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Abstract

Background: Cathepsin B and urokinase plasminogen activator receptor (uPAR) are both known to be overexpressed in
gliomas. Our previous work and that of others strongly suggest a relationship between the infiltrative phenotype of glioma
and the expression of cathepsin B and uPAR. Though their role in migration and adhesion are well studied the effect of
these molecules on cell cycle progression has not been thoroughly examined.

Methodology/Principal Findings: Cathespin B and uPAR single and bicistronic siRNA plasmids were used to downregulate
these molecules in SNB19 and U251 glioma cells. FACS analysis and BrdU incorporation assay demonstrated G0/G1 arrest
and decreased proliferation with the treatments, respectively. Immunoblot and immunocyto analysis demonstrated
increased expression of p27Kip1 and its nuclear localization with the knockdown of cathepsin B and uPAR. These effects
could be mediated by aVb3/PI3K/AKT/FOXO pathway as observed by the decreased aVb3 expression, PI3K and AKT
phosphorylation accompanied by elevated FOXO3a levels. These results were further confirmed with the increased
expression of p27Kip1 and FOXO3a when treated with Ly294002 (10 mM) and increased luciferase expression with the siRNA
and Ly294002 treatments when the FOXO binding promoter region of p27Kip1 was used. Our treatment also reduced the
expression of cyclin D1, cyclin D2, p-Rb and cyclin E while the expression of Cdk2 was unaffected. Of note, the Cdk2-cyclin E
complex formation was reduced significantly.

Conclusion/Significance: Our study indicates that cathepsin B and uPAR knockdown induces G0/G1 arrest by modulating
the PI3K/AKT signaling pathway and further increases expression of p27Kip1 accompanied by the binding of FOXO3a to its
promoter. Taken together, our findings provide molecular mechanism for the G0/G1 arrest induced by the downregulation
of cathepsin B and uPAR in SNB19 and U251 glioma cells.

Citation: Gopinath S, Malla RR, Gondi CS, Alapati K, Fassett D, et al. (2010) Co-Depletion of Cathepsin B and uPAR Induces G0/G1 Arrest in Glioma via FOXO3a
Mediated p27Kip1 Upregulation. PLoS ONE 5(7): e11668. doi:10.1371/journal.pone.0011668

Editor: Gordon Langsley, INSERM U1016, Institut Cochin, France

Received May 3, 2010; Accepted June 24, 2010; Published July 22, 2010

Copyright: � 2010 Gopinath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a grant from National Institutes of Health, CA116708 (to J.S.R.) The contents are solely the responsibility of the authors
and do not necessarily represent the official views of NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jsrao@uic.edu

Introduction

Malignant glioma, a common tumor among the intracranial

tumors, remains formidable despite aggressive surgery, radiother-

apy and chemotherapy [1]. Cathepsin B and urokinase-type

plasminogen activator receptor (uPAR) are both known to be

overexpressed in gliomas and, as such, are attractive targets for

gene therapy. During cancer cell invasion, these proteins, either

individually or in combination, function to degrade the extracel-

lular matrix, thereby facilitating metastasis. Our previous work

and that of others strongly suggest a relationship between the

infiltrative phenotype of glioma and the expression of cathepsin B

and uPAR. Though their role in migration and adhesion are well

studied [2–4], the effect of these molecules on cell cycle

progression has not been thoroughly examined. Moreover,

disruption of cell cycle control is a hallmark of cancer [5,6]. In

particular, the reduced expression of p27Kip1, which is a member

of the Kip family of cyclin-dependent kinase (Cdk) inhibitors, has

been extensively observed in human cancers, and its low levels are

often associated with a worse prognosis [7,8]. Increased suscep-

tibility to cancer and multi-organ hyperplasia have been reported

in p27Kip1-null mice [9]. It plays a crucial role in the control of cell

proliferation by inhibiting the activities of complexes of G1 cyclins

and Cdks and, as such, is an important candidate for therapeutic

tumor suppression [10]. Some factors, including accelerated

proteolysis, sequestration by cyclin D-Cdk complexes, and

phosphorylation events that lead to nuclear export and/or

retention in the cytosol, have significant roles in inhibiting the

p27Kip1 function in various cancers [11]. Cytoplasmic transloca-

tion of p27Kip1 has been increasingly recognized in primary
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human tumors associated with poor survival whereas nuclear

expression confers a more favorable outcome [12].

Another hallmark of most cancers, including glioma, is the

increased activity of PI3K/AKT pathway that controls many

biological functions like cell proliferation, survival, and insulin

response [13]. Constitutive activation of this pathway facilitates

tumor formation both by supporting S-phase entry and by

conferring resistance to apoptotic signals that normally restrict

uncontrolled cell growth [14,15]. In the presence of growth

factors, AKT negatively regulates FOXO proteins by phosphor-

ylating them [16,17], which results in their binding to 14-3-3

proteins and is followed by their nuclear export [18]. FOXO

factors function as transcriptional activators and bind as

monomers to the consensus DNA sequence TTGTTTAC

[19,20]. Depending on the cell system studied, forced expression

or activation of FOXO factors triggers apoptotic responses or cell

cycle arrest [21]. Cell cycle inhibitory effect of FOXO factor

through increased transcription of p27kip1 has been reported in

gliomas [22,23]. Several integrins play important roles in

promoting cell proliferation, migration and survival in vitro and

in vivo. Both uPAR and cathepsin B are known to be associated in

close proximity to aVb3 integrins and has been implicated in their

ability to initiate signaling events [24].

In an attempt to elucidate the roles of cathepsin B and uPAR in

cell cycle progression, we analyzed the activity of crucial regulators

of the G0/G1 transition including p27Kip1 by downregulating

cathepsin B and uPAR both individually and simultaneously in

SNB19 and U251 glioma cells. Here, we show that shRNA-

mediated downregulation of cathepsin B and uPAR results in G0/

G1 arrest, prominent increased expression of p27Kip1 and

inhibition of p-Rb. This increased expression of p27Kip1 correlates

with decreased expression of p-PI3K, p-AKT, cyclin E, cyclin D1,

cyclin D2 and increased expression of FOXO3a protein. We also

show that increased expression of p27Kip1 is due to the efficient

binding of FOXO3a on its promoter, which was analyzed by the

luciferase expression.

Results

Knockdown of cathepsin B and uPAR decreases cell
proliferation and induces G0/G1 arrest

To gain insight into the molecular roles of cathepsin B and

uPAR, we knocked down the expression of these molecules using

shRNA in SNB19 and U251 glioma cells and then analyzed the

effects on cell proliferation and cell cycle. After 36 hrs of

transfection, western blot analysis showed a 8063% and

8263% decrease in cathespin B expression in SNB19 and U251

cells, respectively when treated with pC (shRNA construct against

cathepsinB). Cells treated with pU (shRNA construct against

uPAR) did not show appreciable difference in cathespin B

expression when compared to controls (9862%). pCU-treated

(shRNA bicistronic construct against cathepsin B and uPAR) cells

showed 86–91% decreased expression of cathepsin B in both

SNB19 and U251 cells (p,0.01). Similarly, uPAR expression was

reduced by 75–80% in both cell lines when treated with pU. Cells

treated with pC did not show any difference in expression when

compared to controls (9563%). uPAR expression in pCU-treated

cells was significantly reduced by 80–91% (Fig. 1A) (p,0.01).

Immunoblot analysis for GAPDH expression revealed equal

loading. Cell proliferation analysis by BrdU incorporation assay

showed that the depletion of cathepsin B and uPAR individually

and simultaneously resulted in a significant reduction in the

proliferation rates by: 37–40% (pU), 34–36% (pC) and 67–68%

(pCU) in both cell lines (Fig. 1B). In contrast, untreated control

and SV (scrambled vector)-transfected cells showed 100%

proliferation in both cell lines. Similarly, MTT assay showed

decreased number of cells with the treatments (pU: 38–40%; pC:

33–35% and pCU: 65–68%) compared to the controls (98–100%)

in both the cell lines (Fig. S1A). Decreased growth suppression was

associated with cell cycle arrest. As shown in Figure 1C, cell cycle

analysis showed an increase in the G1 phase fraction with the

treatments (pU: 58.3462%, 66.6862%; pC: 56.8862%,

63.8462%; and pCU: 72.1661%, 78.4562% in SNB19 and

U251, respectively) and a concomitant decrease in the S phase

(pU: 15.2363%, 7.9863%; pC: 1662%, 8.5661%; and pCU:

8.1261%, 2.9562% in SNB19 and U251 cells, respectively) and

G2/M phase (pU: 26.4361%, 25.3461%; pC: 27.1261%,

27.662%; and pCU: 19.1261%, 18.662% in SNB19 and

U251 cells, respectively) fractions. Negligible number of cells were

present in sub G0/G1 phase, hence, the data is not included. Cell

cycle analysis of untreated control and SV-transfected cells of

SNB19 and U251 cells showed 4065% in G1 phase, 15610% in

S phase and 3265% in G2/M phase. These results demonstrate

that the decrease in cell proliferation is due to the block of

progression from G1 to S phase, and the effect was almost the

same in both the cell lines. However, cell cycle analysis at 48 hrs of

transfection showed significant increase (20–40%) in sub G0/G1

phase with the treatments compared to the controls (7–8%) and

concomitant decrease in the G0/G1, S and G2/M phases

indicating that the cells were entering into the apoptotic phase

(Fig. S1B).

Cathepsin B and uPAR depletion affects the p27Kip1

expression and its subcellular localization
It is well known that p27Kip1 plays an important role in G0/G1

arrest. Hence, we checked the expression of p27Kip1 using RT-

PCR and western blot analysis. RT-PCR and immunoblot analysis

of pC- and pU-treated cell lysates showed increased expression of

p27Kip1. The pCU-treated cells showed a further increase in

p27Kip1 expression in both the cell lines. Untreated control and

SV-treated cells showed very low expression of p27Kip1 (Fig. 2A

&B). The p27Kip1 protein is generally phosphorylated at Ser10 and

Thr187 positions and its activity depends on its phosphorylation

status. Therefore, we checked the phosphorylation status of

p27Kip1 by immunoblot analysis and found that the treatments

reduced the phosphorylation of p27Kip1 at Ser10 and Thr187 in

both the cells lines compared to the controls. Immunoflourescence

staining assay revealed that the treatments induced an increase in

p27Kip1 localization in the nucleus when compared with control

cells (Fig. 2C) and a higher number of cells expressing p27Kip1 in

the nuclei was observed with the pCU treatment (Fig. S2A). These

results were further confirmed by immunoblot analysis for p27Kip1

protein in cytosolic and nuclear fractions (Fig. S2B).

To further confirm the role of p27Kip1 in growth arrest induced by

the depletion of cathepsin B and uPAR, we knocked down the

expression of p27Kip1 alone or in combination with uPAR and/or

cathepsin B, and we analyzed cell proliferation using BrdU

incorporation assay. As expected, immunoblot analysis showed

efficient knockdown of p27Kip1 in p27Kip1 siRNA-treated cells lysates

(Fig. 2D). Cell proliferation was also increased (11862%) with the

p27Kip1 siRNA treatment in SNB19 and U251 cells as compared to

controls (97–100%) (Fig. 2E). In contrast, immunoblot analysis and

BrdU incorporation assay of cells from p27Kip1 and cathepsin B or

uPAR co-depleted cells showed a decrease in p27Kip1 expression but

the inhibitory effect induced in proliferation by pU, pC and pCU

treatments (as described in Fig. 1C) was reverted partially in co-

depleted cells (pU+p27si: 8262%, 7962%, pC+p27si: 7961%,

7762% pCU+p27si: 6662%, 6463% in SNB19 and U251 cells,

Mechanism of G0/G1 Arrest
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respectively) (Fig. 2E). The results indicate that cooperation from

other molecules of G1 phase might be needed for complete growth

arrest. When FACS analysis was performed, p27Kip1 knockdown and

the co-depletion treatments resulted in a decrease of cells in the G0/

G1 phase and a concomitant increase in cells in S and G2/M phases

(Fig. S2C).

G0/G1 phase regulators
Cell cycle regulators at the G0/G1 and G1/S phase transition

were analyzed after the above mentioned treatments. As p27Kip1 is

both an inhibitor and a substrate of cyclin E-Cdk2 complex [25],

we analyzed the expression of these molecules using immunoblot

analysis and found that the treatments decreased the expression of

cyclin E whereas the expression of Cdk2 was unaffected (Fig. 3A).

Similarly, expression of aV, b3, aVb3 integrins decreased with the

treatments. Further, Cdk2 was immunoprecipitated from the cell

lysates of untreated and SV, pU, pC and pCU treated SNB19 and

U251 cells and immunoblotted for cyclin E. The results revealed

little or no expression of cyclin E in pU, pC and pCU treated cell

lysates compared to control and SV transfected cells indicating

that the treatments reduced the cyclinE-Cdk2 complex formation.

pCU-treated cells showed significant downregulation of cyclin E as

compared to pU and pC treatments. Dimerization of aVb3

integrin was checked by immunoprecipitating the cell lysate with

b3 integrin and immunoblotted for aV integrin and found that the

treatments significantly reduced the dimer formation. It was

further confirmed by native gel electrophoresis by using the aVb3

antibody (Fig. 3B).

Apart from the cyclinE-Cdk2 complex formation, the treat-

ments also decreased the expression of cyclin D1, p21, cyclin D2

and Ki67, which is an indicator of cell proliferation (Fig. 3A). We

also checked for the expression of Rb and p-Rb (Ser780 and

Ser249/Thr252) as p-Rb is initially catalyzed by the complexes

formed by cyclin D and Cdk4 or Cdk6 and later by cyclin E-Cdk2

[26,27]. We found that the treatments decreased the phosphor-

ylation status of Rb but did not affect total Rb (Fig. 3A).

Figure 1. RNAi-mediated depletion of cathepsin B and uPAR inhibits SNB19 and U251 cell proliferation and induces G0/G1 arrest.
A. Western Blot analysis of cathepsin B and uPAR in SNB19 and U251 cells 36 hrs after transfection with SV, pU, pC and pCU. GAPDH was used as a
loading control. Side panel shows quantitative analysis of cathepsin B and uPAR bands by densitometry. B. We analyzed cell proliferation 36 hrs after
transfection using the BrdU incorporation assay and the percent of proliferation is represented graphically. Values are mean 6 standard deviation
(SD) from three different experiments (p,0.01). C. Propidium iodide-stained SNB19 and U251 cells were analyzed for DNA content using flow
cytometry. The graph shows the percentage of cells in G0/G1, S and G2/M phases 36 hrs post transfection. Values are mean 6 SD of three different
experiments (*p,0.01, in comparison with the control).
doi:10.1371/journal.pone.0011668.g001

Mechanism of G0/G1 Arrest
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Expression of p27Kip1 is influenced by the upregulation of
FOXO3a proteins in cathepsin B and uPAR depleted cells

Since we observed p27Kip1 upregulation with decreased cell

proliferation and G0/G1 phase arrest with the depletion of

cathepsin B and uPAR, we next determined the expression of

FOXO proteins, which are important transcriptional regulators of

the p27Kip1 promoter. We also checked for the expression of PI3K

and AKT molecules, which dictate the phosphorylation status of

p27Kip1 and affect the activity of FOXO proteins. Immunoblot

analysis revealed that the expression of FOXO3a increased with

the treatments, especially with pCU treatment (Fig. 4A); the

treatments did not affect the other FOXO forms significantly (Fig.

S3A).

For FOXO proteins to be active, newly synthesized FOXO3a

must translocate to the nucleus, which is further influenced by its

phosphorylation status. To test whether the depletion of uPAR

and/or cathepsin B affected localization of the FOXO3a protein,

cytosolic and nuclear fractions were immunoblotted for FOXO3a.

We found that the nuclear fractions of treated cells expressed more

FOXO3a protein than the controls (Fig. S2B). Further, immuno-

blot analysis of total cell lysates for phospho-FOXO3a revealed

that phospho-FOXO3a at Ser318 was decreased significantly

more than at Ser253. As expected, the same treatments decreased

the expression of phospho-PI3K and phospho-AKT; the total

forms were unaffected. The effect of the treatments was the same

in SNB19 and U251 cells.

PI3K is a known inhibitor of FOXO proteins. Hence, we

checked the effect of the PI3K inhibitor, LY294002 (10 mM) on

the expression of p-AKT in the total extracts. Western blotting

revealed decreased expression of p-AKT, which is an indicator of

PI3K kinase activity, and increased expression of FOXO3a and

p27Kip1 in the nuclear extracts (Fig. 4B). FACS analysis showed

that the inhibitor induced G0/G1 arrest similar to that induced by

the RNAi treatments (Fig. 4C). The expression of p27Kip1 and

Figure 2. Depletion of cathepsin B and uPAR increases p27Kip1 nuclear localization. A. Expression of p27Kip1 and p-p27 (Ser10 and Thr187)
were studied using immunoblot analysis. GAPDH was used as loading control. B. Total RNA isolated from untreated and treated SNB19 and U251
cells was subjected to semi-quantitative RT-PCR analysis using p27Kip1 primers. Data represents average of triplicates normalized to GAPDH
(**p,0.01). C. 36 hrs after transfection with SV, pU, pC and pCU, cells were fixed, immunostained with anti-p27 antibody followed by Texas Red-
conjugated anti-mouse secondary antibody. DAPI was used for nuclear staining. Representative images of three independent experiments are shown.
D. SNB19 and U251 cells were transfected with siRNA against p27 (p27si) individually and in combination with pU, pC and pCU. The cells were also
transfected with control siRNA (C-si) and SV. Thirty six hours post-transfection, cells were lysed and the total lysates were immunoblotted for p27Kip1,
p-p27 (Ser10), and p-p27 (Thr187). E. Effect of the above stated treatments on proliferation was assessed using BrdU incorporation assay. The graph
represents the percent of proliferating cells and the data represented are the average of three separate experiments (*p,0.05, **p,0.01, in
comparison with the control).
doi:10.1371/journal.pone.0011668.g002

Mechanism of G0/G1 Arrest
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FOXO3a proteins were also assessed in cathepsin B and uPAR-

overexpressing cells, and we found a correlation with the above

mentioned results (Fig. S3B). These results indicate that the

knockdown of cathespin B and uPAR in SNB19 and U251 cells

induced G0/G1 arrest with the increased expression of p27Kip1

and FOXO3a and reduced PI3K activity.

We further analyzed the effect of upregulation of FOXO3a on

p27Kip1 expression at the transcriptional level. After transfecting

SNB19 and U251 cells with pU, pC and pCU or after treatment with

Ly294002 (10 mM), a second transfection was performed with the

cDNA constructs containing the luciferase reporter gene controlled

by FOXO binding promoter regions of human p27Kip1 [23125 to

2845 bp (pGL-Kip1-290) and 23507 to 22478 bp (pGL-Kip1-

1110)] or the consensus sequence arranged as tandem repeats in

triplet (pGL-Kip1-3x) or mutated sequence (pGL-Kip1-M) or with

the SV as a control. The p27Kip1 promoter with the normal and

mutant versions of the putative FOXO binding sequence and the

regions used for PCR amplification are represented in Figure 5A.

Expression of luciferase was increased by 2–2.5 and 3 fold in pC- and

pU-transfected cells and LY294002-treated cells, respectively when

pGL-Kip1-290 (Fig. 5B), pGL-Kip1-1110 (Fig. 5C) and pGL-Kip1-

3x (Fig. 5D) vectors were used. In contrast, in pCU-transfected cells,

the same treatment increased luciferase expression by 4–4.5 fold.

Thus, increased activity of the p27 promoter expressed as luciferase

expression with the promoter constructs indicate that the regulation

of p27Kip1 protein levels by cathepsin B and uPAR could be, at least

partially, explained by the regulation of its promoter activity by

increased expression of FOXO3a. The levels of luciferase expression

were same with all the constructs used whereas no expression was

observed either in mutated sequence driven luciferase construct

(Fig. 5E) or in the SV transfected controls.

Cathepsin B and uPAR shRNA suppresses intracranial
tumor growth

The effect of RNAi-mediated inhibition of cathepsin B and

uPAR on pre-established tumors was studied. H&E staining

revealed a large spread of tumor growth in mock and SV-treated

brain sections. Whereas, pre-established intracranial tumor growth

was inhibited by 95% when treated with pCU (Fig. 6A).

Immunohistochemical analysis of the tumor sections from control

mice for cathepsin B and uPAR showed increased expression

levels localized to the tumor region while the pCU-treated tumor

sections revealed very little or no expression of the cathepsin B and

uPAR. When probed for the expression of p27Kip1 and Ki67

proteins, mock and SV-treated brain sections showed very little

Figure 3. Cathepsin B and uPAR knockdown decreases Cdk2 activity and the expression of aVb3 integrin. A. Cell lysates were collected
from SNB19 and U251 after transfection with SV, pU, pC or pCU. Western blot analysis of 50 mg of total cell lysates was performed to check the
expression of cyclin D1, cyclin D2, Cdk2, cyclin E, Rb, p-Rb, p21, aV, b3, aVb3 and Ki67. GAPDH was used as a loading control. B. Total lysates from the
untreated control and SV, pU, pC or pCU-transfected cells were immunoprecipitated for Cdk2 and b3 individually and then immunoblotted for cyclin
E and aV, respectively. The figure also shows the expression of aVb3 integrin on native gel.
doi:10.1371/journal.pone.0011668.g003

Mechanism of G0/G1 Arrest
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expression of p27Kip1 and increased expression of Ki67. In

contrast, pCU treated brain sections showed high expression of

p27Kip1. However, pCU-treated brain sections showed very little

or no expression of Ki67 as compared to the controls (Fig. 6B),

indicating that cell proliferation is inhibited by these treatments

through upregulation of p27Kip1. The effect of the pCU treatment

on tumors induced by SNB19 and U251 cells was the same.

Discussion

Various reports have demonstrated that cathepsin B and uPAR

levels are overexpressed during glioma progression [28–30]. It has

been reported that b1 integrins in caveolae bind uPAR and are

linked to increased secretion of pro-cathepsin B [31]. An

association of cathepsin B and uPAR mediated by active K-RAS

in colorectal carcinoma has also been reported [32]. We have

previously shown that RNAi-mediated downregulation of cathep-

sin B and uPAR led to decreased invasion, induction of

angiogenesis, increased caspase-mediated apoptosis, and induction

of G0/G1 arrest [2,30,33–37] Data from other reports indicate

that inhibition or depletion of cathepsin B prevents cells from

entering and leaving the cell cycle, thereby decreasing cell

proliferation [38,39]. However, the molecular mechanisms by

which cathepsin B and uPAR regulate cellular proliferation

remain poorly understood. The growing body of knowledge of

genetic alterations that occur in malignant gliomas has resulted in

the development of targeted therapy to restore cell cycle or

apoptosis defects in gliomas [22]. In the present study, we show

that the co-depletion of cathepsin B and uPAR arrests cells in the

G1 phase primarily through the upregulation of p27Kip1 and that

this pathway involves the downregulation of p-PI3K, p-AKT, D-

type cyclin expression, and cyclin E/Cdk2 complex formation as

well as the subsequent upregulation of the FOXO3a protein and

its nuclear localization.

In the present study, we have shown that pU, pC and pCU

treatments reduced endogenous levels of cathepsin B and uPAR

proteins in SNB19 and U251 glioma cells (Fig. 1A) with a 75–78%

transformation efficiency as obtained using GFP (Fig. S4). Among

the treatments, pCU reduced protein expression more than pU

and pC; this same effect was seen in the other experiments. These

treatments also led to G1 arrest and decreased cell proliferation.

We further investigated the influence of these treatments on

p27Kip1 expression and localization. Western blot analysis revealed

that p27Kip1 expression increased with the treatments while its

Figure 4. Cathepsin B and uPAR knockdown induces FOXO3a expression and translocation to the nucleus by inhibiting PI3K
activity. A. After transfection, cell lysates were collected from the untreated control and SV, pU, pC or pCU-treated cells. Equal volume of total
protein was blotted for the expression of PI3K, p-PI3K, AKT, p-AKT, FOXO3a, p-FOXO3a (253), and p-FOXO3a (Ser 318). B. SNB19 and U251 cells were
treated with either DMSO or LY294002 (Ly 10 mM) for 24 hrs as mentioned in the Materials and Methods. After incubation, the total and nuclear
lysates were collected and probed for the expression of p-AKT, p27Kip1 (Nu), FOXO3a (Nu) and lamin B (Nu). Equal loading was confirmed by the
GAPDH expression in the total cell lysate. C. After treatments with DMSO- and LY294002- cells were fixed, stained with propidium iodide and
subjected to FACS analysis to determine cell cycle status.
doi:10.1371/journal.pone.0011668.g004

Mechanism of G0/G1 Arrest
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phosphorylation at Ser10 and Thr187 decreased, thereby

indicating the nuclear localization of increased p27Kip1 protein.

This was further confirmed by the immunofluorescence analysis

where the treatment showed nuclear presence of p27Kip1. Data

from many different studies emphasize the importance of p27Kip1

as a potent inhibitor of cell cycle in human cancers [40]. p27Kip1

phosphorylation at Ser10 or Thr187 facilitates the nuclear-to-

cytoplasmic redistribution of p27Kip1 [41,42], and this sub-cellular

localization determines the activity of p27Kip1. Our results suggest

that reduced phosphorylation of p27Kip1 at Ser10 and Thr187

increased p27Kip1 nuclear localization, but further experiments

using p27Kip1 siRNA and that of decreased expression of cyclin

D1, cyclin D2 and cyclin E with the pU, pC and pCU treatments

indicate that p27Kip1 alone is partially responsible for cell cycle

arrest and decreased Cdk2 kinase activity might be necessary to

complete the task. Similar results showing that SHP1 downreg-

ulation effected p27Kip1 expression and Cdk2-cyclin E complex

formation have been reported [43]. However, we were unable to

find any translocation difference of Cdk2 with the treatments as

observed by [43]. Our immunoprecipitation results indicate that

Cdk2 kinase activity was reduced with the treatments. As a

member of the CIP/KIP family, p27Kip1 was found to be

associated with and to inhibit the catalytic activities of G1 and S

phase-specific Cdk/cyclin complexes [44]. Thus, the decrease in

p-p27Kip1 with the treatments could be due to the low Cdk2 kinase

activity. Our results also indicate decreased phosphorylation of Rb

at Ser780 and Ser249/Thr252. Inactivated retinoblastoma (p-Rb)

protein regulates the progression from G1 to S phase through its

association with the E2F family of transcription factors [45,46]. In

early and late G1 phase, p-Rb is hyperphosphorylated by D-type

Cdks and Cdk2-cyclin E, respectively [26,47,48]. These reports

suggest conclusively that phosphorylation of p-Rb by Cdk2-cyclin

E requires p-Rb to be hypophosphorylated, and thus, the

inactivation of p-Rb involves sequential phosphorylation by cyclin

D-Cdk4/6 and cyclin E/Cdk2 [26,27]. Therefore, the G0/G1

arrest induced by the treatments could be due to the combined

action of reduced cyclin D1, cyclin D2, and cyclin E-Cdk2

complex formation and increased expression of p27Kip1.

Hyperactivation of the PI3K-AKT pathway is critical in human

tumorigenesis because it promotes cell growth, survival and

resistance to treatment [49,50]. In addition, it has been reported

that 88% of gliomas show altered PI3K-AKT signaling [51].

Figure 5. Regulation of p27Kip1 activity in cathepsin B and uPAR-depleted glioma cells occurs through FOXO3a transcription factor.
A. Schematic representation of the p27Kip1 promoter with the normal and mutant versions of the putative FOXO binding site and the regions used
for PCR amplification. B–E. SNB19 and U251 cells were initially transfected with SV, pU, pC or pCU, and treated with Ly294002 (Ly 10 mM) separately.
24 hrs after the treatments, a second transfection with the luciferase constructs was performed as described in Materials and Methods. The luciferase
expression was quantified using Promega’s luciferase assay kit with a Turner Luminometer and is represented graphically. The graphs show luciferase
expression when pGL-Kip1-290 (B), pGL-Kip1-1110 (C), pGL-Kip1-3x (D), and pGL-Kip1-M luciferase constructs were used. Assessment for luciferase
expression was performed at least in triplicate (*p,0.05, **p,0.01).
doi:10.1371/journal.pone.0011668.g005
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Integrins on tumor cells increases tumor cell migration, invasion,

proliferation and survival [52]. In this study, we have shown that

downregulation of cathepsin B and uPAR significantly decreased

the dimer formation of aVb3 integrins as seen in immunoprecip-

itation and native gel electrophoresis with the decreased expression

of both aV and b3 integrins. The roles of other integrins are being

investigated in our laboratory. Transcriptional downregulation of

p27kip1 mRNA by AKT occurs through localization and

subsequent inhibition of the FOXO protein. Recent data show

FOXO3a directly regulates p27kip1 transcription [53,54], suggest-

ing that reduced p27kip1 levels after a proliferative stimulus may

also be associated with FOXO3a. Our results further confirm

these findings. In the present study, FOXO3a expression was

positively correlated with p27kip1 expression (Fig. 2A) but inversely

associated with cell proliferation as identified by Ki67 (Fig. 3A),

which is a marker of cell proliferation expressed specifically in the

cell nucleus from late G1 to S phase. We observed a decrease in

phosphorylation of PI3K, AKT and FOXO3a (Ser318) (Fig. 4A)

protein along with decreased activity of Cdk2 (Fig. 3B) with the

RNAi treatments. Activated AKT is crucial in preventing

FOXO3a displacement to the nucleus [55,56]. However, AKT-

independent and Cdk2-dependent phosphorylation affected

FOXO1 nuclear export to different extents in U87 and U251

glioma cells [22]. Our results reveal that LY294002 significantly

inhibited the phosphorylation and activation of AKT. More

importantly, LY294002-treatment caused FOXO3a nuclear

accumulation. These results suggest that LY294002 controlled

the activity of FOXO3a by regulating its phosphorylation and

subcellular localization. It is known that FOXO3a regulates the

transcription of p27kip1 by binding to its promoter [57]. Indeed, we

found that p27kip1 expression increased with LY294002 treatment.

Moreover, after treatment with pU, pC, pCU and Ly294002,

luciferase expression under the influence of FOXO binding

promoter region of p27Kip1 increased with the treatments as

compared to control and SV-transfected cells. Among the

treatments, pCU-treated cells showed more luciferase activity

than pU- and pC-treated cells. Notably, luciferase expression was

nearly the same irrespective of the vector used. Studies have

indicated that other transcription factors, such as Sp1, CRE and

NF-kB, regulate p27Kip1 promoter activity [58,59]. Very recently,

Li [60] reported the effect of anti-inflammatory drugs on

proliferation of human osteoblasts with the increased activity of

FOXO3a by binding to p27Kip1 promoter. Thus, these findings

invite the conclusion that the increased p27Kip1 expression with

Figure 6. In vivo inhibition of tumor growth. Stereotactic implantation of SNB19 and U251 (16105) tumor cells was performed and, after one
week, PBS (mock), SV or pCU was injected into the brain using an Alzet mini osmotic pump. Five animals per group were used. 30 days after
implantation, the animals were sacrificed, the brains were removed and fixed, and paraffin sections were prepared. A. Hematoxylin and eosin staining
of tissue sections to visualize tumor cells and to examine tumor volumes. Bar: 20 mM (*p,0.01) B. Immunohistochemical analysis of cathepsin B,
uPAR, Ki67 and p27Kip1 in paraffin embedded tissue sections. Bar: 200 mM.
doi:10.1371/journal.pone.0011668.g006
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the treatments is due to the increased nuclear expression of

FOXO3a, which binds to the -2984 bp region on the p27Kip1

promoter and could be mediated by the low expression of p-AKT.

The results obtained were also confirmed by immunoblotting for

p-PI3K, p-AKT, FOXO3a and p27Kip1 in the cathepsin B and

uPAR-overexpressed SNB19 and U251 cells.

Although overexpression of p27Kip1 can induce protection from

apoptosis, other studies have reported pro-apoptotic effects where

caspases are able to cleave p27Kip1 in a cell type specific manner

[9,61] reported that the inhibition of cytochrome c release might

be a possible mechanism of preventing apoptosis with higher

p27Kip1 expression in leukemia cells; this indicates that the

regulation of the apoptotic process by p27Kip1 might vary with

cell transformation status. In a separate experiment, we observed

decreased expression of p27Kip1 in the nucleus at the 72 hours

time point (data not shown). Several recent reports have shown

that p27Kip1 has cell cycle-independent functions, such as the

regulation of cell migration, which might be oncogenic under

certain circumstances [25].

The efficiency of in vivo RNAi/adeno virus treatments by

targeting proteins like uPA and uPAR [62], cathepsin B and uPAR

[3], and uPAR and MMP-9 [63] has been well established in our

laboratory. Similarly, the present study demonstrates that the

simultaneous downregulation of cathepsin B and uPAR caused the

regression of intracranial tumors. Nude mice implanted intracra-

nially with SNB19 and U251 glioma cells became very weak

within three to four weeks due to tumor development. In contrast,

pCU-treated mice were healthy, and H&E staining of these tissue

sections revealed very few to no cancer cells as compared to the

controls. Interestingly, we observed high expression of p27Kip1 and

very low expression of Ki67 in the tumor sections, indicating the

efficiency of treatment both in vitro and in vivo. Moreover, a direct

correlation between the low expression of p27Kip1 and FOXO3a

and higher expression of Ki67 with the malignant glioma has been

reported [23]. Increased expression of p21 and regression of lung

tumor growth in vivo with the administration of decorin has been

reported [64]. Yu [65] has reported that the downregulation of

uPAR induced G0/G1 arrest in vitro but did not affect growth in

vivo. Decreased tumor growth and metastasis of malignant

melanoma cells in nude mice with the administration of antisense

oligonucleotide for uPAR has been described [66]. Likewise, an

88% inhibition of proliferating cancer cells in colorectal carcinoma

in vivo when treated with uPAR monoclonal antibody (ATN658)

has been reported recently [67]. In contrast, uPAR overexpression

inhibited cell growth in murine embryonic fibroblast cells and

induced cell growth in keratinocytes [68]. uPAR has been detected

as a potential cooperating oncogene in Ink4a KO mice, which are

deficient in cell growth control [69]. Thus, the effect of uPAR on

growth rate may depend on cell type. Not much has been reported

about cathepsin B controlling cell proliferation in vivo. In

conclusion, our results demonstrate that Akt/FOXO3a/p27Kip1

signaling contributes to G0/G1 arrest, which was induced by the

depletion of cathepsin B and uPAR (Fig. 7). Moreover, our results

also demonstrate that the bicistronic construct, pCU, was more

effective than the single constructs, pU and pC. Thus, our findings

provide molecular mechanism for the G0/G1 arrest induced by

the downregulation of cathepsin B and uPAR in SNB19 and U251

glioma cells.

Materials and Methods

Ethics Statement
The Institutional Animal Care and Use Committee of the

University Of Illinois College Of Medicine at Peoria, Peoria, IL,

USA approved all surgical interventions and post-operative animal

care. The consent was written and approved. The approved

protocol number is 851, dated November 20, 2009. No de novo

cell lines were used.

siRNA constructs, cell culture, transfection and inhibitor
treatments

Single shRNA constructs directed against uPAR (pU) and

cathepsin B (pC) and the bicistronic construct directed against

both cathepsin B and uPAR (pCU) have been described previously

[2]. siRNA for p27Kip1 (p27si) was purchased from Santa Cruz

Biotechnology (Santa Cruz, CA). Full length cathepsin B and

uPAR over expressing plasmids were purchased from Origene

(Rockville, MD). All the antibodies used in this study are from

Santa Cruz Biotechnology (Santa Cruz, CA) unless otherwise

mentioned.

Human glioma cell lines SNB19 and U251, obtained form

American Type Culture Collection (ATCC, Manassas, VA) were

cultured in DMEM/high glucose media supplemented with 10%

FBS in a humidified atmosphere containing 5% CO2 at 37uC.

Cells were grown in 100 mm dishes for all treatment conditions

and on two-well chamber slides for immunocytochemistry

analysis. Scrambled vector (SV- sequence corresponds to the

bicistronic shRNA directed against the cathepisn B and uPAR),

pU, pC and pCU vectors were transfected into SNB19 and U251

cells independently with Fugene 2000 reagent as per the

manufacturer’s instructions (Roche, Indianapolis, IN). For the

inhibitor study, cells seeded in six well plate were treated with

Ly294002 (10 mM), a potent PI3K inhibitor, for 24 hrs.

Figure 7. Schematic representation of the molecular mecha-
nisms proposed in the regulation of cell proliferation by G0/G1
arrest with the increased expression of FOXO3a and p27Kip1 in
cathepsin B and uPAR-depleted glioma cells.
doi:10.1371/journal.pone.0011668.g007
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Cell proliferation assay and cell cycle analysis
Cell proliferation analysis was performed using Cell Prolifera-

tion ELISA (colorimetric) BrdU incorporation assay (Roche

diagnostics, Indianapolis, IN), according to the manufacturer’s

protocol. Cell viability analysis was performed by MTT assay

using the Cell Titer 96 colorimetric assay as described previously

[3]. Phases of cell cycle were analyzed using flow cytometry after

36 hrs and 48 hrs of transfection. Cells were trypsinized, washed

with 1X PBS, fixed and permeabilized with cold 70% ethanol and

finally incubated for 30 min with 1 mL of propidium iodide

(conatins NP-40) (Biosure, CA) in the dark. The DNA content of

these cells was measured based on the presence of propidium

iodide (PI)-stained cells. Flow cytometric analysis was done on at

least 10,000 cells from each sample, and cell cycle data were

analyzed using a FACS Calibur flow cytometer (BD BioSciences,

San Jose, CA) with an excitation wavelength of 488 nm and

emission wavelength of 530 nm.

RT-PCR, Western blot and immunoprecipitation analysis
36 hrs after transfection, total RNA was isolated using Trizol

reagent (Invitrogen, Carlsbad, USA) and converted to cDNA using

Transcriptor First Strand cDNA synthesis kit (Roche diagnostics,

Indianapolis, IN) as per manufacturer’s instructions. PCR was

performed for p27 mRNA expression using forward 59TCAAAG-

CAAGCTCTTCATACCC39 and reverse 59GCACATAAAC-

TTTGGGGAAGG39 primers. For immunoblot analysis, cells

were washed with ice-cold DPBS and resuspended in 150 mL of

radioimmune precipitation assay buffer. The cell lysates were

analyzed by SDS-PAGE followed by western blotting. The

following antibodies were used: uPAR, cathepsin B, (Athens

Research and Technology, Athens, GA, USA) aV (Millipore,

Billerica, MA), b3, aVb3, PI3K, p-PI3K, AKT, p-AKT (Cell

Signaling, Boston, MA), p21, p27Kip1, p-p27Kip1 (Ser10), p-

p27Kip1 (Thr187), cyclin D1, cyclin D2, Cdk2, cyclin E, Ki67,

FOXO3a, p-FOXO3a (Ser253), FOXO3a (Ser318/321),

FOXO1, p-FOXO1 (Ser256) (Cell Signaling, Boston, MA), Rb,

p-Rb (Ser780 and Ser249/Thr252) and GAPDH. Signals were

detected using Pierce Western Blotting substrate (Pierce, Rockford,

IL), and the chemiluminescent images were captured in the

Flourchem Q, Alpha Innotech, Gel Documentation system. Also,

a native gel electrophoresis (7%) was performed on PAGE in the

absence of SDS without denaturing the proteins to check the

dimerization of aVb3 integrin

b3 and Cdk2 was immunoprecipitated from 300 mg of total

protein using anti- b3 and -Cdk2 antibody and protein A plus G

agarose beads (20 mg). The precipitates were washed five times

with lysis buffer and once with PBS. The pellet was then

resuspended in sample buffer (50 mM Tris, (pH 6.8), 100 mM

bromophenol blue, and 10% glycerol) and incubated at 90uC for

10 min before electrophoresis to release the proteins from the

beads and immunoblotted for aV and cyclin E, respectively.

Isolation of nuclear and cytoplasmic cell fractions
Cytoplasmic and nuclear extracts from the treated cells were

isolated using Active Motif nuclear extraction kit (Active Motif,

Carlsbad, CA) according to the manufacturer’s instructions.

Harvested cells were washed once with 1X PBS, the cell pellet

was resuspended in 200 mL of hypotonic buffer, incubated for

30 min at 4uC on a rocking platform, and centrifuged. The

supernatant was collected as the cytosolic fraction. The nuclear

pellet was resuspended, homogenized and incubated in complete

lysis buffer provided in the kit for 30 min at 4uC on a rocking

platform, and the nuclear fraction was collected after centrifuga-

tion. Immunoblot analysis was performed with the cytoplasmic

and nuclear fractions for proteins like p27Kip1 and FOXO3a.

Nuclear fractions were also tested for the expression of the

lamin B.

Immunofluorescence assay
Human glioma cells (SNB19 and U251) grown in two-well

chamber slides were treated as described earlier. The cells were

washed with PBS, fixed with 4% paraformaldehyde, permeabi-

lized with ice-cold methanol, and rehydrated with PBS. PBST

containing 2% BSA was used for blocking the cells for one hour

followed by a two-hour incubation with anti-p27Kip1 antibody

(Cell Signaling, Boston, MA) at a dilution of 1:300 in PBST

containing 2% bovine serum albumin, followed by a final

incubation with Texas Red conjugated secondary antibody

(1:1000 in PBS/2% bovine serum albumin, 0.5% tween 20) for

one hour. Expression was visualized by fluorescence microscopy

((Olympus IX71; Olympus Optical Co, Tokyo, Japan)) and

photographed.

Construction of human p27Kip1 promoter reporter vector
and luciferase activity

To determine the FOXO influenced promoter activity of

p27Kip1, three tandem repeats of FOXO binding consensus

sequence (GACTGTAAACAAAAC) comprising a 59 end phos-

pho modification and SacI and XhoI restriction sites on 59and

39ends of upper and bottom strands, respectively, were cloned into

the pGL3 basic vector and labeled as pGL-Kip-13x. The

consensus sequence is positioned at 22984 to 22992 bp. Another

plasmid was constructed by altering the consensus sequence

(TTGTTTACAA to TTGTGCGCTA) to serve as a negative

control and also to show the specificity of the consensus sequence

towards FOXO. Similarly, the human p27Kip1 promoter was

amplified from genomic DNA using the following primers:

F- aaaGAGCTCCCCACTTTGCAGAAGGATG and

R-aaaCTCGAGGAGCACCATTTTGTCGCTTT;

F-aaaGAGCTCACCTTCGCAGAAACATTTGG and

R-aaaCTCGAGGCAAGAGGTCTCATCCTCTTTA with

SacI and XhoI restriction sites on 59 and 39 regions of forward

and reverse primers, respectively. These primers amplify a 290 bp

(located between 23125 to 2845 bp) and an 1110 bp (located

between 23507 to 22478 bp) region that includes the FOXO

binding consensus sequence. The PCR product was cloned into

the promoter-less luciferase reporter vector, pGL3 basic (Pro-

mega), predigested with SacI and XhoI, and labeled as pGL-Kip1-

290 and pGL-Kip1-1110, respectively.

Luciferase activity was measured with Promega’s luciferase

assay kit. Following 24 and 48 hrs of transfection, cells were

washed twice with PBS and lysed with 100 mL of reporter lysis

buffer. The lysate was shaken at room temperature for

10615 min, after which 20 mL of each cell lysate was mixed with

100 mL of buffer and measured for luciferase activity in a Turner

Luminometer (Turner Designs, Sunnyvale, CA, USA) over an

integration period of 15 sec. Values obtained were normalized to

GAPDH levels.

Intracranial glioma cell implantation, treatment and
immunohistochemistry

Stereotactic implantation of SNB19 and U251 glioma cells

(16105), followed by treatments with mock, SV and pCU using

Alzet minipumps at the rate of 0.25 mL/hr, the eventual sacrifice

of glioma-bearing mice, and tumor processing were carried out as

previously described [62,70]. Sections were stained with hema-

toxylin and eosin (H&E) to visualize tumor cells and to examine

Mechanism of G0/G1 Arrest
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tumor volume as described earlier [3,71]. The sections were

evaluated by a neuropathologist who was blinded as to the

treatment group and scored semiquantitatively for tumor size, as

described previously [3,71]. Five animals were used per treatment.

The average tumor area per section integrated to the number of

sections where the tumor was visible was used to calculate tumor

volume and compared between controls and treated groups.

Immunohistochemistry for p27Kip1, cathepsin B, uPAR and Ki67

was performed as described earlier.

Statistical analysis
Values are shown as means 6 SD of at least three independent

experiments. Results were analysed using a two-tailed Student’s t-

test to assess statistical significance. p,0.05 was considered

significant.

Supporting Information

Figure S1 RNAi-mediated depletion of cathepsin B and uPAR

affects cell viability and proliferation in SNB19 and U251. A. We

analyzed cell viability 36 hrs after transfection using the MTT

assay, and the percent of viable cells are represented graphically.

Values are mean 6 standard deviation (SD) from three different

experiments (p,0.01). B. After 48 hrs of transfection with SV, pC,

pU and pCU, cells were collected, stained with propidium iodide

and analysed for DNA content using flow cytometry. The graph

shows the percentage of cells in sub G0/G1, G0/G1, S and G2/M

phases. Values are mean 6 SD of three different experiments

(*p,0.01).

Found at: doi:10.1371/journal.pone.0011668.s001 (0.14 MB TIF)

Figure S2 Cathepsin B and uPAR knockdown induces p27Kip1

and FOXO3a nuclear translocation. A. The ratio of nuclear vs

cytoplasmic distribution of p27Kip1 in SNB19 and U251 cells after

immunocyto analysis for p27Kip1 were calculated and represented

graphically. The values are an average calculated from ten

different fields (*p,0.01). B. After transfection with SV, pU, pC

and pCU, SNB19 and U251 cells were collected, and proteins

from the cytosolic and nuclear fractions were isolated. Immuno-

blot analysis was performed for the expression of p27Kip1 and

FOXO3a in nuclear fractions. The RNAi treatments increased the

expression of the above mentioned molecules. C. Glioma cells

were treated with siRNA for p27Kip1 individually and in

combination with SV, pU, pC and pCU. The cells were subjected

to FACS analysis. The graph shows the percent of cells distributed

in G0/G1, S and G2/M phases of cell cycle. Values are mean 6

standard deviation (SD) from three different experiments

(*p,0.01).

Found at: doi:10.1371/journal.pone.0011668.s002 (5.63 MB TIF)

Figure S3 FOXO1 expression is unaffected by treatment with

pU, pC and pCU; p27Kip1 and FOXO3a expression decreases

with the upregulation of cathepsin B and uPAR. A. Immunoblot

analysis of total protein isolated from transfected SNB19 and

U251 cells. Immunoblot analysis was performed for the expression

of FOXO1, p-FOXO1 (Thr24), p-FOXO1 (Ser256), p-FOXO1

(Ser319)/FOXO4 (Ser262), p-FOXO4 (Ser262) and GAPDH. B.

SNB19 and U251 cells were transfected either with SV or full

length uPAR (fl-U) or full length cathepsin B (fl-C). Total cell

lysates were collected and immunobloted for the expression of

uPAR, cathepsin B, p-PI3K, p-AKT, p27Kip1, FOXO3a and

GAPDH.

Found at: doi:10.1371/journal.pone.0011668.s003 (0.62 MB TIF)

Figure S4 Transfection efficiency in glioma cells. Glioma cells

were transfected with GFP using Fugene (1:3, Fugene: plasmid

ratio). Shown are the images, after transfections,taken under bright

and fluorescent fields.

Found at: doi:10.1371/journal.pone.0011668.s004 (0.46 MB TIF)
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