strict phylogenetic orthology. 708 

  (iv) using a worm gene as the query does not identify any potential human orthologs.   If 709 

there are identifiable domains, domain architecture searches may yield potential functional 710 

orthologs.   711 

 An important key to resolving these questions comes from the ability to use genetic 712 

analysis in C. elegans for functional assessment.  The most straightforward approach is to use 713 

functional, trans-species rescue of a C. elegans mutant by expression of a human protein to 714 

bolster an inference of orthology.  Indeed, the question of "orthology" vs. analogy/convergence 715 

becomes moot for practical purposes if the human protein can replace the C. elegans protein.  716 

Similarly, the conservation of biochemical/molecular function of different human paralogs can 717 

be assessed by a rescue assay. Eventually, similarities at the level of higher-order structure 718 

may be another way to identify worm-human orthologs that have diverged at the primary amino 719 

acid sequence level. 720 

 Finally, as noted previously (Shaye and Greenwald 2011), some components of 721 

pathways or complexes have diverged to the point that they are not identified by primary 722 

sequence and hence are not in our compendium. In such cases, the presence of some 723 

components of conserved pathways or complexes will essentially compensate for the absence 724 

of others when performing RNAi screens streamlined by OL2. To illustrate this point, we 725 

consider the conserved Notch pathway (Greenwald and Kovall 2013). Notch is essentially a 726 

membrane-tethered transcriptional coactivator regulated by ligand. When ligand binds, the 727 

intracellular domain is released by proteolytic cleavage to join a nuclear complex to activate 728 
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target genes. The C. elegans Notch orthologs, LIN-12 and GLP-1, the protease components 729 

that cleave the transmembrane form to release the intracellular domain, and the associated 730 

DNA binding protein LAG-1 are all present in OL2; the canonical DSL transmembrane ligands, 731 

LAG-2, APX-1 and ARG-1, and the SEL-8 Mastermind-like protein are not. Thus, if the Notch 732 

pathway is involved in a phenotype of interest, then enough components would be present in a 733 

streamlined, but otherwise unbiased, RNAi screen based on OL2.  734 

 OrthoList has already been used to design streamlined RNAi screens that yielded 735 

important discoveries (e.g., Gillard et al. 2015; Hernando-Rodriguez et al. 2018; Nordquist et 736 

al. 2018). To further facilitate the design of such screens, our new web-based tool not only 737 

includes the most up-to-date version of the widely-used C. elegans feeding RNAi library, but it 738 

also allows users to focus their screens even further by generating lists based on protein 739 

domains and/or human-disease associations. Therefore, our work here not only updates the 740 

genome-wide orthology between humans and C. elegans, it offers insight into how to evaluate 741 

results from orthology-prediction methods, and provides an easily accessible tool that will aid 742 

in streamlining functional studies and analyzing results with translational potential. 743 
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Figure 1: Workflow for genome analysis and generation of OrthoList 2.  The workflow 752 

proceeded in four steps.  Step 1) we addressed changes to gene models in the worm genome 753 

that have occurred since OL1 was published (File S1) to yield an updated OL1 (File S2). We 754 

also addressed changes to human gene predictions (File S3). Step 2) we queried updated 755 

versions of the orthology-prediction methods used in OL1 (See Table 1) to generate OL1.1 756 

(File S4), and found that the number of worm genes added was within the parameters 757 

predicted by changes in individual programs (Table 2), whereas gene loss appeared to be 758 

"buffered" by combining results from the different methods (i.e. the meta-analysis approach). 759 

Step 3) we next added results from two additional orthology-prediction methods (See Table 1) 760 

and found that this had a low impact on the landscape of human-worm orthologs identified in 761 

OL1.1 (File S5). Finally, in step 4) we combined the genes identified by these two additional 762 

programs with OL1.1, to generate OrthoList 2 (Files S5, S7).  We note that genes that did not 763 

continue to be supported by orthology-prediction methods were retained as a "legacy" set 764 

present in the searchable database (Files S6, S7). Both OL2 and the legacy set of genes were 765 

cross-referenced to the C. elegans “feeding” RNAi library, protein-domain prediction databases 766 

(InterPro and SMART), and to a human-disease association database (OMIM) to generate a 767 

final master list (File S7) which can be queried via the new web-based tool found at 768 

ortholist.shaye-lab.org. 769 

 770 

Figure 2: Changes in the landscape of C. elegans genes with human orthologs due to 771 

updates in methods used to generate the original OrthoList. Venn diagrams shown here 772 

compare the worm gene content of the original and updated versions of (A) Ensembl 773 

Compara, (B) HomoloGene, (C) InParanoid and (D) OrthoMCL. See also Table 2. 774 
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Figure 3: OL1.1 and longitudinal analysis of changes in the landscape of worm-human 775 

orthologs. To generate OL1.1 we combined results from updated versions of the four 776 

previously-used orthology prediction methods. The Venn diagram (A) shows overlap in gene 777 

content between the four programs, while the table (B) gives an overall measure of how many 778 

genes were found by one or more programs (regardless of which one(s) found them). The 779 

Venn diagram in (C) shows the change in gene content between OL1 (Fig. S2, File S2) and 780 

OL1.1 (File S4), indicating a loss of 287 genes and a gain of 530 genes after updates to 781 

orthology prediction methods. Bar graph in (D) illustrates the changes in orthology support 782 

after updates, also described in Table 3, demonstrating that most genes maintained the same 783 

level of support, but among those that changed support level, there was no obvious trend 784 

towards gaining more support with updates to prediction methods, nor was there more stability 785 

among genes that had higher support in OL1. 786 

 787 

Figure 4: Adding more orthology-prediction methods has a low impact on the landscape 788 

of human-worm orthologs identified in OL1.1. We queried two additional programs, OMA 789 

and OrthoInspector, for worm-human orthologs, and compared their gene content to OL1.1. 790 

The Venn diagram in (A) shows that the vast majority of orthologs called by OMA (3,768/3,881 791 

or ~97%) and OrthoInspector (5,343/5,361 or ~99%) were present in OL1.1. The Venn 792 

Diagram in (B) shows that among the “new” orthologs called by OMA and OrthoInspector 793 

~24% (31/131) were in OL1, but had been lost due to updates to previously-used methods. 794 

Therefore, only 100 new orthologs were added after including results from two more orthology-795 

prediction methods. Diagram in (C) shows how the gene content of OrthoList 2, which was 796 
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compiled by combining the results shown in panel A (see File S5, tab C), compares to the 797 

gene content from OrthoList 1 (see File S1, tab C). 798 

  799 

Figure 5: OrthoList 2 query interface. Panel (A) shows input page at ortholist.shaye-lab.org. 800 

Users can select which fields to search (human and worm identifiers, SMART or InterPro 801 

protein domains, and disease phenotypes described in OMIM), whether to set a threshold for 802 

orthology support (see main text) and whether partial matches should be allowed, which is 803 

useful when users want to find all members of a similarly-named gene family (e.g., input 804 

“Notch” to find all human Notch family members). Panel (B) shows a sample results page for 805 

the gene let-60, with a search conducted using the default settings, returning a set of Ras 806 

orthologs consistent with its sequence and genetic validation in a canonical Ras pathway (Han 807 

and Sternberg 1990; Sundaram 2013). The results page contains links for viewing additional 808 

information about results and for exporting results to a comma-separated value (CSV) 809 

spreadsheet. 810 

 811 

SUPPLEMENTAL MATERIAL 812 

Supplemental Figure S1: Changes in gene content in Ensembl Compara v87, v88 and 813 

v89. The Ensembl Compara database was updated three times while we were compiling OL2. 814 

In this time-span we noticed that the landscape of worm genes with predicted human orthologs 815 

changed after each update, so that each version had ~2% of genes unique to it, while another 816 

~2-4% of genes were found in only two of the three versions (see also Materials and Methods). 817 

 818 
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Supplemental Figure S2: Updated OL1. We updated OL1 by addressing changes in worm 819 

gene structure, classification and nomenclature for the genes present in our original 820 

compendium. We then combined results from the corrected OL1 programs. The Venn diagram 821 

(A) shows overlap in corrected gene content between the four programs, while the table (B) 822 

gives an overall measure of how many genes were found by one or more programs 823 

(regardless of which one(s) found them). 824 

 825 

Supplemental Table S1: Data sources for orthology-prediction programs used to 826 

compile OL2. The source data for each program is found at each program’s website. 827 

 828 

Supplemental File S1: Changed OL1 worm genes. This file lists genes whose classification, 829 

or ID, changed since the release of OL1. Type I changes correspond to genes that were re-830 

classified as pseudogenes, ncRNA, being transposon-derived, or killed due to lack of 831 

evidence. Type II changes results from combining, or “merging” two or more genes that had 832 

each, separately, been found to have a human ortholog in OL1. Type III changes represent 833 

genes that were assigned new IDs, either because experimental evidence suggested that they 834 

should be merged with genes previously not in OL1 (marked red), or due to addition of 835 

previously unpredicted gene segments (denoted as a red “?”) 836 

 837 

Supplemental File S2: Corrected C. elegans genes in OL1. All corrected worm genes found 838 

by each OL1-era version of orthology prediction methods are shown in tab (A). Tab (B) shows 839 

the distribution of results between OL1-era orthology-prediction methods, while tab (C) shows 840 
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the corrected OL1 as well as the distribution of genes by support class (supported by one, two, 841 

three or all methods). 842 

 843 

Supplemental File S3: Changed OL1 human genes. Human ENSG gene IDs from OL1 are 844 

listed for each orthology-prediction method in tab (A). This tab also shows the 574 ENSG IDs 845 

that are no longer found in current versions of the Ensembl genome browser. Tab (B) shows 846 

the Ensembl-provided history for the 574 lost ENSG IDs, showing that most are now just 847 

classified as “retired”. Tab (C) shows a randomly selected subset of 20 IDs that were “retired”. 848 

Note that the gene name (HGNC-approved symbol) associated with the “retired” ENSG ID is 849 

always associated with current ENSG IDs, demonstrating that curation of ENSG IDs rarely 850 

links “retired” IDs with their current counterparts. Tab (D) lists the sixteen human ENSG IDs 851 

that we could confirm were deprecated. 852 

 853 

Supplemental File S4: C. elegans genes in OL1.1. Tab (A) shows the worm genes found to 854 

have human orthologs by updated versions of prediction methods used in OL1. Tab (B) shows 855 

the distribution of results between orthology-prediction methods. Tab (C) shows the final 856 

OL1.1, as well as the distribution of genes by support class (supported by one, two, three or all 857 

methods). Tab (D) lists those genes found only in OL1 (termed “lost”), and those added upon 858 

update to OL1.1. 859 

 860 

Supplemental File S5: C. elegans OMA and OrthoInspector results, their relationship to 861 

OL1.1 and genes not supported by current versions of orthology-prediction methods. 862 

Tab (A) shows the worm genes found to have human orthologs by OMA, OrthoInspector and 863 
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those already in OL1.1. Tab (B) shows the distribution of results amongst these three sets. 864 

Tab (C) lists all worm genes with human orthologs supported by current orthology-prediction 865 

methods (OL2) as well as those no longer supported (the “legacy” set). 866 

 867 

Supplemental File S6: the “legacy” set. Tab (A) lists the 256 C. elegans genes previously-868 

predicted to have human orthologs, but not supported by current versions of orthology-869 

prediction methods, and their predicted protein domains determined by SMART and InterPro. 870 

Tab (B) lists the human “legacy” set: 165 human genes that were previously predicted to have 871 

worm orthologs, but for whom orthology is no longer supported. 872 

 873 

Supplemental File S7: OL2 and legacy master list. This file, which underlies the database 874 

hosted at ortholist.shaye-lab.org, contains all orthology predictions (current and legacy), with 875 

C. elegans and human gene identifiers, as well as associated protein domain (SMART and 876 

InterPro) and human disease (OMIM) information. 877 

 878 

Supplemental File S8: Freeze of code used to compile OrthoList 2. The code was 879 

downloaded from https://github.com/danshaye/OrthoList2 at the time of submission. 880 
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Tables: 

Program 
Version in 
OL1 (date) 

Version(s) 
in OL2 
(dates) 

 # C. elegans 
genes in OL1 

# C. elegans 
genes in OL2 
(% change) 

# Human 
ENSG IDs 

in OL1 

# Human ENSG 
IDs in OL2 

(% change)
* 

Ensembl 
Compara 

v57 (2010) 
v87-89 

(2016-2017) 
6,404 6,801 (+6.2%) 8,642 9,186 (+6.3%) 

HomoloGene v64 (2009) v68 (2014) 4,127 3,778 (-8.5%) 2,956 3,205 (+8.4%) 

InParanoid v7 (2009) v8 (2013) 5,591 5,581 (-0.2%) 7,527 8,949 (+18.9%) 

OrthoMCL v4 (2010) v5 (2011) 5,663 5,699 (+0.6%) 7,417 7,588 (+2.3%) 

OMA NA 1 (2016) NA 3,882 NA 4,558 

OrthoInspector NA 2 (2015) NA 5,361 NA 7,771 

 

Table 1: Databases used to build OrthoList 2. The programs used here all scored highly in a 

recent assessment of orthology-prediction methods (ALTENHOFF et al. 2016). For the four previously-

used programs, we report the net change (%) in C. elegans and human genes predicted to be 

orthologs between versions.  (For the other two these measurements are not applicable, NA.). *The 

change in human ENSG ID numbers upon updates includes those whose original IDs were retired, 

but which still exist in the Ensembl database with a new, unlinked, ID. This deficiency in annotation 

makes it impossible to assess the true extent of gains and losses in the human gene set (see main 

text). 

  



 

 
Gene Numbers (net change) Gene Content (actual genes in results) 

  Original Updated % Change # Lost # Gained % Lost % Gained 

Ensembl Compara 6,404 6,801 +6.2% 467 864 -7.3% +13.5% 

HomoloGene 4,127 3,776 -8.5% 747 396 -18.1% +9.6% 

InParanoid 5,591 5,581 -0.2% 290 280 -5.2% +5.0% 

OrthoMCL 5,663 5,699 +0.6% 57 93 -1.0% +1.6% 

  
mean -0.5% 

 
mean    -7.9% +7.4% 

  
s.e.m ±3.0% 

 
s.e.m ±3.6% ±2.6% 

 

Table 2: Changes in gene number and content after updates to orthology-prediction methods. 

The mean change in total number of worm genes with human orthologs predicted by each individual 

program was quite low (-0.5±3.0%) after updates, although each program showed distinct patterns of 

change, with Ensembl Compara adding more genes vs. all the other programs losing genes. 

However, when considering the change in actual gene content, each program appears to have larger 

changes than what is apparent by just looking at the net change in numbers.   

  



Class Type of support 
# of 

Genes 
% of 
class 

Representation with respect 
to proportion in OL1 

(significance)
 

Total 
genes in 

class 

% of 
OL1 

Stayed 
the same 

Unique 1164 21.2% unchanged (p=0.4340) 

5487 72.5% 
Two 589 10.7% underrepresented (p<0.001) 

Three 882 16.1% underrepresented (p<0.001) 

Four 2852 52.0% overrepresented (p<0.001) 

Lost 
support 

Unique to Lost 260 20.2% unchanged (p=0.2205) 

1285 17.0% 

Two to Unique 184 14.3% 
overrepresented (p=0.0034) 

Two to Lost 27 2.1% 

Three to Two 253 19.7% 

unchanged (p=0.2034) Three to Unique 26 2.0% 

Three to Lost 0 0.0% 

Four to Three 492 38.3% 

underrepresented (p=0.0406) 
Four to Two 38 3.0% 

Four to Unique 5 0.4% 

Four to Lost 0 0.0% 

Gained 
support 

Unique to Two 200 25.1% 

overrepresented (p<0.001) 

797 10.5% 
Unique to Three 23 2.9% 

Unique to Four 3 0.4% 

Two to Three 176 22.1% 
overrepresented (p<0.001) 

Two to Four 33 4.1% 

Three to Four 362 45.4% overrepresented (p<0.001) 

 

Table 3: Changes in support after updates to orthology prediction methods. All statistics in this 

table are calculated by a two-tailed chi-square with Yates correction. The majority of genes (72.5%) 

from OL1 retained the same level of support, but significantly more lost support than gained it after 

updates (p>0.001). To ask if there was a trend towards stability based on degree of support, we 

looked at whether genes supported by more programs in OL1 were overrepresented in the class that 

retained, or gained, support, or whether they were underrepresented in the class of genes that lost 

support. Conversely, we looked for whether genes supported by fewer programs were 

overrepresented in the class of genes that lost support. We did not find strong evidence for such a 

trend. The proportion of “uniques” within the class that retained the same level of support, or lost it, 

was not significantly different from the proportion of “uniques” in OL1. Moreover, “uniques” were 

overrepresented in the class that gained support. Therefore, being a unique is not a predictor for 

remaining unique or losing support. We also noticed that genes supported by two programs were as 

likely to lose support as they were to gain it (overrepresented in both classes), while genes supported 

by three or four programs are less likely to lose support upon updates. 
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