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Abstract

Introduction: Hepatitis C virus is a major cause of liver disease worldwide and the leading
indication for liver transplantation in the United States. Current treatment options are expensive,
not effective in all patient groups and typically are associated with serious side effects. While
pre-clinical anti-HCV drug screening is still hampered by the lack of readily infectable small
animal models, the development of in vitro cell culture HCV experimental model systems has

driven a promising new wave of HCV antiviral drug discovery.

Areas covered: This review contains a concise overview of current HCV treatment options and
limitations with a subsequent more in depth focus on the available experimental models and
novel strategies that have and continue to enable important advances in the anti-HCV drug

development field.

Expert opinion:

With a large cohort of chronically HCV infected patients progressively developing liver disease
that puts them at risk for hepatocellular carcinoma and hepatic decompensation, there is an
urgent need to develop effective therapeutics that are affordable, well-tolerated and effective in
all patients and against all genotypes. Significant advances in HCV experimental model
development have expedited HCV drug discovery; however, additional progress is needed.
Importantly, the current trends and momentum in the field suggests that we will continue to

overcome critical experimental challenges to reach this end goal.

Keywords: Hepatitis C Virus (HCV), Experimental model systems, Antivirals, Replicons, HCV

pseudoparticles (HCVpp), High throughput Screening (HTS).



1 Introduction

Approximately 170 million people or 3% of the world population, are chronically infected with
hepatitis C virus (HCV)'. While new infection rates are difficult to determine, it is estimated that
in 70 - 80% of infections, the virus is able to elude the host immune response and establish a
chronic infection" 2. The rate of disease progression in infected individuals is variable and many
remain asymptomatic for 10-30 years; however, without therapeutic intervention chronic
infection can lead to end-stage liver disease including steatosis, fibrosis, cirrhosis, and
hepatocellular carcinoma® °. As a result, in Europe and the United States, HCV is the most
common cause of chronic infectious liver disease with HCV infection in the United States alone

causing 8000—10,000 deaths annually™>.

2 Current HCV Treatment and Obstacles

In the absence of a protective vaccine, combination therapy of pegylated interferon alpha
(peglFNa) and ribavirin (RBV) has been the mainstay of chronic HCV treatment for a decade.
Although the peglFNo/RBV combination therapy has been effective in up to 80% of HCV
genotype 2 or 3 infected patients monitored in studies, sustained virological response rates
(SVR) are much lower in patients with HCV genotype 1 and 4 infections (reviewed in ® )
Success rates are also lower in particular patient populations such as African Americans and
patients with high HCV RNA levels, high BMI, advanced liver disease, and those co-infected
with HBV or HIV (reviewed in ). Notably, in 2011 two HCV NS3/4A protease inhibitors,
Telaprevir and Boceprevir, were FDA-approved for use in combination with PEG-IFNa/RBV for
patients infected with HCV genotype 1 because studies revealed that triple therapy in treatment-

naive patients increase SVR from ~ 40% to 70% or more (reviewed in * )



While there are still limitations associated with Telaprevir and Boceprevir, the recent advances in
HCV molecular biology discussed below continue to facilitate the development of additional
specifically-targeted HCV antivirals directed against not only viral proteins, but also viral-host
interactions upon which successful infection is dependent. Development of additional HCV
antivirals is critical not only in terms of identifying therapeutics that are more broadly effective
against all the major HCV genotypes, but also to allow for effective treatment combination
strategies designed to limit the emergence of drug resistant viral escape mutations, a concern that
arises when RNA viruses are treated with compounds that directly target viral proteins and/or
host interactions. Currently co-administration of PeglFNa/RBYV has proven relatively effective at
preventing rapid viral escape from Telaprevir and Boceprevir, but due to the limited efficacy of
IFN in many patients and its associated side effects the goal is to eventually eliminate the use of

IFN when sufficient direct-acting antiviral are clinically available..

3  Hepatitis C Virus Biology

HCV is an enveloped, positive-strand RNA virus belonging to family Flaviviridae. The viral
genome consists of a single uncapped RNA of approximately 9600 nucleotides containing one
large open-reading-frame, flanked by highly structured 5" and 3'-nontranslated regions (NTRs)
which play important regulatory roles in cap-independent translation of the viral proteins and
viral RNA genome replication® °. The HCV virion consists of the genomic RNA encased in an
icosahedral nucleocapsid formed by the core protein surrounded by a lipid bilayer containing the
viral E1/E2 glycoproteins'® . These virions exist in the serum of patients associated with
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trigryceride-enriched low and very low density lipoproteins and exhibit a wide range of

densities with the more lipid-enriched lower density particles tending to exhibit the highest
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infectivity " °. HCV wviral entry into cells requires sequential interaction between virion
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components and cellular factors > °. The receptor engagement as well as acidic pH of endosomes

triggers the fusion of the virus envelope and endosomal membrane, leading to release of the

viral genome into the cytoplasm'> '**

. In the cytoplasm, internal ribosome entry site (IRES)-
dependent translation of viral mRNA by the host cell translation machinery produces a single
polyprotein of ~3000 amino acid, which is co- and post-translationally cleaved by cellular and
viral proteases to yield at least 10 mature viral proteins (Core-E1-E2-p7-NS2-NS3-NS4A-NS4B-
NS5A-NS5B)*. Based on a functional HCV replicon system, it has been demonstrated that NS3,
NS4A, NS4B, NS5A and NS5B as essential for viral RNA replication® . The replication
complex uses the viral genome as template to generate negative-strand viral RNA intermediates,
which in turn are used to synthesize new positive-strand genomic RNAs. These newly
synthesized HCV genomic RNAs then in theory can serve as template for translation of more
viral protein, as template for replication by the NS5B polymerase, or be encapsidated to produce
new progeny”® . Newly formed nucleocapsids acquire their envelop by budding through the ER
membrane containing envelope glycoproteins and secreted from the cell through exoctyosis’.
Differences in the densities of intracellular assembled virion particles compared to extracellular
secreted virion particles are consistent with post-assembly lipidation of virion particles during
and/or after secretion through ER/post-ER compartment >’. Secretion of infectious HCV particles
is influenced by components of the VLDL pathways such as micosomal triglyceride transfer

2% suggesting that HCV

protein (MTP), apolipoprotein B (ApoB), apolipoprotein E (ApoE)
uses the lipoprotein/cholesterol export system, a concept consistent with the use of lipoprotein

receptors such as LDLR, SR-BI, and NPC1L1 as cellular entry factors.

4 HCV drug discovery tools: Experimental Model Systems



4.1 Biochemical assays

The successful cloning of HCV in 1989 *provided the first insight into the viral genome as well
as the ability to expression and characterization the viral proteins making the development of
conventional biochemical assays feasible. Biochemical assays using purified protein and defined
buffers can be quite useful for elucidating the mechanistic requirements of enzyme function (e.g.
substrate specificity, co-factor requirements, etc...) and for identifying direct small molecule
inhibitors. Hence, early HCV drug discovery included these types of standard well-documented
in vitro approaches. Using purified NS3 protein, fluoregenic, chromogenic and radioactive
assays for NS3 protease and helicase activity were developed and used to analyze NS3 activity
and screen for potential inhibitors’®™. However, biochemical assays designed to assess the
enzymatic activity of purified NS5B have been more challenging and controversial as
polymerase activity levels achieved were lower than observed with analogous viral polymerases
and substrate specificity varied among reports. Some of these issues likely reflect that while
biochemical assays can be extremely useful that they can also be limited due to their inherently
isolation away from the relevant host cell environment. Hence, even when biochemical
approaches are successful, it is important to validate the outcome in a more physiologically
relevant system that can additionally assess practical issues of cell-permeability and off-target

effects.



4.2 Cell based assays

The development of cell based HCV assays was a major step forward in the arena of HCV drug
development. At a minimum, cell-based HCV models for assessing the efficacy of specific
antivirals depend on the existence of cell lines that support the viral activity under investigation
and virus components/strains that can perform that activity in cell culture. The problem is that
these types of tools have not always been readily available for HCV research perhaps because
HCV is a hepatotropic virus that primarily infects fully differentiated hepatocytes in the liver of
infected patients, a cellular phenotype not maintained when these cells are removed from their in
vivo environment. As a result, HCV historically has not grown well in cell culture and therefore
several surrogate model systems such as stable transfection of partial or full length HCV

genomes (replicons)® and pseudotyped retroviral particles (HCVpp)*> ** ¥

were developed.
While these simple and robust systems are still used extensively to investigate specific aspects of
HCV biology and assess HCV inhibitors, in 2005 an infectious HCV cell culture system

supporting the entire HCV life cycle also finally became available'” ** *’. The advantages and

limitations of these various experimental systems are discussed below.

4.2.1 HCV Replicons.
While the cloning of HCV in 1989 allowed for the classification of the HCV into a reasonably

well understood family of related viruses, specific understanding of HCV replication remained
elusive for more than a decade until the development of the HCV replicon system®>, which
recapitulates the intracellular steps of HCV RNA replication. The first replicons were self-
replicating recombinant viral RNA in which the viral structural genes were replaced with the
neomycinephosphotransferase (Neo) selection marker”. The Neo gene is translated from HCV
internal ribosomal entry site located in the HCV 5’NTR, whereas the HCV replication proteins

(NS3 — NS5B) are translated from an inserted encephalomyocarditis virus (ECMV) internal



ribosomal entry site. Because the encoded viral proteins are able to replicate the template
replicon RNA from which they are expressed, cells that support replicon replication maintain
high levels of the HCV replicon RNA and can be selected based on their constitutive Neo
expression. These cells can then be expanded to create HCV replicon cell lines, which serve as a

model of autonomous HCV replication.

The HCV replicon system has proven to be very useful for HCV drug discovery efforts. Not only
did the replicon system provide an HCV-specific, robust assay to screen for HCV NS5B
polymerase inhibitors, but it allowed for the first time non-target-specific screens that could
identify inhibitors of HCV replication that interfered with any aspect of replication (i.e. host or
viral factors). The ability to create non-infectious replicon systems from multiple different HCV
genotypes also is advantageous in terms of assessing whether an inhibitor is broadly effective
against multiple HCV genotypes. Some of the more widely used replicons reported to date
include numerous genotype 1b replicons (e.g. Conl, HCV-N), the H77 clone genotype la
replicon and the JFH-1 genotype 2a replicon™ ****. Notably, as replication-enhancing cell-

d** % and cell line

culture adaptive mutations within different replicon clones were identifie
more permissive for HCV replication were created”’, the requirement for active selection was
reduced and replicons expressing various reporter genes (e.g. GFP, beta-lactamase and
luciferase) instead of selection markers were generated for more convenient mix-and-read high
throughput monitoring of replicon replication®® **>°. While cell line restriction is still a limitation
of the more recently established cell culture HCV infection system, another advantage of the
replicon system is that replication has been established in multiple liver derived cell lines (e.g.

HepG2 and Huh6) as well as non-liver cell lines (e.g. 293 and HelLa) and rodent cell lines (e.g.

NIH3T3, AML12, MMHD3)*'~°.



The most obvious limitation of the replicon system is that it cannot be used to study the entire
HCYV infection process, particularly the early steps of virus life cycle before viral replication (e.g.
viral attachment, entry and un-coating) or the late steps of viral infection after genome
replication (e.g. virion assembly, maturation and release). Additionally, in some cases caution
may be warranted because all replicons, except for the genotype 2a JFH-1 clone, contain cell
culture adaptive mutations which when introduced back into viral genome, render it non-
infectious in chimpanzees™®. Hence, like many in vitro viral systems, HCV replicons may not

accurately mimic which viral-host interactions are most critical in vivo.

4.2.2 HCV Pseudotyped Particles.

A relatively convenient approach to study the entry of enveloped viruses is the use of
pseudotyped retroviral particles harboring the envelop glycoproteins of the virus of interest.
HCV pseudoparticles (HCVpp) were first generated in 2003** ** 7. Analogous to other viral
pseudotyped particles this was accomplished in 293 cells by co-transfecting a plasmid encoding
an envelope deficient, packaging competent retroviral genome (MMLYV or HIV) engineered to
express a reporter gene (e.g. GFP or Luciferase) along with a plasmid encoding the viral
glycoproteins of interest, in this case HCV E1 and E2. Entry of the recombinant viral particles in
to cells is then dictated by the envelop glycoproteins and efficiency of the entry process can be
measured by a simple reporter gene assay. Importantly, functional analyses by many research
groups have demonstrated that the requirements for HCVpp cell entry closely mimic HCV virus
in terms of antibody neutralization and it has proven to be a useful method to study the entry of
various HCV genotypes, the factors required for HCV entry, and the tropism restrictions
associated with HCV entry'™ * **%°_ As such, HCVpp systems are safe, robust and easy to

manipulate to for drug discovery efforts focused specifically on specific steps of the viral entry



process. As a result, HCVpp systems have been used to screen libraries of small molecule

61-64
. One caveat,

inhibitors and several promising entry inhibitors are in early clinical testing
however, is that these particles are not identical to authentic HCV particles in terms of lipid
composition and this does result in some function differences in entry factor requirements and
kinetics. For example, the LDL receptor and NPCI1L1 cholesterol uptake receptor are required
for the entry of infectious HCV particles such that HCV infection is blocked by antibodies or
other inhibitors directed against these cell surface proteins, while HCVpp entry is much faster

and independent of these cellular factors'” 2> ** 6

. It is interesting to speculate that perhaps the
production of HCVpp in VLDL-synthesizing cells might lead to the assembly of lipoprotein-
associated HCVpp; however, the envelopment of retroviral particles at the plasma membrane

compared to the natural maturation of HCV particles through the ER/Golgi and might prevent

the association of HCVpp with lipoproteins regardless of producer cell type.

4.2.3 HCV cell culture infection system.

The advance that finally allowed for the study and screening of all aspects of the viral life cycle
is the HCV cell culture (HCVcc) infection system. The HCVcc infection system was made
possible by the identification of the HCV genotype 2a isolate, JFH-1, which was cloned from a
Japanese patient suffering from fulminant hepatitis®®. This HCV clone was unique because
replicons derived from this consensus genome did not require “infection-limiting” adaptive
mutations in order to replicate efficiently in cell culture *. Based on this phenotype, the JFH-1

36-37 and a chimeric genotype 2a derivative (J6/JFH-1)"* were tested and found to initiate

clone
productive infection in Huh7 human hepatoma cells. Specifically, electroporation of genomic

HCV RNA in vitro transcribed from this construct into Huh7 cells resulted in efficient

replication and rapid spread of HCV to non-transfected cells. Additionally, filtered medium from



the transfected cell culture was able to transmit infection to naive cell cultures indicating the
presence of secreted infectious virus particles. Cell culture produced virus was confirmed to be
infectious in chimpanzees >’ and chimeric SCID-uPA mice transplanted with primary human
hepatocytes ¢. Likewise virus recovered from infected mice was infectious in Huh7 cells in vitro
%7 Cell culture produced virus is antigenically similar to HCV clinical isolates being neutralized
by anti-CD81 antibodies as well as by antibodies isolated from chronically HCV infected

36, 37, 68

patients and it demonstrates similar sensitivity to antivirals that directly target the viral

. 13,36,37,68
proteins ™ 7. 68,

The obvious advantage of the HCVcc system is that it encompasses the complete viral life cycle
and allows for production and analysis of infectious HCV particles. It also offers additional
experimental flexibility in terms of time of inhibitor treatment relative to viral inoculation, the
ability to alter viral dose, and the opportunity to measure of multiple different viral parameters
(i.e protein expression, replication, infectious virus production) which allows for more
informative screens tailored to specific questions. However, in line with the historically slow
progress in the HCV research field, six years since the development of the HCVcc system there
are still major drawbacks to the system in terms of drug development. A continuing technical
challenge is that even under ideal conditions HCVcc grows to relative low titer making typical
high MOI drug screening approaches less feasible. Low MOI longer term assays have been
successfully established (discussed below), but these by nature are more challenging, expensive,
and more prone to cell culture related variability. That being said, a more fundamental limitation
of the system is its dependence on the HCV JFH-1 clone. Being restricted to a single viral clone
is problematic because different HCV genotypes typically exhibit differential sensitivity towards

individual antivirals, thus screening compounds against the available JFH-1 genotype 2a clone



often identifies genotype-specific inhibitors that are less effective against other more clinically
prevalent and challenging genotypes (Yu and Uprichard, unpublished data). To address this
limitation, JFH-1 based chimeric viruses have been created by substituting discrete regions of

69-73 . .
7. These chimeric viruses have proven

different HCV genotype clones into a JFH-1 backbone
quite useful in assessing difference in viral entry among genotypes (i.e. chimeric viruses
containing the structural region of different HCV genotypes fused to the non-structural region of
the JFH-1 clone), but in terms of drug discovery they are limited as they often grow to lower
titers and to large extent conceptually negate the major advantage of the infection system
because once again the focus becomes restricted to only a pre-designed limited aspect of the viral
life cycle. While efforts are being made to propagate other HCV clones in Huh7 cells with

476 "another ongoing strategy is to try and develop more physiologically relevant

varying success
hepatocyte cell culture systems that better mimic natural in vivo virus-host interaction and thus
might allow for infection with other HCV genotype as well as a better understanding of how
HCYV infection impacts normal hepatocyte function. Many have confirmed that primary human
hepatocytes are permissive to different HCV genotypes and clinical isolates ®> 77", but these
cells can be difficult to obtain and are notoriously difficult to maintain in cell culture which in
general limits their practical use for drug screen, though examples certainly exist where groups

have managed to overcome the challenges and successfully grow primary hepatocytes in a

reasonably high throughput 96-well format *.

4.3 HCV animal models

While typically large scale antiviral screening approaches begin in vitro, later stage drug
discovery confirmation efforts are often performed in small animal model systems. However, in

the case of HCV, the restricted species tropism of the virus has been a significant obstacle.



Although chimpanzees are susceptible to HCV infection, their usage is limited due to ethical
concerns including their endangered status as well as their exceptionally high costs.

Consequently, a main focus in the field has been development of HCV mouse models®'.

To overcome the known and unknown species barriers that prevent HCV infection of mice,
chimeric xenograft mouse model approaches have been developed. The first and most commonly
used model is based on severe combined immune deficiency (SCID) mice carrying a lethal
urokinase-type plasminogen activator transgene expressed in their hepatocytes by the albumin
promoter. While the endogenous hepatocytes in these mice are destine to die, these uPA-SCID
mice can be rescued by transplantation with human hepatocytes which repopulate the liver. The
human hepatocytes in these mice remain permissive to human hepatotropic viruses such as HBV
and HCV™ ®. These xenotransplanted mice are a great tool to assess the efficacy of HCV
antivirals and several groups have demonstrated that in vivo HCV infection can be inhibited by
blocking either the viral E1/E2 glycoproteins or one of the host cell HCV entry factors as well as
a variety of other known HCV inhibitors (e.g. interferon, NS3 protease inhibitors, etc.)***®. While
the use of this model is not widespread due to technical as well as physiological limitations of
the system, chimeric mice with humanize livers are currently the most relevant small animal

model for testing inhibitors of HCV infection in vivo.

Importantly, sensitive luciferase reporter strategies indicate that transgenic mice expressing the
human HCV entry factors CD81, Occludin, SRB1, and Claudin 1 are permissive for low level of
HCVcc entry®’. However, the inability to directly detect infection in these animals (i.e. HCV
RNA and/or protein expression) suggests other blocks to infection exist and/or that additional
factors are required for efficient infection of mice with HCV. Notably, Sainz et al., (2012)

recently identified the cholesterol transporter NPCIL1, as new factor required for infectious



HCV entry'’. Considering that NPCIL1 is expressed on hepatocytes only in humans and
chimpanzees, it will be interesting to see if the additional expression of exogenous NPCIL1 on
the hepatocytes of these mice will confer more robust permissiveness to infectious HCV entry.
This combined with the recent demonstration that over expression of human miR122
significantly enhances HCV RNA replication in mouse cells * adds renewed hope that a mouse

model of HCV infection may soon be a reality.

5 HCV drug discovery: Approaches and Methodologies

5.1 Reporter viruses/ Cell Lines

Some of the more interesting recent advances made in HCV drug discovery have been related to
the development of novel strategies for simple yet sensitive detection of HCV in cell based
assays. RT-qPCR detection of the viral genome and ELISA-based detection of viral antigen are
two common ways for detecting HCV. However, by nature these assays are cumbersome and
time consuming not lending themselves well for high throughput analysis. As mentioned above,
after identification of cell culture adaptive mutations required for robust replication of HCV
genomes in cell culture, HCV replicon were modified to express various reporter genes such as

GFP, luciferase and p-lactamase for convenient detection of HCV replication in cell culture ** *-

50, 89, 90 .. - -
» > 7" and similar approaches have now also been used by inserting analogous reporter genes

into the full length HCVce genome’ °'*

. While such modified viruses are in theory better
suited for high throughput screening, insertion of foreign genes into viral genome often results in
impaired viral replication, raising other technical hurdles. To facilitate the rapid detection of
HCV infection without compromising the replication efficiency of the virus, an alterative

approach has been to develop reporter cell lines that transmit a detectable signal in response to

HCYV infection. One example is a cell line engineered by Iroa et al to express EGFP attached in-



frame with the secreted alkaline phosphatase (SEAP) gene via a linker region that contains the
recognition sequence of the HCV NS3/4A protease. While the cells constitutive make this fusion
protein, it is only upon HCV infection that the viral NS3/4A is available to cleave the linker
region and release SEAP from the fusion protein triggering secretion into the extracellular
culture medium *°. To monitor HCV infection on a single cell level, Jones et al, created a stable
Huh 7 cell line expressing a fluorescent protein with a nuclear localization signal fused to the
mitochrondrial bound IPS proteins (e.g. RFP-NLS-IPS)™. In uninfected cells this mitochondrial
tethered fusion protein exhibits a standard punctuate IPS localization pattern. However because
the cellular IPS protein contains an NS3/4A cleave site, HCV infection of these cells results in
NS3 cleaves of the fusion protein from the mitochondrial membrane resulting in relocalization of
RFP fluorescence from the cytoplasm to the cell nucleus”. These types of reporter cell lines are
particularly useful for monitoring initial infection events, but perhaps could also be adapted for
monitoring the inhibition of steady-state (i.e. chronic) infection depending on the stability of the

signal molecule used.

5.2 High throughput compound screening.

As noted above, well before cell based HCV model systems were available, efforts were made to
produce active forms of the HCV encoded NS3 protease and NS5B polymerase to screen for
inhibitors. Due to the success in expressing active NS3 and the ease of creating suitable
substrates, biochemical screens for inhibitors of this critical viral protein are still being
performed’’. Likewise, using a double-stranded DNA (dsDNA) with a 5’-fluorescent-dye
(BODIPY FL)-labeled strand hybridized with a complementary strand, the 3’-end of which has
guanine bases, Tani et al recently set up a screen to identify inhibitors of the NS3 helicase

activity °*. However, since the development of cell based HCV model systems, the bulk of HCV



drug discovery has turned to cell-based high throughput screening (HTS). Traditionally HTS
involves large collections (i.e. libraries) of compounds to identify those that exhibit antiviral
activity and thus could potentially be developed into a clinically useful therapeutic drugs.
Notably, all the cell based HCV experimental systems described above have been adapted and

successfully used for high throughput compound screening

5.3 Reporter Gene Based Screening.

63, 64, 99

Not surprisingly, high throughput luciferase-based HCVpp entry screens as well as

d®- 199190 and clearly provide a robust approach for

replicon replication screens have been reporte
identifying inhibitors against the specific aspects of HCV infection recapitulated by these
systems. However, this approach is more problematic in the context of the full infection system
due to the significantly lower titers that can be achieved with viral constructs after the insertion
of the reporter gene, which significantly limits the ability to create the large high titer viral stocks

required. Additionally, with all reporter gene assays, one has to be cognizant of false positive hits

that result when compounds directly inhibit the report gene assay.

54 HCV NS3 as a reporter gene.

As an alternative HTS approach, other groups have opted to use the viral NS3 protease as an
innately encoded reporter gene. This has the advantage of not requiring deleterious manipulation
of the viral genome (i.e. insertion of foreign reporter gene sequences) and avoids the issue of
identifying irrelevant reporter gene inhibitors. As described above, two groups stably integrated

NS3 cleavable reporter gene fusions into Huh7 cells such that a detectable signal is released from

102 103
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the cell or relocalizes to the nucleus upon infection of the cell. Boyle et a and Yu et a
developed more traditional mix-and-measure fluorescence resonance energy transfer (FRET)-

based assays that uses NS3 protease activity as quantitative read out for HCV levels in the



replicon system and HCVcc infection system, respectively. The approach consists of using a
peptide substrate containing the HCV NS3 peptide cleavage sequence flanked on either side with
fluorphores that quench each other when they are in close proximity on the intact peptide.
Replicon cells or infected cells are first incubated in the presence or absence of compounds from
a library. After a period of time is allotted for potential inhibitory activity, the cells are lysed.
The level of HCV in the cells is then quantitatively detected by adding the quenched NS3
substrate peptide to the cell lysate and measuring the fluorescence generated when NS3

cleavages the substrates.

5.5 High throughput siRNA library screens

Compound library screening has long been a staple of drug discovery, but the same high
throughput approaches are now also routinely used to screen genomic siRNA libraries to identify
host cell factors that are required for viral infection. In terms of drug discovery, the concept
behind functional siRNA screening is the identification of useful drug targets rather than
screening directly for potential inhibitors. An advantage of this approach is that it is likely that
all HCV genotypes interact with the same host cell factors and thus cellular targets would be
more likely to be broadly effective. Additionally, host cell targets typically exhibit a higher
barrier to the development of resistance. The challenge is to then either design an inhibitor that
specifically blocks the viral interaction with the host cell protein or focus on host factors that are
transiently dispensable for host cell function but absolutely critical for virus life cycle. One
recent example of potential HCV antiviral targets originally identified via siRNA screening are
EGFR and EphA2, which highlights the utility of the approach in general'®. One curiosity
associated with these high throughput siRNA screens however is the variability in the genes

identified by different groups. Presumably at least some of the differences are due to diverse



siRNA chemistries, efficacies, and off target effects combined with different assay endpoints,
cell types, virus preps, and filtering parameters, but it is still surprising how little overlap
(~<10%) at individual genes level has been observed. Future comparisons of results across
studies with a focus on biological process /pathways might help to provide more insight into the

large amount of information being generated by these studies.

6 Expert Opinion:
Although acute HCV infection rates have declined over the years, a large chronically HCV
infected cohort is progressing to cirrhosis and is at risk for hepatocellular carcinoma and hepatic
decompensation. Hence, more than ever, there is an urgent need to develop effective therapeutics
that can clear chronic HCV infection. For decades, slow progress in the HCV research field has
left us clinically dependent on suboptimally effective and difficult to tolerate interferon and
ribavirin based therapies. Hence, while significant advances in HCV experimental model
development (e.g. HCV replicons, HCVpp, the HCVcc infection system) and innovations in high
throughput screening have ushered in a new era of discovery that has expedited HCV drug
development and provided new hope that chronic HCV will ultimately be a “curable” disease, it
is imperative that we rapidly reach the goal of developing interferon-free, broad spectrum HCV
treatment regimens that are affordable, well-tolerated and effective in all patients and against all
genotypes.

A number of advances are needed to facilitate HCV drug discovery. Perhaps at the top of that
list would be a robust cell culture system permissive to infection by all HCV genotypes as this
would allow for the identification of more broadly effective inhibitors or at least a panel of
inhibitors optimized for specific genotypes. Closer to the clinic, the ability to study the drug

sensitivity and viral escape patterns of clinical isolates in vitro might additionally allow for



preliminary efficacy testing, providing means to individualize therapy in more difficult to treat
patients. Notably, while such ideal systems may be years in the making, it is important to realize
that the insights about key viral-host interactions gained during the process of trying to develop
more physiologically relevant in vitro and in vivo model systems will continue to bring us closer
to achieving our drug development goals.

While this review focuses on the tangible bench top tools and screening strategies that have lead
to and continue to feed the current richly populated HCV drug development pipeline, it is
relevant to note that systems biology approaches will also continue to be central in promoting the
rapid creation and translation of new knowledge into practical use in the clinic. For example,
mathematical modeling of HCV inhibition kinetics under treatment has played a major role in
evaluating, understanding and even directing HCV treatment in the clinic. Current in vitro and in
vivo modeling efforts are further elucidating the complex mechanism of action of different HCV
antiviral agents and in the future the use of in silico simulation modeling should prove useful for
efficiently predicting optimal synergistic therapeutic combinations that minimize viral escape.
Likewise, advances in sequencing and genomic analysis are allowing in depth characterization of
host and viral genomic differences which should also allow for a more informed understanding
of the antiviral potential of specific drugs in different clinical situations. Of course ultimately, the
final challenge will become accessibility and affordability of care, but this issue should be
facilitated proportionate to the level of successful we achieve in developing an effective array of

clinical therapeutics options.
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Article highlights box

New HCV infection rates have decreased, but there is a rapidly growing public health
burden of liver disease, including hepatocellular carcinoma, from those who are chronically
infected. Hence, there is an urgent need to develop broad spectrum HCV treatment
regimens that are affordable, well-tolerated and effective in all patients and against all
genotypes.

Although research efforts have been hindered in the past due to the lack of suitable HCV
experimental models, the development of several robust cell-based system, particularly the
first HCV cell culture infection system (HCVcc) has expedited HCV drug discovery.

Despite the incredible advances in HCV model development, critical limitations of the
current experimental systems exist and continued efforts to attain more physiologically
relevant in vitro and in vivo models permissive to infection by all HCV genotypes and
clinical isolates are needed.

Creative innovations in simple, rapid, and sensitive HCV detection methods have
contributed to the effective adaptation of emerging HCV experimental models for high
throughput antiviral screening.

With the advent of RNAI technology, high throughput screening of host factors involved in
HCYV infection has become a new and effective means of identifying potential host cell
antiviral targets that may prove useful for broadly inhibiting HCV infection of all
genotypes while additionally minimizing the rapid viral escape that can occur when drugs
are targeted to specific residues within individual viral proteins.
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