
  FRBM-D12-00656 

 

INVITED REVIEW ARTICLE 

 

Redox Regulation of Stem/Progenitor Cells and  
Bone Marrow Niche  

 

Norifumi Urao, MD, PhD and Masuko Ushio-Fukai, PhD 

 

Department of Pharmacology, Center for Lung and Vascular Biology, 
Center for Cardiovascular Research 

University of Illinois at Chicago, Chicago, IL 

 

 

 

Running title: Redox regulation of Stem and Progenitor Cell 

 

Address correspondence to: 
 
Masuko Ushio-Fukai, Ph.D 
Dept. of Pharmacology 
Center for Lung and Vascular Biology,  
Center for Cardiovascular Research 
University of Illinois at Chicago 
835 S. Wolcott, M/C868,  
E403 MSB 
Chicago, IL 60612 
 
Phone: 312-996-7665  
Fax: 312-996-1225 
Email: mfukai@uic.edu 
  

1 
 



  FRBM-D12-00656 

Abstract 

Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, 

differentiation, survival, migration, proliferation and mobilization are regulated by unique cell-

intrinsic signals and -extrinsic signals provided by their microenvironment, also termed the 

‘niche’. Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), play important 

roles in regulating stem and progenitor cell function in various physiologic and pathologic 

responses. The low level of H2O2 in quiescent hematopoietic stem cells (HSCs) contributes to 

maintain their stemness, whereas a higher level of H2O2 within HSCs or their niche promotes 

differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major 

sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS 

derived from NADPH oxidase are increased in the BM microenvironment, which is required for 

hypoxia and HIF1α expression and expansion throughout the BM. This, in turn, promotes 

progenitor cell expansion and mobilization from BM, leading to reparative neovascularization 

and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, 

hypertension and diabetes, excess amounts of ROS create an inflammatory and oxidative 

microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. 

Understanding the molecular mechanisms of how ROS regulate the functions of stem and 

progenitor cells and their niche in physiological and pathological conditions will lead to the 

development of novel therapeutic strategies.  
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Introduction 

 Adult stem cells are populations of cells that are able to regenerate the multiple 

differentiated cell types of the organ in which they reside and self-renew themselves.  Bone 

marrow (BM)-derived stem and progenitor cells play an important role in neovascularization, 

which is involved in normal development and wound repair, as well as various pathophysiologies 

such as ischemic heart disease and peripheral artery disease. This process depends on 

angiogenesis and vasculogenesis (de novo new vessel formation through BM-derived stem and 

progenitor cells) [1-4]. Hematopoietic stem cells (HSCs) are the most characterized adult stem 

cells which produce all types of immune cells and maintain blood production for their lifetime. A 

subpopulation of BM-derived cells called “endothelial progenitor cells” (EPCs) has been 

identified by their capacity to form endothelial-like cells in vitro and in vivo [1]. However, the 

definition of EPCs has recently been challenged, as this concept is still lacking of formal proof in 

the adult and even questioned in embryonic development [5]. Moreover, hematopoietic cells are 

shown to be derived from endothelial cells during embryonic development in the mouse  [6]. 

Overall, BM-derived cells appear to have a bilineage potential and interconnection between 

hematopoietic and endothelial cells has been introduced as a new concept [7]. This is supported 

by various evidence that stem and progenitor cells in the BM including HSCs, EPCs and even 

myeloid progenitors contribute to neovascularization and tissue repair in various injury models. 

Moreover, BM-derived progenitor cells isolated with hematopoietic and endothelial makers have 

been tested in clinical trials, while further optimization is needed regarding their feasibility, 

safety and benefit in patients with cardiovascular diseases.  

 HSC and progenitor cell function and fate are regulated by cell-intrinsic signaling and 

extrinsic cues provided by a distinct microenvironment called the ‘niche’ [8-13]. In the steady 

state of homeostatic hematopoiesis or under stress conditions such as after irradiation, growth 

factor stimulation and hematopoietic injury by chemotherapeutic agents, the mechanism of these 

regulations has been investigated regarding self-renewal, survival, differentiation, proliferation, 

engraftment (homing from the periphery to the niche) and mobilization (the forced migration of 
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the cells out of the BM niche into the periphery). It is beginning to be understood about cell-

intrinsic and cell-extrinsic effects on the functions of stem and progenitor cells which are 

involved in inflammation, neovascularization and tissue repair after injury or infection.  

Reactive oxygen species (ROS) such as superoxide anion (O2
•-) and hydrogen peroxide 

(H2O2) play an important role for stem and progenitor functions. In general, there is a ‘redox 

window’ hypothesis; appropriate ROS production is required for physiological cellular functions, 

while excess ROS contribute to pathological conditions. There seems to be a clear correlation 

between intracellular H2O2 levels and functions in stem and progenitor cells [14-20]. A low level 

of endogenous H2O2 is involved in maintaining the quiescence of HSCs, whereas a higher level 

of H2O2 contributes to a greater proliferation, senescence or apoptosis, leading to a premature 

exhaustion of self-renewal in these cells [21,22]. Thus, keeping H2O2 at low level within the 

HSCs or stem cell niche is an important feature of stemness that is directly related to the 

relatively quiescent state of stem cells in vivo. H2O2 at physiological levels activate repair 

processes that involve recruitment and differentiation of stem/progenitor cells. ROS derived from 

NADPH oxidase are required for hypoxia and HIF1α expansion in the BM microenvironment in 

response to ischemic injury [23]. This, in turn, promotes progenitor cell expansion and 

mobilization from BM, leading to reparative neovascularization and tissue repair. In 

pathophysiological states such as aging, diabetes, hypertension, atherosclerosis and cardiac 

infarction, excess amounts of ROS are generated, thus creating an inflammatory and oxidant 

stress microenvironment, which induces cell damage and apoptosis of stem and progenitor cells.  

In this review, we will summarize the recent progress regarding the role of ROS and 

ROS-mediated BM microenvironment in regulating stem and progenitor cell functions including 

self-renewal, differentiation, survival/apoptosis, proliferation, migration and mobilization. Given 

the significant role of BM-derived cells in physiological and pathological conditions, 

understanding the redox regulation of stem/progenitor cell function and BM niche will lead to 

the development of stem and progenitor cell- or stem cell niche-targeted therapies.  
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1. Role of ROS in physiological and pathological cellular function 

In general, excess amounts of ROS are detrimental to cells and contribute to various 

pathologies such as atherosclerosis, heart failure, aging, diabetes and cancer. In contrast, ROS, 

especially H2O2, at physiological levels function as signaling molecules to mediate various 

biological responses such as cell proliferation, migration, survival, differentiation and gene 

expression [24-27].  Cellular ROS levels are temporally and spatially regulated by the fine-tuned 

balance between ROS generation system and antioxidant enzymes. ROS such as O2
•- and H2O2 

are generated from a number of sources including mitochondria, NADPH oxidases (NOXs), 

xanthine oxidase, cytochrome p450 and nitric oxide synthase (through its uncoupling). Since O2
•- 

is produced from oxygen, oxygen concentration or hypoxic condition has a significant impact on 

total amount of ROS. The O2
•- reacts with nitric oxide (NO) to generate peroxynitrite (OONO-), 

thereby inhibiting endothelial function [28], while it can be quickly converted to H2O2 by 

superoxide dismutases (SODs) such as MnSOD, (SOD2) or Cu/ZnSODs (SOD1) or extracellular 

SOD (SOD3) [29,30]. H2O2 is catalyzed by catalase [31], glutathione peroxidases (GPx) [32] and 

Thioredoxin-peroxiredoxin (Trx-Prx) system [33] to non-reactive water (Figure 1). Since H2O2 is 

relatively stable and does not react with NO, it has been proposed to function as a second 

messenger in physiological redox signaling. Overall, the levels of ROS are determined by the 

balance of ROS generation and antioxidant enzyme activity. Harmful effects of ROS on the cells 

are DNA damage, lipid peroxidation, protein oxidation and inactivation of specific enzymes by 

oxidation of co-factors, linking to the pathological consequences. It is well known that growth 

factor signaling is mediated through H2O2 production. The biological effect of ROS in the cell is 

dependent on their amount and duration, their source and subcellular localization, and type of 

species (Figure 1). Identifying direct molecular target(s) of ROS in each cell type is important to 

understand the cellular mechanism of redox regulation.   

NOX generates ROS by catalyzing electron transfer from NADPH to molecular oxygen, 

O2. Phagocyte NADPH oxidase consists of 2 membrane-bound subunits, gp91phox (NOX2) and 

p22phox which form the flavocytochrome b558 complex, together with the cytosolic subunits 
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p47phox, and p67phox p40phox and the small GTPase Rac. NOXs have several homologs of NOX2 

including Nox1, Nox3, Nox4, and Nox5, as well as the Dual oxidases (Duox), Duox1 and Duox2 

[34,35]. Different from phagocytic NADPH oxidase that is normally quiescent but generates a 

large burst of O2
.- (the “oxidative burst”) upon activation, the NOXs constitutively produce low 

levels of O2
.- or H2O2 intracellularly in basal state and are further stimulated acutely by various 

agonists and growth factors. NOXs are now recognized to have specific subcellular localizations, 

which is required for localized H2O2 production and activation of specific redox signaling 

pathways to mediate various functions [27,36]. They are found in various cell systems including 

endothelial cells, hematopoietic cells, mesenchymal cells and stem cells, and regulate cell 

migration, proliferation, differentiation, apoptosis, senescence, inflammatory responses and 

oxygen sensing [34]. NOXs have been implicated in numerous physiologies such as angiogenesis, 

tissue repair, hematopoiesis and stem/progenitor functions [14,35,37] as well as 

pathophysiologies such as hypertension, atherosclerosis, cancer and immune disorders [34,38-

41]. Of note, NOX2 is involved in not only host defense but also chemotaxis, immune responses, 

the initiation of antigen cross presentation[41], cell survival[42] as well as immunosuppressing 

function protecting from autoimmune development[40]. We have demonstrated that NOX2 in 

stem/progenitor cells including EPCs, and the BM niche play an important role in reparative 

neovascularization in response to ischemic injury [23,43]. This issue is discussed below. 

 ROS are also produced from mitochondria as a consequence of aerobic metabolism. 

Increasingly, mitochondrial oxidants are viewed less as byproducts of metabolism and act as 

signaling molecules [44]. Both complex I and III of the electron transport chain are thought to be 

the major sites of mitochondrial ROS production [45,46]. In addition, mutations in either 

mitochondrial DNA or nuclear DNA that lead to disruption in any of the components of the 

electron transport chain also promote ROS formation [44]. Ischemia and apoptosis are shown to 

trigger O2
•- production by complex III [47]. Once O2

•- is generated, it is immediately converted 

into H2O2 by MnSOD, (SOD2) or Cu/ZnSODs (SOD1) [29,30].  To avoid the potential 

damaging effects of H2O2, mitochondria express other antioxidant enzymes such as 
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peroxiredoxins (Prx)3 and Prx5 and glutathione peroxidase. A number of studies suggest that 

hypoxic conditions increase mitochondrial ROS production, which stabilizes HIF1α protein 

expression.  Moreover, mitochondrial oxidants also act as important signaling molecules to 

regulate the inflammatory response, autophagy and mitophagy as well as stem cell function [44]. 

The cross-talk between NOXs and mitochondrial ROS has been reported in various cell 

systems [48,49]. Hypoxia-induced mitochondrial H2O2 activate NOX via protein kinase C 

epsilon in pulmonary artery smooth muscle cells [50]. Serum withdrawal-induced mitochondria 

H2O2 stimulate NOX1 through PI3-kinase-Rac1 axis in human 293T cells [51]. These evidences 

suggest that mitochondrial H2O2 regulate NOX activity. Conversely, NOX activation induces 

mitochondrial H2O2 formation by opening of mitochondrial ATP-sensitive potassium 

channels [48]. Given that H2O2 is highly diffusible molecule, cross-talk between NOXs and 

mitochondrial ROS may represent positive feed-forward mechanisms that promote sustained 

H2O2 production and activation of redox signaling. Whether this regulatory mechanism is 

involved in stem and progenitor cell function is the subject of future investigation. Moreover, not 

only intracellular H2O2 but also extracellular H2O2 also play an important role in signal 

transduction, because H2O2 is relatively stable and can across the cellular membrane through 

aquaporin [52], and exogenously added H2O2 can activate NOXs [50]. Thus, intracellular H2O2 

levels and redox signaling can be affected by extracellular H2O2 and H2O2 production from 

surrounding cells (cell-extrinsic effect). Cell-intrinsic and cell-extrinsic effects of ROS on stem 

and progenitor cell function are discussed below. 

 

2. Cell-intrinsic effects of ROS on stem and progenitor function 

Physiologic induction of ROS in stem and progenitor cells is regulated by growth factor 

or cytokine stimulation, changes in oxygen and/or energy metabolism, cell status and 

differentiation. These ROS inducing factors and situations appear to closely link to one another 

(Figure 2). As illustrated in Figure 3, distinguishing cell-intrinsic and -extrinsic effect of H2O2 is 

not always possible due to their diffusible nature. However, studies have demonstrated a clear 

7 
 



  FRBM-D12-00656 

correlation of ROS levels in stem and progenitor cells, as measured by redox-sensitive dyes 

which detect mainly intracellular H2O2 or O2
•-, with their functions or stage of differentiation 

(Table 1). When the differentiation capacity is examined in the HSCs based on their H2O2 levels, 

ROShigh cells show higher myeloid differentiation capacity, whereas ROSlow cells retain their 

long-term self-renewal ability [21]. Some of the gene mutations exhibit the abnormal increase in 

H2O2 level, which promotes HSCs to exit from quiescence, block the self-renewal capacity and 

promote stem cell differentiation [18,20]. Moreover, H2O2 level is further higher in myeloid 

committed progenitor cells compared to HSCs and mechanism of redox regulation within both 

cell types is different in terms of FoxO-dependency [20].  It has been shown that a low-oxygenic 

niche in bone marrow limits ROS production, thus providing long-term protection for HSCs 

from oxidative stress [10,53,54]. This suggests that there are cell-intrinsic (by programming) and 

passive (by cellular adaptation) regulation for ROS levels.  In Drosophila, developmentally 

regulated, moderately high H2O2 levels in the hematopoietic progenitors promote differentiation 

through JNK and FoxO activation [55]. Thus, H2O2 has cell-intrinsic effects on HSCs and 

hematopoietic progenitor cells during normal hematopoiesis. Cell-intrinsic effects of H2O2 on 

stem and progenitor cell function under stress conditions have also demonstrated. ROS levels in 

EPCs (which could have hematopoietic potential) is lower than those in mature ECs, which is 

due to higher expression of antioxidant enzymes (MnSOD, catalase and glutathione peroxidase), 

and is required for preserving “stemness” such as undifferentiated, self-renewing state under 

oxidant stress [33].   

Hematopoietic growth factors or cytokines stimulate signaling events leading to cell 

growth [56] or promote HSCs mobilization into the circulation [57] through the formation of 

H2O2. In addition, hyperbaric oxygen stimulates recruitment and differentiation of circulating 

stem/progenitor cells in subcutaneous Matrigel by increasing H2O2 [58].  Thus, H2O2 at 

appropriate levels contributes to proliferation and migration of HSCs (which links to 

mobilization from the BM to the circulation as well as homing to the target sites).  By contrast, 

H2O2 at excess amount activates p38 MAPK to limit the lifespan and self-renewing capacity or 
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expansion of HSCs, resulting in premature senescence phenotype or apoptosis [18,59].  The 

concept of the redox window suggests that optimal levels of ROS are required for normal 

responses while excess or insufficient levels of ROS are associated with cellular dysfunction and 

reduced growth factor signaling, respectively [60]. This notion also seems to apply to the redox 

regulation of stem and progenitor cell function [22]. The relationship between the change in 

H2O2 levels in stem and progenitor cells and their functional consequence are summarized in 

Figure 4. Note that in most cases, the exact source of ROS in these cells is not clear, because of 

the difficulty of measuring ROS, which are diffusible and short-lived, in current available 

detecting methods. 

 

3. Sources of ROS regulating stem and progenitor cell function 

Although there are several sources of ROS, NOX and mitochondria are major ROS 

generating enzymes in BM-derived stem and progenitor cells. The connection between 

mitochondrial ROS and stem cell function has been indicated. Liu J et al. [61]  demonstrated that 

mice lacking the Polycomb repressor Bmi-1 mice exhibit increase in mitochondrial dysfunction, 

reduced ATP, increased H2O2 levels, and subsequent DNA damage in BM cells.  It has been 

shown that the tuberous sclerosis complex (TSC)-mammalian target of rapamycin (mTOR) 

pathway, a key regulator of cellular metabolism, maintains the quiescence and function of HSCs 

by repressing mitochondrial biogenesis and the production of H2O2 [62]. This result implicates 

the role of mitochondrial ROS in inhibiting stemness of HSCs.  Low level of H2O2 production 

from mitochondria may be important in metabolic adaptation under conditions of low oxygen as 

well as regulating biological function of stem and progenitor cells. This point should be further 

clarified in future studies. 

Because of availability of gene silencing and mutant mice for NOX enzymes, the role of 

NOX-derived ROS in stem and progenitor cell functions has been extensively investigated. In 

murine hematopoietic progenitor cells under homeostatic conditions, all NOXs are 

expressed [63]. Piccoli et al. showed that human G-CSF-mobilized CD34+ HSCs express NOX1, 

9 
 



  FRBM-D12-00656 

2 and 4, which generate low levels of ROS [64,65]. In their sequential study, the high resolution 

imaging of HSCs with the immunodetection of NOX indicates the presence of membrane 'rafts'-

like microcompartments where the assembly/activation of the NOX components may be 

functionally integrated for creating redox signaling platforms [66]. They suggested that NOXs-

derived ROS play an important role in differentiation from stem and progenitor cells. Among 

NOXs, NOX2 is most abundantly expressed in murine BM mononuclear cells [43] and, murine 

and human EPCs [67]. The important role of NOX2 is also demonstrated in the BM after 

ischemic tissue injury. NOX2 expression and ROS production are increased in BM mononuclear 

cells [43] and differentiated myeloid cells after hindlimb ischemia of mice [23], which stimulates 

stem progenitor cells expansion and mobilization from BM [23,43]. Nox2 is also involved in 

HGF- [68], hypoxia- [67] induced stem/progenitor cell mobilization from BM to peripheral 

blood. These studies indicate that NOX2-derived ROS mediate growth factor and chemokine 

signaling involved in progenitor cell and EPC migration, proliferation and survival under stress 

conditions.  Thus, NOXs play a role in maintaining adequate ROS levels in HSC and 

hematopoietic/endothelial progenitor cells and contribute to their physiological function. 

 NOX-derived ROS are involved in maintenance of stemness and cardiovascular 

differentiation of embryonic stem (ES) cells. Undifferentiated self-renewing ES cells generate 

low level of endogenous ROS with low NOX enzyme expression, and NOX is dynamically 

regulated during ES cell differentiation to cardiomyocytes [69]. Endothelial differentiation from 

mouse ES cells involves ROS from NOX2, NOX1 and NOX4 [70,71], while smooth muscle cell 

differentiation is mediated by NOX4-derived H2O2 [72]. ROS generation is elevated during the 

early stages of ES cell differentiation, and then downregulated during later stages. During the 

differentiation process, anti-oxidative genes are downregulated [73] while NOX1, 2 and 4 are 

upregulated [74], thereby increasing ROS levels. Stimulation of ES cells with mechanical 

strain [71] or direct current electrical field [70,75,76] or low concentration of H2O2 [69,74] or 

various agonists including cardiotrophin-1 [77], PDGF-BB [78] or peroxisome proliferator-

activated receptor α [79] induces cardiovascular differentiation of ES cells through increase of 
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H2O2. This in turn induces upregulation of NOX1 and 4, thus initiating a feed-forward 

stimulation of prolonged ROS generation [71,74]. Of note, NOX4 is involved in differentiation 

of ES cells to cardiomyocytes [80] and smooth muscle cells [72] while NOX2 is closely 

correlated to the differentiation of phagocytic cells from ES cells [81]. H2O2 derived from NOX 

activates ERK1/2, p38 and JNK [71], or various cardiogenic transcription factors [74], which are 

required for cardiomyogenesis of ES cells.   

 
4. Regulators of ROS involved in stem and progenitor cell function 

There are various regulators of ROS and their molecular targets involved in stem and 

progenitor cell function as described below (Figure 5).     
 

Forkhead homeobox type O (FoxO):  

The forkhead homeobox type O (FOXO) transcription factors FOXO1, FOXO3a, and 

FOXO4 are critical mediators of the cellular responses to oxidative stress and play a pivotal role 

in the redox regulation of HSCs [82]. FoxO3a-/- HSCs show increased phosphorylation of 

p38MAPK and H2O2 as well as downregulation of antioxidant enzymes, defective maintenance 

of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury [83]. It is 

shown that H2O2 act through p38MAPK to limit HSC lifespan [18]. Thus, excess H2O2-

p38MAPK pathway may be involved in inhibition of self-renewal function of FoxO3a-/- HSCs. 

Furthermore, under stress conditions, such as aging or 5-FU-induced myelosuppression, FoxO3a-

/- mice develop neutrophilia associated with increased Akt and ERK and decrease of Spred2 

(Sprouty-related Ena/VASP homology 1 domain-containing proteins 2). Thus, FoxO3a plays a 

pivotal role in maintenance, integrity, and stress resistance of HSCs through negative feedback 

pathways for proliferation [84].  Conditional FoxO1/3/4 knockout mice exhibit myeloid lineage 

expansion and a marked decrease in lineage-negative Sca1+, cKit+ (LSK) compartment and long-

term repopulating activity that correlated with increased cell cycling, apoptosis and H2O2 in 

HSCs [20]. These FoxO-deficient HSC phenotypes are rescued by in vivo treatment with the 
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antioxidant N-acetyl-L-cysteine (NAC). Thus, FoxOs proteins protect against oxidative stress 

and thereby maintain self-renewal capacity (quiescence) and enhanced survival in the HSC 

compartment, which is required for its long-term regenerative potential [20]. 

Akt, PTEN and mTOR: 

Akt phosphorylates FoxO to promote transition from quiescent status to myeloid-biased 

activated HSCs. HSCs isolated from Akt1-/-/Akt2-/- mice show defective differentiation of HSCs 

into multipotent progenitors by decreasing H2O2 levels [85]. Constitutively active Akt 

accelerates proliferation and increases H2O2 level in HSCs, resulting in depletion of HSCs, BM 

failure as well as myeloproliferative disease or acute myeloid leukemia [86]. Thus, H2O2 is 

determinant factor for myeloid commitment and its appropriate level is important for normal 

HSC function. In addition, H2O2-mediated enhancements in self-renewal and neurogenesis are 

dependent on PI3K/Akt signaling  [87]. PTEN is negative regulator for PI3K/Akt pathway and 

contains catalytic cysteine residues that are highly susceptible to oxidation by H2O2 [88,89]. 

Therefore, PTEN inhibition stabilizes the active phosphorylated form of Akt. Conditional PTEN-

/- mice show rapid depletion of long-term repopulating HSCs and promoting myeloproliferative 

diseases, which are restored by mTOR inhibition [90]. Importantly, the depletion of PTEN-

deficient HSCs is not mediated through ROS [91], while the defect by FOXO deficiency is 

rescued by NAC  [20]. G-CSF-induced mobilization of hematopoietic progenitor cells into the 

circulation is mediated via increase in c-Met expression and its downstream mTOR-FOXO3a-

mediated accumulation of H2O2 [57]. Therefore, H2O2-dependent and -independent mechanisms 

may be involved in the regulation of myeloid commitment in HSCs. Tuberous sclerosis complex 

(TSC) has been shown to regulate ROS levels in HSCs. Tsc1 deletion in the HSCs drives them 

from quiescence into rapid cycling, with increased mitochondrial biogenesis and H2O2, and TSC-

mediated decrease in H2O2 is mediated through mTOR inhibition[62]. Interestingly, the deletion 

of AMP kinase (AMPK), a downstream of TSC and a metabolic kinase, does not affect H2O2 

levels [91].  Therefore, linkage between ROS and metabolic pathways appear to be complex, 

while both clearly regulate HSC functions.   
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ATM, p38MAPK and p53: 

The 'ataxia telangiectasia mutated' (ATM) gene maintains genomic stability by activating 

a key cell-cycle checkpoint in response to DNA damage, telomeric instability or oxidative stress. 

Physiological levels of H2O2 are required to maintain genomic stabilities by activating the DNA 

repair pathway via ATM in cardiac and ES cells [92].  HSCs from ATM-/- mice have increased 

levels of H2O2 [17], leading to defective reconstitutive capacity of HSCs. Thus, the reduction of 

intracellular ROS levels by ATM is required for maintaining the self-renewal ability of HSCs. 

Mechanistically, H2O2 elevation due to ATM deficiency in HSCs activates p38MAPK, which 

upregulates the CDK inhibitors p16Ink4a and p19Arf [17]. Treatment with NAC rescues the 

defects in HSC function in ATM-deficient mice [17], suggesting that elevation of H2O2 can exit 

HSCs from quiescence and reduces self-renewal capacity [17,20,93]. Furthermore, 

overexpression of polycomb RING-finger oncogene BMI1 in normal human neural stem cells 

directly enhances ATM recruitment to sites of DNA damage, leading to protection from 

ultraviolet radiation [94] presumably by preventing generation of H2O2 [61]. Prdm16, a zinc 

finger transcription factor, is shown to be involved in the maintenance of stem cell function by 

modulating the intracellular redox state. Prdm16 deficiency increases mitochondrial H2O2 

through BMI1, resulting in the depletion of stem cells, cell death and altered cell-cycle 

distribution [95]. In addition, ATM-mediated phosphorylation of BID, a BH3-only BCL2 family 

member, plays an important role in maintaining the quiescence and survival of HSCs via 

reducing oxidative stress [96]. Thus, the ATM-BID pathway serves as a critical checkpoint for 

coupling HSC homeostasis and the DNA-damage stress response to enable long-term 

regenerative capacity. Importantly, physiological levels of intracellular H2O2 are required to 

activate the DNA repair pathway for maintaining stem cell genomic stability [92]. This finding 

suggests that the concept of “redox window” or “oxidative optimum” can be also applied for 

genomic stability in stem cells. 

 p53, a major tumor suppressor gene, has been implicated in regulation of HSC 

quiescence and self-renewal. Activation of p53 depletes stem cells via H2O2 accumulation, and 
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Mdm2, an E3 ubiquitin ligase that targets p53 for degradation, is required for survival of 

HSCs/progenitors via dampening of H2O2 -induced p53 activity [97]. Thus, excess activation of 

p53 in the absence of Mdm2 induces a dysregulated p53- H2O2 positive feedback loop, 

indicating that an appropriate level of p53 and H2O2 is essential for the maintenance of 

HSCs [98].   

 

5. Role of BM niche in regulating stem and progenitor functions 

Stem cells are localized to niches formed by cells that provide a microenvironment that 

provides essential cues supporting their growth and fate decisions in the BM [8,10,13,54,99,100]. 

Interaction of stem cells with the niche is crucial for the long-term maintenance of quiescence. 

HSC niche consists of sinusoidal endothelial cells (ECs), sympathetic nerve fibers, cells of the 

osteoblastic lineage, osteoclasts  [101], perivascular mesenchymal stem cells [102], macrophages 

[103,104], regulatory T cells  [105] and other HSC progenies [9] (Figure 6).  In addition to these 

cellular components, soluble factors such as cytokines and growth factors, extracellular matrix, 

oxygen concentration or hypoxia, and ROS are also the part of the niche. Extrinsic instructions 

provided by unique microenvironments regulate the fate and functions of HSCs and progenitors. 

The number of studies on the niche are reviewed by others focusing on the mechanism of HSC 

maintenance (quiescence and self-renewal)  [10], leukemia development and chemotherapy 

resistance  [106,107], organization of niches  [11,13], HSCs mobilization (HSC egress from the 

niche and trafficking into the blood) and homing to the BM [108-111].  

 

6. Role of ROS, hypoxia and HIF1α in regulating BM niche 

The stem cell niche includes the low oxygen endosteal niche mainly containing quiescent 

hematopoietic stem cells as well as more oxygenated vascular niche containing proliferative and 

differentiated hematopoietic progenitors [53,99,100]. This concept is coupled with the 

hypothesis of passive adaptation to regulate H2O2 generation in HSCs; a low-oxygen niche in 

BM limits H2O2 production, thereby providing long-term protection for HSCs from oxidant 
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stress. Thus, hypoxic microenvironment is an important determinant for the maintenance of 

‘‘stemness”, and regulates stem cell self-renewal and differentiation [112]. In vitro, 

characteristics of undifferentiated HSCs such as colony-forming ability or reconstitution capacity 

are retained after hypoxic culture compared with normoxic conditions [113-115].  In vivo, 

Hoechst33342 dye perfusion assay reveals that long term-HSCs and a part of osteoblasts are 

found predominantly in poorly-perfused hypoxic niches in the BM compared to ECs and 

mesenchymal stem cells which show medium to high perfusion [116]. This suggests that the 

most quiescent HSCs localize in a region far from blood supply that delivers oxygen. The low 

ROS population has a higher self-renewal potential and reconstitution capacity following serial 

BM transplantation [21].  Thus, hypoxia and low blood perfusion seem to be correlated with low 

ROS level in HSCs in the BM. However, putative HSCs can also be localized at perivascular 

area of BM with low oxygen and high HIF1α expression [117]. Although it might be difficult to 

anatomically identify and define the hypoxic and relatively oxygenated microenvironment in the 

complex structure of BM [8], there seems to be at least theoretical hypoxic niche in the BM that 

leads to lower H2O2 production. Alternatively, the existence of hypoxic HSCs with perivascular 

localization may suggest that intracellular hypoxia can be achieved actively, not simply passively, 

by cell-intrinsic regulation through HIF1α [117].  

 In addition to the cell-intrinsic effects of H2O2 in HSCs, H2O2 produced from cells in the 

niche around the HSCs may act as extrinsic factors to regulate HSC functions. Cell-extrinsic 

effects of H2O2 are defined as HSC regulation through redox modification of niche components 

including cellular components, extracellular matrix and soluble factors (Figure 3). Of note, the 

diffusible nature of H2O2 and the difficulty of its measurement in situ often prevent investigators 

from identifying an action point of H2O2. Several evidence suggests that the osteoblasts, cells of 

mesenchymal origin positioned at the endosteal surface of bone, are essential components of the 

HSC niche [99]. Tie2/Angiopoietin1 (Ang1) signaling is required for the maintenance of HSCs 

in a quiescent state in the BM niche [17]. The role of N-cadhernin in the BM niche and 

regulation of HSC is a point of controversy [118-120].  Regardless, increase of H2O2 in HSCs by 
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anti-cancer drug has been reported to suppresse N-cadherin expression in osteoblastic niche and 

to induce shift of side population (SP) cells to non-SP cells, allowing quiescent HSCs detached 

from the niche [83].  Redox-dependent expression of vascular cell adhesion protein 1 on ECs in 

the BM is required for the early stages of BM homing and localization of HSC after 

irradiation [121].  Autocrine factors from Akt-mTOR-activated ECs support the self-renewal of 

long-term (LT)-HSCs (which contribute to hematopoiesis for long term) and expansion of 

hematopoietic stem and progenitor cells  (HSPC), whereas MAPK co-activation favors 

maintenance and lineage-specific differentiation of HSPCs [122]. EC-derived growth factors 

support in vitro self-renewal and in vivo repopulation of authentic LT-HSCs through Notch [122].  

Although further mechanistic studies are required, these reports suggest that ROS-mediated 

osteoblast or EC modification may regulate HSCs-niche interaction, resulting in modulating 

HSC function (Figure 3). Most recently, Taniguchi et al. have shown that hematopoietic 

connexin-43 prevents HSC senescence by reducing ROS level in HSCs through transferring ROS 

to BM stromal cells [123].  This finding indicates the novel mechanism for the niche-mediated 

regulation of ROS levels in HSCs. 

BM macrophages maintain the endosteal niche and their depletion by G-CSF and 

clodronate-loaded liposomes induce HSC mobilization into the blood [103]. Similarly, specific 

depletion of CD169+ macrophages localized in mesenchymal niche by a CXCR4 antagonist or 

G-CSF induces egress of HSC/progenitor cells [104].  Extensive studies are required to 

understand the niche regulation under stress conditions such as inflammation, in which HSC is 

differentiated into immune cells, and HSC and progenitor cells are mobilized from the BM to the 

blood circulation [124]. Thus, modulating the BM stem cell niche is important for developing 

novel therapeutic strategies [125,126].   

Most recently, we performed in vivo injection of O2
•- reactive probe and hypoxic 

bioprobe into mice and showed that ischemic injury increases ROS through NOX2 

predominantly at the central BM in situ and at lesser extent at the endosteal regions [23]. Of note, 

NOX2-derived ROS are increased mainly in differentiated myeloid cells in the BM, thereby 
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creating an oxidative BM microenvironment. We also showed that ischemic injury induces 

expansion of low oxygen (hypoxic) areas throughout the BM, in a NOX2-dependent manner. 

This in turn regulates HSPCs expansion, survival and mobilization from the BM, leading to 

neovascularization and tissue repair [23] (Figure 7). Consistently, granulocyte colony stimulating 

factor (G-CSF) or cyclophosphamide (CY), which stimulates mobilization of stem/progenitor 

cells, increase hypoxia in the BM [127].  Of note, G-CSF and CY-induced stem cell mobilization 

is blunted in NOX2-/- mice [128].  Fan et al. showed that increase in ROS is associated with a 

decreased oxygen percentage in CD34+ HSPCs [129]. Piccoli et al. [64] reported that the half of 

the oxygen consumption in HSPCs is dependent on NOX. In addition, the consumption of 

respiratory burst by NOX2 in differentiated myeloid cells is shown to increase local 

hypoxia [130]. Thus, it is likely that ischemic injury increases oxidative microenvironment 

mainly due to activation of NOX2 in differentiated myeloid cells, which in turn creates hypoxic 

niche throughout the BM by increasing oxygen consumption. These ROS-hypoxia-mediated 

alterations of the BM niche induced by inflammation or tissue injury may regulate stem and 

progenitor expansion and mobilization from BM, thereby promoting tissue repair and 

regeneration (Figure 3)  [23]. Of note, hypoxia culture (2% O2) rather suppresses HSC 

proliferation under growth factor stimulation regardless of NOX2 expression (N.U. and MU-F. 

unpublished observation). This suggests that above mentioned NOX2-ROS-mediated increase in 

hypoxic microenvironment is achieved in more oxygenic condition to promote progenitor cell 

expansion.     

 HIF1α is a key regulator of hypoxia, metabolic and angiogenic response. HIF1α is highly 

expressed in LT-HSCs [117,131]. HSCs derived from conditional HIF1α knockout mice exhibit 

impaired reconstitution capacity [117]. HSCs utilize glycolysis instead of mitochondrial 

oxidative phosphorylation to meet their energy demands through HIF1α [131]. This anaerobic-

biased energy metabolism promotes HSC maintenance by limiting ROS production [54]. 

Activation of HIF1α or treatment with the HIF stabilizer reduces HSC reconstituting ability 

under normoxic conditions [15], which is supported by the study using the genetic mouse 
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model [117]. In C. elegans, mild reduction in mitochondrial respiration leads to the increase in 

H2O2 and HIF1α that are required for the acquisition of a long-life span [132].  These indicate 

that appropriate levels of HIF1α and H2O2 are responsible for the maintenance of HSCs and 

other stem cells. Moreover, NOX-derived ROS contribute to HIF1α stabilization in HSCs in 

normoxic conditions by down-regulation of the tumor suppressor von Hippel-Lindau protein 

(pVHL)  [65]. Thus, HIF1α and ROS closely work together, along with oxygen homeostasis and 

energy metabolism, to maintain HSC function.   In the stress response of stem and progenitor 

cells to ischemic injury, HIF1α in BM-derived cells promote angiogenesis [133]. Ex vivo 

cultured BM-derived angiogenic cells treated with the prolyl-4-hydroxylase inhibitor, which 

increases HIF1α and HIF2α expression, improves angiogenesis of ischemia hindlimb in old 

mice [134]. We have demonstrated that endosteum at the BM is hypoxic with high expression of 

HIF1α in basal state. In response to ischemia, NOX2-derived ROS are increased in both the 

endosteal and central region of BM tissue, which promotes HIF1α and VEGF expression with 

expansion of hypoxic areas in the BM in situ [23](Figure 7). Thus, NOX-ROS-mediated BM 

niche modification by ischemic injury may regulate hypoxia response in BM progenitor cells, 

promoting their mobilization from BM. 

 

7. Other ROS-dependent regulators in the BM niche 

 ROS are involved in niche-mediated growth factor/chemokine receptor signaling through 

regulating its ligand expression. SDF-1α, which plays a role in stem and progenitor cell 

mobilization and vascular repair, regulates the trafficking of HSCs progenitors and maintaining 

HSC niches in BM [135]. SDF-1α is released by stromal cells and binds to its CXCR4 receptor 

on stem and progenitor cells. The high SDF-1α content in the BM creates a concentration 

gradient, which retains HSCs within the stem cell niche. Disruption of this SDF-1α gradient 

promotes mobilization of stem cells into the circulation, which occurs after upregulation of G-

CSF levels during systemic stress or injury. In response to ischemia, myocardial infarction or 

hypoxia, tissue levels of SDF-1α  are increased [136-139], which may attract stem cells to sites 
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of tissue injury and ischemia. The SDF-1-CXCR4 axis induces cMet activation in the BM, which 

promotes G-CSF-induced mobilization of progenitor cells via increasing ROS [57]. Most 

recently, Golan et al. reported that sphingosine-1 phosphate (S1P) promotes hematopoietic 

progenitors and BM stromal cell mobilization as well as SDF-1 release via ROS [140]. Thus, 

dynamic cross-talk between S1P and SDF-1 via ROS signaling integrates BM stromal cells and 

hematopoietic progenitor cell motility.  

Ischemic injury increases cytokines and VEGF in the BM and circulation, which in turn 

activates matrix metalloproteinase (MMP)-9 and releases soluble Kit ligand in the BM [2].  

MMPs including MMP-9, which is secreted mainly by neutrophils in BM [141], and MT 

(membrane type)1-MMP [142], which is anchored on the cell surface, plays a significant role in 

stem/progenitor cell mobilization and angiogenesis. We have demonstrated that NOX2-derived 

ROS increased in the BM after ischemic injury regulate HSPCs function in part through 

regulating Akt activation, expression of MT-1-MMP, and MMP-9 activity. Therefore, ROS 

regulate extracellular matrix in the BM niche. Taken together, understanding mechanisms by 

which ischemic injury regulates BM microenvironment is essential for developing novel 

therapeutic strategies for various ischemic diseases. 

 

8. Role of ROS in stem and progenitor cell function in pathological conditions 

In pathological conditions such as aging, atherosclerosis and diabetes, excess amount of 

ROS (oxidative stress) in stem and progenitor cells as well as BM microenvironment may impair 

stem and progenitor function, which can inhibit HSC self-renewal and induce HSC senescence, 

resulting in premature exhaustion of HSCs and hematopoietic dysfunction. Recent proteomic 

analysis of BM stromal cells in culture reveals that older stromal cells produce more H2O2 than 

younger cells [143]. Thus, both intrinsic dysregulation of ROS and more oxidative environment 

may have deleterious effects on stem and progenitor function. Although the definitions of EPCs 

has been challenged [7,16], inverse correlation between circulating number of EPCs and 

cardiovascular risk has been shown [46,144-154]. In human EPC, angiotensin II accelerates EPC 
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senescence through induction of oxidative stress [148]. Diabetes induces dysfunction and early 

senescence in stem and progenitor cells. In animal model of type I diabetes, O2
•- production by 

eNOS uncoupling leads to reduction of EPC levels and impairment of EPC function [155]. In 

EPC culture, high glucose promotes EPC proliferation at early stage (3 days) and inhibits at later 

phase (7 days) through H2O2 accumulation [156]. The p66Shc deletion rescues the BM-derived 

EPCs defect induced by oxidative stress in high glucose [157].  Human EPCs from type II 

diabetes exhibit impaired proliferation, adhesion and incorporation into vascular structures [3]. 

Decreasing O2
•- restores defective ischemia-induced new vessel formation induced by the 

glyoxalase 1 substrate methylglyoxal-mediated modification of HIF1α in EPCs [158], indicating 

a causal role of ROS in EPCs dysfunction in diabetes. 

Circulating progenitors from healthy subjects have lower levels of H2O2 due to higher 

expression of the antioxidants enzymes including MnSOD, GPx, and catalase compared with 

human umbilical vein ECs [33]. Indeed, dysfunction of antioxidant defenses links to impaired 

function of EPCs; GPx-1-/- mice have no increase in circulating EPCs in response to either VEGF 

treatment or ischemic injury. GPx-1-/- EPCs are functionally deficient in promoting angiogenesis 

in vivo and in vitro, and show an increased susceptibility to oxidative stress in vitro [159]. 

Apoptosis signal-regulating kinase 1 (ASK1) is controlled by multiple redox-sensitive proteins 

including thioredoxin, glutathione-S-transferases, and glutaredoxin [16]. Ingram et al. showed 

that H2O2-induced increase in ASK1 activity is involved in diminished vessel-forming ability of 

EPCs after oxidant stress [160]. Moreover, decreased circulating progenitor cells and their 

dysfunction are associated with inflammation [154]. In addition, the H2O2-p38MAPK pathway 

accelerates senescence of EPCs by inducing pro-senescence molecule p16(INK4a)  [161] in the 

same manner with quiescent HSCs. This indicates that HSC and EPC, or their progeny share the 

common pathway regarding premature senescence through excess amount of ROS.  
 

9. Therapeutic potential of redox regulation of stem/progenitor cells and their niche 
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For a last decade, cytokines, chemokines and growth factors, which promote stem and 

progenitor egress from their niche or the mobilization from BM to the circulation, have been 

tested for their therapeutic potential in patients with cardiovascular diseases. The clinical trials of 

cell therapy using BM progenitor cells demonstrate its feasibility, safety and potential benefit in 

patients with ischemic disease and heart failure, but reveal that current cell-based therapy needs 

to be optimized to improve therapeutic efficacy [162]. In this regard, studies investigating the 

therapeutic potential of redox regulation of these cells have used two different strategies. The 

first approach is suppressing excess oxidative stress in stem and progenitor cells. Experimentally, 

EPC dysfunction prevents new blood vessel growth, which is restored by manipulations to 

decrease ROS. In vivo administration of SOD mimetic attenuates the diabetes-related impairment 

of BM mononuclear cells by reducing oxidative stress  [163]. Thus, strategies aimed at reducing 

hyperglycemia-induced ROS is a useful antihyperglycemic therapies in the restoration of 

vasculogenesis and the prevention of diabetic complications [164]. Either transgenic expression 

of MnSOD or administration of SOD mimetic rescue impaired post-ischemic neovascularization 

and tissue survival [158]. Angiotensin II receptor and β1-adrenoceptor blockers improve the 

EPC dysfunction in hypertension via an antioxidant effect [165,166]. Treatment with organic 

nitrates increases circulating EPC levels, while increased NOX-derived ROS by isosorbide 

dinitrate induces their dysfunction [167,168]. Mesenchymal stem cell engraftment in the infarct 

heart is enhanced by anti-oxidant NAC co-injection [169].  Hypoxic preconditioning increases 

the survival and angiogenic potency of peripheral blood mononuclear cells through oxidative 

stress resistance mechanisms [170]. As a second approach, on the contrary, stimulating 

progenitor cells with controlled pro-oxidant has also shown to be effective on promoting their 

neovascular function. For example, short-term pretreatment with low-dose H2O2 enhances the 

efficacy of BM cells for therapeutic angiogenesis [171]. Injection of BM cells from control mice, 

but not NOX2-deficient mice, promotes neovascularization in response to tissue ischemia [43], 

suggesting that NOX2-derived ROS in BM cells is required for this response. In vitro 

preconditioning that stimulates mitochondrial H2O2 production increases the secretion of pro-
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angiogenic properties from adipose-derived stroma cells and the survival of these cells in 

ischemic tissues after in vivo injection [172]. This suggests that mitochondrial H2O2 generation 

in stromal cells provides essential cues for stem and progenitor cells to promote 

neovascularization after injury.  

There is doubled-edge effect of ROS whereby physiological levels can serve as signaling 

molecules to promote vascular integrity [43,173], whereas excess ROS levels in pathological 

conditions are associated with stem/progenitor dysfunction and/or impaired post-ischemic 

neovascularization [172,174-176]. Thus, antioxidant therapy in pathological conditions should be 

carefully designed so that ROS levels are kept optimal and physiological levels in BM 

stem/progenitor cells and microenvironment. Alternatively, more specific approaches by 

targeting particular ROS generating or antioxidant systems, or a downstream of ROS-sensitive 

molecules in stem and progenitor cells may be more effective as a new potential therapy.  

Finally, modulating the stem and progenitor niche in vivo would have therapeutic 

potential for inflammatory- or ischemia-related cardiovascular diseases and this may allow us to 

stimulate stem and progenitor cells in the longer term. It has been shown that a defective niche 

results in HSC disorders, further emphasizing the important function of the HSC niche in vivo 

[177,178]. For a last decade, cytokines, chemokines and growth factors, which promote 

mobilization of stem and progenitor cells from the niche, have been tested for their therapeutic 

potential in patients with cardiovascular diseases, while their benefits seem to be relatively 

limited. As described above, mice lacking essential components of the regulatory system that 

maintains ROS within the physiological levels, show accelerated HSCs senescence and 

progressive BM failure [17,20]. In type 1 diabetic mice, the elevation in mitochondrial ROS 

induces stem/progenitor cell depletion and dysfunction in the BM microenvironment [179].  

Thus, targeting against excess levels of ROS in the BM niche or the niche components may 

provide new therapeutic strategies for treatment of various cardiovascular diseases. 

 

Conclusions 
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 The current review outlines that ROS and ROS-mediated BM niche are involved in stem 

and progenitor cell functions including self-renewal, differentiation, survival/apoptosis, 

proliferation, and mobilization. ROS levels in stem and progenitor cells have a clear correlation 

with cellular functions and are regulated by a fine tuning of the balance between ROS generating 

and anti-oxidative defense systems. Molecular targets of ROS and distinct redox signaling 

pathways in stem and progenitor cells have been identified with in vitro and in vivo functional 

consequences. ROS are also considered as niche factors which regulate stem and progenitor cells 

through modulating other cellular and non-cellular niche components. The role of ROS in niche 

modification is beginning to be investigated. Because of the complexity of the BM niche, the 

diffusible nature of H2O2 and the difficulty of their tracking, it could be challenging to elucidate 

a dynamic regulation of the BM niche, especially in the pathophysiological conditions such as 

aging, metabolic disorders, inflammation, response to injury or infection, and autoimmune 

diseases. However, with the combination of advanced in vitro, in vivo and ex vivo techniques, we 

will be able to extract important elements for redox regulation of stem and progenitor cells, 

which may develop novel cell-based and/or niche-targeted therapies.  

The niche engineering will be useful to test a hypothetical model and can be directly 

applied to cell therapy manufacturing that produces beneficial cell populations for regenerative 

medicine.  This interplay may discriminate between pathways resulting in oxidative stress, and 

induction of apoptosis versus signaling events in stem and progenitor cells. ROS promote HSCs 

to exit from the self-renewal capacity and function as signaling molecules to promote stem cell 

differentiation into multi-lineage and larger homing capacity. This may contribute to angiogenic 

and/or tissue repair function of BM stem and progenitor cells. These mechanisms are regulated 

by the intrinsic redox control in stem and progenitor cells through various redox signaling 

pathways as well as by the extrinsic factors generated from the BM niche such as ROS, hypoxia, 

and cytokines/chemokines. NOX-ROS-mediated hypoxic BM microenvironment induced by 

ischemic injury increases HIF1α and VEGF expression in BM as well as progenitor cell survival 

and expansion, thereby promoting their mobilization from BM. Understanding the redox 
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regulation of stem and progenitor cells and BM niche as well as their underlying mechanisms in 

physiological and pathological conditions will lead to the development of novel therapeutic 

strategies.      
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Table 

Table 1. Relationship between ROS levels and cellular functions in HSCs, and hematopoietic or 

endothelial progenitors 

 
Description 
of cells 

Isolation method  
(Source of Cell) 

Change in ROS level  
(method used to measure) Function(s) Reference

HSPCs Sca-1+/c-Kit+/Lin- 
(BM) Increased by S1P (DHE)  

motility, 
mobilization from 
the BM into the 
circulation 

[140] 
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HSPCs Sca-1+/c-Kit+/Lin- 
(BM) 

Increased by G-CSF or 
HGF in vivo (DHE) 

motility, 
mobilization from 
the BM into the 
circulation 

[57] 

LT-HSCs CD34-/Flt3-/Sca-1+/c-
Kit+/Lin- (BM) 

Increased by Paf deficiency 
(DCFDA) loss of quiescence [180] 

BM-derived 
EPCs 

lectin+/ac-LDL+ 
(cultured BM-MNCs at 
day 7) 

Increased in cells from 
STZ-mice (MitoSOX) 

Impaired Matrigel 
tube formation, 
adhesion, and 
migration 

[181] 

Decreased by AMPK 
activation in cells from 
STZ-mice (MitoSOX) 

Improve diabetes-
impaired Matrigel 
tube formation, 
adhesion, and 
migration 

EPCs  Early outgrowth EPCs Increased by HGF (Amplex 
Red in supernatant) 

mobilization from 
the BM into the 
circulation 

[68] 

HPCs CD34+ (human cord 
blood)  

Increased by Ras 
transduction (Diogenes, 
DEPMPO spin-trap, and 
AmplexRed) 

survival, growth 
factor-independent 
proliferation 

[182] 

BM-derived 
EPCs 

lectin+/ac-LDL+ 
(cultured rat BM-
MNCs at day 7) 

Increased by AGEs 
(DCFDA)  

Apoptosis, reduced 
migration, adhesion 
and proliferation 

[183] 

HSPCs Drosophila lymph 
gland 

Increased by differentiation 
under in vivo physiological 
conditions 

differentiation  [55] 

BM-derived 
EPCs 

lectin+/ac-LDL+ 
(cultured cKit+ BM-
MNCs at day 7) 

Increased by high glucose 
(DCFDA and DHE) Apoptosis [157] 

BM-derived 
EPCs 

lectin+/ac-LDL+ 
(cultured BM-MNCs at 
day 4) 

Increased by hemin 
(DCFDA) 

migration, 
proliferation and 
differentiation 

[184] 
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BM-MNCs Density gradient 
centrifugation (BM) 

Increased in db/db mice 
(DCFDA) 

Reduced 
endothelial-like 
differentiation 
(Flk1+/CD34+ 
cells)

[163] 

BM-MNCs Density gradient 
centrifugation (BM) 

Increased by hindlimb 
ischemia (DHR) migration, adhesion [43] 

HPCs Lin- (BM) 
Increased by adrenergic 
treatment in culture 
(DCFDA) 

Inhibit proliferation [185] 

EPCs or 
BM-MNCs 

CD34+/CD117(cKit)+ 
(Circulation) 

Increased by hypertensive 
rat (L-012 luminescence) 

mobilization from 
the BM into the 
circulation 

[186] 

EPCs BM-derived EPCs 
(BM) 

Increased by erythropoietin 
(Amplex Red in 
supernatant) 

migration, 
proliferation, 
mobilization from 
the BM into the 
circulation 

[67] 

HSCs Sca-1+/c-Kit+/Lin- 
(BM) 

Increased by conditional 
deletion of tuberous 
sclerosis complex 1 
(DCFDA)

loss of quiescence, 
rapid proliferation, 
apoptosis and 
leukemogenesis  

[62] 

HPCs CD34+/CD38- (human 
cord blood) 

Decreased by copper 
chelator 
tetraethylenepentamine 
(DCFDA)

expansion in culture [187] 

HSPCs CD34+ (human cord 
blood)  

Decreased by hypoxia in 
culture (DCFDA) 

expansion of 
CD34+/CD38-  [129] 

HSPCs Sca-1+/c-Kit+/Lin- 
(BM) 

Increased in Fancc-/- mice 
(DCFDA)

inhibit self-renewal 
or proliferation, 
premature 
senescence 

[188] 

Increased by TNFa 
(DCFDA)

HSPCs CD45+/Lin- (BM) 
ROS high (DCFDA) myeloid skewed 

[21] 

ROS Low (DCFDA) 
quiescence, self-
renewal, lymphoid 
skewed

HPCs 32Dcl3 (cell line) Increased by interleukin-3 
or erythropoietin (DCFDA)

proliferation (G1 to 
S transition) [189] 
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HSCs Sca-1+/c-Kit+/Lin- 
(BM) 

Increased by conditional 
deletion of FoxO1/3/4 
(DCFDA) 

loss of quiescence 
and defective 
repopulating 
capacity

[20] 

HSCs Sca-1+/c-Kit+/Lin- 
(BM) 

Increased by buthionine 
sulfoximine or in Atm-/- 
mice (DCFDA) 

loss of quiescence 
and defective 
repopulating 
capacity

[18] 

HPCs 
MO7e and B1647 
(megakaryocytic cell 
lines) 

Increased by 
thrombopoietin, 
granulocyte-macrophage 
colony-stimulating factor, 
or stem cell factor 
(DCFDA)

glucose transport 
activity [42] 

HPCs MO7e (megakaryocytic 
cell line) 

Increased by granulocyte-
macrophage colony-
stimulating factor, 
interleukin-3, steel factor 
and thrombopoietin 
(DCFDA)

proliferation [56] 

Description of stem and/or progenitor cells is according to the original articles. HSPCs: 

hematopoietic stem and progenitor cells, LT-HSCs: long-term (repopulating) hematopoietic stem 

cells, HPCs: hematopoietic progenitor cells, EPCs: endothelial progenitor cells, BM: bone 

marrow, MNCs: mononuclear cells, ac-LDL: acetylated low density lipoprotein uptake, S1P: 

sphingosine-1-phosphate, DHE: dihydroethidium,  G-CSF: granulocyte colony stimulating factor, 

HGF: hepatocyte colony stimulating factor, DCFDA: dichlorofluorescein diacetate, AGEs: 

advanced glycation end products, DHR: dihydrorhodamine, TNFa: tumor necrosis factor alpha, 

Fancc: Fanconi anemia proteins, particularly the complementation group C. Studies investigating 

leukemia or leukemic cell lines are excluded from the list.  
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 Figure Legends 

Figure 1.  Brief overview of reactive oxygen species (ROS) reactions and sources. The 

biological effect of ROS in the cell is dependent on their amount and duration, their source and 

cellular localization, and type of species. SOD: Superoxide dismutase, GPx: Glutathione 

peroxidases, Trx-Prx: Thioredoxin-peroxiredoxin, O2

•-
: superoxide anion, H2O2: hydrogen 

peroxide.  

 

Figure 2. Situations of physiologic ROS induction in HSCs and progenitor cells. Growth 

factor stimulation increases ROS which act as a second messenger in growth factor-mediated 

redox signaling. Change in oxygen concentration, which is often associated with energy 

metabolic alteration, actively and passively affects ROS level. Cell status change such as from 

quiescent to proliferative or migrating (often referred as activated status) involve an increase in 

ROS and is a physiologically reversible process. By contrast, differentiation, which is normally 

an irreversible process (such as myeloid commitment of multipotential HSCs) is also 

concomitant with increased ROS. Although mechanisms are not fully elucidated, these situations 

which increase ROS are linked to one another. Increase in ROS is achieved by increased their 

generation and/or decrease in antioxidant(s). Increased ROS may further promote the processes 

involving the redox alteration as a feed-forward mechanism (orange arrows). 

 

Figure 3. Cell-intrinsic and cell–extrinsic effect of ROS on HSC and progenitor function. 

Two major sources of ROS in HSCs and progenitor cells are NADPH oxidase (NOX) and 

mitochondria electron transport chain (ETC) (red arrows). NOX is localized at the plasma 

membrane and perhaps at the endosome. Mitochondria may release ROS. Each produced ROS 

can activate specific molecular target(s) to contribute to cell-intrinsic or cell-autonomous 

regulation of cellular function. As cell-extrinsic or non-cell-autonomous regulation of HSC or 

progenitor function, ROS released from NOX or passed through the plasma membrane increase 

ROS in the extracellular space (solid blue arrows) which may instruct HSC or progenitors by 
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targeting membrane or intracellular molecules and may influence extracellular matrix or soluble 

factors regulating HSC or progenitor function. ROS produced from other cells in the niche may 

affect an important cell-cell interaction regulating HSC or progenitor function. In addition, ROS 

in the extracellular space may regulate the cell-cell interaction in the niche support cells (dashed 

blue arrow).   

 

Figure 4. The relationship between ROS levels and stem and progenitor cell fate and 

function in the homeostatic state. The bone marrow regulatory niches include hypoxic or 

normoxic (less hypoxic) niche axis. Given oxygen (O2) is required for ROS generation, ROS 

level or redox status of stem or progenitor cells is correlated with O2 availability. In 

hematopoietic stem cells (HSCs), especially ones in the quiescent state, oxidative metabolism is 

suppressed and NADPH oxidase (NOX) enzyme expressions are low, thereby ROS generation 

from mitochondria and NOX is limited (ROS low). During differentiation or migration of HSCs 

or in hematopoietic progenitor cells (HPCs), higher ROS (ROS high) are observed with 

increased mitochondrial ETC (electron transport chain) activities and/or NOX expressions and 

serve as signaling molecules to promote self-renewal (proliferation), differentiation, migration 

and survival, which in turn contribute to maintain hematopoiesis and immune function. 

Antioxidant enzymes play an important role in regulating basal level of ROS or in the cellular 

adaptation in response to altered ROS generation. These include catalase, Manganese superoxide 

dismutase, Cu-Zn superoxide dismutase, glutathione peroxidases and peroxiredoxins. On the 

other hand, further increase in ROS (ROS high) with imbalance between ROS generation and 

anti-oxidant activity often links to apoptosis, senescence, and oncogenesis or leukemogenesis 

caused by pathologic HSCs.  

 

Figure 5. Signaling pathways mediated by ROS involving stem cell fate. ROS allow stem 

cells to shift from the quiescent state to the functional state such as differentiation and migration. 

ROS can promote the survival pathway, but also lead to senescence. ROS modulate the activities 
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of various kinases and phosphatases, which in turn activate redox-sensitive signaling cascades. 

Of note, many of these molecules have also been shown to regulate basal ROS levels in stem 

cells, suggesting that feed-forward or feed-back mechanism by which stem cells respond to 

redox state and oxidative stress. Please see the main article for the details.   

 

Figure 6. Cellular components of stem and progenitor niche and potential regulation 

through ROS. Hematopoietic Stem and Progenitor cells (HSPCs) reside in a niche that consists 

of cellular and non-cellular components. Cellular components include stem or progenitor cells, 

stromal cells, neurons, immune cells, osteoblastic cells, osteoclast and endothelial cells as well as 

the progeny of stem or progenitor cells. These cellular niche components regulate stem and 

progenitor cells directly through cell-cell interactions or indirectly through modifying non-

cellular components including secreted neurohormonal factors, growth factors and enzymes, and 

extracellular matrix and oxygen (O2) or hypoxia, as well as extracellular ROS.  

 

Figure 7. NADPH Oxidase 2 (NOX2)-derived ROS promote hematopoietic stem/progenitor 

cell (HSPC) expansion and mobilization in response to ischemic injury.  Ischemic injury 

induces expansion of low oxygen (hypoxic) area, hypoxia inducible factor-1 (HIF-1) expression 

and Akt activation throughout the BM, in a NOX2-dependent manner. This, in turn, regulates 

HSPCs expansion and mobilization from BM. Hypoxia might be induced by ROS generation 

which consumes oxygen, especially at the sites where oxygen supply is limited, such as the bone 

marrow cavity. Our data also showed matrix metalloproteinases (MMPs) are regulated by 

NOX2-derived ROS. These ROS-hypoxia-mediated alterations of the BM microenvironment 

induced by inflammation or tissue injury may play an important role in regulating stem and 

progenitor function to promote tissue repair and neovascularization. See ref. 24 for the details. 

 

  


