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SUMMARY

This thesis has two parts. The first part, about Turan-type problems for directed
hypergraphs, consists of Chapters [I] through [10] The second part, about a variation
of the Ramsey problem, consists of Chapters [11] through All of the material is

related under the umbrella of extremal combinatorics.

The first part of this thesis primarily examines the extremal number of edges for
directed hypergraphs given certain forbidden subgraphs. These sorts of questions
are a big area of research for graphs and hypergraphs. Here the question is applied
to the 2 — 1 directed hypergraph. Chapter [1| defines all of the relevant concepts.
Chapters 2] through [§] give the extremal numbers for every 2 — 1 directed hypergraph
with exactly two edges. Chapter [9] generalizes the concept of a directed hypergraph
to include many different relational structures and extends some classical extremal
results to this larger class of models. Chapter [10| concludes the first part of the thesis

with a few stray results and open questions.

The second part of this thesis is about the (p, ¢)-coloring problem. A (p, ¢)-coloring
is an edge-coloring of the complete graph K, for which any p vertices must span at
least ¢ distinct colors. The goal is to find the minimum number of colors necessary for
which such a coloring exists. Chapter [11|defines the necessary concepts and provides
background. Chapter provides a construction that will be used in subsequent
chapters. Chapter (13| details a (5,5)-coloring. Chapter |14] details a (5, 6)-coloring.

Finally, Chapter [15| briefly explores some additional ideas for continued research.

xi



1. INTRODUCTION TO EXTREMAL PROBLEMS AND DIRECTED HYPERGRAPHS 1

CHAPTER 1

Introduction to Extremal Problems and Directed

Hypergraphs

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

We will begin this chapter with the basic definitions of uniform graphs and hyper-
graphs. For any set V' and any positive integer r we let (‘:) denote the set of r-subsets
of V in what follows. Additionally, given a positive integer n, we let [n] denote the

set {1,2,...,n}.

DEFINITION 1.1. A graph is an ordered pair of sets G = (V, E) where V', the set

of vertices, is finite, and F, the set of edges, is some subset of (‘2/)

Technically, this defines a simple graph in that it has no loops (an edge from a vertex
to itself) or multiedges (two or more edges between the same two vertices). This

definition generalizes to larger 7.

DEFINITION 1.2. For some integerr > 2, an r-uniform hypergraph is an ordered
pair of sets H = (V, E) where V', the set of vertices, is finite, and E, the set of edges
(or hyperedges), is some subset of (‘T/) Often, we let V(H) and E(H) denote the

vertex and edge sets of H when these sets have not been given explicitly.

Graphs and hypergraphs are widely-studied combinatorial objects, and many ques-
tions have been asked (and sometimes answered) about them. Here, we are concerned

primarily with extremal questions.
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1. The forbidden subgraph problem

Turan-type extremal problems for uniform graphs and hypergraphs make up a large
and well-known area of research in combinatorics. Of these problems, the forbid-
den subgraph problem is the most basic: “Given a family of forbidden r-uniform
hypergraphs F, what is the maximum number of edges an r-uniform hypergraph on
n vertices can have without containing any member of F as a (not necessarily in-
duced) subgraph?” Such problems were named after Paul Turan due to his important
early results and conjectures concerning forbidden complete r-graphs [42] 43| [44]. We

formalize this idea in the definitions that follow.

DEFINITION 1.3. Given two r-uniform hypergraphs, H and G, we call a function
¢:V(H) = V(G) a homomorphism if it preserves the edges of H :

vivy vy € B(H) = ¢(v1)(a) - d(v,) € E(G).

We will write ¢ : H — G to indicate that ¢ is a homomorphism.

DEFINITION 1.4. Giwven a family F of r-uniform hypergraphs, we say that a hy-
pergraph H is F-free if no injective homomorphism ¢ : F' — H exists for any F € F.
If F = {F} we will simply write that G is F-free.

DEFINITION 1.5. Giwen a family F of r-uniform hypergraphs, let the nth extremal
number ex(n, F) denote the mazimum number of edges that any F-free hypergraph

on n wvertices can have.

The extremal numbers of families of forbidden hypergraphs indicate the threshold
number of edges at which any hypergraph, no matter how unstructured, is forced to

have some local substructure.

For example, if a graph on n vertices has more than n?/4 edges, then it must contain
a 3-clique, three vertices that are all pairwise adjacent, no matter its structure. The

complete bipartite graph with nearly equal parts (see Figure [l) demonstrates that we
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FIGURE 1. A triangle-free graph with many edges.

can have at least this many edges without a 3-clique. The fact that this is the best
that we can do is called Mantel’s Theorem, and we say that n?/4 is the nth extremal
number for the 3-clique K3, ex(n, K3) = n?/4. Turan’s Theorem generalized this
result for cliques of any size [42, [43] 44]. It states that the maximum number of
edges that a graph can have before it is forced to contain a clique of k vertices is the
same as the number of edges found in the complete balanced (k — 1)-partite graph.
These kinds of questions are difficult to answer in general for hypergraphs and other
combinatorial structures. Even for 3-uniform hypergraphs, the extremal number of a

4-clique is unknown.

Often, it is easier to discuss these notions in terms of edge density rather than number

of edges.

DEFINITION 1.6. Let H be an r-uniform hypergraph with n vertices and e(H)

edges. Then the edge density of H is

DEFINITION 1.7. Given a forbidden family of r-uniform hypergraphs F, the limit
of the maximum edge densities of F-free hypergraphs as the number of vertices goes
to infinity is known as the Turdn density of the family,
f
m(F) = lim ex(n, 7)

n—o0 T

A simple averaging argument demonstrates that such a limit always exists. For

graphs, it is well-known that the Turan density of any forbidden family is determined
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by the minimum chromatic number of the graphs in the family. This is the famous
Erdés-Stone Theorem [23]. Loosely speaking, the chromatic number of a graph is the
minimum number of parts that any partition of the vertices can have such that no

edge is contained inside a part.

DEFINITION 1.8. Let G be a graph and k be a positive integer. A proper vertex
coloring of G with k colors is an assignment f : V(G) — [k] such that f(x) # f(y)
for any xy € E(G). The minimum k for which a proper vertex coloring of G exists
is known as the chromatic number of G, x(G). When x(G) = 2, we say that G is

bipartite.

For any forbidden family of graphs F, Erdés and Stone [23] showed that m(F) = %

where

k = min{x(F)}.

FeF
In particular, a forbidden graph F' has Turan density zero if and only if it is bipartite.

This idea extends to hypergraphs as well.

DEFINITION 1.9. Let H be an r-uniform hypergraph. We call H degenerate if
m(H) = 0.

DEFINITION 1.10. Let H be an r-uniform hypergraph. We say that H is r-partite
if there exists a partition of the vertices of H into r parts such that every edge of H

contains exactly one vertex from each part.

Erdés [18] showed that an r-uniform hypergraph is degenerate if and only if it is 7-
partite. Moreover, m(H) > 7’:—,[ for any r-uniform hypergraph H that is not r-partite.
This can be seen by taking the sequence of r-partite hypergraphs with nearly equal
parts and every possible edge. The hypergraphs in this sequence are all H-free and

. o . 1 . .
their edge densities tend towards 7 as the number of vertices increase.
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However, there is no known generalization of the result relating chromatic number
and Turdn density to hypergraphs. Even for the complete 3-graph on 4 vertices, K f’),

the Turan density is unknown.

2. Additional extremal concepts

The label “Turan-type problem” is applied to more than just the forbidden subgraph
problem. A closely related result for hypergraphs known as supersaturation says
any large hypergraph with an edge density slightly more than the Turan density of
some forbidden hypergraph F' will not only contain a copy of F, but many copies.
That is, let F' be a an r-uniform hypergraph and let ¢ > 0. For sufficiently large
n > no(F, €), any r-uniform hypergraph H on n elements with density dg > m(F) +¢€
will contain at least c(’;) copies of F' for some constant ¢ = ¢(F,¢). In fact, this
supersaturation result is used to prove the characterization of degenerate hypergraphs

mentioned above.

Another, closely related, extremal question for hypergraphs known as the “jumping

constant conjecture” was proposed by Erdés [22] 23].

DEFINITION 1.11. A real number o € [0, 1) is called a jump for an integer r > 2
if there exists some positive constant ¢ which depends only on o« such that for any
€ > 0 and positive integer | there exists a positive integer N for which any r-uniform
hypergraph onn > N wvertices which has edge density at least a+€ contains a subgraph

on | vertices with edge density at least o + c.

Informally, a jump is an edge density a for which any very large hypergraph with
a slightly larger edge density must contain an arbitrarily large subgraph with edge
density at least a + ¢(«). That is, the density “jumps” by some fixed length c(«)
when the overall edge density increases beyond a. The overall edge structure must

get “clumpy.”
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It is well-known that when r = 2, every « € [0,1) is a jump [22, 23]. Moreover, every
a € [0, :—l) is a jump for r > 3 [19]. The jumping constant conjecture asserted that

every a € [0,1) is a jump for any r.

In 1984, Frankl and Raodl disproved the conjecture when they found the first instance

of a nonjump for each r > 3 [27]. Since then many infinite sequences of nonjumps

have been found, but the smallest known nonjump to date is 25:: for each r > 3
determined by Frankl, Peng, R6dl, and Talbot [26]. The only additional jumps that
have been found are all o € [0.2299,0.2316), [0.2871, 2%) for r = 3 found by Baber

and Talbot [4], using Razborov’s flag algebra method [40].

3. Directed graphs and hypergraphs

Extremal problems like these have also been considered for directed graphs and multi-
graphs (with bounded multiplicity) [5, [6] and for the more general directed multi-

hypergraphs [7].

Brown and Harary [6] determined the extremal numbers for several types of spe-
cific directed graphs including all tournaments - that is, a digraph with one edge in
some orientation between every pair of vertices. Brown, Erdés, and Simonovits [5]
determined the general structure of extremal sequences for every forbidden family of

digraphs analogous to the Turan graphs for simple graphs.

The model of directed hypergraphs studied in [7] have r-uniform edges such that the
vertices of each edge are given a linear ordering. However, there are many other
ways that one could conceivably define a uniform directed hypergraph. The graph
theoretic properties of a more general definition of a nonuniform directed hypergraph
were studied by Gallo, Longo, Pallottino, and Nguyen [28]. They defined a directed
hyperedge as some subset of vertices with a partition into head vertices and tail

vertices.
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Langlois, Mubayi, Sloan, and Gy. Turan [31],32] studied extremal properties of certain
small configurations in a directed hypergraph model. This model can be thought of
as a 2 — 1 directed hypergraph where each edge has three vertices, two of which are
“tails” and the third is a “head.” They determined the extremal number for one such
subgraph with two edges, and found the extremal number of a second configuration
with two edges up to asymptotic equivalence. We will discuss their results in more
detail in the following section. In Chapters [2| through [8, we determine the exact

extremal numbers for every 2 — 1 directed hypergraph with exactly two edges.

The totally directed hypergraph model considered in [7] and the r — 1 directed hy-
pergraph model resulting from the study of Horn clauses both lead to the natural
question of all possible ways to define a directed hypergraph. The definition in this
paper of the class of general directed hypergraph models attempts to unify all of
the possible “natural” ways one could define a directed hypergraph so that certain
extremal questions can be answered about all of them at once. Adding to the mo-
tivation of considering more general structures is the recent interest in Razborov’s
flag algebra method which applies to all relational theories and not just undirected
hypergraphs. The fact that the d-simplex model studied by Leader as well as many
other somewhat geometric models come out of the class defined in Chapter [0 was a

very interesting accident.

4. 2 — 1 directed hypergraphs

The combinatorial structure treated in Chapters[2}[8]is the 2 — 1 directed hypergraph

defined as follows.

DEFINITION 1.12. A 2 — 1 directed hypergraph is a pair H = (V, E) where V is
a finite set of vertices and the set of edges E is some subset of the set of all pointed
3-subsets of V. That is, each edge is three distinct elements of V' with one marked
as special. This special vertex can be thought of as the head vertex of the edge while

the other two make up the tail set of the edge. If H is such that every 3-subset of
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V' contains at most one edge of E, then we call H oriented. For a given H we will
typically write its vertex and edge sets as V(H) and E(H). We will write an edge as

ab — ¢ when the underlying 3-set is {a,b,c} and the head vertex is c.

For simplicity we will usually refer to 2 — 1 directed hypergraphs as graphs or
sometimes as (2 — 1)-graphs when needed to avoid confusion. This structure comes
up as a particular instance of the model used to represent definite Horn formulas in the
study of propositional logic and knowledge representation [I],[41]. Some combinatorial
properties of this model were recently studied by Langlois, Mubayi, Sloan, and Turan

132, 31].

Before we can discuss their results we will need the following definitions which extend
the concepts defined earlier in the chapter for graphs and hypergraphs to 2 — 1

directed hypergraphs.

DEFINITION 1.13. Given two graphs H and G, we call a function ¢ : V(H) —

V(G) a homomorphism if it preserves the edges of H:
ab—ce E(H) = ¢(a)o(b) = ¢(c) € E(GQ).
We will write ¢ : H — G to indicate that ¢ is a homomorphism.

DEFINITION 1.14. Given a family F of graphs, we say that a graph G is F-free
if no injective homomorphism ¢ : F — G exists for any F € F. If F = {F} we will

write that G' is F'-free.

DEFINITION 1.15. Given a family F of graphs, let the nth extremal number
ex(n,F) denote the mazimum number of edges that any F-free graph on n vertices
can have. Similarly, let the nth oriented extremal number ex,(n, F) be the maximum
number of edges that any F-free oriented graph on n wvertices can have. Sometimes
we will call the extremal number the standard extremal number or refer to the prob-

lem of determining the extremal number as the standard version of the problem to
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distinguish these concepts from their oriented counterparts. As before, if F = {F},

then we will write ex(n, F) or ex,(n, F') for simplicity.

In [32] B1], the authors studied the extremal numbers for two small (2 — 1)-graphs.
They refer to these two graphs as the 4-resolvent and the 3-resolvent configurations
after their relevance in propositional logic. Here, we will denote these graphs as Ry

and Rj3 respectively and define them formally as
V(Ry) = {a,b,c,d,e} and E(Ry) = {ab— ¢,cd — ¢}

and

V(R3) = {a,b,c,d} and E(R3) = {ab — ¢,bc — d}.

In [31], the authors determined ex(n, R4) exactly for sufficiently large n, and in [32]
they determined the sequence ex(n, R3) up to asymptotic equivalence. In these pa-
pers, the authors discuss a third graph with two edges which they call an Escher
configuration because it calls to mind the famous M.C. Escher piece in which two
hands draw each other. This graph is on four vertices {a, b, c,d} and has edge set
{ab — ¢, cd — b}. In this paper, we will denote this graph by E. These three graphs
turn out to be the only three graphs with exactly two edges and more than three
vertices for which the extremal numbers are cubic in n. They are also the only three

with two edges on more than three vertices that do not satisfy the following definition.

DEFINITION 1.16. A graph H is degenerate if its vertices can be partitioned into
three sets, V(H) =Ty UTy U K such that every edge of E(H) is of the form titas — k

for some t; € T, to € Ty, and k € K.

An immediate consequence of Theorem shown in Chapter [9]is that the extremal

numbers for a graph H are cubic in n if and only if H is not degenerate.

In this specific model of directed hypergraphs, there are nine different graphs with

exactly two edges. Of these, four are not degenerate. One of these is the graph on
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three vertices with exactly two edges, V = {a,b,c} and E = {ab — ¢,ac — b}. It is
trivial to see that both the standard and oriented extremal numbers for this graph
are (g) The other three nondegenerate graphs are Ry, R3, and E. We will determine
both the standard and oriented extremal numbers for each of these graphs in Sections

2, 3, and 4 respectively.

Of the five degenerate graphs with exactly two edges, one has extremal numbers that
are trivial to find. This is the graph with two independent edges, V' = {a,b, ¢, d, e, f}
and E = {ab — c¢,de — f}. The extremal number for this graph comes directly
from the known extremal number of the undirected 3-graph that consists of two

independent edges - that is, the maximum number of edges in a 3-graph with edge

n—1

5 ) for sufficiently

intersection sizes never equal to zero. That extremal number is (

large n. Therefore, the oriented extremal number for two independent 2 — 1 edges

n—1

) ) and the standard extremal number is 3(";1).

is also (

We will call the other four degenerate graphs with two edges Iy, I, H;, and Hy and

define them as follows:

o V(Iy) = {a,b,c,d,z} and E(Iy) = {ab — x,cd — x}
o V(I,) = {a,b,c,d} and E(I,) = {ab — ¢,ad — ¢}
(
(

[ ]
<

H,) ={a,b,c,d,z} and E(H,) = {ax — b,cx — d}
e V(Hy) ={a,b,c,d} and E(Hy) = {ab — ¢,ab — d}

Here, the subscripts indicate the number of tail vertices common to both edges. The
I graphs also share a head vertex while the H graphs do not. We will determine the

oriented and extremal numbers for each of these graphs in Chapters

The proofs that follow rely heavily on the concept of a link graph. For undirected
r-graphs, the link graph of a vertex is the (r — 1)-graph induced on the remaining
vertices such that each (r — 1)-set is an (r — 1)-edge if and only if that set together

with the specified vertex makes an r-edge in the original r-graph [29]. In the directed
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hypergraph model here, there are a few ways that we could define the link graph of

a vertex. We will need the following three definitions.

DEFINITION 1.17. Let x € V(H) for some graph H. The tail link graph of x T,
is the simple undirected 2-graph on the other n — 1 wvertices of V(H) with edge set

defined by all pairs of vertices that exist as tails pointing to x in some edge of H.

That is, V(T,) = V(H) \ {z} and
E(T,)={yz:yz—x € H}.

The size of this set, |T,| will be called the tail degree of . The degree of a particular

vertex y in the tail link graph of x will be denoted d,(y).

Similarly, let D, be the directed link graph of x on the remaining n — 1 vertices of

V(H). That is, let V(D,) = V(H) \ {z} and

E(D,)={y—z:2y —z¢€ E(H)}.

Finally, let L, denote the total link graph of x on the remaining n — 1 vertices. That
is, V(L,) =V(H)\ {z} and

So L, s a partially directed 2-graph.

The following notation will also be used when we want to count edges by tail sets.

DEFINITION 1.18. For any pair of vertices x,y € V(H) for some graph H let

t(z,y) denote the number of edges with tail set {x,y}. That is

t(z,y) ={v:zy = v e E(H)}.
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CHAPTER 2

The 4-resolvent Graph R,

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

In [32], the authors gave a simple construction for an Ry-free graph. Partition the
vertices into sets T" and K and take all possible edges with tail sets in T" and head
vertex in K. When there are n vertices, this construction gives (;) (n—t) edges where
t = |T|. This is optimized when ¢ = [3*]. In [3I], the authors showed that this
number of edges is maximum for R,-free graphs for sufficiently large n and that the

construction is the unique extremal Ry-free graph.

We now give an alternate shorter proof that L%J (%ﬂ) is an upper bound on the

extremal number for R, for sufficiently large n in both the standard and oriented

versions of the problem. The proof also establishes the uniqueness of the construction.

F1GURE 2. The 4-resolvent graph R,.

T
K

(";k) tail pairs k heads

FI1GURE 3. The lower bound construction for a graph with no Rj.
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H L,
‘ B ‘
FIGURE 4. H contains a copy of Ry if and only if the link graph of

some vertex v contains a directed edge and an undirected edge that do
not intersect.

THEOREM 2.1. For all n > 29,

and for all n > 56,
n| (%]
ex(n, Ry) = {—J 3.
or) =[5 ('3))
Moreover, in each case there is one unique extremal construction up to isomorphism

when n = 0,1 mod 3 and ezxactly two when n =2 mod 3.

PROOF. In either the standard or the oriented model, let H be an R4-free graph
on n vertices. Partition V' (H) into sets T'U K U B where T is the set of vertices that
appear in tail sets of edges but never appear as the head of any edge, K is the set of
vertices that do not belong to any tail set, and B is the set of vertices that appear as

both heads and tails.

If B is empty, then H is a subgraph of some Ry-free graph with the same structure as
the lower bound construction. Therefore, H is either isomorphic to this construction
or has strictly fewer edges. So assume that there exists some v € B. The link graph
L, must contain at least one undirected edge and at least one directed edge. If any
undirected edge is independent from any directed edge in L,, then v would be the
intersection vertex for an Ry in H. Therefore, every directed edge in L, is incident

to every undirected edge.
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FIGURE 5. A simple graph on n — 1 vertices with red and blue edges
such that each red edge is incident to each blue edge and there is at
least one blue edge, xy, and at least one red edge, yz, can have no edge
contained in the remaining n —4 vertices. Moreover, only red edges can
go from x to the remaining vertices and only blue edges can go from z
to the remaining vertices.

We want to show that if v € B, then |E(L,)| = O(n). Determining an upper bound
on the number of edges in L, is equivalent to determining an upper bound on the
number of red and blue edges on n — 1 vertices such that each red edge is incident to

each blue edge and there is at least one edge of each color.

If we are working in the oriented model where multiple edges on the same triple are
not allowed then no pair of vertices in L, can hold more than one edge. If we are
working in the standard model, then two vertices in this graph may have up to three

edges between them, say two red and one blue.

First, we consider the oriented version. In this case we have at least one edge of each
color and they must be incident. So let zy be blue and let yz be red. Then all other
edges must be incident to x, y, or z. Moreover, any edge from x to the remaining
n — 4 vertices must be red since it is independent from yz and any edge from z to
the remaining n — 4 must be blue. Therefore, there are at most 2(n — 4) edges from

{z,y, z} to the remaining n — 4 vertices.
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Y

i z T

F1GURE 6. When two vertices are allowed to have up to two red edges
and one blue edge, then an adjacent red and blue edge pair is either
incident in one or two vertices.

In the standard case our initial two red and blue edges may either be incident as
before with xy blue and yz red or they might be incident in two vertices so that zy
holds both a red and a blue edge. If none of the first type of incidence exists, then

there can be at most 3 edges, all on xy.

So assume that the first type of incidence exists - xy is a blue edge and yz is a red
edge. As before, all other edges must be incident to these three vertices such that
any edge from x to the remaining n — 4 vertices must be red, and any edge from z to

these vertices must be blue. Edges from y may be either color.

However, note that if any vertex of the n — 4 has a red edge from z, then none of
the other vertices can have a blue edge from y or z. Similarly, any vertex with a blue
edge from z means that no other vertices can have red edges from z or y. Therefore,
if z has more than one red neighbor among the n — 4 vertices, then there are at most
4(n — 4) edges between {z,y, 2z} and the n — 4 remaining vertices (since red edges
have multiplicity up to 2). If z has more than one blue neighbor, then there are at
most 2(n — 4) edges between {z,y, z} and the n — 4 remaining vertices. Otherwise,
x and z each have at most one neighbor among the n — 4 vertices, and the best we
can do is 3(n — 4) edges, all from y. Therefore, there are at most 4(n — 4) additional

edges.
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In either the standard or oriented versions of the problem, edges that do not contain

vertices of B must have their tails in 7" and their heads in K. So there are at most

)

edges that do not intersect B where b = |B|. Hence,

\E(H)| < {”_bJ U%b +enb

3

where ¢ = 2 in the oriented case and ¢ = 5 in the standard case.

This expression is maximum on b € [0,n] only at the endpoint b = 0 for all n > 29

when ¢ = 2 and for all n > 56 when ¢ = 4.

Therefore, we can never do better than the lower bound construction. Moreover,
since B must be empty to reach this bound, then the construction is unique when

n =0,1 mod 3. When n = 2 mod 3, then

() -1 (%)

so there are exactly two non-isomorphic extremal constructions in that case. [
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CHAPTER 3

The 3-resolvent Graph Rj

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

In [32], the authors gave a simple construction for an Rs-free graph. Partition the
vertices into sets A and B and take all possible edges with a tail set in A and head
vertex in B plus all possible edges with a tail set in B and head vertex in A. When
there are n vertices, this construction gives (n —a)(3) + a(",") edges where a = |A|.

This is optimized when a = (%W The authors showed that this number of edges is

asymptotically equivalent to the extremal numbers for Rs.

We show that in both the standard and the oriented versions of this problem that
this construction is in fact the best that we can do. We will start with the oriented

case since it is less technical.

FIGURE 7. The 3-resolvent graph Rs.

F1GURE 8. The unique Rj3-free extremal construction.
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N N

Ficure 9. Forbidden intersection types in L, for any vertex z in an
Rs-free graph.

1. The oriented version

THEOREM 3.1. For all n,

= [3][3] 752

Moreover, there is one unique extremal Rs-free construction up to isomorphism for

each n.

PROOF. Let H be an Rs-free oriented graph on n vertices. Consider the total link

graph, L, for some x € V(H). If
yz,z —t € E(L,)

or if

y—z,z—>te E(L,),
then H is not Rs-free (See Figure [J)).

Let U, C V(L,) be the set of vertices that appear as the tail vertex of some directed
edge in L,. Then no edges of L, can be contained entirely inside U, - it is an
independent set with respect to both directed and undirected edges. Moreover, all
undirected edges of L, must appear entirely within the complement, C, := V' (L,)\U,.

Hence, if we let u, = |U,|, then

AE(H)| = Y D] < > upln—1-u,).

zeV (H) zeV (H)

Each term of this sum is maximized when u, € { L”T’lj , PTAW } Therefore, the result

is immediate if n is even. The situation is slightly more complicated for odd n.
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Co

F1GURE 10. The structure of L, for any x in an R3-free graph

In this case,

wo(n — 1 — 1) < (”;1)2

for each x. However, we need u, = ”T_l in order to attain this maximum value. This
would mean that there are ”T’l vertices in C}, and so there are at most (?1) edges
in T,. Therefore, if u, = %5 for cach x € V/(H), then
(n—2)(n—1)(n+1) n|rnyn—2
E(H)| = Y T < -5l 5] ==
8 2112 2
ze€V (H)
Hence, we must assume that there exist some vertices for which u, # "T_l
For each z let i, € {0,..., 25} be the integer such that
n—1 n—1
ug(n Uy ) ( 5 i ) ( 5 +1 )
Then,
anl
1 n—1 n—1 nn—1)2% 1 9
sy 3 () (Fa o) = sk
z€V(H) J=0

where k; is the number of vertices x € V(H) for which i, = j.
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(n=2)(n=1) )
8

Since the construction gives (D for odd n, then we are only interested in

beating this. So set

n—2)(n—1)(n+1 nn—l
(n =21ty o Zkﬂ
This gives
n—1
2 n—1
1 k% < .
() JZ_; i) > 5

Since we can also find |F(H)| by counting the number of undirected edges over the

n

L., then we can upper bound the number of these by assuming u, = % —1, for each

x since this increases the size of C,.. This gives

n—1 .
=4 n® — 4n + 3n
2 T
R S N e —§jy (n-+ -2k
eV (H)
We can also set this greater than or equal to the known lower bound:

n—1

(n=2)n—1)(n+1) _n*—4n’>+3n 1. ,
< +§jzoj(n+j—2)kj

8 - 8
to get
n—1)>? . .
2) O S i -2)Y ki
j=0 =0

Subtracting from gives

s 1)2(71 -2 <(n-2) g kjj.

Therefore,

= "1 i

) .
Z ki~ < O < Z kij,
7=0 7=0
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and so

© ‘

0<Y ki(j— 5%

o,
Il
No

Since j —j% < 0 for any j > 2 and j — j* = 0 when j = 0, 1, then k; = 0 for all j > 2.

Moreover, once all these are set to zero we get that

1
Tk

/€1§2_

Therefore, k; = ”T’l and so kg = ”T“ since Y k; = n. This gives the desired upper

bound.

Now we can show that the lower bound construction is the unique extremal example
up to isomorphism. Let H be an extremal example on n vertices, and define a relation,
~, on the vertices such that x ~ y if and only if either x = y or y € U,. This defines
an equivalence relation on V(H). Reflexivity and symmetry are both immediate.
For transitivity note that the proof of the upper bound requires that every possible
directed edge be taken from U, to C, for each z € V(H). Therefore, if we assume
towards a contradiction that y € U, and z € U, but z € U,, then z € C,. So

xy — z € E(H) which means z € C}, a contradiction.

When n is even there must be exactly two equivalence classes each of size 7. Similarly,

when n is odd there must be two equivalence classes of sizes ”T’l and ”T“ Therefore,

the lower bound construction must be unique. [ |

2. The standard version

THEOREM 3.2. For all n > 6,

= (3] [3] 52

Moreover, there is one unique extremal Rs-free construction up to isomorphism for

each n.
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PROOF. Let H be an Rs-free graph on n vertices. Let x € V(H), and call
any pair of vertices in L, a multiedge if they contain more than one edge. Let
V(L;) = U, UC, UM, where M, is the set of vertices that are incident to multiedges
(that is, the minimal subset of vertices that contains all multiedges) and U, and
C, are defined on the rest of the vertices as in Theorem [3.1] The goal is to show
that if M, is nonempty for any vertex x, then H has strictly fewer than the number
of edges in the unique oriented construction given in Theorem Therefore, that
construction must be the unique extremal Rz example for the standard problem as

well.

There are three possibilities for multiedges in M,: two oppositely directed edges, one
directed edge and one undirected edge, and one undirected edge with two oppositely
directed edges. If y,z € M, have two directed edges between them, then neither y
nor z is incident to any other edge in L, since any incidence would create one of the

two forbidden edge incidences of L, as discussed in the previous theorem.

If y and z have only one directed edge (assume it is y — z) and one undirected edge
between them, then y cannot be incident to any more edges for the same reason as
before, but z can be incident to undirected edges as well as directed edges with z at
the head. This means that z may be the vertex of intersection of a star of these types
of multiedges within M,. Between any two such stars, the vertices of intersection

may have an undirected edge between them, but no directed edges.

Therefore, the structure of the internal directed edges of M, looks like Figure [L1| with
only the vertices of intersection of the single directed edge stars able to accept more
edges from the rest of L,. Directed edges from the rest of the graph to M, must
originate in U,. Therefore, if M, consists of d double directed edge pairs of vertices
and k single directed stars with the ¢th star containing s; vertices, then the total

number of directed edges incident to vertices of M, is at most

k
=1
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M,

F1GURE 11. Example structure of M, with 3 single directed edge stars
and 4 double directed pairs.

where u is the number of vertices in U,.

If we assume that M, is nonempty, then |M,| = m > 2. The number of directed

edges incident to or inside of M, is at most m + k(u — 1). Therefore, for u > 2, the

number of directed edges incident to vertices of M, is maximized when the number
m

of single directed edge stars is maximized. This is L;J stars. Therefore, there are at

most

%(u—l—l)

directed edges incident to vertices of M,. Thus, if |C,| = ¢, then L, can have at most

uc + % (u + 1) directed edges. And since u > 2, then

uc+%(u+1) < u(c+m).

So L, has strictly less directed edges than a complete bipartite graph on the same

number of vertices would. In Theorem every L, needed to be a complete bipartite

graph in terms of the directed edges in order for the maximum number of edges to

be obtained, and only in the case of odd n could some of these bipartitions be less
n—1

than equal or almost equal. In those cases the parts could only have "= — 1 and
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”T_l + 1 vertices. Therefore, the only way that u(c+ m) could have more than this is
n—1

ifu:c—l—mandsou:T.

We assume that m > 2 and u > 2, but if both are equal to 2, then c = u—m =0

and n = 4, a contradiction since n is odd. Therefore, one of them must be strictly

(2 (),

This leaves only the cases where u = 0 and w = 1 which are both trivial.

greater. So

uc+%(u—|—1)<(u—1)(u+l)

So every link graph of H that contains a multiedge has strictly fewer than (%31)* —1
directed edges. This is enough to prove that an extremal Rs3-free graph on an even
number of vertices must be oriented. However, if there are an odd number of vertices
it is possible that there could be enough directed link graphs with the maximum
(”771)2 directed edges to make up the deficit for the directed link graphs with strictly

less than (Wﬂ) due to multiedges.

In this case there would need to be at least ”TH vertices with directed link graphs

that are complete bipartite graphs with parts of size ”T_l each. Let S be the set of
these vertices. For any z,y € S define the relation x ~ y if and only if y € U,. As
in the proof of Theorem this turns out to be an equivalence relation. By the
definition of S one equivalence class can hold at most ”T“ vertices. So there must be

two nonempty classes. Let these classes be A and B.

Given some z,y € A, suppose there is some z € S such that z € U, and z € U,. Then
it follows that z € C;; and therefore there is an edge xy — 2z and an edge xz — w for
some w € C,. Together these make a copy of R3, a contradiction. Therefore, any z

that is in U, for some x € A is in U, for all y € A.

Let C be the set of vertices that are in every U, for x € A but not in A itself. Since
A is nonempty, there is at least one vertex # € A, and by definition |U,| = ”T’l

Therefore, |[A|+|C| = %+, Similarly, let D be the set of vertices that are in every U,
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for z € B but are not in B itself. By the same reasoning we get that |B|+|D| = %L,
Hence, |A| + |B| + |C| + |D| = n + 1. However, note that the sets A, B, C, and D
are disjoint. So |A|+ |B| + |C| + |D| < n, a contradiction. This is enough to show
the result. n
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CHAPTER 4

The Escher Graph E

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

In this chapter, we will prove the following result on the maximum number of edges

of an E-free graph.
THEOREM 4.1. For all n,

ex(n, E) = (;L) +2

and there are exactly two extremal construction up to isomorphism for each n > 4.

But first we will prove the easier oriented version of the problem. This result will be

needed to prove Theorem [4.1]

1. The oriented version

THEOREM 4.2. For all n,
n
o aE =
exy(n, E) (3)

and there is exactly one extremal construction up to isomorphism.

F1GURE 12. The Escher graph E.
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1-
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2.

FIGURE 13. An “almost” linear ordering on the vertices of an F-free
directed hypergraph.

PRrROOF. The upper bound here is trivial so we need only come up with an E-free
construction that uses (’;) edges. Let H be the directed hypergraph defined on vertex
set V(H) = [n] and edge set,

EH)={ab—c:a<b<c}.

That is take some linear ordering on the n vertices and for each triple direct the edge

to the largest vertex. Then every triple has an edge and H contains no copy of E.

Now we will show that this construction is unique. Let H be an E-free graph on n
vertices and (g) edges. Define a relation on the vertices, <, where x < y if and only
if there exists an edge in E(H) with x in the tail and y as the head vertex. Then <
is a partial ordering of the vertices that is almost linear in that every pair of vertices

are comparable except for the two smallest elements (see Figure . |

We now shift our attention to the standard version of the problem where a triple of
vertices can have more than one edge. Here, both of the lower bound constructions

are similar to the unique extremal construction in the oriented version.

2. Two lower bound constructions for ex(n, F)

The first construction is the same as the extremal construction in the oriented case but
with two additional edges placed on the “smallest” triple. That is, let H; = ([n], E4)
where

Ei={ab—c:a<b<ctU{l13—-2/23 -1}

See Figure
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1

2

F1GURE 14. The first extremal construction, Hy, for an E-free directed
hypergraph on n vertices.

F1GURE 15. The second extremal construction, Hs, for an E-free graph

on n vertices.
Moreover, it is important to note that if an E-free graph with (g) + 2 edges has
at least one edge on every vertex triple, then it must be isomorphic to H;. This
is because we can remove two edges to get an FE-free subgraph where each triple
has exactly one edge. Therefore, this must be the unique extremal construction
established in Theorem [4.2] The only way to add two edges to this construction and
avoid creating an Escher graph is to add the additional edges to the smallest triple

under the ordering.
The second construction is also based on the oriented extremal construction. Let
Hy = ([n], Ey) where

Ey= (B \ {23 — 4,23 > 1}) U {14 — 2,14 — 3}.

See Figure

For the rest of this section we will show that any E-free graph is either isomorphic to

one of these two constructions or has fewer than (’;) +2 edges. Roughly speaking, the
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strategy is to take any FE-free graph and show that we can add and remove edges to
it so that we preserve E-freeness, remove most multiple edges from triples that had

more than one, and never decrease the overall number of edges.

3. Add and remove edges
Let H be an E-free graph and represent its vertices as the disjoint union of three sets:
V(H)y=DURUT

where D (for ‘Done’) is the set of all vertices that have complete graphs on three or
more vertices as tail link graphs, R (for ‘Ready to change’) is the set of vertices not
in D that have at least three edges in their tail link graphs, and T is the set of all

other vertices (those with ‘Two or fewer edges in their tail link graphs’).

The plan is now to remove and add edges in order make a new graph H’ which is also

E-free, has at least as many edges as H, and whose vertices make a disjoint union,
V(H)Y=D'UT

where D' and T" are defined exactly the same as D and T except in terms of the

vertices of H'.

That is, for each vertex x € R, we will add all possible edges to complete 7). This
moves = from R to D. The edges removed will be all those that pointed from z to a
vertex that points to x. This will destroy triples with more than one edge as we go.
The following observation will ensure that this procedure only ever moves vertices
from R to D, from R to T, from R to R, and from 7" to T'. Since each step moves one
vertex from R to D and ends when R is empty, then the procedure is finite. Here is

the observation:
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LEMMA 4.1. Let H be an E-free graph, and let x,y € V(H). If d.(y),d,(z) > 0,
then d,(y) = d,(xz) = 1. In other words, for any two vertices, x and y, if d,(x) > 2,
then d.(y) = 0.

PROOF. Suppose not. Let d,(y),d,(z) > 0 and suppose d,(y) > 2. Then there

exist two distinct vertices, a and b such that
ay — z,by - x € E(H).

There also exists a vertex ¢ such that xc — y € E(H). Since ¢ must be distinct from

either a or b if not both, then this yields an Escher graph. |

Now, let us make the procedure slightly more formal: While there exist vertices in
R, pick one, x € R, and for each pair a,b € V(T},), add the edge ab — = to E(H) if
it is not already an edge. Then, for each a € V(7}), remove all edges of E(H) of the

form xs — a for any third vertex s.

Since there were at least three edges in 7}, then the added edges will move z from
R to D. The removed edges, if any, will only affect vertices in R or in T since if s
is removed from T,, then this implies that a € T, and that = € T, and so both had
degree one in the other’s tail link graph. Hence, a ¢ D. Moreover, an affected vertex
in R will either stay in R or move to T while an affected vertex in T" will stay in T’

since it is only losing edges from its tail link graph.

At the end of this process D’ will contain no triple of vertices with more than one
edge. Therefore, the only such triples of vertices of H' will be entirely in 7" or will
consist of vertices from both 7" and D’. We will show later that there cannot be too
many of these triples. First, we need to show that after each step of this procedure,
no Escher graph is created and at least as many edges are added to the graph as

removed.
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4. No copy of F is created and the number of edges can only increase

Fix a particular vertex € R to move to D. Add and remove all of the designated
edges. Suppose that we have created an Escher graph. Since the only added edges
point to z, then the configuration must be of the form, ab — z,zc — a for some
distinct vertices, a, b, and ¢. Therefore, a € V(T,) and so x¢ — a would have been

removed in the process.

Now we will show that at least as many edges have been added to H as removed by
induction on the number of independent edges in T),. Start by assuming there are 0
independent edges in 7T, and assume that there are k vertices in T}, that have degree
one. Then at most k edges will be removed. If £ = 0, then no edges are removed and

there is a strict increase in the number of edges.

If K = 1, then let y; be the vertex with degree one and let y, be the vertex it is
incident to. Since d,(y2) # 1 and d,(y2) > 1, then d,(y2) > 2. So there exists a third
vertex, ys, and similarly, d,(y3) > 2 but y3 is not adjacent to y;,. Hence, there exists
a fourth vertex, y,. So at most one edge is removed and at least two edges are added,

11y3 — x and y1ys — x. Therefore, there is a strict increase in the number of edges.

If £ = 2, then the fact that T}, has at least three edges means that there must be at
least two additional vertices in T).. Hence, at most two edges are removed but at least
three are added. If k£ > 3, then at most k£ are removed but (g) are added which nets

(k)—k:zm>0

2 2 -
edges added.

Now, for the induction step, assume that 7, has m > 0 independent edges and that
the process on a T, with m — 1 independent edges adds just as many edges as it
removes. Let yz be an independent edge in T}, and let A be the set of vertices of T},
that are not y or z. Since T}, has at least three edges, then A contains at least three

vertices. Therefore, the number of added edges is at least 6 between A and {y, z}.
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The number of edges removed from 7}, and T, together is at most 2. By assumption,
the number of edges removed from the other tail link graphs of vertices in A is offset
by the number of edges added inside A. Therefore, there is a strict increase in the

number of edges.

To summarize, we have shown that H’ is an E-free graph such that
|E(H)| < [E(H')]

and
V(H)Y=D'UT'

such that any triple of vertices of H" with more than one edge must intersect the set

T'. We will now consider what is happening in 7" by cases.

5. Case 1: [T"| >5
Let 7" = {x1,x2,..., 2} for t > 5. For each z; remove all edges of H' that have z;
as a head. By the definition of 7" this will remove at most 2t edges from H’'.

Next, add all edges to 7" that follow the index ordering. That is, for each triple
{z;,z;, 2} add the edge that points to the largest index, z;x; — x where i < j < k.

This will add (é) edges. The new graph has

t
—2t>0
O

more edges than H’. Moreover, it is E-free and oriented. Therefore, |[E(H)| < (}).

6. Case 2: |T"| <4 and some x € T" gives an T, with 2 independent edges

Assume that some = € T has a tail link graph T}, such that ab,cd € E(T,) for four

distinct vertices, {a,b,c,d}. If
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then a,b,c,d,x € T', a contradiction of the assumption that |7"| < 4.

Therefore, we can add the edges
ac — x,ad — x,bc — x,bd — x

and remove any edges that point to a vertex from {a,b,c,d} with x in the tail set.
Because z has zero degree in at least one of those tail link graphs, then we have
removed at most three edges and added four, a strict increase. We have also not

created any triples of vertices with more than one edge or any Escher graphs.

We may now assume that |7”| < 4 and that the tail link graphs of vertices in 7" are

never two independent edges.

7. Case 3: |T"|=0,1,2

First, note that if H' has a triple with more than one edge {z,y, z} then at least two
of its vertices must be in 7" as a consequence of Lemma Therefore, if [T"| = 0,1,

then H' is oriented and so

)| < 1e0) < ()

Moreover, if 7" = {z,y} and H' is not oriented, then any vertex triple with more

than one edge must have two edges of the form,
2T — Y, 2y = T

for some third vertex z. If there exist two such vertices z; # z5 that satisfy this, then
there would be an Escher graph. Hence, there is at most one vertex triple with more
than one edge and it would have at most two edges. Therefore,

B <1EG) < () +1
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8. Case 4: |T"| =3

First, suppose that there exists a triple {z,y, z} with all three possible edges. Then
T" = {x,y,z}. Since any triple with multiple edges must intersect 7" in at least two
vertices, then any additional such triple would make an Escher graph with one of the
edges in T". Therefore, H' has exactly one triple of vertices with all three edges on it

and no others. So

B < B < ;) +2
Moreover, to attain this number of edges, no triple of vertices can be empty of edges.

In this case, H' must be isomorphic to the first construction H.

Next, assume that no triple of vertices has all three edges and let 7" = {x,y, z}.

Therefore, H' needs at least two triples of vertices that each hold two edges or else

B(H)| < [B(H)| < (Z) i

automatically. Suppose one of the multiedges is {x,y, z} itself. Then without loss of
generality let the edges be xy — 2z and zz — y. The second triple with two edges
must have its third vertex in D’. Call this vertex v. The vertex x cannot be in this
second triple of vertices without creating an Escher graph. So the edges must be

vy — z and vz — y. But this also creates an Escher graph.

Therefore, neither of the two triples that hold two edges are contained entirely within
T’. So without loss of generality they must be vz — y,vy — = and wy — z,wz — y.
If v # w, then vax,wz € T,, a contradiction to our assumption that 7" contains no

vertices with tail link graphs that are two independent edges. Hence, v = w.

Since v € D, then T, has at least three vertices. Moreover, since v is in the tail link
graphs of each vertex of T”, then none of these vertices can be in T,. Remove all
edges pointing to the vertices of T7”. This is at most 6 edges. Add all possible edges
with v as the head and a tail set among the set V(7)) U {z,y, z}. This adds at least

12 new edges. The new graph is oriented and E-free. Therefore, |E(H)| < (3).
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9. Case 5: [T"| =4

First, assume that there is some triple {z,y, z} that contains all three possible edges.

As before, there are no additional triples with more than one edge. So
B < B < () +2

The first construction H; is the unique extremal construction under this condition

since all triples must be used at least once.

So assume that all triples with more than one edge have two edges each. Then we
must have at least two. Assume that one of them is contained within 7" = {a, b, ¢, d}.
Without loss of generality let it be ab — c¢,ac — b. Since the second such triple
intersects 7" in at least two vertices, then it must intersect {a,b,c} in at least one

vertex.

If it intersects {a, b, ¢} in two vertices, then without loss of generality (to avoid a copy

of E) the second triple must be of the form ab — z,ax — b. Hence, x € T" so = = d.

But now there is no edge possible on {b, ¢, d}. Therefore, there must be a third such
triple for H’ to have (g) + 2 edges. This triple must be ac — d,ad — ¢. And the
only way to actually make it to the maximum number of edges now must be to have

an edge on every other triple.

Every triple of the form {b, ¢, s} for s € D must have the edge bc — s since the other
two options would create an Escher graph. Similarly, bd — s and cd — s are the only
options for triples of the form {b,d, s} and {c,d, s} respectively. Next, any triple of
the form {a, b, s} must hold the edge ab — s since the other two edges create Escher
graphs. Similarly, every triple of the forms {a, ¢, s} and {a, d, s} must hold the edges

ac — s and ad — s respectively.

Since each triple contained in D holds exactly one edge, then the induced subgraph on

D must be isomorphic to the oriented extremal example of an E-free graph on n — 4
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vertices. Therefore, the entire graph H’ must be isomorphic to the second extremal

construction H, in order to attain (g) + 2 edges.

So assume that the second triple with two edges intersects {a, b, ¢} in only one vertex.
Then these edges must be xa — d,zd — a. This can be the only additional triple
with two edges. So to make it to (g) + 2 edges we need each triple to have an edge.
However, the edge for {a,b,d} is forced to be ad — b and the edge for {b,c,d} is
forced to be bc — d. This makes an Escher graph. So

B <1e6) < () +1

Now assume that no vertex triple with multiple edges is contained entirely within 77,
but assume that there are at least two such triples in H’. The only way that two
triples could have distinct vertices in D’ is if they were of the forms (without loss of
generality), xa — b,xb — a, and yc — d,yd — c. Otherwise, the pairs of the two
triples that are in 7" would intersect resulting in either a copy of E (if both triples

use the same pair) or a vertex in 7" with two independent edges as a tail link graph.

So there must be exactly two such triples. Therefore, all other triples of vertices
must contain exactly one edge in order to reach (g) + 2 edges overall. To avoid the
forbidden subgraph this edge must be ab — ¢ for the triple {a,b,c} and cd — a for
the triple {a,c,d}. But this is an Escher graph. Hence, not all triples may be used

and so

B < 8] < () +1

Therefore, we may now assume for each multiedge triple that the vertex from D’ is
always . First, assume that there are only two such triples. As before, if we assume
that the only two such triples are za — b, b — a and xc — d, xd — ¢, then there can
be not be an edge on both {a, b, c} and {a, c,d}. Hence, there would be a suboptimal

number of edges overall.
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On the other hand, if the only two such triples are adjacent in 7", then they are,
without loss of generality, xa — b, b — a and b — ¢, xc — a. In this case, no edge

can go on the triple {a, b, c} at all and so there are at most (g) + 1 edges overall.

Therefore, we must assume there are at least three such triples that meet at x. If these
three triples make a triangle in 7", then they are xa — b,zb — a, xb — ¢, xc — b,
and x¢ — a,ra — c¢. Again, there can be no edges on the triple {a,b,c}. Hence,

every other triple must hold an edge to attain (g) + 2 edges overall.

On the triple {a,b,d} this edge must be ab — d to avoid making a copy of FE.
Similarly, we must have the edges ac — d and bc — d. But this means that d &€ T", a

contradiction.

On the other hand, if there are three triples of vertices with more than one edge on
each that do not make a triangle in 7" or if there are four or more such triples, then
x is in the tail link graphs for each vertex in 7”. Hence, none of these vertices may
be in the tail link graph, T,. However, x € D’ so its tail link graph has at least
three vertices. Remove all edges pointing to vertices of 7" (at most 8). Add all edges
pointing to = with tail sets in 7" (6 new edges) and between 7" and V(T) (at least

12 new edges). So this adds at least ten edges to H' to create H”. H" is oriented so
B < £ < (3 ).

This exhausts all of the cases and establishes that

ex(n, E) = (g) +2

with exactly two extremal examples up to isomorphism.
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CHAPTER 5

The Graph I

This chapter contains material from a paper published by the Electronic Journal of
Combinatorics. [12]

Let [y denote the forbidden graph where two edges intersect in exactly one vertex
such that this vertex is the head of both edges. That is V(Iy) = {a,b,c,d,xz} and
E(Iy) = {ab — x,cd — x} (see Figure[16)). In this chapter, we will prove the following

result on the oriented extremal numbers of I.

THEOREM 5.1. For alln > 9,

nn—3)+% n=0mod3
ex,(n, Iy) = n(n_g)jt%l n=1 mod 3
n(n—3)+22 n=2mod3

with ezactly one extremal example up to isomorphism when 3|n, exactly 18 non-

1somorphic extremal constructions when

n =1 mod 3,
and exactly 32 constructions when
n =2 mod 3.
a c
x
bl ld

F1GURE 16. The graph Ij.
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T, H
a c
b d

FIGURE 17. ab,cd € E(T,) if and only if ab — x,cd — x € H.

The proof for this is rather long. However, the standard version of the problem is

much simpler so we will begin there.

THEOREM 5.2. For each n > 5,
ex(n, Iy) = n(n —2)

and for each n > 6, there are exactly (n — 1)" different labeled Iy-free graphs that

attain this mazimum number of edges.

PROOF. Let H be Iy-free on n > 5 vertices. For any = € V(H), the tail link
graph T, cannot contain two independent edges (see Figure . Therefore, by the
Erdés-Ko-Rado Theorem [21] the edge structure of T, is either a triangle or a star
with k£ edges all intersecting in a common vertex for some 0 < k < n — 2. So each

vertex x € V(H) is at the head of at most n — 2 edges. Hence,

[E(H)| = Y |E(T)| <n(n-2).
z€V (H)

On the other hand, many different extremal constructions exist that give n(n — 2)

edges on n vertices without the forbidden intersection. Let

fIn] = n]
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be any function such that f(x) # x for any x € [n|. Define H; as the graph with

vertex set V(Hy) = [n] and edge set

E(Hy) = | {f(@)y = =y € o]\ {z, f(x)}}.

z€[n]
Certainly each vertex x is at the head of n — 2 edges and each of its tail sets contains
f(x) which prevents the forbidden subgraph. So |E(H)| = n(n—2), and Hy is Ip-free

for any such function f.

Moreover, there are (n — 1)" different functions f that will make such a construction
on [n]. So this gives us (n — 1)™ labeled extremal [y-free graphs. Conversely, since
any Iy-free graph with the maximum number of edges must have n — 2 edges in T, for
each vertex z, then all tail link graphs must be (n — 2)-stars for all n > 6. Therefore,

these constructions give all possible extremal examples. [ |

The oriented version of this problem is less straight forward, but determining ex,(n, I)
also begins with the observation that every tail link graph of an Iy-free graph will
either be a triangle, a star, or empty. Broadly speaking, as n gets large, it would
make more sense for most, if not all, tail link graphs to be stars in order to fit as

many edges into an Ip-free graph. This motivates the following auxiliary structure.

1. Gates

Let H be some Iy-free graph. For each x € V(H) for which T}, is a star (with at least
one edge), let g(z) denote the common vertex for the edges of T,. We will refer to
this vertex as the gatekeeper of x (in that it is the gatekeeper that any other vertex
must pair with in order to “access” x). In the case where T, contains only a single
edge we may choose either of its vertices to serve as the gatekeeper. In this way, we

have constructed a partial function, g : V(H) - V(H).
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F1GURE 18. The structure of a connected component of the gate G.

Next, construct a directed 2-graph G on the vertex set V(H) based on this partial
function:

y—ze€EG) <= y=g(z).

We will call this digraph the gate of H (or more properly, G is the gate of H under

g since ¢ is not necessarily unique).

The edge structure of any gate G is not difficult to determine. Since ¢ is a partial
function, then each vertex has in-degree at most one in GG. Therefore, the structure
of any connected component of G can be described as a directed cycle on k vertices,
Ck, for 1 < k (where k£ = 1 implies a single vertex) unioned with % disjoint directed
trees, each with its root vertex on this cycle (see Figure . We will refer to this

kind of general structure as a k-cycle with branches.

Let
n
c=Ja
k=1
be the set of maximal connected components of a gate of H where, for each k, C, is
the set of maximal connected components that are k-cycles with branches. Note that

n

EH) = > IT=> [ Y ml =Y 1> | Y Iz

2€V (H) cec \zev(0) k=1 \C€Cx \zeV(C)
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The next section determines for each k an upper bound on

> T

zeV(C)
as a function of the number of vertices, |V (C)|, for any C' € Cy.

2. Bounding }_ .y |1:| for any connected component C' of the gate

zeV

Loosely speaking, each gatekeeper edge of a connected component C' represents at
most n — 2 edges of H. We will arrive at an upper bound on the sum ZzeV(C) |T.|
by adding this maximum for each edge of C', and then subtracting the number of
triples of vertices that such a count has included more than once. This will happen
for any triple of vertices which contain two or three gatekeeper edges. We make this

observation formal in the following definition and lemma.

DEFINITION 5.1. Let G be some gate and let C' be a maximal connected component
of G. Let P(C) be the set of 2 — 1 possible edges defined by

PC)= |J {aw—b:veV(H)\{ab}}.
a—beE(C)

LEMMA 5.2. Let G be a gate, and let C' be a maximal connected component of G. If
a set of three distinct vertices {x,y,z} C V(C) are spanned by two gatekeeper edges

of G, then P(C) contains at least two edges on these three vertices.

ProOOF. Without loss of generality, the two spanning edges on {z,y, z} are either
of the form

T—Y =20l T4y — 2.

In the former case, P(C) contains the edges vz — y and yr — z. In the latter case,

P(C) contains the edges yz — = and yxr — z. [ |

Now comes the main counting lemma.



2. BOUNDING ¥, y ¢, [T:| FOR ANY CONNECTED COMPONENT C OF THE GATE 43
LEMMA 5.3. Let H be an Iy-free graph on n > 8 wvertices. Let G be a gate of H.

Let C be a mazimal connected component of G with m vertices. Then

® > cvio) [Tl <m(n—3) if C € Cy for any k # 3 with equality possible only
if C = CYy for some k > 4,

. erv(c) T <m(n—3)+1if C=Cs, and

° erv(C) T:| < m(n—23) for all other C € C3 with equality possible only if C

s a 3-cycle with exactly one nonempty directed path coming off of it.

PROOF. For convenience let
S= > T
zeV(C)

Note that for each x € V(C') with in-degree one, ab € T, implies that ab — = € P(C).
Hence, if C' ¢ C;, then every edge counted in the sum S is in P(C). Moreover,
[P(C)] = m(n —2).

If C € Cy, for k > 4, then by Lemma [5.2] each intersection of gatekeeper edges of C
yields two edges on the same triple of vertices in P(C'). Conversely, since C' contains
no (3, then each distinct triple of vertices contains at most two gatekeeper edges.

Therefore, each triple contains at most two edges of P(C'). Hence,
dc;(l’)
S < —-2) —
< m(n—2) Z ( 5
zeV(C)

where dg(z) denotes the total number of vertices incident to x in the gate.

Since C' has m edges, then 3, ) da(z) = 2m. So
d
S<m(n-2)— Z ( GQ(x)) < m(n—3)
zeV(C)

by Jensen’s Inequality. Moreover, equality happens if and only if dg(x) = dg(y) for

all z,y € V(C). Therefore, this inequality is strict for all C' € Cy, unless C' = Cj,.
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Similarly, if C' € Cs, then P(C) contains at least > (dGQ(x)) multiedges for the
same reason as before. But here there are an additional n — 2 edges counted for each

triple containing the Cy. Also,

Y de(r) =2(m—1).

eV (C)
Hence,
S<mn—2)—(n—2)— me;c) (dcz(x)) < (m—1)(n—2)— m(2(n:5—1))

by Jensen’s Inequality. This is strictly less than m(n — 3).

In the acyclic case, Lemma implies that the sum of all |T,| for each x € V(C)

other than the root vertex is less than or equal to

m-n@w-2- > (“57).

zeV (C)

The root vertex itself is the head vertex of at most 3 edges in H so Jensen’s Inequality

gives
2(m—1)
S < (m—l)(n—2)—m< 75 )+3<m(n—3)
for all n > 8.

Finally, if C' € C3, then each intersection of gatekeeper edges of C' yields two edges on
the same triple of vertices in P(C). However, exactly one triple of vertices contains
three gatekeeper edges and has three edges in P(C'). But the rest have at most two
since there is only one triangle in C. Therefore, erV(o) (dGQ(‘”)) counts each triple
of vertices that contain more than one gatekeeper edge exactly once except for the
triple that makes up the C3 which it counts three times. Since we must subtract off

two edges in P(C') on these three vertices to eliminate repeated triples, then we must
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subtract »_ v o (dGQ(w)) — 1 from |P(C)|. Therefore,

S<mmn-2- Y (dGQ(m))H.

zeV(C)

So by Jensen’s Inequality,
S<m(n-3)+1

with equality possible only if all of the degrees dg(x) are equal. This can only happen
if C' = Ci.

If we want to see for which C' € Cs the second best bound of m(n — 3) could be

attained, then we need to set

Z (ng;)) =m+ 1.

zeV(C)

Assume that the vertices are z1, ..., x,,, and for each z; let
dl' = dg(l’z) — 2.

Then Y " d; = 0 and a quick calculation shows that >./" d? = 2. Therefore, the
only possibility is for some d; = 1 and another to equal —1 and all the rest must be
0. This corresponds with one vertex degree equal to 3, another equal to 1, and all

others equal to 2. The only way that this can happen in a C3 with branches is to

have exactly one branch, and that branch must be a directed path. [

This shows that the best we can hope for in terms of the average number of edges
per vertex over any connected component of the gate is n — 3 + %, and this could be
attained only in the case where the component is a directed triangle with no branches.
Otherwise, the average number of edges of a component is at most n — 3, and this
is attainable only if the component is a directed triangle with a single directed path

coming off of one of its vertices or a directed k-cycle with no branches for some k > 4.
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FIGURE 19. Structure of the gate for an extremal Iy-free graph when
n =0 mod 3.

This is enough for us to establish the upper bound for ex,(n, Iy) and to characterize

the necessary structure of the gate for any graph attaining this upper bound.

3. Upper bound on ex,(n, Ij)

Let H be an Iy-free graph on n > 9 vertices. Let G be a gate of H. Let C be the
set of maximal connected components of G' and break C into three disjoint subsets
based on the maximum average number of edges attainable for the components in
each. That is, let

C=D1UDy,UDs

where D; contains all components with maximum average number of edges per vertex
strictly less than n—3: those components that are either acyclic, contain a Cy, contain
a C3 with nonempty branches that are more than just a single path, or contain a Cj,
for £ > 4 with some nonempty branch; D, is the set of all components with maximum
number of edges per vertex of n — 3: those that contain a directed C3 and exactly one
directed path or those that are a directed k-cycles for any & > 4 and no branches;
and Dj3 is the set of components with a maximum average greater than n — 3: the

directed triangles.

For each 7 let d; be the total number of vertices contained in the components of D;.

Then

|E(H)| <dj (n—3+%> + (n —ds3)(n —3)

with equality possible only if d; = 0. This is enough to prove the following.
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FiGURE 20. The only possible structures of the gate of an extremal
Iy-free graph when n = 1 mod 3.

LEMMA 5.4. Let H be an Iy-free graph on n > 9 wvertices such that n = 0 mod 3,
then

\E(H)| < n(n—3)+ %

Moreover, the only way for H to attain this maximum number of edges is if the gate

of H is a disjoint union of directed triangles.

The next two lemmas give the maximum number when n = 1,2 mod 3. There is only

slightly more to consider in these cases.

LEMMA 5.5. Let H be an Iy-free graph on n > 9 wvertices such that n = 1 mod 3,

then
n—4
5

|[E(H)| <n(n—3)+

Moreover, the only way for H to attain this maximum number of edges is if the gate
of H s a disjoint union of ”7_4 directed triangles together with either a directed Cy or

a 3-cycle with an extra edge.

PROOF. Since n =1 mod 3, then d3 < n—1. If d3 = n—1, then the gate consists

of *7= L disjoint directed triangles and one isolated vertex which means that

\E(H)| < (n—1) (n—3+%) +3.
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YANNYANE /\/<

or

FiGURE 21. The only possible structures of the gate of an extremal
Iy-free graph when n = 2 mod 3.

If d3 < n — 4, then we can do better with

|E(H)| < (n — 4) (n—3+%> +4(n—3)

only in the case of "7_4 disjoint directed triangles and one component from Dy in the

gate. Therefore,
n—4

[E(H)| < n(n - 3) + ™

LEMMA 5.6. Let H be an Iy-free graph on n > 11 vertices such that n = 2 mod 3,

then
n—>5

B(H)| < nn—3) + "=

Moreover, the only way for H to attain this mazimum number of edges is if the gate
of H is a disjoint union of ”T_‘r’ directed triangles together with either a directed Cs or

a 3-cycle with a directed path of two edges.

PROOF. Since n = 2 mod 3, then d3 < n — 2 and equality implies that G consists
of =2 disjoint directed triangles and two additional vertices that are either both

isolated, contain one edge, or are a Cy giving 6, 3+ (n — 2), or n — 2 additional edges
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respectively. The best we can do when d3 = n — 2 is therefore,

uﬂHng(n—m(n—3+§)+«n+n.

Otherwise, d3 < n — 5 and the best we can do is
1
|[E(H)| < (n—5) (n—3+ 5) +5(n — 3).

This is better. Moreover, this will happen only when the five non-triangle vertices
are in a component (or components) of G that give an average of n — 3. So they must

either make a (5 or a directed triangle with one path. [

4. Lower bound constructions

The structure of the gates necessary to attain the maximum number of edges for a
Iy-free graph determined in the previous section are also sufficient. Of these gates,
none of them have acyclic components. Therefore, any graph that produces one of
these gates has only vertices with stars for tail link graphs. This immediately implies

that there is no I in any graph that has such a gate.

Moreover, if H is a graph with a gate G that is one of these configurations, then
EH) < | P(C)
cec
where C is the set of maximal connected components of GG. All that is left to do in

order to construct an extremal example is to pick which edges of each P(C') to delete

in order to eliminate triples of vertices with more than one edge.

LEMMA 5.7. Let H be an Iy-free graph on n > 9 wvertices such that n = 0 mod 3,
then
[B(H)| = nn = 3) + 5

and there is exactly one extremal construction up to isomorphism.
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a

z Y

FIGURE 22. (5 plus an edge.

PRrROOF. We know from Lemma [5.4] that the only way H can possibly attain
n
B NI
n(n—3)+ 3

edges is if its gate is the disjoint union of § directed triangles. Therefore, each P(Cs)
contains exactly one vertex triple with all three possible edges. So two of these must
be deleted for each component in order to arrive at an extremal construction. The
three choices for this deletion on each component are all isomorphic to each other.

Therefore, there is exactly one extremal construction up to isomorphism. |

LEMMA 5.8. Let H be an Iy-free graph on n > 9 wvertices such that n = 1 mod 3,

then
n—4

|E(H)| > n(n—3)+ 3

and there are exactly 18 extremal constructions up to isomorphism.

PROOF. We know from Lemma [5.5] that if H has n(n — 3) + 5% edges, then its
gate is the disjoint union of ”7_4 directed triangles with either a directed Cy or a Cj
plus an edge on the remaining 4 vertices. As in the previous proof, there is only one
choice up to isomorphism for which edges to delete from each P(C3). However, this

will not be true of the last component on the remaining four vertices.

First, let’s consider the case where the last component is a C3 plus one edge. Call the
vertices {x,y, z,a} where x — y — 2z — x is the C5 and x — a is the additional edge.
First, note that we have the following three mutually exclusive choices for edges with

head vertices in this component:

(1) za € T, or zy € Ty,
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FiGure 23. C, with 2 additional edges in opposite tail link graphs.

(2) za €T, or xz € T,, and

(3) zz €Ty, yz € T,, or zy € T.

This gives 12 choices, and each choice is unique up to isomorphism.

Next consider the case of Cy. Each 3-subset of these four vertices holds two edges of
P(C) - one that points along the direction of the two gatekeeper edges and one that
points the middle vertex of the two gatekeeper edges. For each triple one of these

edges must be deleted to arrive at a legal oriented construction.

Each tail link graph must have at least n — 4 edges, and combined they must contain
four additional edges. Since each can have up to two more edges, then the distribution

of these additional edges must be one of the following integer partitions of 4:

2 20,0
2 1, 1,0
o 1,1,1,1

There is only one choice up to isomorphism with a distribution of 2, 2, 0, 0. Each of
the three ways to place 2, 1, 1, 0 around Cj are possible but each distribution has only
one way up to isomorphism. Finally, there are two ways up to isomorphism to put
an extra edge into each tail link graph. So all together there are six nonisomorphic

ways to distribute these extra edges to the C} tail link graphs. |

LEMMA 5.9. Let H be an Iy-free graph on n > 9 wvertices such that n = 2 mod 3,

then
n—>5

|[E(H)| > n(n—3)+ 5

and there are exactly 32 extremal constructions up to isomorphism.
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PRrROOF. We can do the same kind of analysis when n = 3k + 2 as in the previous
proof. We know from Lemma that the gate of any extremal construction must be
all directed triangles together with either a directed Cy or a directed triangle with a

directed path of length two coming off of it (see Figure .

First, consider the C5 case. Let the vertices be {xg,...,z4}. For each gatekeeper
edge, ©; — x;11, every edge of the form x;v — x;,1 must be an edge in H for any

vertex

U F Tiy Tig1, Tio1, Tiga-

Each gatekeeper edge can represent up to two additional edges of H, but again, every
intersection of gatekeeper edges requires a mutually exclusive choice. Ultimately,
we can add 5 additional edges so the extra edges must be distributed in one of the

following ways:

2 2 1,0,0
2 1,1,1,0
e 1,1, 1,1, 1

There are 2 ways to get the first distribution up to isomorphism, 4 ways to get the
second, and 2 ways to get the third. Therefore, there are 8 extremal constructions

with this gate up to isomorphism.

Now consider the case of a directed triangle with a directed two path coming off of it.
If we label the vertices as {z,y, z,a,b} (see Figure , the mutually exclusive choices

are
axr — y or yr — a,

(1)

(2) az — x or zz — a,

(3) zx =y, yz — =, or xy — 2, and
(4)

za — bor br — a
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b

Z Y

FIGURE 24. Cj5 plus a 2-path.

This gives 24 ways of reaching the maximum, and each way is unique up to isomor-

phism. Therefore, there are 32 total distinct extremal graphs up to isomorphism. B

This establishes the main result of this chapter.
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CHAPTER 6

The Graph [,

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let I; denote the forbidden graph where two edges intersect in exactly two vertices
such that one vertex is the head for both edges and the other is in the tail set of each

edge. That is V(I;) = {a,b,c,d} and E(I;) = {ab — c,ad — ¢} (see Figure [40).

THEOREM 6.1. For all n > 4,

ex(n, 1) = exo(n, 1) = n V 2 IJ

2
-1 \
2l 25 )

labeled graphs that attain this maximum in the standard case.

and there are

PROOF. Let H be an I-free graph on n vertices. For any = € V(H), T, is a
simple undirected 2-graph on n — 1 vertices such that no two edges are adjacent (this
is true for either version of the problem). Therefore, the edges of T, are a matching

on at most n— 1 vertices. So there are at most |25 | edges in T}, for every z € V(H).

b d

FiGURE 25. The graph I;.
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Thus,

EH)| = Y |1 gn{";lJ.

€V (H)
This shows the upper bound for both versions.
Now we want to find lower bound constructions. In the standard version of the
problem there are many extremal constructions since for each vertex x, we may pick

any maximum matching on the remaining n — 1 vertices to serve as the edges of T,.

So

ex(n, 1) = n L”;J

Moreover, the number of labeled graphs that attain this maximum equals the number
of ways to take a maximum matching to construct each tail link graph. For even k,

the number of matchings on k vertices is
My, = (k—1)My_»

since if we fix some vertex, then we can pick any of the remaining k — 1 vertices to go
with it and then take the number of matchings on the remaining n —2. Since My = 1,

then in general for even £k,
k

2

M, = []@i-1).

=1

If k£ is odd, then we can first select the vertex left out of the matching to get

e

—1 k

2
My = kM = k- JJ(2i—1) =] 2i-1).
=1

i

m‘+

I
—_

Therefore, the number of labeled extremal I;-free graphs on n vertices is

El n
. B (n—1)!
[[ei-1] = <—2L"21 ”‘1j!) .

i=1

n

In the oriented version of the problem we need to be more careful with the construc-

tion. First, assume that n is even and define a graph H with vertex set V(H) = Z,
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FIGURE 26. T; in the oriented extremal construction for even n.

T;

FIGURE 27. T, in the oriented extremal construction on n + 1 vertices
for even n.

and edge set

n—1

E(H):U{(i+2k)(i+2k+1)—>z’:k:1,2,...7n;2}.

This construction creates a maximum matching for each tail link graph (with i+ 1 as
the odd vertex out for each T;). So H has the extremal number of edges and contains

no I,. Therefore, all we need to show is that it has no triple with more than one edge.

If H does contain such a triple, then there exist three integers in Z, that can be

represented as both {a, a+2k, a+2k+1} and {b, b+2i, b+2i+1} with a # b. Without
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FIGURE 28. T, in the oriented extremal construction on n + 1 vertices
for even n.

loss of generality we can assume that b = 0. If a+2k = 0, then a+2k+1 =1, but 1 is
not in any tail set that points to 0. Therefore, it must be the case that a+2k+1 = 0,
but then a+ 2k = n—1. Therefore, the set is equal to {0,n—1,n—2}, and a = n—2,
but n — 1 does not point to n — 2, a contradiction. Therefore, H can have no such

triple.

Now, we consider odd n + 1. Here, let V(H) = Z,, U {v} where v is a new vertex and
use all of the edges from the even construction plus some new ones that all contain

v. So E(H) = Eepen U Epew U E, where

n—1

) ) ) n—2
Eeven:U{(Z—l—QkJ)(@—l—ZkJ—i—l)—>z:l{::1,2,..., 5 }
=0

and

Erew ={v(i+1)—1:i=0,1,...,n—1}.

Certainly, the construction has so far avoided the forbidden subgraph and given each
of the first n vertices the maximum number of tails. Now £, can be constructed as
any set of 7 disjoint pairs of elements from Z,, all pointing at v so that no pair consists
of two sequential numbers mod n. So any maximum matching of the n elements that

observes this condition will do.
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In particular, we can let
E, = {(i)(n—i)—m;:i:l,...,——l

So

-1
ex,(n, 1) =n {n

58
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CHAPTER 7

The Graph H;

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let H; denote the forbidden graph where two edges intersect in exactly one vertex
such that it is in the tail set of each edge. That is V(H;) = {a,b,c,d,z} and E(H;) =
{ax — b,cx — d} (see Figure 29). First we will show the following result for the

oriented version of the problem.

THEOREM 7.1. For all n > 6,

ex,(n, Hy) = {gJ (n—2).

We will use this result to solve the standard version of the problem.
THEOREM 7.2. For all n > 8,

ex(n, Hy) = (”;1> 3

Moreover, there is one unique extremal construction up to isomorphism for each n.

First, note that the proof of Theorem is straightforward when n is even. To get

a lower bound construction we can take a maximum matching on the n vertices and

FiGURE 29. The graph H;.
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H D.T

FiGURE 30. H has a copy of H; with intersection vertex z if and only
if the directed link graph D, has a pair of disjoint directed edges.

use each pair of this matching as the tail set to point at all n — 2 other vertices. That

is, let H be the graph with vertex set,

V(H) = {1‘1,...,1’%,y1,...,y%}

and edge set,

E(H) = U {xiy; = 2z V(H)\ {zi,y;}} -

To show that this is also an upper bound, let H be an H;-free oriented graph on
n vertices. Then for any z € V(H), the directed link graph D, cannot have two
independent edges (see Figure . Therefore, D, is either empty, a triangle, or a

star with at most n — 2 edges. Since n > 5, then |D,| < n — 2 for each z. So

1 1
B =1 3 IDi < tnn - 2),
z€V(H)

Hence, we are finished for even n. However, this proof falls apart when n is odd. We

will need a different strategy.
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1. Counting edges by possible tail pairs

The basis of our strategy in getting an upper bound on ex,(n, Hy) is to count the

edges of an H;-free graph H by its tail sets. That is,

BH) = Y iy

{zyre(Vy")
It is simple but important to note that if H is H;-free, then any two pairs of vertices

that each points to two or more other vertices must necessarily be disjoint.

LEMMA 7.1. Let H be a Hy-free oriented graph. If x1,x2,y1,y2 € V(H) so that
t(w1, 1), t(w2,2) > 2

and {z1,y1} # {2, y2}, then {1, 11} N {xa, 12} = 0.

PROOF. Suppose, towards a contradiction, that x; = x5 = x but y; # ys. Since

t(z,y1) > 2, then there exists some vertex z; distinct from z, y;, and y, such that
ryy — 2 € E(H).

Similarly, since t(x,y2) > 2, then there exists some vertex zy distinct from z, y;, and
Yo such that
Yy, — 2 € E(H).

If 21 # 29, then this gives a copy of Hj.

So assume that they are the same vertex, z; = z3 = z. Since ¢(x,y;) > 2, then there
is some second vertex that x and y; point to that is distinct from z. The only choice
that would not create a copy of H; with the edge xy, — z is y,. Similarly, since
t(z,y2) > 2, then there is some second vertex that z and y, point to that is distinct
from z. The only choice that would not create a copy of H; with the edge zy; — =
is y1. So

Y1 — Yo, xY2 — Y1 € E(H)
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H

T

n

T2

Y2

T ——— Yk
F1GURE 31. An H;-free graph on n vertices breaks down into & disjoint

pairs that each point to at least two other vertices plus a remainder set
R with n — 2k vertices that belong to no such pair.

which contradicts the fact that H is oriented. [ ]

Therefore, if we assume that H is Hi-free on n vertices, then we can split its vertices
up into k disjoint pairs such that each serves as a tail set to at least two edges of H

plus a set of n — 2k vertices that belong to no such pair. That is,
V(H) = {:Elayla s 7$k7yk} UR

so that t(z;,y;) > 2 fori=1,...,k and t(w,v) < 1 for all other vertex pairs, {w, v}
(see Figure [31)).

We now have two cases to consider. Either there are no such pairs (k = 0) or there

is at least one (k > 1).

2. No pair points to more than one vertex

Assume that k£ = 0. Then t(z,y) < 1 for every pair {z,y} € (V(QH)). If|D;| <n-3
for all x € V(H), then

BH) =5 Y |Da] < gnln—3) < 5(n—1)(n—2)
€V (H)
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X

Fi1GURE 32. The special case configuration discussed in Lemma
Here, vertex x joins with every other element to point to vertex y.

and we are done. Otherwise, there exists some vertex x that belongs to n— 2 tail sets.
Therefore, D, is a star of directed edges with some common vertex of intersection .

Either t(z,y) = 0 or t(z,y) = 1.

If t(z,y) = 0, then all of the n—2 directed edges of D, must point to y (see Figure 32).

Such a configuration in H limits the number of edges to (”;1) as proven in Lemma

On the other hand, if t(x,y) = 1, then xy — z € E(H) for some vertex z, and v — y

for all other vertices v # x,y, z. Such a configuration in H will limit the number of

edges to (";1) as proven in Lemma

LEMMA 7.2. Let H be an oriented graph on n > 6 vertices such that t(xz,y) < 1 for
each pair {z,y} € (V(QH)). If H is Hy-free and contains vertices x and y such that

xv —y € E(H) for each v e V(H)\ {x,y}, then

sl ("),

See Figure|32.

n—2

5 ) additional edges

Proor. We want to show that there can be no more than (
in H other than the n — 2 edges described in the statement of the lemma. This would

give an upper bound on the total number of edges of

() roa= ()
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First, note that every triple of the form {x,y, v} already holds an edge. This implies
that any additional edge cannot contain both x and y since H is oriented. On the other
hand, if we were to add an edge, vw — u, that excluded both x and y completely, then
this new edge would create a copy of H; with the existing edge, vx — y. Therefore,

every additional edge must be on a triple of the form {v,w, x} or {v,w,y}.

However, z is already in the maximum number of tails. So given any pair of non-{x, y}

vertices, {v, w}, the only possible additional edges are
vw — T, vw — Y, yv — w, and yw — v.

The last three all appear on the triple, {v,w, y}, and are therefore mutually exclusive
choices when it comes to adding them to the graph. The first two are also mutually

exclusive choices since t(v,w) < 1.

So assume, towards a contradiction, that we could add (”;2) + 1 more edges to the
existing configuration. Then some pair {v,w} of non-{z,y} vertices must be used
twice. Without loss of generality, this means we must add the edges vw — x and

Yyv — w.

Now, let u be any of the remaining n — 4 vertices. The possible edge uv — y would
create a copy of Hy with vw — x, and the possible edge uv — x would create a copy

of Hy with vy — w. Therefore, the pair {v, u} cannot be a tail set for any edge.

We can also view the potential additional edges as two different types: those that

have a tail set of two non-{z, y} vertices and those that have a tail set that includes

n—2

5 ) of the first type that we are allowed to add in

y. There were originally at most (
total, one edge for every distinct pair. However, v can now no longer be in a tail set
with any of the other n — 4 vertices. So there are now at most (%) — (n — 4) edges
of this first type left possible to add. Therefore, in order to add (”52) + 1 edges over
all, we will need at least n — 3 of them to be of the second type - those that have y

in the tail set.
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Note that  must be an isolated vertex in the directed link graph D,. Hence, there
are at most n — 3 tails containing y since otherwise the directed graph D, would have
n—2 edges among n—2 vertices. In this case, D, would have two independent directed
edges and so H would have a copy of H; with y as its intersection vertex. Moreover,
D, must be a star with a single vertex of intersection. Since v — w € E(D,), then

this vertex of intersection must either be v or w.

Hence, in order to add (%) + 1 edges, we will need to have (",?) — (n — 4) edges
that have non-{z,y} tail sets. Since the tail set, {v,w}, already points to x, then
this implies that all such edges must also point to x. Otherwise, we would have some
edge of the form ab — y. If a = w or b = w, then this would create a copy of H; with

vw — x. If both elements are distinct from w, then we would still need to point the

pair wa either to x or to y. Either choice would create a copy of H;.

Let u be one of the remaining vertices. Then u must be adjacent to a directed edge
of D, for there to be n — 3 edges added with y in the tail set. If v is the vertex of
intersection of D, then this edge must either be u — v or v — w. Either yields a copy
of H;. Similarly, if w is the vertex of intersection of D,, then either wy — v € E(H)
or uy — w € E(H). Again, either of these yields a copy of H;. Therefore, (n;2) +1

edges cannot be added to the existing configuration. [ |

LEMMA 7.3. Let H be an oriented graph on n > 6 vertices such that for each pair
x,y € V(H), t(x,y) < 1. If H is Hy-free and contains vertices xz, y, and z such that
xy — 2z € E(H) and zv — y € E(H) for each v € V(H) \ {z,y,2} (see Figure[33),

pani< ("),

PrROOF. Let W = {1,2,...,n — 3} be the set of non-{z,y, 2} vertices. Any

then

additional edge to this graph must have a tail set of the form {4, j}, {i,y}, {4, 2}, or

n—3

{y, z} for i,7 € W. An ij tail can only point to x or to y and there are ( 5 ) pairs

like this possible. An iy tail cannot point to x because H is oriented. It cannot point
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z

FIGURE 33. The special case configuration discussed in Lemma [7.3]
Here, x joins with every vertex except z to point to y and then joins
with y to point to z.

to j since that would create a copy of H; with xy — z. Therefore, it could only point
to z. An iz tail could not point to any j since this would create a copy of H; with
the edge ix — y. Therefore, it could only point to y or to z. And a yz tail could not

point to x since H is oriented. Therefore, it could only point to some 1.

Assume, towards a contradiction, that we can add

<n;2)+1: (n53)+(n—3)+1

edges to the existing configuration. Since we can add at most ("53) edges with tail
sets made entirely of vertices from W, then we must have at least n — 2 additional

edges from the other possibilities.

For each i € W we could have
W — z,yz —> 1,1z — y,and iz — x.

The first three of these are mutually exclusive choices since they are all on the same
triple. Similarly, the last two are mutually exclusive choices since we are only allowing

up to one edge per possible tail set.

Therefore, in order to add n—2 of these types of edges, two must use the same element
of W. Given the mutually exclusive choices above this implies that there is some

vertex ¢ € W such that either iz — x,yi — 2z € E(H) or iz — x,yz — i € E(H).
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In the first case, ij is no longer a possible tail for any edge for all n — 4 remaining
vertices 7 € W. This is because iz — x, yi — 2, and ix — y create a triangle in D,.
So any additional edge with 7 in the tail would give two independent edges in D; and

therefore a copy of H;.

Hence, we can get at most (”;3) — (n —4) edges with tails in W. This means that
we will need 2(n — 3) edges from the other possible edges to make up the difference

if we want to add

more edges.

Since each of the n — 3 vertices from W can be in up to two of these additional edges,
then iz — z would need to be an edge for every i € W and that {y, z,i} also needs

to hold one edge for every i € W.

If yz — ¢ is used once, then we get a copy of H; with jz — x for some other j € W.
Therefore, for all 7 € W we must have the edges iy — z and iz — x. However, any
pair 7,5 € W can now point to nothing since the only possibilities for such a tail were
x or y to begin with and both of these options create copies of H;. So in this case

the most that we can add is

for all n > 6.

In the other case we have added iz — x and yz — ¢ for some i. Which means that
yz — 7 is not allowed for any j # ¢ from W. Also, jz — y would make a copy of H;
with iz — 2z and jz — 2z would make a copy of Hy; with yz — <. Therefore, for all

j # i we can only add the edge jy — z.

In order to add (";3) +n — 2 edges, we will need all of these as well as all possible
edges with tails in W. However, since iz — x, all of the edges with tails completely

in W must also point to x. Otherwise, some pair ab would point to y. If a = i or
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b = i, then this would make a copy of H; with iz — x. If i # a,b, then consider
where the pair ai points. It must either point to x or to y, but either of these would

create a copy of Hj.

So all pairs of W must point to z and for all 7 € W not equal to ¢ we must have the

edge jy — z. But jy — 2z and ©j — x create a copy of Hy, a contradiction. Hence, it

is not possible to add more than (";3) + (n — 3) edges to the configuration. Since the
configuration already has n — 2 edges, then there can be no more than (";1) edges
total. -

Together these two lemmas take care of the cases where all pairs of vertices point to

at most one vertex in H.

3. Some pair of vertices is the tail set to multiple edges of H

We return to our description of an Hi-free oriented graph as being made up of k > 1
vertex pairs that each serve as tail sets to strictly more than one edge plus a set R of

the remaining n — 2k vertices,
V<H) = {17173/1; s 7‘rk7yk} UR
(see Figure . For each pair {z;,y;} we want to prove the following upper bound,

Hany)+ Y (Hanv) +t(y,v) <n—2.
v;’éxizyi

That is, the total number of edges that include either z; or y; or both in the tail set

1s at most n — 2.

Now,

[B(H)| = ) t(x,y>sz<t(xi,yi)+ > (t(wi,v)+t(yi,v>>>+ > twy).

VETY; {zy}e(h)
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Note that each pair of vertices in R act as a tail set at most once so
— 2k
> = ("),
{zyye(3)

Therefore, proving the upper bound for each {z;,y;} pair would imply that

|B(H)| < k(n—2) + (n—z%)

" k(n —2) + (" _2%) — 2k — (n+ 1)k + (g)

is a quadratic polynomial with positive leading coefficient in terms of k, then it is

maximized at the endpoints. Here, that means at kK =1 and at k = L%J

When n is odd, both of these values for k£ give the upper bound,

pani< ("),

Only when n is even can we do better and get

n(n — 2)
()| < 202

in the case where k = 7. In either case this give an upper bound of

B(H)| < |5 (n-2).

So we need only prove that, in general,
t(xi,vi) + Z (t(xs,v) + t(yi,v)) <n—2.
VAT Yi
This is straightforward to show if ¢(x;,y;) > 3. However, when t(x;,y;) = 2 there is a

case where it fails to hold. This is taken care of in the following lemma.
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FiGURE 34. An H-free graph containinis configuration with have

at most (”51) edges as shown in Lemma

LEMMA 7.4. Let H be an oriented graph on n > 6 vertices. If H is Hi-free and

contains vertices x, y, a, and b such that {x,y} is the tail set to exactly 2 edges with
xy = a,xy — b,yb — a € E(H),

and for each v € V(H) \ {z,y,a,b}, zv — y (see Figure[34), then

pani< ("),

PROOF. First consider which pairs of vertices could possibly be a tail set to an
edge in this graph. Let W = {1,...,n—4} be the set of vertices other than {x,y, a, b}.
Then {4, j} can be a tail set to ij — z and ij — y for any pair ¢, j € W. Since zy — a,
then xi can point to nothing other than y. Similarly, za and xb could only possibly
point to b and a respectively, but either would create a copy of H; with xi — y for
any ¢ € W. Also, by assumption xy can point to nothing else. Hence, x is in no

additional tail sets.

Since yb — a and zy — a, then ya cannot point to b or to x. It can also not point
to any ¢ € W since this would create a copy of H; with zy — b. So y can be in no
additional tails. The pair ab can point to anything aside from y since H is oriented,
and ai can point to x or y for any ¢« € W but not to b or another element of W since

either would create a copy of Hy with zi — y. Similarly, bi can point to y for each
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17 € W but not to  or to a or to another element of W since these would create a

copy of Hy with either yb — a or xi — y.

Leaving aside the edges with tail sets completely in W for the moment, this means
there are 4(n —4) + 1 possible edges remaining. There are n — 4 each of types ai — x,

ai — vy, bi — y, and ab — i plus one extra edge which is ab — x.

Suppose we are able to use at least 2(n — 4) + 1 of these edges. First, if one of them
is ab — z, then there could be none of the types az — y or bi — y. So all of the ones
of type ab — i and ai — x would need to be used. But since n > 6, there are at least
two vertices in W. So there would exist edges ai — x and ab — j with ¢ # 7, a copy
of Hy. Therefore, ab — z cannot be used if we want to get more than 2(n — 4) of

these edges.

Hence, we need to use at least three types of edges from the four possible types. Since
any of the types ai — x, at — y, and bi — y eliminate the possibility of using any
edge ab — j where j # i, then we can use at most one of this last type of edge. But
since n > 6, then 2(n —4) + 1 > 5 which means one of the other types gets used at
least twice. Regardless of which one it is, there can be nothing used from the ab — ¢

types of edges.

Therefore, we must use 2(n — 4) + 1 edges from only the first three types. So there

must be a vertex ¢ from W that belongs to three of these edges, say

ai — y,bi — y,and at — x.

But the edges bi — y and ai — z form an Hy, a contradiction. Thus, at most 2(n—4)

of these kinds of edges can be used over all.

Now let us look at the edges with tail sets contained in W. We have seen that each
17 can point to x or to y, but nothing so far has kept the pair from pointing to both.
However, if some pair does point to both, then no other tail could use either of these

vertices since this would create a copy of Hy. Therefore, if there are 1 <[ such pairs,
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n—4-21

then there are at most 21 + ( 5

) edges with tails from W. If n = 6, then this gives

exactly one such pair and only 7 edges overall. If n > 7, then [ < "7_4 implies that

N <m—d< (n—4)_<n—4—2l)'
2 2
n—4—21 n—4
21 < )
() =)

So there are at most ("gl) edges in H. [

Hence,

4. The oriented extremal number

Now we can proceed with establishing the upper bound under the assumption that
the configuration presented in Lemma does not occur in our directed hypergraph.

As we’ve seen, all that is necessary to show is that

Hany) + Y (K@i, v) +H(yi,v) <n—2

VETLY;

for any pair of vertices {x;,y;} that serves as the tail set to at least two edges.

So let {z,y} be such a pair, and divide the rest of the vertices of H into two groups,
those that are a head vertex to some edge with xy as the tail and those that are not.

That is,
V(H)\{z,y} ={h1,...,hpn} U{ng, ..., n}

where for each i = 1,...,m, there exists an edge, xy — h; € E(H) and for each

j=1,....t, 2y = n; € E(H) (note that ¢(z,y) = m and that m +t =n — 2).

Now, consider an edge that contains either x or y in the tail but not both. Then the
other tail vertex is either some h; or some n;. In the case of n;, this edge must either

be of the form xn; — y or yn; — x to avoid a copy of H; with both zy — hy and



4. THE ORIENTED EXTREMAL NUMBER 73

xy — hs. Moreover, since H is oriented, there can be at most one. Hence,

t

> (twny) +ty,ny) <t.

j=1

Now consider a tail set that includes either x or y and some h;. Without loss of
generality, assume that zh; is the tail to some edge. Since t(x,y) > 2, there is some
other vertex hy such that zy — hy € E(H). In order to avoid a copy of H; with this
edge, xh; must either point to y or to hy. However, zhy — y ¢ E(H) since this would

give the triple {x,y, h;} more than one edge.

Therefore, xh; — hs is the only option. However, if ¢(x,y) > 3, then this will create

a copy of Hy with xy — hs. So xh; and yh; cannot be tails to any edge. So

m

St hi) + 1y, i) = .

=1

Therefore,

ta,y) + Y (Ha,v) +t(y,v))

VFET,Y
t m
—m+ Y (tz,ny) +ty, ;) + > (e, h) + ty, hi))
7=1 =1
<m-+t
=n-—2

when t(x,y) > 3.

The only other possibility is that t(x,y) = 2. So suppose this is the case and that
the head vertices to xy are a and b. Without loss of generality, assume that yb —
a € E(H). Note that this precludes any edges of the form yn; — z. Similarly, if we

added the edge xra — b or the edge xb — a, then we could not add any edges of the
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form xn; — y and so
t

> (t(x, ;) + ty. ny)) = 0.

=1

Moreover, ya — b would lead to more than one edge on the triple {y, a,b}. So

(t(z, hi) +t(y, hy)) =2

i=1

and in total we would have,

t,y)+ Y (Ha,v) +ty,v) =4<n-—2.
vET,Y

On the other hand, if xa and b are not tails to any edge, then the only way we could
get a sum of more than n —2isif zn; -y € E(H) for all j =1,...,n — 4. But this

is exactly the configuration described in Lemma [7.4{ which we have excluded.

Therefore,

t(x,y) + Z (t(z,v) +t(y,v)) <n—2
v#£T,Y

for any such pair, and this is enough to establish that

exo(n, Hy) < gJ (n—2).

Conversely, we have already considered an extremal construction in the case where n
is even, and this same construction will work when n is odd. That is, take a maximum
matching of the vertices (leaving one out) and use each matched pair as the tail set

for all n — 2 possible edges.

Another construction that works for odd n that is not extremal for even n is to
designate one vertex as the only head vertex and then make all (”51) pairs of the rest

of the vertices tail sets.

Therefore,

exo(n, Hy) = LgJ (n—2).
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n—1

5 ) edges

Also, note that the only way that any construction could have more than (

n

is if n is even and the vertices are partitioned into % pairs such that each points to

at least two other vertices. This fact comes directly from the requirement that k£ =

k(n—2) + (n _2%)

in order for the expression to be more than (";1)

in the optimization of

5. Intersections of multiedge triples in the standard version

Now, let H be an Hi-free graph on n vertices under the standard version of the
problem so that any triple of vertices can now have up to all three possible directed
edges. If we let tg be the number of triples of vertices of H that hold at least one
edge, and we let mpy be the number of triples that hold at least two, then we have

the following simple observation:

We start our path towards an upper bound on |E(H)| by finding an upper bound on
the number of multiedge triples, my. We will need to prove some facts about the
multiedge triples of H. First, any triple which holds two edges of H might as well
hold three.

LEMMA 7.5. Let H be an Hi-free graph such that some triple of vertices {x,y, z}
contains two edges. Define H by V(H') =V (H) and

E(H')= E(H)U{zy = 2,22 = y,yz — x}.
Then H' is also Hi-free.

PROOF. Suppose H' is not Hi-free. Since H is Hq-free and the two graphs differ

by at most one edge, then they must differ by exactly one edge. Without loss of
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generality, say

{ry = 2} = E(H)\ E(H).

This edge must be responsible for creating the copy of H; in H’. So it must intersect

another edge in exactly one vertex that is in the tail set of both.

Therefore, without loss of generality, there is an edge #t — s € H where {s,t} N
{y,z} = (. However, since {z,y, 2} already contained two edges of H, then zz —
y € H. Since 2t — s and xz — y make a copy of Hy, then H cannot be H;-free, a

contradiction. ]

Next, we want to show that no two multiedge triples can intersect in exactly one

vertex.

LEMMA 7.6. Let H be a Hy-free graph. If two vertez triples {x,y,z} and {s,t,r}

each contain two or more edges of H, then

{a,y, 2} 0 {s, t,r} # 1.

PROOF. Suppose
Hz,y,z} N {s,t,r} =1

By Lemma since H is H;-free, the graph created from H by adding all three
possible edges on the triples {x,y, z} and {s,t,r} is also H;-free. But if x = r and =z,
Y, 2, s, and t are all distinct, then this graph contains xy — 2z and xs — ¢ which is a

copy of Hi, a contradiction. [ |

Therefore, we can use an upper bound on the number of undirected 3-uniform hy-
peredges such that no two intersect in exactly one vertex as an upper bound on the
number of multiedge triples. Moreover, the extremal examples are easy to describe
which will be important for finding the upper bound for ex(n, H;) as well as for

establishing the uniqueness of the lower bound construction.
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LEMMA 7.7. Let H be a 3-uniform undirected hypergraph on n wvertices such that

no two edges intersect in exactly one vertex, then

4

n n =0 mod 4

E(H) < Sn—1 n=1 mod4

\n—2 n=2,3 mod 4

and H 1is the disjoint union of Kf’)s, Kf)s minus an edge (K, ), and sets of edges
that all share a common intersection of two vertices - a sunflower with a two vertex

core.

PRrROOF. Two edges of H are either disjoint or they intersect in two vertices. So
connected components of H that have 1 or 2 edges are both sunflowers. A third edge
can be added to a two-edge sunflower by either using the two common vertices to
overlap with both edges in two or by using one common vertex and the two petal

vertices. So a connected component of H with 3 edges is either a sunflower or a K, .

The only way to connect a fourth edge to the three-edge sunflower is to make a four-
edge sunflower, and this is true for a k-edge sunflower to a (k + 1)-edge sunflower for
all k > 3. The only way to add a fourth edge to the K is to make a Kf’) and then no
new edges may be connected to a K f’) without intersecting two of its edges in exactly

one vertex each. Therefore, these are the only possible connected components of H.

A sunflower with k edges uses k + 2 vertices, and a K f’) has four edges on 4 vertices.
Therefore, if n = 0 mod 4 we can get at most n edges with a disjoint collection of
K f’)s. Similarly, the best we can do when n = 1 mod 4 is n — 1 edges with a disjoint
collection of K AES)S plus one isolated vertex since any sunflower will automatically limit
the number of edges to n — 2. And if n =2 mod 4 or n = 3 mod 4, then n — 2 is the

best that we can do. [ |
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KY

FIGURE 35. An edge that intersects a K f’) block of multiedge triples
in one or two tail vertices will create a copy of Hj.

In general, the only way to actually have an H;-free graph with n multiedge triples is
if the multiedge triples form an undirected 3-uniform hypergraph of 7 disjoint K f’)

blocks when n = 0 mod 4.

In this case there can be no additional directed edges in H since such an edge would

either intersect one of these K f’)s in one tail vertex which would create a copy of H;

since this means it intersects three of the multiedge triples in exactly one tail vertex

(we may assume that each multiedge has all three edges per Lemma or it would
(3)

intersect one of the K,”’s in two tail vertices which means that it intersects two of

the multiedge triples in exactly one tail vertex (see Figure .

So in this case, the number of total edges would be bound by

foralln > 7.

Next, the only way to have n — 1 multiedge triples is to either have ”T_l disjoint

K f') blocks when n = 1 mod 4 or to have § — 1 disjoint K f') blocks with one K
when n = 0 mod 4. In the first case any additional edge must have at least one and
perhaps two of its tail vertices in a single K ig) block of multiedge triples which we

have already seen will create a copy of H;. So there are at most
1
3n—1)<3n< (n; ) -3

total edges in this case.
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In the second case, any additional edge that has no tail vertices in a K f’) block must
have both tail vertices in the K . If the head to such an edge were outside of the K,
then the edge must intersect one of the three multiedge triples of the block in exactly
one tail vertex since there are two triples that it intersects in one tail vertex each,
one of which must be a multiedge triple. On the other hand, it could have its head
vertex inside the K . In this case, the additional edge must lie on the triple without
multiple edges. This is the only edge that can be added. So there are at most

1
3(n—1)+1<3n< (”; )—3

total edges in this case.

6. An H,-free graph with n — 2 multiedge triples

Now, the only ways to have exactly n — 2 multiedge triples is either to have 7 — 2 of
the K ig) blocks plus two K blocks of multiedge triples when n = 0 mod 4 or to have
k of the K f) blocks of multiedge triples plus a sunflower with n — 4k — 2 petals. The
first case is suboptimal for the same reasons already considered. So let us consider

the second case.

First, assume that £ = 0 and that we have n — 2 multiedge triples that make a
sunflower (see Figure . How many edges can we add? This structure already has
all possible edges with 2 vertices in the core (or so we may assume by Lemma .
On the other hand, if an additional edge has no vertices in the core, then it would
intersect two multiedge triples in one tail vertex each which would create a copy of

H;.

Therefore, any additional edge must include exactly one vertex from the core. If this
vertex is in the tail set to the additional edge and the sunflower has at least three
petals, then the additional edge intersects in exactly one tail vertex of the multiedge

triples of the sunflower, a contradiction. Since we assume that n > 6, then the
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core vertices

n—2 sooge
edges pointing back
( 2 ) s b & n — 2 petals

F1GURE 36. The unique extremal construction for an Hi-free graph

has (";?) + 3(n — 2) edges.

sunflower has at least three petals. Hence, any additional edge must intersect the

core in only its head vertex.

If any two additional edges have different core vertices as the head, then either the
tail sets of these edges must be exactly the same or completely disjoint to avoid a
copy of Hi. Hence, pairs of petal vertices that point to both core vertices must be
independent of all other tail sets. And all other petal vertices fall into disjoint sets
as to whether they are in additional edges that point to the first core vertex or the
second. The number of additional edges will be maximized if every pair of petal

vertices point to the same core vertex. Moreover, this will give a total of
n—2 n+1
3(n—2 = -3
o0+ ()= (")

We will soon see that this is the best that we can do and that this construction,

edges.

where the multiedge triples make a sunflower with n — 2 petals with (”;2) additional
edges pointing from pairs of petal vertices to a single core vertex, is unique up to

isomorphism.

First we will need to see that £ = 0 is the number of K f) multiedge triple blocks
that optimizes the total number of edges. So suppose there are k such blocks and
that the other n — 4k vertices are in a sunflower. Then from prior considerations we
know that any additional edge must have both tail vertices in this sunflower. If one

of these tail vertices coincides with a petal vertex of the sunflower, then there will be
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a copy of Hy. Therefore, the tail vertices must coincide with the core and the only

possibility for such an edge is to point out to a vertex in one of the k blocks.

Therefore, there are at most

4k -2
3(4k)+3(n—4k—2)+<n ) >+4k

edges in such a construction. Since this expression is quadratic in k& with positive
leading coefficient, then it must maximize at the endpoints, k¥ = 0 or k = %, and
we already know that & = 7 is suboptimal. Therefore, if there are exactly n — 2
multiedge triples, then they must form a sunflower with a two-vertex core and from
there the only way to maximize the total number of edges is to add every possible

edge with tail set among the petal vertices all pointing to the same head vertex in

the core.

7. Fewer than n — 2 multiedge triples

Now suppose that H has fewer than n — 2 multiedge triples. If ty < (";1), then

\E(H)| < tg + 2my < (”;1)+2(n—2): (”"2”> 3.

So we must assume that tg > (";1) Also, if my = 0, then we know that

()| < exaln, H) = | 2] (0=2) < ("31) 3

So assume that there is at least one multiedge triple, {z, y, z}. This triple has at least

two edges. Assume without loss of generality that they are xy — z and zz — .

Let H' be an oriented graph arrived at by deleting edges from multiedge triples of
H until each triple has at most one edge and every triple that had at least one edge
in H still has at least one in H'. In other words, H' is any subgraph of H such that

ty =ty and my = 0. Without loss of generality, assume that

xy — z € E(H').
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n—1

Since tg > ( 5

), then n must be even. Moreover, there is a matching on the
vertices so that every matched pair {a, b} points to at least two other vertices. That

is, t(a,b) > 2.

Now consider the directed link graphs of the vertices. As stated before, these are
either triangles or stars with a common vertex. However, if two or more of these link
digraphs have three or fewer edges each (for instance, if they are triangles), then there

are fewer edges than we are assuming since

1 1 n—1
|E(H)| = 5 Z |D,| < 5(6+(n—3)(n—2)) < ( ) )
eV (H')
for all n > 8. We will show that it must be the case that here at least two directed

link graphs are restricted to at most three directed edges each, contradicting our

assumptions about the number of edges in H.

First, note that x — 2 € D, and y — z € D,. To avoid a contradiction, at least
one of these two directed link graphs must have four or more edges. Without loss of
generality, assume that it is D,. Therefore, D, is a star and not a triangle. So the

additional three directed edges in D, must either all be incident to z or to x.

If these directed edges are all incident to z, then y and z must be partners under the
matching which means that x has another partner z’ distinct from y and z. Since
t(z,2’) > 2 in H', then 2’ must point to two vertices in D,. Since D, already has
y — z and no two edges may be independent in any directed link graph, then 2’ must

point to y and to z, forming a triangle.

Next, consider D,,. We know that
T =Y, x— 2 Dy

If there is an additional edge in D, that does not complete this triangle then it is
either of the foom z — tort —» z. If x -t € Dy then 2/ — t,y — 2z € D,, a

contradiction. If ¢t — x € D,s, then 2’ — x € D,. But since t has its own matched
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vertex, then there exists a distinct ¢’ such that
' s a,t =2 €Dy

So either |D,/| < 3 or |Dy| < 3. Either way, this gives us two directed link graphs

that have at most three edges each. So ty < ("gl)

Therefore, we must assume that the three additional edges in D, are incident to x
and that y and x are partners under the matching. So z has some other partner under
the matching 2’ distinct from z and y. Now, delete the edge zy — z from H’ and add
xz — y to get a new directed hypergraph H”. It follows that H” has no multiedge

triples and is Hi-free since we still have a subgraph of H.

In adding zz — y we have added z — y to D,. Since z’ must point to two vertices in
D., then this addition means that D, is a triangle under H”. Hence, |D,| = 2 under
H'.

Now, the same argument as above applies to D,,. The only way for |D,/| > 3 would
mean either z — a € D, or a — z € D, for some a distinct from z, y, z, and 2’.
The first case would mean that two independent directed edges, 2’ — a and = — y
are in D,, a contradiction. The second case would mean that 2’ — 2z € D,. Since a
has its own partner under the matching that must point to two vertices in D,, then
in this case, D, is a triangle.

n—1

Therefore, ty > ( 5

) and my > 1 cannot both be true in any H;-free graph. This

is enough to complete the result,

ex(n, Hy) = (” ;r 1) -3

This also exhausts the remaining cases in order to demonstrate that the extremal

construction is unique.
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CHAPTER 8

The Graph H,

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let H, denote the forbidden graph where two edges intersect in exactly two vertices
such that the set of intersection is the tail set to each edge. That is V(Hy) = {a, b, ¢, d}
and E(H) = {ab — ¢,ab — d} (see Figure [37).

THEOREM 8.1. For alln > 5,
n
ex(n, Hy) = ex,(n, Hy) = (2)

Moreover, there are (n — 2)(3) different labeled Hy-free graphs attaining this extremal

number when in the standard version of the problem.

PrROOF. Let H be Hy-free. Regardless of which version of the problem we are
considering, each pair of vertices acts as the tail set to at most one directed edge.

Therefore,

ex(n, Hy), exo(n, Hy) < (Z) .

FiGURE 37. The graph H,.
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F1GURE 38. Inductive construction of Hs-free oriented graphs.

In the standard version of the problem any function, f : ([g}) — [n], that sends each
pair of vertices to a distinct third vertex, f({a,b}) & {a, b}, has an associated Ha-free
construction Hy with () edges. That is, for any such function, f, let V(H;) = [n]

and
i) = {ab = f((an) oy e ()}
Since each pair of vertices acts as the tail set to exactly one directed edge, then H;

is Ho-free and has (”) edges. So
n
ex(n, Hy) = <2>
2

2
Moreover, there are (n — 2)( ) distinct functions from ([Z]) to [n] such that no pair is
mapped to one of its members. Therefore, there are (n — 2)(3) labeled graphs that

are Hy-free with (}) edges.

In the oriented version of the problem lower bound constructions can be defined

inductively on n.

First, let n = 5 and define G5 as the oriented graph with vertex set
V(Gs) =40,1,2,3,4}

and the following edges: 0,1 — 2; 1,3 -+ 0; 0,4 — 1; 0,2 — 3; 2,4 — 0; 0,3 — 4;
2,3—1;1,2—4;1,4— 3; and 3,4 — 2.



8. THE GRAPH H, 86
Each pair of vertices of GG5 are in exactly one tail set, and each triple of vertices
appear together in exactly one edge. Therefore, this construction is Hs-free with (g)

edges.

Now, let n > 5, and define G,,;1 by V(Gpr41) = {0,1,...,n} and
E(Gn1) = FE(G)U{ni—(i+1):i=0,...,n—1}

where addition is taken modulo n.
Then G, 1 has n more edges than G,,. So |E(G,11)| = (”'ZH)

Any two new edges intersect in at most two vertices. Similarly, any new edge and
any old edge also intersect in at most two vertices. Hence, at most one edge appears

on a given triple of vertices. So GG, 11 is oriented.

Moreover, all tail sets for the new edges are distinct from each other and from any

tail sets for the edges of G,. So G,,11 is Ho-free. Therefore,

exo(n, Hy) = (Z)
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CHAPTER 9

Generalized Directed Hypergraphs

In this chapter we will generalize the standard version of a 2 — 1 directed hypergraph
to a class of combinatorial structures that can all be considered to be uniform directed
hypergraphs. This chapter is organized as follows. In Section |1}, we define the class of
generalized directed hypergraphs (GDH) and extend the concepts of Turdn density,
blowups, and supersaturation to this setting. In Section [2, we define the idea of a
jump for a given model of directed hypergraphs and prove several results about these
jumps and how the jumps from one instance of the class relate to jumps in another. In
Section 3] we adapt a couple of results proved in [7] for totally directed hypergraphs

with multiplicity to any GDH.

1. Basic definitions and results

The following definition for a generalized directed hypergraph is intended to include
most uniform models that could reasonably be called uniform directed hypergraphs.
This includes models where the edges are r-sets each under some partition into k parts
of fixed sizes ry, ..., 7, with some linear ordering on the k parts. The definition only
includes structures where an r-set could include multiple edges up to the number of
possible orientations allowed. That is, we do not consider the “oriented” versions of
the models where only one edge is allowed per r-set. The definition is given in terms
of logic and model theory for convenience only. No deep results from those subfields
are used. The use of this notation also makes further generalizations like nonuniform

directed hypergraphs or oriented directed hypergraphs easy.
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DEFINITION 9.1. Let £ = {E?}, a language with one r-ary relation symbol E. Let

T be an L-theory that consists of a single sentence of the form

Vo, x, E(xy,. .., 2,) = /\a:i#xj/\ /\ E(zr1y, - Ta(r))

i#] meJr
for some subgroup of the group of permutations on r elements, Jr C S,. Call such
a theory a generalized directed hypergraph theory and any finite model of T is a

generalized directed hypergraph (GDH).

Note that this definition includes graphs, hypergraphs, and r — 1 directed hyper-

graphs. For example, the theory for a 2 — 1 directed hypergraph is
T ={VeyzE(x,y,2) = x#yANx#zNy#zANE(y,z,z2)}.

It is easy to see that when r = 2 we have only two GDH theories. The theory
associated with the group S, is the theory of graphs, and the theory associated with

the trivial group is the theory of directed graphs.

When r = 3 there are six subgroups of S3. Three of these are all isomorphic to Z,
with each generated by a permutation that swaps two elements. The corresponding
GDH theory for any of these can be thought of as having pointed 3-sets for edges
or as being (2 — 1)-graphs. Of the other subgroups, Sj itself gives the theory of
undirected 3-uniform hypergraphs, the trivial group gives totally directed 3-edges,
and the subgroup generated by a three-cycle isomorphic to Zs yields a GDH theory
where the edges can be thought of as 3-sets that have some kind of cyclic orientation
- either clockwise or counter-clockwise. Figure |39 summarizes the models of GDHs
when r = 3. Note that in general, S, always corresponds to the normal undirected r-

graph model and the trivial group always corresponds to totally directed hypergraphs.

A fun thought experiment is to consider the kinds of edges that arise when r = 4.
Many of them are geometric in nature. For instance, the alternating group A, gives

a theory where edges can be thought of tetrahedrons (at least in an abstract sense).
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Ss —

Z; AN
Zs -

F1GURE 39. The subgroup lattice of S3 and the corresponding lattice
of directed hypergraphs.

In fact, Leader and Tan [33] study the “oriented” versions of the models that come

from the alternating groups for any r > 3.

In this chapter, when the theory is not specified we are simply discussing GDHs that
are all models of the same fixed theory. When discussing multiple theories we will
often refer to T-graphs to mean models of a GDH theory T'. Throughout the chapter,
Jr will always stand for the subgroup Jr C S, that determines the GDH theory T
and mr will always be the order of this subgroup, my = |Jr|. Also, Vi and Eg will
be used to denote the underlying set of elements of a model G and its relation set

respectively.

The following basic propositions are given without proof. The first is a simple conse-
quence that we are working in a relational language, and the second results from the

fact that Jr is a group.

PROPOSITION 9.2. For any GDH theory T and any nonnegative integer n, there
exists a GDH G |=T on n elements. Moreover, for any nonnegative integer k < n,

the substructure of G induced on any k-subset of the elements of G is also a T-graph.

PROPOSITION 9.3. Given a GDH G with r-ary relation set Eg, there exists an

equivalence relation ~ on FEg defined by

(al,...,ar)w(bl,...,br)

if and only if for each i, by = ar) for some ™ € Jr.
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We can now use these propositions to extend the concepts of extremal graph theory

to GDHs in a natural way.

DEFINITION 9.4. For any GDH G, an edge of G will always refer to an equivalence
class of [Eg|~.

DEFINITION 9.5. Given a GDH G on n elements, denote the number of edges of
G by er(G) and let the edge density of G be defined as

er(G
dr(G) = ;{( n).
e (1)
Note that since
|Eg|
Q) = =41
er(G) o
then the density is
n—nr)|E
n!

and could have been defined this way while mostly avoiding talk of edges as equiv-
alence classes of Fg. However, the above definition makes the following extremal

concepts reduce to their standard definitions in the undirected case.

DEFINITION 9.6. Given two GDHs G and H and a function ¢ : Vg — Vg, we say
that v is a homomorphism if for all (ay,...,a,) € Eg, (¥(ay),...,¥(a,)) € Eg.

We say that G contains a copy of H if there exists some injective homomorphism,
v Vg — V. Otherwise, we say that G is H-free. Similarly, we would say that a
GDH G s F-free for some family F of GDHs if G is F-free for all F' € F.

DEFINITION 9.7. Given a family of GDHs F and a positive integer n, let the nth
extremal number, erp(n,F), be defined as the maximum number of edges over all

F-free GDHs on n elements,

exp(n, F) = Fpax. {er(Gn)}.
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The Turan density of F is defined as

) i )

Our first main result is to show that these Turan densities exist for any GDH the-
ory. The proof is the standard averaging argument used to show that these limiting

densities exist for families of undirected hypergraphs [29].
THEOREM 9.1. For any GDH family F the Turdn density exists.
PROOF. Let G be an F-free GDH on n elements with exr(n, F) edges. For each

i=1,...,n let G' be the subGDH of G induced by removing the ith vertex. Each

edge of GG appears in exactly n — r of these subGDHs. Therefore,
(n —71)er(G) = ep(GH) + - - e (G™).

Moreover, er(G) = exp(n, F) and each G' is also F-free so er(G?) < exp(n — 1, F).
Therefore,

exp(n,G) <

— 7dexT(n -1, F).

So
exr(n, Q) o exr(n — 1, F) _ exy(n — 1, F)
0 Saor Z0) 200

Therefore, the sequence of these extremal densities is monotone decreasing as a func-

tion of n in the range [0, 1]. Hence, the limit exists. |

1.1. Blowups and blowup density. We’ll now extend the concept of the blowup
of uniform hypergraphs to the more general setting of GDHs and define the corre-
sponding notion of the blowup density. As with hypergraphs, the blowup of a GDH
can be thought of as the replacement of each vertex with many copies and taking all

of the resulting edges. Formally,

DEFINITION 9.8. Let G be a GDH with Vg = {x1,...,x,}, and let t = (tq,...,t,)

be a tuple of positive integers. Define the t-blowup of G to be the L-structure G(t)
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where
Vaw = {11, Ty -5 Tty oo Ty }
and

('r’il_h? .. ,xm»T) € EG(t) < (.T,L'l, e ,LE‘Z'T) (- EG-

PROPOSITION 9.9. Let G be a GDH on n vertices, and let t = (t1,...,t,) be a

tuple of positive integers. Then the t-blowup of G is also a GDH.
PROOF. We need only show that the L-structure G(t) models T'. So let

(xi1j17 < ’xirj'r) € EG(t)'

Then (z;,,...,x;) € Eg. Since G |= T this implies that i, # i, whenever a # b.
Hence, the elements x;,;, # x;,j, whenever a # b. It also implies that (z; ..., 7, ) €

E¢ for any m € Jp. Hence,

(xiﬁ(l)j‘rr(l)7 e 7x7"7r('r)j7r(r)) S EG(t)

for any m € Jp. Therefore, G(t) = T. |

Next, we consider the edge density of a given blowup by defining the edge polynomial
for a GDH.

DEFINITION 9.10. Let G be a GDH on n vertices. For each r-set R € (‘f’), let e

be the number of edges of G in R. Then let the edge polynomial be

pa(z) = Z eRHazi.

RG(VTG) i€R

This polynomial is a simple generalization of the standard edge polynomial for undi-
rected hypergraphs. To see this more easily note that for a given GDH G, the edges
of G are in bijection with the monomials the sum pg were we to write the sum out

with no coefficients greater than one.
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From this we see that the edge density of the (t1,...,t,)-blowup of G is

pG(tl,...,tn) —m pG(tla-"atn)
() Ttt—1)---(t—r+1)

where ¢t = ) t;. Let t increase to infinity and for each ¢ pick a vector (ti,...,%,)

that maximizes this edge density. Then this sequence of densities is asymptotically

equivalent to the sequence of numbers

1 tn
mrpc T )

This motivates the following definition.

DEFINITION 9.11. Let G be a GDH on n vertices. Let

gn — {(m,...,xn)lxi ZOAZ%’Z 1}7
=1

the standard (n — 1)-dimensional simplex. Define the blowup density of G as
br(G) = mr max{pa(z)}.

Since any x € S™ is the limit of some sequence {(%, e %")} with positive ¢; as

t — oo, then the blowup density of a GDH G is the best limiting density of any

sequence of blowups of G.

The remaining definition and basic result about blowups given in this subsection
will be useful when extending results about jumps and nonjumps from undirected

hypergraphs to GDHs generally in Section 3.

DEFINITION 9.12. Let T" and T be GDH theories such that Jpr» C Jp C S,. For
a T-graph F and a T'-graph F' we say that F contains F' if Ve = Vg and every
edge of F' is contained in some edge of F' (where the edges are considered under their
equivalence class definition as subsets of Er and Eg/). We say that F' is the minimum

T-container of F' if F' has no edges that do not contain edges of F'.
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PROPOSITION 9.13. Let T" and T be GDH theories such that J C Jp C S,. Let

F" be a T'-graph and let F be the minimum T-container of F'. Then

mmo

- br(F) < bp/(F') < br(F)

with equality on the left if F' has exactly one edge contained in each edge of F and
equality on the right if each edge of F' contains all TT_; possible edges of F'.

Moreover, if F' has exactly k edges contained in each edge of F, then

kmp
by (F') = mTT br(F).

PRrOOF. Let |Vi| = |Vg| = v, then for any x € SV,

pr(r) < pp(z) < Z—jpm)

with equality on the left if F” has exactly one edge contained in each edge of F' and

equality on the right if each edge of I’ contains all TZL—TT, possible edges of F’. Hence,

max pp(x) < maxpp (r) < max mr

F\T ).
reS? reS? reS? mT/p ( )

This implies that
mmo

"L br(F) < by (F') < br(F).

In particular, if F’ has exactly k edges contained in each edge of F', then for any
x e S,

pr(z) = kpp(z)

which implies the result. |

1.2. Supersaturation and related results. Supersaturation holds for GDHs
as it does for undirected hypergraphs, and the proof of this result is the same as the

one for hypergraphs found in [29] with only minor differences.
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THEOREM 9.2 (Supersaturation). Let F' be a GDH on k elements. Let ¢ > 0.
For sufficiently large n > no(F,€), any GDH G on n elements with density d(G) >

T (F) + € will contain at least c(}) copies of F for some constant ¢ = ¢(F)€).

PROOF. Fix some positive integer [ so that

e\ 7!

exr(l, F) < (WT(F) + 5) A (l>

mr \T

Let G be a GDH on n > [ elements with edge density dy(G) > 7(F) + €. Then G

must contain more than £(7) I-sets with density at least mp(F) 4 5. Otherwise, at

most §(’}) l-sets contain more than (77 (F) + ) (i) edges. Therefore, we can count

the number of edges in G by [-sets and get an upper bound of

(0= 50 ()69 ) e D ()

We can now replace er(G) since

er(G) = (mr(F) + ¢ (") o

r ) mmr
This is enough to get the contradiction.

Since G contains more than % (') I-sets with density at least 77(F)+§, then it contains

a copy of F' in each. A given copy of F' appears in (7__:) [-sets of GG. Therefore, there

SO0 ()

distinct copies of F' in G where

are more than

Similarly, the following theorem is an extension from the same result for undirected

hypergraphs, and the proof is an adaptation of the one found in [29].
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THEOREM 9.3. Let F' be a GDH on k vertices and let t = (ty,...,t;) be an k-tuple
of positive integers. Then mp(F) = mr(F(t)).

Proor. That 7r(F) < 7p(F(t)) is trivial since F(t) contains a copy of F' so any
F-free GDH is automatically F(t)-free.

Therefore, we only need to show that mr(F) > 7p(F(t)). Suppose not, then for
sufficiently large n there exists some F(t)-free GDH G on n elements with edge
density strictly greater than 7 (F). By supersaturation this implies that G contains

c(’,;‘) copies of F.

Define G* to be the k-uniform hypergraph where Vg« = Vi and {aq,..., a1} € Eg-
iff and only if {a,...,ax} contains a copy of F' in G. Since the edge density of G*
is ¢ > 0, then for large enough n, G* must contain an arbitrarily large complete

k-partite subgraph.

For each edge F' maps to the vertices in at least one out of k! total possible ways to
make an injective homomorphism in GG. Therefore, by Ramsey Theory, if we take the
parts of this complete k-partite subgraph large enough and color the edges by the
finite number of non-isomorphic ways that I’ could possibly map to the k vertices,
we will get an arbitrarily large monochromatic k-partite subgraph where each part

has t vertices. This must have been a copy of F(t) in G, a contradiction. |

The fact that the Turan density of a blowup equals the Turan density of the original
GDH leads to the following nice characterization of degenerate families of GDH -

those families with Turan density zero.

THEOREM 9.4 (Characterization of Degenerate GDH). Let F be some family of
GDHs, then mr(F) = 0 if and only if some member F € F is a subGDH of the

t-blowup of a single edge for some vector, t = (t1,...,t,), of positive integers. Other-

wise, w(F) > =L,

rr
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PROOF. Suppose that no member of F is such a blowup. Then no member is
contained in the (t,t,...,t)-blowup of S. Let S(t) stand for this blowup, then the
sequence of GDHs, {S(t)}?°,, is an F-free sequence. The density of any such S(t) is

" mpt"(tr —r)!
bty |
mr (7") (t'f’)

as t increases. Therefore,

dr(S(t)) =

mr
rr

These densities tend to

mr

WT(.F) > > 0.

717"
Conversely, suppose some F' € F is a (ti,...,t,)-blowup of a single edge. By Theo-
rem [9.3] mr(F) = mp(S) = 0 since exy(n, S)=0 for all n. Therefore, 7p(F) =0. M

2. Jumps

Now we turn to the issue of finding jumps and nonjumps for GDH theories. The
definition of a jump for undirected hypergraphs extends naturally to this setting as

does the important connection between jumps and blowup densities.

DEFINITION 9.14. Let T be a GDH theory, then o € [0,1) is a jump for T if
there exists a ¢ > 0 such that for any € > 0 and any positive integer l, there exists
a positive integer ng(a, €,1) such that any GDH G on n > ng elements that has at
least (o + e)mr—;(f) edges contains a subGDH on | elements with at least (o + c)mT—'T(i)

edges.

Note that by Theorem every a € [O, %) is a jump for any r-ary GDH theory
T. This generalizes the well-known result of Erdds [18] that every @ € [0,2) is a
jump for r-graphs. The following important theorem on jumps for GDH theories was

originally shown by Frankl and Ro6dl [27] for undirected hypergraphs. Their proof

works equally well in this setting so the differences here are in name only.
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THEOREM 9.5. The GDH theory T has a jump « if and only if there exists a finite
family F of GDHs such that mp(F) < a and br(F) > « for each F € F.

PROOF. Let a be a jump and let ¢ be the supremum of all corresponding lengths

¢ to the jump. Fix a positive integer k so that

<I;) (a—l— g) > ag.

Let F be the family of all GDHs on k elements with at least (a + %) (l:)mr—'T edges.
Then 77(F) < « since any slightly larger density implies arbitrarily large subsets
with density a+ ¢. This in turn would imply the existence of a k-subset with density

at least a + ¢. This k-subset would include some member of F. On the other hand,

a given F' € F will have blowup density

1 1
> — ., T .
bT(F) Z MTPF (ka ,k?) >«

Conversely, suppose that such a finite family F = {F}, ..., Fi} exists. Let € > 0 and
let {G,} be an infinite sequence of GDHs with density that tends to o + €. As in
the proof of Theorem for any positive integer [, G,, must contain at least %(7)

[-subsets with density at least o + 5.

Let [ be large enough so that any GDH on [ vertices with density at least o + §

contains some F; from F. Therefore, any G, with n > [ contains g(?) [-sets each

with some F;. Since there are only k£ members of F, then this implies that at least

€

ﬁ(’;) [-sets contain the same F;.

Let |V(F;)| = v;. By the proof of Theorem [9.2] this implies that there is some positive
constant b such that GG, contains at least b(:) distinct copies of F;. By the proof of
Theorem this shows that if n is large enough, then we get a copy of an arbitrarily

large t-blowup of F;.

Let ¢ = mingcxbr(F;). For some subset 7' C F, each F; € F' yields an infinite

subsequence of {G,} which contains arbitrarily large ¢-blowups of F;. The densities



2. JUMPS 99
of these blowups all tend to at least c. Therefore, for any positive integer m, there
exists an m-set of each {G,,} for sufficiently large n with density at least a+c. Hence,

« is a jump. [ |

The following proposition is needed to compare jumps between different GDH theo-

ries.

PROPOSITION 9.15. The GDH theory T has a jump « if and only if there exists

some ¢ > 0 such that for all families F of GDHs, either mr(F) < a or np(F) > a+c.

PRrROOF. Let a be a jump for T" and let ¢ > 0 be some corresponding length to the
jump. Suppose that F is a finite family of GDHs of type T for which o < 7p(F) <
a+c. Let {G,} be a sequence of extremal F-free GDHs. For each positive integer k
there exists some G,, that contains a k-subset with at least (a + ¢) (f) mT—'T edges. Take
the sequence of these subsets. They are all F-free by assumption, and the limit of

their densities is at least o + ¢. Therefore, 77 (F) > a + ¢, a contradiction.

Conversely, assume that « is not a jump. Let ¢ > 0, then for some 0 < € < ¢ and
some positive integer [, there exists an infinite sequence of GDHs, {G,, } for which each
GDH has density at least a+¢€ and all I-sets have strictly less than (e+c) (i) m’"—; edges.
Hence, {G,} is F-free where F is the set of all [-GHDs with at least (a + ¢) (i)mT—'T

edges. So mr(F) > a+ €. Since any GDH with density at least o + ¢ must have an

[-set with density at least a + ¢, then mp(F) < a + c. [ |

We will now look at how jumps are related between two different GDH theories for
some fixed edge size r. We will see that in general jumps always “pass up” the
subgroup lattice. That is, if Jp» C Jp for GDH theories 77 and T, then a jump for T”
is a jump for T'. The converse is not true in general. In fact, for any GDH theories
T" and T with Jp C Jp such that the order of Jr is at least three times that of Jp
we will show that the set of jumps for 7" is not equal to the set of jumps for T". The

case where mp = 2mq is open.
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2.1. Jumps pass up the lattice. First, we will show that for GDH theories T’
and T" with Jp» C Jr the set of Turdn densities of forbidden families of T-graphs is

a subset of the set of Turdn densities for 7.

THEOREM 9.6. Let T and T' be two GDH theories such that Jp C Jp. Then for
any family F of T-graphs there exists a family F' of T'-graphs for which np(F') =

7 (F). Moreover, if F is a finite family, then F' is also finite.

PROOF. For each F' € F let Fpr be the set of all T'-graphs that have exactly
one edge contained in every edge of F'. That is, since J;» C Jr, then there are :nn_;/

possible 7" edges contained within one T" edge. So Frpv is a finite set with at most

er(F)
<M> members. Let

mmpr

f/: UFT/.

Then F' is a family of T"-graphs. Moreover, F’ is finite if F is finite. We want to
show that g/ (F') = mp(F).

First, let {G] } be an extremal F'-free sequence of T"-graphs. For each G/, let G,, be
the T-graph constructed by replacing each T"-edge of G/, with its containing T-edge
(multiple T"-edges could correspond to the same T-edge but each T-edge can only be
added once).

The sequence {G,} is F-free since otherwise some G, contains some F' € F which

means that G/, must have contained at least one member of Fr. Therefore,

M@ 4 G;l ’ !
77 (F) > lim dr(G,) > lim Lﬁ) = 1im T F) ),
n—oo n—0o0 m_T (7‘) n—r00 Mopr ('I’)

Conversely, now let {G,} be an extremal F-free sequence of T-graphs. For each G,
construct a T"-graph G/, by replacing each T-edge with all ;”—TT, T’-edges contained in

it. The sequence {G! } is F'-free with W"Z—;ex;p(n,]: ) edges. Therefore,

2Lexr(n, F)
ap(F') > lim ————— = 7p(F).

]
n—00 L (n)
Mg \7
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FIGURE 40. 7(F) = .

So WT/(,F/) = WT(.F>. [ |

The converse of Theorem is false in general. For example, the permutation sub-
group for the theory 7" of (2 — 1)-uniform directed hypergraphs is a subgroup of
the permutation group for the theory 7' of undirected 3-graphs, S3. The extremal
number for the directed hypergraph R, (see Chapter [2)) is

ewp(n, Ry) = |5 (Pg"l)'

Therefore, the Turdn density is mp (R4) = 2%. However, it is well-known that no

Turan densities exist for 3-graphs in the interval (0, 2%)

COROLLARY 9.16. Let T and T" be two GDH theories such that Jpr C Jp. If o is

a jgump for T', then it is also a jump for T.

PrOOF. If « is not a jump for 7', then for any ¢ > 0 there exists by Proposi-
tion a family F such that o < 7p(F) < a+¢. So by Theorem [9.6| there exists a

family F” of T"-graphs with o < 7 (F') < oo + ¢. So « is not a jump for 7. [

Corollary immediately implies that all nonjumps found for r-uniform undirected
hypergraphs must also be non-jumps for any GDH with an r-ary relation. However,

the converse is not true in general.

2.2. Jumps do not pass down the lattice. Roughly speaking, the current best
method of demonstrating that a particular « is not a jump for r-uniform hypergraphs

is to construct a sequence of hypergraphs each with blowup densities that are strictly
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larger than « but for which any relatively small subgraph has blowup density at most
«. This method originated in [27] and generalizes to GDHs as the following definition

and lemma demonstrate.

DEFINITION 9.17. Let « € [0,1). Call & a demonstrated nonjump for a GDH
theory T' if there exists an infinite sequence of GDHs, {G,}, such that by(Gy) > « for
each G, in the sequence and for any positive integer | there exists a positive integer
ng such that whenever n > ng then any subGDH H C G, on | or fewer vertices has

blowup density br(H) < «.
LEMMA 9.18. Ewvery demonstrated nonjump is a nonjump.

PROOF. Suppose not. Assume that « is a demonstrated nonjump but is a jump.
Then there exists a finite family of GDHs F such that 77 (F) < o and b (F) > « for
each F' € F. Let [ be the maximum number of vertices over the members of F. Let
n be large enough so that any subGDH on [ or fewer vertices has blowup density at
most a. Then some large enough blowup of G,, contains some F' € F as a subGDH
since the blowup density of each G,, tends to something strictly greater than «a. Let
H be the minimal subGDH of G,, for which the corresponding blowup contains this
copy of F'. Since H has at most [ vertices, then it has a blowup density at most «.
Hence,

br(F) < br(H(t)) < br(H) < a,

a contradiction. [ |

We can now show that a demonstrated nonjump for a GDH theory T yields multiple
nonjumps of equal and lesser values down the lattice to GDH theories T for which

JT’ g JT-

THEOREM 9.7. Let T and T" be GDH theories such that Jr» C Jp. Let o be a

kg

demonstrated nonjump for T'. Then Q1S a demonstrated nonjump for T' for

k=1,..., ™,

> M
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PROOF. Let a be a demonstrated nonjump for 7. Let {G,,} be the corresponding
infinite sequence of GDHs. Fixsome k € {1,..., ;’Z—;} For each n let G/, be a T"-graph
constructed from G, by replacing each T-edge with k T’-edges in any orientation.

Then by Proposition we know that

k:mT/

bT’(G:L) = bT(Gn>

mr
and any H' C G/, corresponding to H C G, also gives:

ka/

by (H') =

"Ly (H).

Therefore, by (G) > kZTIOé for each n and for any positive integer [, there exists a
T

ngo such that by (H) < « for any subGDH H C G, for all n > n,. [ |

5rl

5o 18 a demon-

Constructions of sequences of undirected r-graphs which show that

strated nonjump for each r > 3 were given in [26]. This gives the following corollary.

COROLLARY 9.19. Let T be an r-ary GDH theory for r > 3. Then 22zk s g

2rT

r!

nongump for T fork=1,..., ol

This in turn shows that the set of jumps for a theory 7" is a proper subset of the set

of jumps for T for any T such that Jp» C Jpy and my > 3my.

COROLLARY 9.20. Let T and T" be r-ary GDH theories such that Jp C Jp and

mr > 3mqgr. Then there exists an « that is a nonjump for T" and a jump for T.

PROOF. Take k = 1, then 2T’ is a nonjump for 7”. Since my > 3mqv, then

2rT
my > 2.5mqpr. So
5mT/ mr
27" rr

mr
)’ T

Therefore, 22I° is a jump for T since every o € [0 ) is a jump for 7. [

2rT
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3. Continuity and approximation

The following two results are direct adaptations of two theorems from [7]. They are
both general extremal results related to everything discussed in this chapter but did
not fit nicely into the other sections. The first result on continuity relates extremal
numbers of any infinite family of GDHs to the extremal numbers of its finite sub-
families. The second result on approximation discusses structural aspects of (nearly)

extremal sequences for any forbidden family.

THEOREM 9.8 (Continuity). Let F be an infinite family of T-graphs. For each

€ > 0 there exists a finite subfamily F. C F such that
exr (n, F) < ey (n, F.) < exr (n, F) + en”

for sufficiently large n.

PROOF. Let F be the infinite family of GDHs. For each positive integer k let Fj

be the subfamily of F where each member has at most k£ vertices. Let

Ve = 1Lm _eXTrz(n—;L]:k)
e m—T(r)
and let
= Jim S

Since F C F, then {1}, is a monotone decreasing sequence and -y, >~ for all k.
Assume for some € > 0 that v, > v + € for all k. Note that

exr (n, Fr) y
rl (n =k
()
is true for all n. In particular, when n = k there is an F,-free GDH on n vertices

with strictly more than (v + €) mT—'T(Z) edges. Since an F,-free GDH on n vertices is
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also necessarily F-free, then this implies that

exr (n, F) > (we)r—!(”),

mr \T

a contradiction. [ |

Theorem 6 in [7] is the Approximation Theorem for totally directed r-uniform hyper-
graphs with bounded multiplicity. We will use the following equivalent statement (in
the case of multiplicity one) written in terms of Turdn densities as a lemma to prove

that this approximation result holds for all GDHs.

LEMMA 9.21. Let F' be a family of forbidden totally directed r-graphs (r-GDHs
under the trivial group), and let € > 0. Then there exists some totally directed -

graph G’ such that every blowup of G' is F'-free and
T(F') > b(G) > m(F') —e.

THEOREM 9.9 (Approximation). Let F be a family of forbidden T'-graphs, and let

€ > 0, then there exists some T-graph G for which all blowups of G are F-free and
WT(F) > bT(G) > 7TT(./T") — €.

PROOF. Let F’ be the family of totally directed r-graphs as defined in the proof
of Theorem [9.6] That is, the family of directed hypergraphs for which we know that
w(F') = mr(F). We know from the proof of that theorem that any T-graph that is
the minimal container for an F'-free graph is F-free. By Lemma [9.21] there exists

some totally directed F'-free r-graph , G’, such that

T(F') > b(G) > m(F') —e.
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By Proposition [9.13| we know that if G’ is the minimal containing T-graph of GG, then
br(G) > b(G"). Hence,

7r(F) > br(G) > b(G') > n(F') —e=mp(F) — e
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CHAPTER 10

Additional Questions about Directed Hypergraphs

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

There are many additional questions that we can ask about 2 — 1 directed hyper-
graphs and about GDHs in general. In this chapter, we will briefly review several

open questions that come up naturally in this work.

1. Extremal numbers for tournaments

Brown and Harary [6] started studying extremal problems for directed 2-graphs by
determining the extremal numbers for many “small” digraphs and for some more
general types of digraphs such as tournaments - a digraph where every pair of vertices
has exactly one directed edge. We could follow their plan of attack in studying the
2 — 1 model and look for the extremal numbers of tournaments. Here, a tournament
could be defined as a graph with exactly one directed edge on every three vertices.
In particular, a transitive tournament might be an interesting place to begin. A
transitive tournament is a tournament where the direction of each edge is based on an
underlying linear ordering of the vertices as in the oriented lower bound construction

of Theorem [4.2

Denote the 2 — 1 transitive tournament on k vertices by TT}. Since the “winning”
vertex of the tournament will have a complete Kj_; as its tail link graph, then any
H on n vertices for which each T, is Kj_i-free must be TT-free. Therefore,

n—1\* (k-2
n(k—2> < 2 )Sex("’TTk)7eXo(naTTk>-
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This also immediately shows that the transitive tournament on four vertices with the

“bottom” edge removed has this extremal number exactly.

THEOREM 10.1. Let TT, denote the graph with vertez set V(TT, ) = {a,b,c,d}
and edge set
E(TT;) = {ab— d,bc — d,ac — d}.

ex(n, TT{) = n V S 1J [” > 1} .

Is it still true if we add an edge to {a,b,c}?

Then

CONJECTURE 10.1. Let TT denote the graph with vertex set V(TTy) = {a,b, c,d}
and edge set
E(TT,) = {ab — d,bc — d,ac — d,ab — c}.

Then

ex(n, TTy) = n V > 1J [” > 1} .

2. GDHs with r — 1 edges

The 2 — 1 directed hypergraph originally came to the author’s attention as a way
to model definite Horn clauses in propositional logic. Definite Horn clauses are more
generally modeled by » — 1 edges for any r. Therefore, it seems natural to ask
about the extremal numbers for graphs with two (r — 1)-edges. If we look at every
(r — 1)-graph with exactly two edges, then we see that these fall into four main types
of graph. Let ¢ be the number of vertices that belong to the tail set of both edges.
Then let I,(i) denote the graph where both edges point to the same head vertex, let
H,(i) denote the graph where the edges point to different head vertices neither of
which are in the tail set of the other, let R,.(7) denote the graph where the first edge
points to a head vertex in the tail set of the second edge and the second edge points
to a head not in the tail set of the first edge, and let F, (i) denote the graph where

both edges point to heads in the tail sets of each other.
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This extends the notation used in this paper. The degenerate cases are generalized
to I,(i) and H, (i), and the nondegenerate cases generalize to R,.(i) and E,.(i). For
example, the 3-resolvent R3is Ry(1). The split between degenerate and nondegenerate

is maintained in this way as well as shown in Theorem [9.4

To what extent do the proofs presented in this paper extend to these graphs? Some
translate immediately. For example, in the standard version of the problem it can

easily be seen that
n—2
1,.(0)) =
extun 1,0 = (" 7 7)
using Erdés-Ko-Rado [21] for the upper bound and the same basic construction for

the lower bound that we used in proving the same result for I,. More generally, we

can get an upper bound of

by applying the uniform Ray-Chaudhuri - Wilson Theorem [39] to the tail link graph
of each vertex of an [I,.(i)-free graph. We can get a general lower bound of

n(” —i f) < ex(n, (1))

r—1—

by constructing an I,.(i)-free graph in the following way: for each vertex x fix a set
of 7 + 1 vertices not including z, C,, and then add every possible edge with x at the

head and C), in the tail set.

An easy lower bound construction for an H,(7)-free graph is to fix a vertex x and take
all possible edges that point to it giving

c_vswmm@>

r

To get an upper bound also on the order of n” note that we can extend the concept
of the directed link graph to apply to more than one vertices. For instance, here

let the directed link graph of a set of vertices A of cardinality ¢ be the (r —i) — 1
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directed hypergraph on n —i vertices, V'\ A, for which every edge becomes an edge of
the original (r — 1)-graph when A is added to the tail set. In this case, no directed
tail link graph for any set of ¢ vertices can contain two independent directed edges.

Therefore,

. (r—i+ 1)(71:;1) (?) n(r—i+1) (n — 1)
ex(rn, H (1)) < _nlr—is |

(0 =i\

It is easy to see that any r — 1 transitive tournament on n vertices would be E,.(7)-
free. This immediately solves the oriented version and gives a lower bound for the

standard version:

el B0 = ).

r+41
As in the first lower bound construction for £ we can add r edges to the smallest
r 41 vertices in the linear order given by the transitive tournament to get a few more

edges in the standard case. Is this the best that we can do?

CONJECTURE 10.2.
ex(n, E.(i)) = ( " ) + 7.

r+1

For the generalized resolvent configurations, the lower bound constructions for Rj3
and R4 both generalize to the r — 1 setting. When ¢ > 1, then the construction
that worked for R3 gives the better lower bound. Split the vertices into two equal or

almost equal parts and take all edges that point from an r-set in one to a vertex in

'(

for © > 1. When ¢ = 0, the same generalization of the construction for R4 will produce

the other. This gives

=S NS

) < exto. .0

an R, (0)-free graph.
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3. Differences between oriented and standard extremal numbers

It is interesting to look at the differences between the oriented and standard extremal
problems for a given forbidden graph not only in their values but in the difficulty
level of their proofs. For instance, the proof of the standard case of I is quite easy
while the proof of the oriented case took a lot of effort. For the Escher graph E the
situation was reversed. What about the character of these two graphs determines
that one version of the problem should be easy and the other difficult, and what is

the difference between the two that swaps which version is which?

A more exact request is to ask for a characterization that determines the difference
in the value. For instance, Hy, I, R3, R4, and the case of two completely overlapping
edges each have oriented and standard numbers that are exactly the same while H;
and I, each have differences that are linear in n, the Escher graph F has a constant

difference, and the graph made up of two independent edges has a quadratic difference.

Of course, we get an immediate easy bound by observing that every non-oriented
F-free graph contains an oriented F-free graph that can be arrived at by removing

edges from each triple of vertices until only one remains. So
ex(n, F') < 3ex,(n, F) < 3ex(n, F)

for any forbidden graph F'. The cases in this paper where the difference between
the two numbers is zero shows that the upper bound is tight while the case of two

independent edges shows that the lower bound is also tight.

But what causes the difference? Perhaps, it would be good to begin answering this
question by narrowing the focus to nondegenerate graphs since in this paper almost
every nondegenerate case had no difference in the values, and the only one that did
had only constant difference. Will the difference always be at most constant or at

least o(n®)? No, any graph F that contains a triple with all three possible edges is
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certainly not degenerate, and the standard extremal number of F'is at least twice as

much as the oriented extremal number.

But what if we restrict ourselves further and only consider oriented nondegenerate

forbidden graphs, then is
ex(n, F) — ex,(n, F) = o(n®)

for every oriented nondegenerate F'?7 Daniel Gerbner and Baldzs Keszegh produced
an interesting counterexample to this claim as well. At this point it is unclear to
the author what might be an appropriate characterization for graphs with small

differences between extremal numbers.

4. General structural results

On a more general level we can ask about the structure of extremal (2 — 1)-graphs.
For instance, it was already shown in [32] that the 4-resolvent configuration R, has
a stability result. Roughly speaking, Rs-free graphs with many edges differ only
slightly from the given extremal construction. While we have shown that several of
the extremal constructions in this paper are unique, we have not shown that any are

stable.

Another avenue of research is to ask for canonical extremal structures. That is, for a
forbidden graph F' can we fix some constant r such that we can construct an F-free
graph on n vertices such that the n vertices are partitioned into r parts and whether
xy — z is an edge or not depends entirely on which parts z, y, and z are in? If we
have a general r-part structure like this that is F-free for every n and the limit of
the ratio of the number of edges given by the structure over ex(n, F') is one, then
we call this a canonical F-free extremal structure. For instance, the Turan graphs
are canonical extremal structures with respect to 2-graphs. Applying this idea to

hypergraphs is already a major area of research (see [38]) so it seems likely that the
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question of whether every (2 — 1)-graph has such a canonical extremal structure

would be even more difficult.

5. GDH questions

It would be nice to show that the set of jumps for some GDH theory 7" is a proper
subset of the set of jumps of any theory 7" up the lattice including those for which
myp = 2mp.. Or on the other hand it would be very interesting to learn that this is

not true in certain cases for r > 3!

CONJECTURE 10.3. Let T" and T be r-ary GDH theories for r > 3 such that
Jrr C Jr and mp = 2mpr. Then there exists some « € [0,1) for which « is a jump

for T but not for T".

It is known by a result in [7] that every a € [0, 1) is a jump for digraphs. Therefore,
the conjecture is not true when r = 2. On a related note, is it always true that
when Jp C Jr, there always exists a family F’ of T’-graphs such that 7y (F’) is not

contained in the set of Turan densities for 77

CONJECTURE 10.4. Let T" and T be theories such that Jp» C Jp. Then there
exists some family F' of T'-graphs such that wp/(F') is not contained in the set of

Turan densities for T.

Finally, it would be nice to generalize the definition of a GDH to include other com-
binatorial structures. For instance we could easily change the current formulation
to include multiple relations in order to capture nonuniform GDHs and those with
edges that have bounded multiplicity like the structures studied in [7]. We could even
allow these theories to contain general statements that relate the different relations.
An example of this might be the theory of some kind of GDH with an edge-coloring
that behaves in a certain way (at least locally). In another direction we could take

away the requirement that all vertices of an edge be distinct to allow for kinds of
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generalized loops or add a condition that the existence of certain edges preclude the

existence of others such as in the oriented cases studied here and in [33].
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CHAPTER 11

Introduction to the (p, ¢)-coloring problem.

We will use the standard asymptotic notation in the following chapters. That is, for
two functions, f(n) and g(n), we write f = O(g) if there exists some constant ¢ and
some integer N such that f(n) < cg(n) for all n > N. We write f = o(g) if f/g — 0
as n — oo. We write f = Q(g) if g = O(f) and f = w(g) if g = o(f). Finally, we
write f = ©(g) if f = O(g) and f = Q(g).

Given two integers s,t > 2, the central question in classical Ramsey theory for graphs
asks for the minimum number of vertices N for which any 2-coloring, say red and
blue, of the edges of Ky must yield a red K or a blue K;. We say that N = R(s, 1),
the Ramsey number for s,t. This question generalizes to more than 2 colors in a
natural way. That is, we let R(sy, ..., sx) denote the minimum number of vertices N
for which a coloring of the edges of Ky with k£ colors results in either an s;-clique in

the first color, or an ss-clique in the second color, etc.

A variation of the Ramsey problem is given by the following definition.

DEFINITION 11.1. Let n, p, and q be positive integers such that q < (g) A

(p, q)-coloring of the complete graph on n vertices, K,, is an edge coloring,
c: E(K,) — [k,

for which every subset of p vertices of V(K,,) span at least q distinct edge colors. Let
f(n,p,q) denote the minimum number of colors k for which a (p,q)-coloring of K,

exists.

If we let ¢ = 2 in the above definition, then determining an upper bound for the

function f(n,p,2) < k is equivalent to giving a lower bound, n + 1 < R(p,...,p),
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for the Ramsey number with & colors. Similarly, giving a lower bound k£ < f(n,p, q)
is equivalent to giving the upper bound R(p,...,p) < n on the Ramsey number for

k — 1 colors.

Erdés and Shelah [20] 24] introduced the function f(n,p,q) in 1975, but it was not
studied in depth until 1997 when Erdés and Gyérfds [25] looked at the growth rate
of f(n,p,q) as n — oo for fixed values of p and q. They used the local lemma to give
a general upper bound for the function,

p—2

f(n,p,q) < en(B)-rt,

Other than this, they looked for threshold values for g in terms of p for which f(n,p, q)

jumps in order of magnitude. For instance, they showed that when

p
= — 3
q (2> P+,

f(n,p,q) = O(n) and f(n,p,q — 1) = o(n). So the function becomes linear in n at

this particular value of ¢. Similarly, they determined that

()12

is the first value at which f(n,p,q) is quadratic in n and

is the first value for which

(Z) —c< f(n,p,q)

where ¢ is some constant depending only on p.

Left as an open question was determining the threshold value of g for which f(n,p, q)

first becomes polynomial in n. They showed that

np% -1 S f(napap)
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So therefore, any g > p gives a function f(n,p, q) that is polynomial in n. However, it
was unclear what the order of magnitude of f(n,p, p—1) is in general. To this end they
considered some small cases. When p = 3, they pointed out that since determining

f(n,3,2) is equivalent to solving the multicolor Ramsey problem for 3-cliques, then

1
Cl—ogn < f(n,3,2) < cglogn
log logn

for constants ¢y, co. However, for p = 4, they could not beat the probabilistic upper
bound
f(n,4,3) = O(n'/?).

For this reason, they called this the “most annoying” case.

In 1998, Mubayi [34] gave an explicit (4, 3)-coloring using a subpolynomial number

of colors. Specifically, he showed that
F(n,4,3) < OV,

In 2000, Mubayi and Eichhorn [17] demonstrated that for p > 5, this construction
is in general a (p, q)-coloring for ¢ = 2 [log, p] — 2. In 2015, Conlon, Fox, Lee, and
Sudakov [15] finally proved that f(n,p,p— 1) is subpolynomial for all p > 3. We will

discuss the construction they came up with to demonstrate this in Chapter

In addition to their general results, Erdés and Gyarfas looked at several cases for

small values of p. They found that
5
“(n—1) < f(n,4,5) <n

and that
f(n,9,34) =

o)~ o(n?).

Moreover, they singled out the cases of (4,4) and (5,9)-colorings as being particu-
larly interesting to look at. In 2000, Axenovich [2] gave a construction showing that

f(n,5,9) < n'toM Since Erdés and CGyérfas showed that f(n,5,8) = ©(n), then this
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reduced the difference between the known upper and lower bounds for f(n,5,9) to a
subpolynomial factor. In 2013, E. Krop and I. Krop [30] improved the lower bound
to

7

In 2004, Mubayi gave an explicit (4, 4)-coloring which reduced the upper bound to
f(n,4,4) < nl/2e)

a subpolynomial factor away from the best known lower bound given by Erdés and

Gyérfas of n'/2 — 1. We will discuss his construction in more detail in Chapter

In Chapter [13| we will give an explicit (5, 5)-coloring that uses only n'/3+°(1) colors, a
subpolynomial factor away from the best known lower bound of n'/3 — 1. Similarly,

1/2+0(1) colors,

in Chapter (14| we will give an explicit (5,5)-coloring that uses only n
a subpolynomial factor away from the best known lower bound of Q(n'/?). In both
cases, the constructions will be combinations of a modified version of the construction

given in [15] which we will define in Chapter [I2|and certain “algebraic” colorings that
extend the idea behind Mubayi’s (4, 4)-coloring [35].
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CHAPTER 12

The Modified CFLS coloring.

This chapter contains material from a paper to be published in Combinatorics, Prob-

ability & Computing. [14]

In this chapter, we will define a particular instance of the general (p, p— 1)-coloring of
Conlon, Fox, Lee, and Sudakov [15] which we will refer to as the CFLS coloring, and
we will show that this coloring avoids certain configurations. These properties will be
useful in later chapters. Then we will modify the coloring and give some additional
useful properties. We will not define the CFLS coloring in full generality since only
a simple case is needed. We borrow part of the notation used in [15], but change it

somewhat for clarity in this particular instance.

Let n = 2%” for some positive integer 5. Associate each vertex of K, with a unique

binary string of length 32. That is, we may assume that our vertex set is
vV ={0,1}".

For any vertex v € V, let v denote the ith block of bits of length 3 in v so that

where each v € {0, 1}7.

Between two vertices x,y € V, the CFLS coloring is defined by

p1(z,y) = ((1, {=z,9D}) Jin, . ig)
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where 7 is the first index for which 2® # y® and for each k = 1,...,3, i, = 0
if 2" = y*) and otherwise is the first index at which a bit of ) differs from the

corresponding bit in y*).

For convenience, when discussing any edge color o, we will let agy denote the first
coordinate of the color (of the form (i, {z(¥,y(®})) and let oy, denote the index of the
first bit difference of the kth block for £ = 1,..., 8. Furthermore, throughout this
section, we will say that two vertices « and y agree at i if ) =y and that = and

y differ at i if 2 #£ y®.
1. Avoided configurations

We will show through the following series of lemmas that the CFLS coloring avoids

certain specified arrangements of edge colors.

LEMMA 12.1. The CFLS coloring forbids monochromatic odd cycles.

PROOF. Suppose there exists a sequence of distinct vertices, vy, ..., v, for which
k is odd and
p1(v1,02) = @1(va,v3) = -+ = p1(Vk—1, V&) = 1 (vp, V1) = .
Let ag = (i, {z,y}). Without loss of generality we may assume that vg) = z and

vgi) = y. It follows that

a contradiction. [ |

LEMMA 12.2. The CFLS coloring forbids four distinct vertices a,b,c,d € V for

which 1(a,b) = ¢1(c,d) and ¢1(a, c) = ¢1(a,d) (see Figure[50d).

PROOF. Assume towards a contradiction that ¢1(a,b) = v1(c,d) = aand 4 (a,c) =

¢1(a,d) = v. Let ag = (i,{x,y}). Without loss of generality, e = ¢ = 2 and
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b b b b
c c
c a c a a a
d d
d d e e
(A) (B) (c) (D)

FIGURE 41. Four configurations avoided by the CFLS coloring.

b = d%) = y. Then ~; = 0 since a and ¢ agree at 1, but 7; # 0 as a and d differ at 4,

a contradiction. [ |

LEMMA 12.3. The CFLS coloring forbids four distinct vertices a,b,c,d € V for

which ¥1 (CL, b) =¥ (CL, C)7 Spl(bv d) =¥ (b> C)7 and Y1 (CL, d) =¥ (Cv d) (866 Figure'

PROOF. Assume towards a contradiction that we have ¢;(a,b) = ¢1(a,c) = «,
01(b,d) = p1(b,c) = v, and p1(a,d) = ¢i(c,d) = 7. Let a9 = (i,{z,y}), 70 =
(7,{s,t}), and my = (k,{w,v}). Without loss of generality we may assume that
a’ = z and b = ¢ = y. Since b and c differ at j, then ¢ # j. Without loss
of generality we may assume that b) = s and ¢ = d¥) = t. So 7; = 0, and
hence, aV¥) = ¢ since ¢;(a,d) = 7. Therefore, a; = 0, which implies that ) =t a

contradiction since s # t. |

LEMMA 12.4. The CFLS coloring forbids five distinct vertices a,b,c,d,e € V' that

contain two monochromatic paths of three edges each that share endpoints: p1(a,b) =

01(b,¢) = p1(c,d) and p1(a,c) = pi(c,e) = p1(e,d) (see Figure .
PROOF. Assume towards a contradiction that

p1(a,b) = ¢i(b,c) = p1(c,d) =

and

Sﬁl(aﬂ C) = 901(67 6) = <:01(67 d) =7
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Let ag = (i, {x,y}) and 7o = (J, {s,t}). Without loss of generality we may assume
that o) = ¢ = 2 and b") = d¥) = y. Note that ¢;(a,c) = v implies 7; = 0. Then

e =d® =y and e = ¢ = 2. So x = y, a contradiction. [ |

LEMMA 12.5. The CFLS coloring forbids five distinct vertices a,b,c,d,e € V' for

which @1(&,1)) = wl(aﬂe) = @1(67C> and Qpl(CL)d) = Spl(dv 6) = 901(57 C) (866 Flg_
ure .

PROOF. Assume towards a contradiction that ¢q(a,b) = ¢i(a,e) = pi(e,¢) = «
and o1 (a,d) = ¢1(d,e) = ¢1(b,c) = . Let ag = (i, {z,y}). We may assume without
a loss of generality that b® = e® = z and o = ¢® = y. We also know that
b#) = a® = e® = b for all k < i. Since pi(b,c) = 7, then vy = (i, {z,y}).
So either d¥ = x or d? = y. Therefore, d must agree with either a or e at i, a

contradiction. ]

2. Modified CFLS

We will now add to the CFLS coloring to avoid the striped K, an edge-coloring of
four distinct vertices a, b, ¢, d such that every pair of non-incident edges have the same
color (see Figure . The CFLS coloring alone will not avoid such arrangements,

but the product of ¢; with another small edge-coloring, 5, will.

We will define the coloring ¢ on the same set of vertices as the CFLS coloring,
V = {0, 1}52. However, we will also need to consider the vertices as an ordered set.
Consider each vertex to be an integer represented in binary. Then order the vertices
by the standard ordering of the integers. That is, x < y if and only if the first bit
at which x and y differ is zero in  and one in y. This ordering plays a large role
in a recent construction by Mubayi [36] for a small case of the hypergraph version of
the (p, ¢)-coloring problem. Note that each S-block is a binary representation of an

integer from 0 to 2% — 1, so these blocks can be considered ordered in the same way.
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a

c

FIGURE 42. A striped Kj.

Moreover, note that if x < y and if the first 5-block at which x and y differ is 4, then

it must be the case that () < y®.

Let x,y € V such that x < y. We define the second coloring as

()02(x7y) = (51(1’,2{), cee 765(3773/))

where for each 1,

This construction uses 2° colors. Therefore, the modified CFLS coloring, ¢ = ¢, X s,

uses

/6/3-1-1236 — \/@V 10gn+123\/logn _ 20(\/10gn10g10gn)

colors.

LEMMA 12.6. The modified CFLS coloring ¢ forbids four distinct vertices a,b, c,d €
V with o(a,b) = ¢(c,d), o(a,c) = p(b,d), and p(a,d) = p(b,c) (see Figure[{J).

PROOF. Assume towards a contradiction that a striped K, can occur. Then,
v1(a,b) = p1(c,d) = a, p1(a,c) = p1(b,d) = v, and ¢1(a,d) = ¢1(b,c) = m. Let
apg = (i, {x,y}), 0 = (J,{s,t}), and my = (k,{v,w}). Without loss of generality,
assume that ¢ = min{s, 5, k}. Since ¢(a,b) = ¢i(c,d), exactly one of d¥) and ¢
equals a9, Say d® = a without loss of generality. Then, by the minimality of 4, it

must be the case that 7 = ¢ and that i < k.
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Let ¥ = d® =z, b = c® = ¢, a® = p*) = ¢, and ¢* = d*® = w. Without loss
of generality we may assume that x < y. This implies that a,d < b, ¢ in the ordering
of V as integers represented in binary. If v < w, then x(a, ¢) = +1 and 0x(d, b) = —1.
Therefore, vo(a,c) # va(b,d), a contradiction. So, it must be the case that w < wv.

But then dx(a,c) = —1 and &(b,d) = +1, which yields the same contradiction. W

Note that to eliminate the striped K, configuration we needed just
623,8 — /log n23\/1ogn — 20(\/10gn>

colors since only the first coordinate of the CFLS coloring was needed in the proof.

2

Mubayi used on the order of n'/? colors to eliminate it while defining his (4,4)-

construction [35].

Before we move on from discussing the modified CFLS coloring, we need to point out

one nice fact that will be used in Chapter
LEMMA 12.7. If a < b < ¢, then ¢(a,b) # ¢(b,c).

PROOF. Suppose ¢i(a,b) = ¢1(b, ¢) = a and that ag = (i, {x,y}) for x < y. Then

a') =z and b = y. But then ¢? = z. Therefore, ¢ < b, a contradiction. |
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CHAPTER 13

A (5,5)-coloring construction.

This chapter contains material from a paper to be published in Combinatorics, Prob-
ability & Computing. [14]
As previously stated, we know in general that f(n,p,p) > Q (nl/ (p_Q)). However, the

local lemma gives the best general upper bound,

f(n,p,p) <O (n¥®V).

Only for p = 3,4 do we know of a better upper bound.

A (3, 3)-coloring is equivalent to a proper edge coloring, one in which no two incident

edges can have the same color. Therefore, it is well known that

n is odd
f(n,3,3) =
n—1 n 1s even
In 2004, Mubayi [35] provided an explicit (4, 4)-coloring of K,, with only n!/2e?(Vicen)

colors. This closed the gap for p =4 to
n'?2-1< f(n,4,4) < pl/2tem),

His construction was the product of two colorings. The first was his earlier (4, 3)-
coloring which used n°") colors. The second was an “algebraic” coloring that assigned
to each vertex a vector from a two-dimensional vector space over a finite field, and
then colored each edge with an element from the base field, giving n'/? colors. The

algebraic part of his construction will be detailed further in Chapter [14]
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The (5, 5)-coloring defined in this chapter extends Mubayi’s idea of combining a small

(p, p — 1)-coloring with an algebraic coloring to obtain the following result.

THEOREM 13.1. As n — oo,

f(nv 9, 5) < n1/320(\/m10g10gn).

Before defining the algebraic part of our construction, we can systematically look at
all edge-colorings of a K5 up to isomorphism that use no more than four colors and
do not contain any of the configurations eliminated in Chapter to get a list of
possible “bad” colorings of a K5 that could survive the modified CFLS coloring. A
careful mathematician with a free day could work through these cases by hand. A
simple computer program like the inelegant one detailed in Appendix [A]is easier to
verify. However this process is executed, we end up with three possible bad colorings
of K5 (see Figure . Avoiding these will require both the modified CFLS coloring
and the MIP coloring defined in Section

In Section[I] we define the first part of an algebraic coloring which we call the Modified
Inner Product (MIP) coloring. Under this construction, each vertex is associated with
a vector in a three-dimensional space over a finite field. As in Mubayi’s construction
[35] each edge is colored with a specific element in the base field. Some slight mod-
ifications are needed for special cases, but these will only split each color a constant

number of times, ultimately giving O (nl/ 3) colors used in the MIP construction.

In Section [2| we will take the product of the modified CFLS coloring defined in
Chapter [12| and the first part of the MIP to get a construction that uses n'/3+e()
colors and eliminates the first two of the three remaining bad configurations. Finally,

in Section 3] we define the rest of the MIP coloring to eliminate the third configuration.
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b b b

e e e
(A) (B) ()

FI1GURE 43. Three configurations not avoided by the modified CFLS
coloring.

1. The Modified Inner Product coloring

Let ¢ be some odd prime power, and let F Z denote the nonzero elements of the finite
field with ¢ elements. The vertices of our graph will be the three-dimensional vectors

over this set,

All algebraic operations used in defining the MIP coloring are the standard ones from

the underlying field, and - will denote the standard inner product of two vectors,

Ty = T1Y1 + T2Ys + T3Y3

where = = (21,2, 3) and y = (y1,¥2,y3). Additionally, let < be any linear order on

the elements of F,, and extend this to a linear order on the vectors so that
rT<y <= 1; <Y;

where i € {1, 2,3} is the first position at which x; # y;.

The MIP coloring will be broken up into two parts, x = x1 X Xx2. The first part x;

uses at most 12nt/3

colors. The second part y, uses only four colors and is used to
split up colors from y; in order to avoid one particularly difficult configuration. In

this section, we will first define y;. Then, after a brief review of the necessary linear
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FI1GURE 44. The geometric visualization can be misleading since we
are working over a finite field, but monochromatic neighborhoods are
contained in affine planes.

algebra concepts, we will prove some key properties of x;. The second part y, will

be defined in Section 5.

1.1. Motivation. The MIP coloring should be viewed as coloring each edge with
the inner product of the two vectors with some adjustments for special cases. As
motivation for this coloring, note that each of the three configurations with four
colors that survive the modified CFLS coloring (see Figure contains at least one
pair of vertices in the intersection of monochromatic neighborhoods of the other three

vertices.

For instance, vertices d and e in Figure[50b are in the same monochromatic neighbor-
hood with respect to vertices a, b, and ¢. Under the MIP coloring, the monochromatic
neighborhood of any vertex is contained in an affine plane of Fz. So, if a, b, and ¢ are
linearly independent, then these planes intersect in one point, not two. Therefore,
the [50b configuration could only happen under an inner product coloring if the span

of a, b, and ¢ has dimension at most 2.

This same idea applies to the other two configurations, and the adjustments to color-
ing with the inner product are all dedicated to handling the cases for which the five
vectors are not in general position. In these cases we frequently end up with three

vectors that must all lie on the same affine line, and the offending configurations
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I,
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q

FiGURE 45. The intersection of two monochromatic neighborhoods
usually lies on an affine line.

would be destroyed if the coloring could be modified to give a proper coloring on

every affine line.

1.2. The coloring Y;. In Lemma we will show that y; induces a proper
edge coloring on every line, not just one-dimensional linear spaces but affine lines as
well. This will be one of the key lemmas in showing that our construction avoids
the remaining configurations. By itself, the inner product almost accomplishes this
goal. However, a problem arises when one vector on a given line is orthogonal to
the direction of the line. In this case, that particular vector has the same inner
product with all other vectors on the line, so we must give these edges new colors.

We accomplish this by replacing the inner product with another function.

The first part of y; labels the type of edge-coloring we will have. For two distinct
vectors, x,y € V, let T(x,y) be a function defined by

(

UP, r-y=x-xand x; < y;

UP, r-y=z-x,r1 =1y, and x <y

DOWN;, ry#Fr-r,r-y=y-y, and r; <y
DOWN, ry#Fr-r,r-y=y-y,xr1 =y, and r <y
ZERO r-yg{r-z,y-ytandz-y=0

DOT otherwise
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Here, the categories UP; and DOWN; let us know that at least one of the two vectors
is orthogonal to the direction of the line between the two, and therefore this edge will
need to receive something other than the inner product in the next part of the color.
The words UP and DOWN describe the edge from the perspective of the “special”
vertex. For instance, if x is orthogonal to the direction of the line it makes with y
and r < y, then x looks up the edge to y. The need for different categories when
x1 =y is a technical point. The category DOT stands for the inner product (or the
“dot” product), and ZERO is the special case where the inner product is zero. The

need to split the colors with zero inner product is also a technical point.

Let fr(z,y) : F2 — F, be a function defined by

1+ Y1 T e {UPl, DOWN;y, ZERO}
fr(@,y) =< za+y, T € {UPy,, DOWN,}
x-y T =DOT

One final technical point is to differentiate colors based on whether the two vectors

are linearly dependent or independent. Let

0 {z,y} is linearly dependent
d(z,y) =
1 {z,y} is linearly independent

This is enough to define the coloring. For vertices x < y, let T'= T'(z,y), and set
Xl(‘rv y) = <T7 fT('ZE7 y)u 6(1‘, y)) :

1.3. Algebraic definitions and facts. We assume that the reader has some
familiarity with basic linear algebra notions such as dimension, linear independence,
linear combination, and span. The following definitions and facts are perhaps less
familiar. All are reproduced from definitions and propositions in Chapter 2 of the
great Linear Algebra Methods in Combinatorics book by Laszlé Babai and Péter
Frankl [3].



1. THE MODIFIED INNER PRODUCT COLORING 131
DEFINITION 13.1. Let F™ be a vector space, and let S C F™ be a set of vectors.

The rank of S is the dimension of the linear space spanned by S.

FACT 13.2. Let F be a field, and let A be a k X n matriz over F. Then the rank of
the set of column vectors as vectors in F¥ is equal to the rank of the set of row vectors

as vectors in F™. We know this value as the rank of the matriz A, rk(A). |

DEFINITION 13.3. Let F™ be a wvector space. An affine combination of vectors
vy, ..., 0 € F™ is a linear combination A\jvy + -+ + M\pvg for Ay, ...\ € F such that
AL+ 4+ A = 1. An affine subspace is a subset of vectors that is closed under affine

combinations.

FACT 13.4. Any affine subspace U s either empty or the translation of some linear
subspace V. That is, each vector u € U can be written in the form u = v+t where v

is some vector in'V and t is a fized translation vector. [

DEFINITION 13.5. The dimension dim(U) of an affine subspace U is the dimension

of the unique linear subspace of which U is a translate.

DEFINITION 13.6. Let F" be a vector space. Let vy,... v € F*. We say that

these vectors are affine independent if
A1v1+~~-+)\kvk:0

implies that
A =--=X=0

forany Ay, ..., \p € F for which A\{ +-- -+ Xy = 0. Otherwise, these vectors are affine
dependent. We say that a set of vectors S is a basis for an affine subspace if they
are affine independent and every vector in the subspace is an affine combination of

vectors in S.

FACT 13.7. A basis of an affine subspace U contains exactly dim(U) + 1 elements.
|
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FACT 13.8. Let F" be some vector space. Let A be a k xn matriz over F and b € F™.

Then the solution set to Ax = b is an affine subspace of dimension n — rk(A). [

DEFINITION 13.9. A wvector x € F" is isotropic if x - x = 0. A linear subspace

U C F" is totally isotropic if x,y € U implies that x -y = 0.

FACT 13.10. For any nonzero vector x € F", the set of vectors {y : -y =0} is a

linear subspace of F™ with dimension n — 1. [

1.4. Properties of y;.

LEMMA 13.11. The coloring x1 induces a proper edge coloring on every one-dimensional

affine subspace.

PrROOF. Let a,b,c € IF:; be three distinct vectors in a one-dimensional affine sub-
space. Then there exists some A € F, such that ¢ = Aa + (1 — A)b. Suppose to-
wards a contradiction that xi(a,b) = xi(a,c), and let T = T'(a,b) = T(a,c). If
T € {ZERO,DOT}, then

a-b=a-(Aa+ (1 —N)D).

So Aa - (a —b) = 0. Since ¢ # b, then A # 0. Therefore, a - (a —b) = 0. But this
contradicts the assumption that 7" € {ZERO, DOT}.

If T'e {UP;,DOWN, }, then fr(a,b) = fr(a,c) gives
ay +bl = a +)\a1 + (1 — )\)bl

So by = ay, a contradiction since 7' € {UP;, DOWN;, } implies that a; # b;. Similarly,
if T' € {UPy, DOWN,}, then as = by by the same argument and a; = by by definition.
But then either as(as — b3) = 0 or b3(bs — az) = 0. Both cases imply that ag = b3. So

a = b, a contradiction. [
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DEFINITION 13.12. Given a vertex a € V and an edge-color A, let
Ny(a) ={z: x1(a,z) = A}
be the A-neighborhood of a

OBSERVATION 13.13. Given a vector a € V and a color A = (T, a,1), the vectors
in Na(a) all belong to the two-dimensional affine subspace defined by {z : fr(a,z) =
a}. In particular, this plane can be defined as the solution space to either a - x =
a when T = DOT, (1,0,0) -z = o — a; when T € {ZERO, UP;, DOWN;}, and
(0,1,0) - & = o — ag when T € {UPy, DOWN,}.

In certain cases, we can actually say something a little stronger. First, note that if
T(a,x) € {UP;, DOWN; }, then we will have a; < x; if, and only if, a < z. Therefore,
if fr(a,x) = a, since fr(a,z) = a; + x1, we will have a; < a = a4 if, and only if,

a<cx.

LEMMA 13.14. Given a vector a € V, and a color A = (T, «a,1), the vectors of
Na(a) all belong to a one-dimensional affine subspace if one of the following three

cases holds for all x € Na(a):

(]) T e {ZERO, UPs, DOWNQ},
(2) T = UP; and a < x;
(3) T = DOWN; and a > x.

PROOF. In the first case, if T = ZERO, then every x € N4(a) must satisfy the

system of linear equations

a-x=0

(1,0,0) -z = a — ay.

Since a contains no zero components, then the rank of {a, (1,0,0)} is two. Therefore,

the solution space must be a one-dimensional affine subspace. If T' € {UP5, DOWN,},
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FIGURE 46. The intersection of two monochromatic neighborhoods.

then every x € N4(a) must satisfy the system

(1,0,0) -z =ay

(0,1,0) - = a — as.

Since (1,0,0) and (0, 1,0) are linearly independent, then, as before, the set of solutions

is a one-dimensional affine subspace.

In each of the other two cases, we see that every x € Ny(a) must satisfy the system

a-r=a-a

(1,0,0) -z = a — ay.
As before, the solution space must be a one-dimensional affine subspace. [ |
Therefore, we immediately get the following corollary by Lemma
COROLLARY 13.15. Let a,b,c,d € V be four distinct vertices such that
xi1(a,b) = xi(a, ) = xi(a,d) = (T’ a,1).

The set of wvertices {b,c,d} span three distinct edge colors under xi if any of the

following are true:

(]) T e {ZERO, UPs, DOWNQ},
(2) T = UP; and a < b,c,d;
(3) T = DOWN; and a > b, c,d.
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LEMMA 13.16. Let a,b,c,d,e € V be vectors such that {a, b} is linearly independent,
X1 (CL, C) = X1 (CL, d) = X1 (Cl, 6), and X1 (ba C) = X1 (ba d) = Xl(b7 6) (866 Figure@). Then

the set {c,d, e} spans three distinct edge colors.

PROOF. Let x1(a,c) = xi1(a,d) = x1(a,e) = Aand x1(b,¢) = x1(b,d) = x1(b,e) =
B. The result is immediate if either pair (a, A) or (b, B) satisfies the conditions listed
in Corollary So assume not. If A = (T,,«,1i), then by Observation we
know that ¢, d, and e must either satisfy a -2 = « or (1,0,0) - * = o — ay. Similarly,

it B=(T},0,7), then ¢, d, and e must either satisfy b-x = f or (1,0,0) -x = 5 — b;.

Since the sets {a, b}, {a,(1,0,0)}, and {(1,0,0),b} are all linearly independent, then
every case gives us the result immediately except when 7,,7, € {UP;, DOWN,}.
Since we assume that none of the cases from Corollary hold, then this can only
happen when z - (z —a) =z - (x —b) = 0 for = ¢,d, e. In this case, ¢, d, and e all

satisfy the two linear equations,
(a—0b)-z=0
(1,0,0) -z = a — ay.
Hence, ¢, d, and e are affine independent, and the result follows from Lemma (13.11

unless

ag—bgzag—bgzo.

But if this is true, then ¢- (¢ —a) = ¢- (¢ — b) implies that a = b, a contradiction. W

2. Combining the colorings

Let n = (¢ — 1)® where ¢ is an odd prime power. To each a € F, we associate the
unique element o/ € {0,1}°841 which represents in binary the rank of o under the
linear order given to the elements of F, in Section [1| Let 8 be the minimum positive

integer for which

3 [logq] < 5°
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We associate each of the n vertices of K, with a unique vector in (IFZ)3 as in Section .
To each vertex (z1,xs,x3), we associate (), x%, z4,0) € {0,1}7* as well, where for
each ¢, ) is the binary representation of the rank of x;, and 0 denotes a string of
(% — 3 [log q] zeros. Let

C=pXxx.

Since
5=6(V3logq) =0 (viogn).,

it follows that the number of colors used in this combined coloring is at most

12(]5235 — n1/320(\/10gn10g10gn)

colors. This bound on the number of colors generalizes to all n by the standard

density of primes argument [37].

2.1. The first two configurations.

LEMMA 13.17. Any distinct vertices a,b,c,d,e € V' for which C(a,c) = C(a,d) =
C(a,e), C(b,c) = C(b,d) = C(b,e), and C(a,c) # C(b,c) (see Figure[{6) span at

least five distinct edge colors.

PROOF. Lemma implies that neither color between {a, b} and {c, d, e} can be
repeated on the edges spanned by {c, d, e}. Therefore, if {a, b} is linearly independent
it follows from Lemma that {a,b,c,d, e} span at least 5 colors.

Otherwise, b = Aa for some A € F,. If C'(a, b) repeats one of the colors from the edges
spanned by {c,d, e}, then this gives us the configuration forbidden by Lemma If
C(a,b) = C(a,c) or C(a,b) = C(b,c), then all five vectors belong to a one-dimensional
linear subspace spanned by a which must be properly edge-colored by Lemma [13.11]

Therefore, the set of vertices {a,b,c,d, e} spans at least 5 colors. |
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This immediately shows that the first configuration will not appear under the com-

bined coloring.

COROLLARY 13.18. Let a,b,c,d,e € V be five distinct vertices. It cannot be the
case that C(a,b) = C(a,c) = C(a,d) = C(a,e), C(b,c) = C(b,d) = C(b,e), and
C(c,d) = C(c,e) as in Figure 500,

The second configuration also will not appear under the combined coloring.

LEMMA 13.19. Let a,b,c,d,e € V be five distinct vertices. It cannot be the case
that
Cla,¢) = Cla,d) = Cla,e) = C(bc) = C(b,d) = C(b,e),

and C(c,d) = C(c,e) as in Figure[{3b.

Proor. By Lemma this can happen only if there exists some A € F, such

that b = Aa. In this case,

Xl(a7 C) = Xl(a’v d) = Xl(av 6) = Xl()‘a’v C) = X1<)\CL, d) = X1<)\CL, 6)'

If this color is in DOT, then c¢-a = ¢- Aa. So either A = 1, a contradiction, or ¢-a = 0,
a contradiction that the color is in DOT. If the color is not in DOT, then it must be

the case that a; = Aa;. Since a; # 0, then this forces A = 1, a contradiction. |

3. Splitting the coloring

Now we will split the colors of C' to make a new coloring C' = C' X 3, where y3 is

the second part of the MIP coloring.

Let U C Fg be a two-dimensional linear subspace. Let Gy be an auxiliary graph

where V(Gy) is the set of non-isotropic vectors in U, and

zy € E(Gy) <= z-y=0.
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We wish to show that Gy is bipartite. Note that z -y = 0 implies that ax - Sy = 0
for any o, 8 € F,. Suppose that z -z = 0 for some z € V(Gy) such that z # Sy
for any 8 € F,. Then the intersection between U and the two-dimensional linear
subspace orthogonal to x must also be a two-dimensional linear subspace. Therefore,
x is contained in its own orthogonal linear subspace. So x is isotropic, a contradiction.

Hence, Gy is comprised of disjoint complete bipartite graphs and so is itself bipartite.

For each two-dimensional linear subspace U, we label the vertices of Gy with Ay and
By depending on their part in the bipartition, and then label all isotropic vectors in

U with Ay as well.

For any two-dimensional linear subspace U C IF;’ and any x € U we define

A .I’EAU
B r € By

S(z,U) =

For a given vector a € V', and a given color type 7', define

a T =DOT
ar =4 (1,0,0) T € {UP;,DOWN;,ZERO}
(0,1,0) T € {UP,, DOWN,}

and let

Usr ={x:ar -z =0}

For convenience, let

0 aT~aT:0
ay =

(CLT . b)(aT . aT)_laT ar - ar 7& 0

for any vectors a and b where T' = T'(a, b).
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Now we can define the second part of the MIP coloring. For any two vectors, a < b

with T'= T'(a, b), let

X2(aa b) = (S(CL - baa Ub,T)7 S(b — Qp, Ua,T)) .

3.1. The third configuration. Let a,b,c,d,e € V be five distinct vertices such
that
C'(a,b) = C'(a,c) = C'(a,d) = C'(a,e) = Black,

and let
C”(b, c) = C’(c, d) = C”(d, e) = C’(e, b) = Red

as shown in Figure [43d By Lemma we know that either b,d < ¢,e or ¢,e < b, d.
Similarly, we know that either a < b,c,d,e or b,c,d,e < a. So without loss of

generality, we can say that either a < b,d < ¢,e or b,d < ¢,e < a. In either case,
S(b — Qp, Ua,T) = S(C — Q¢, UQVT)

where T'= T'(a,b) = T(a, c).
By Corollary [13.15| we know that one of the following three cases must be true:
(1) Black € DOT,

(2) Black € UP; such that b,d < ¢,e < a, or
(3) Black € DOWN; such that a < b,d < ¢, e.

This abuses our notation slightly, but the meaning is hopefully clear. For example,
Black € DOT means that the first component of the x; part of the color Black is
DOT.

We will show that none of these cases are possible through the following series of

lemmas.

LEMMA 13.20. If Black € DOT and RED € DOT, then the configuration in Fig-

ure is not possible under the coloring C'.
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PRrROOF. Let the inner product part of color Black be o and the inner product
part of Red be . Note that if either Black or Red encodes linear independence,
then b, ¢, d, and e would all belong to the same one-dimensional linear subspace, a
contradiction of Lemma [13.11] Also, since ¢ — e satisfies the three linear equations,
a-r=0,b-x=0,and d-z =0, then {a,b,d} cannot be linearly independent since

then ¢ = e, a contradiction. So there exist nonzero A;, Ay € I, such that d = A\ja+Aqb.

Note that a - a # 0 since otherwise

a-d=a-(Aa+ \b)

o= Ao

implies that Ay = 1 since a # 0. If Ay = 1, then we would reach a contradiction by
taking the inner product of both sides of d = A\ja + b with ¢ to get that 8 = \ja + 5,

a contradiction since d # b.

So ap = a. = a(a - a)"'a, then
d = Na + Aob
where \| = A\ja~!(a - a). Taking the inner product of both side of this with a gives

that
a= (A + \)a.
So it follows that a;, b, and d are affine dependent. By the same arguments we can

conclude that ay, ¢, and e are also affine dependent.

Note that (b —d) - (¢ — e) = 0. Therefore, (b —ap) - (¢ — a.) = 0. Since
S (b—ap,Uspor) = S (¢ — ac, Uspor) ,

then b—a; and ¢ —a, are contained in the same part of the bipartition of the auxiliary
graph on U, por. Therefore, either b — a; or ¢ — a, must be isotropic since otherwise
the fact that they are orthogonal would have made them adjacent in the auxiliary

graph.



3. SPLITTING THE COLORING 141

Assume without loss of generality that b — a, is isotropic. Since
(b—ab)-(b—ab) :0,

then b-b=a?(a-a)~!. Since (b —ap) - (¢ — a.) =0, then 8 = a?(a-a)~'. Therefore,
b-b= (. Hence,
b-(b—c)=0.

This contradicts our assumption that Red € DOT. [ |

Note in what follows that if Red ¢ DOT, then b; = d; and ¢; = e;.

LEMMA 13.21. If Black € DOT and RED € ZERO, then the configuration in

Figure|43c is not possible under the coloring C".

Proor. If Red € ZERO, then
b-(c—e)=d-(c—e)=
Also, recall that
a-(c—e)=0.

If a,b,d are linearly independent, then ¢ = e, a contradiction. So we must assume

that a, b, d are linearly dependent.

If either b or d depends on a, then d(a,z) = 0 for x = b, ¢, d, e which implies that all
five vectors belong to a one-dimensional linear subspace spanned by a, contradicting
Lemma [13.11] If d = Ab for some A € F,, then by = d; = Aby. So either by = 0
or A = 1, both contradictions. So we must assume that d = Aja + Axb for nonzero

A1, A2 € F,. But then

d-c=M(a-c)+ X(b-c)

0=X\(a-c)

Since \; # 0, then a - ¢ = 0 which implies that Black € DOT, a contradiction. [ |



3. SPLITTING THE COLORING 142
LEMMA 13.22. If Black € DOT and RED ¢ {DOT, ZEROY}, then the configuration

in Figure|{3d is not possible under the coloring C'.

Proor. If Red € UP, U DOWN,, then by = ¢4 = di = e;. So all four vectors
b, ¢, d, e satisfy the linear equations a - © = a and (1,0,0) - x = b;. Therefore, b, ¢, d,

and e all belong to a one-dimensional affine subspace, a contradiction of Lemma[13.11

If Red € UPy, then
b-(b—c)=b-(b—e)=d-(d—c)=d-(d—e)=0
since we assume that b, d < ¢, e. Therefore,
b-(c—e)=b-c—b-e=b-b—>b-b=0.

Similarly, d - (¢ — e) = 0. Since ¢; = ey, then it follows that

a; ag das 0
b1 b2 bg Co — €9 = 0.
bl d2 d3 C3 — €3

Therefore, if any two of (ag,as), (b, bs), and (ds,ds) are linearly independent as
vectors in Fg, then ¢ = e, a contradiction. Hence, there must exist A, Ay € F, such

that ((Zg, CLg) = )\1([)2, b3) and (dg, d3) = )\2(1)2, bg)

From the equations of the form x - (z — ¢) = 0 for z = b, d we get

bl(bl — C1> + bg + bg — bQCQ — b3€3 =0

bi(by — c1) + A3b3 + A3b3 — Aabacy — Agbzcs = 0

So it follows that
C3 = bg_l (bl(bl - Cl> + b% + bg — bQCQ)



3. SPLITTING THE COLORING 143

which in turn gives that
(1 — )\2)b1(b1 — Cl) = )\2(]_ — /\2)(63 + bg)

Since Ay # 1, then
bl(bl — Cl) = )\Q(bg + b%)
Since by # 0 and by # ¢y, then b2 + b2 # 0.

Now, since Black € DOT, we get

a-b=a-d
arby + Ab3 + A\b2 = aiby + A Aab3 + A \ob3

AM(1—X) (b3 +b3) =0

But this is a contradiction, since none of these three terms are zero.

If Red € DOWNjy, then we swap b,d and e, ¢ in the previous argument to obtain the

same contradiction. [ |

LEMMA 13.23. If Black ¢ DOT, then the configuration in Figure[43dis not possible

under the coloring C'.

PROOF. In this case, either b,d < ¢,e < a and Black € UPy, or ¢c,e > b,d > a

and Black € DOWN;. In both cases,
b-(b—a)=c-(c—a)=d-(d—a)=e-(e—a)=0.
Moreover, by = ¢; = dy = ey, which implies that

Red € ZERO U UP, UDOWN, U DOT.

If Red € ZERO, then
b-(c—e)=d-(c—e)=0.
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Therefore,

by b cp—e
2 3 2 2 —0.
d2 d3 C3 — €3

So (da, ds) = (b, bs) for some v € Fy, and b-c=d - ¢ gives
b3 + coby + c3bs = b: + ycaby + yesbs.

Thus, (1 — 7)(c2bs + c3b3) = 0. Therefore, either v = 1, a contradiction since b # d,

or caby + c3bs = 0, also a contradiction since this implies that b- ¢ = b2 # 0.

If Red € UPy, U DOWN,, then we have by = dy, co = ey, and either b- (b —¢) =
b-(b—e) =0orc-(c—b) =c-(c—d) =0. In the first case, b- (e —¢) =0
so bs(es — c3) = 0. So either b3 = 0 or e3 = c3, both contradictions. Similarly, in
the second case, ¢ - (b — d) = 0 means that c3(bs — d3) = 0, which gives the same

contradictions.

Finally, if Red € DOT, then b- (c—e¢) =0 and d- (¢ —¢e) = 0. So

by b3 C2 — €2
d2 dg C3 — €3
Therefore, either ¢ = e, a contradiction, or (dy,d3) = A(be,b3) for some nonzero

AeF,.

If 8 is the inner product represented by Red, then we get that

B = b% + bQCQ + b303

ﬁ = b% + )\bQCQ + AbgCg

So,
(1 — )\)(bQCQ + 6363) = 0.
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Therefore, either A = 1 or bycy + b3cs = 0. If A = 1, then b = d, a contradiction. So

we must assume that bocy 4+ b3cz = 0. But then
(b= (51,0,0)) - (¢ — (b1,0,0)) = 0.
Since a, = a. = (b1,0,0) we know that
(b—ap) - (c—a.) =0.

Therefore, since

S(b—ap,Uar) = S(c— ac, Uar),
it must be that either (0, by, b3) or (0, co, ¢3) is isotropic.

First, assume that (0, bq, b3) and (0, co, ¢3) are linearly independent. Then they must
span the linear subspace U, r. Without loss of generality assume that (0, bq, b3) is
isotropic. Therefore, it is orthogonal to every vector in the subspace U, r. Since this
space is defined to be orthogonal to (1,0,0), then this means that (0, by, b3) is linearly

dependent on (1,0,0), a contradiction.

So we must assume that (0, by, b3) and (0, ¢2, ¢3) are linearly dependent. Since at least
one of them is isotropic, then they belong to a totally isotropic one-dimensional linear
subspace. So b3+b% = 0 and ¢ = (by, Aby, \b3) for some A € F,. But then b-(b—c) =0,

a contradiction of the assumption that Red € DOT. [ |

Since these lemmas show that the third and final configuration does not appear, the

coloring C" is a (5, 5)-coloring of K,,.
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CHAPTER 14

A (5,6)-coloring construction.

In this chapter, we improve the probabilistic upper bound of f(n,5,6) < en®/® by
giving an explicit (5, 6)-coloring of K, that uses few colors. The new upper bound

comes close to matching the best known lower bound in order of magnitude.

THEOREM 14.1. As n — oo,

5 0 95\?
. < < 1/220(\/10gn10glogn).
(6” 144) < f(n,5,6) <n

The lower bound comes from the following lemma, a generalization of an argument

used by Erdds and Gyarfas [25], and stated explicitly as equation 11 in [15].

LEMMA 14.1. Lett = f(n,p,q), then

(5 o=

PROOF. Suppose we have a (p, g)-coloring of K, with ¢ colors. Fix some vertex

n—1

7 W vertices must appear in a monochromatic neighborhood of z.

x, then at least {

The number of colors ¢ must be enough to give a (p—1, ¢— 1)-coloring on this set. W

ErdSs and Gyérfds showed that 2(n — 1) < f(n,4,5) [25]. This, combined with the

lemma, gives the stated lower bound in Theorem [14.1]

The construction providing the upper bound combines two existing constructions with
some modification. The first is the modified CFLS construction given in Chapter [12]
The second construction is the “algebraic” part of the (4, 4)-coloring given by Mubayi
in [35].
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After defining the construction in the next section, we will demonstrate that it avoids
many different configurations of colored edges on five or fewer vertices. By ruling
these cases out, the algorithm in Appendix [A]is used to show that no copy of K can

span fewer than six distinct colors.

1. The algebraic construction

We will now define the algebraic part of the construction, ¢ = (; x (5. The first part
of this construction, (;, is exactly the algebraic part of the (4, 4)-coloring given by
Mubayi [35]. The second part, (s, is a modification original to this chapter but based

on a similar modification used to alter the algebraic portion of the (5,5)-coloring in

Chapter [13]

Let n = ¢ where ¢ is some odd prime power. Associate each vertex of K, with a
unique vector in the space IFZ over the finite field with ¢ elements. Between any two

vectors x = (x1,22) and y = (y1,¥y2), we define the color (; of the edge between them

as
Glzy) = (T1y1 — 22 — Y2, 0(21, 1))
where
6(z1,41) = ’ ne
1 Ty # Y1

Here, all algebraic operations are taken to be the standard ones defined by the finite

field.

The modification to this coloring, (s, requires that we give the elements of Fg some
linear order. When we combine the algebraic part of the coloring with the modified
CFLS coloring, this order will agree with the order put on the binary strings, but for

now we just assume that there is some linear order.

For each element o € F, let G, be the graph with vertex set F, \ {a} such that

ry € E(G) <= z+y = 2a.
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It is straightforward to show that the edges of GG, form a complete matching of the
vertices. The vertices can therefore be partitioned into two sets, S, and T, such that

no edge lies inside either set.

For two distinct elements, «, 8 € [F,, define the function

S b e s,
T BeT,

fa(ﬁ) =

Now we can define (, for two vectors, x < y, as
G(zy) = (for (1), fy(21)) -

The coloring, (;, gives at most 2q colors on ¢? vertices, and the modification, ¢, gives

four colors. So overall the modified algebraic coloring ¢ uses at most 8¢ = 84/n colors.

2. Combining the constructions

Begin with n = ¢* for some odd prime power ¢, and associate each vertex with
a distinct vector of Fg as in the previous section. Give some linear order for the
elements of the base field, F,. To each a € [, we associate the unique element

o € {0, 1}°e4] which represents in binary the rank of o under the this linear order.

Let 8 be the minimum positive integer for which
2 [logq] < 2.

To a vertex of K, associated with vector (z1,2z5) € Fg, we also associate the binary
string (2}, 25,0) € {0, 1}52 where for each i, 2} is the binary representation of the

rank of z;, and 0 denotes a string of 3? — 2 [log q] zeros.

The edge-coloring ( x ( is then given by applying ¢ to the vectors and ¢ to the binary

strings. Since

5=0(v/2logq) =0 (VIogn)
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AN

FIGURE 47. Four configurations that each contain a forbidden “color cycle.”
it follows that the number of colors used in this combined coloring is at most

8q5226 _ n1/220(\/10gnloglogn>

colors. This upper bound on the number of colors generalizes to all n by the standard

density of primes argument [35] 37].

3. Configurations avoided by CFLS

In Chapter we showed that the modified CFLS coloring, ¢, avoids several pos-
sible configurations of edge colors on small cliques. Several of these cases, including

monochromatic odd cycles, are covered by Lemma [14.2

3.1. General “color cycle” configurations. Let p and g be positive integers.

Assume that we have a copy of K, under an edge-coloring
c: B(K,) = {Cy,...,C,}.

Define an auxiliary digraph D on the set of edge colors, V(D) = {C1,Cy,...,C,},
such that C; — C; € E(D) if and only if there exist vertices vy, ... v, € V(K,,) for
k > 3 such that

c(vivy) = c(vavg) = -+ - = c(vp_1vx) = C;

and c(vgvy) = C.

Now, color the directed edges of D “Odd” or “Even” depending on the parity of the
number of vertices k that gives the directed edge. Note that multiedges with different

parities are possible in D.



3. CONFIGURATIONS AVOIDED BY CFLS 150
LEMMA 14.2. The CFLS coloring avoids any edge-colored copy of K, for which the
auxiliary digraph on the colors spanned by that clique contains a directed cycle with

at least one Odd edge.

PROOF. Suppose that colors C1, ..., (), make such a directed cycle:
i —>CQ,CQ — Cg,...,cm —>Cl S E(D)

such that (without loss of generality) C; — Cy is colored Odd. Then there exist
vertices vy, ..., v, € V(K,) for some odd integer k& > 3 for which ¢ (vv;41) = Cy
fori = 1,...,k — 1 and ¢;(vyv1) = Cs. Let the zero coordinate of the color C
be (i,{z,y}). Without loss, assume that vii) = z. It follows that vl(f) = x as well.

Therefore, the ¢th coordinate of C5 is zero.

Now, each subsequent directed edge C; — Cj1 for j = 2,...,m, regardless of color,
forces the ith coordinate of the “head” color to be zero as well. To see this assume
that C; is zero in its ith coordinate. A monochromatic path in color Cj, ujug - - -y,
implies that u; agrees with u; at 7. Therefore, the ith coordinate of C;;; must also be

zero. The same must be true for C since this is a directed cycle, a contradiction. W

For the (5, 6)-coloring we use Lemma to eliminate the configurations shown in

Figure 47| as well as monochromatic odd cycles.

3.2. Configurations containing a monochromatic P;. Assume that we have
an edge-colored K5 that contains a monochromatic P3 on vertices abced in color Black.
The edges ac and bd cannot be Black since color classes are bipartite in CFLS. So we
color edge ac Red. Let Blacky = (i, {x,y}), then Red; = 0. Therefore, any Red edge
from the Black P to vertex e fixes the value of e as either z or y. CFLS would
then forbid any third color from having an edge between an x and a y as well as one

between two vertices that agree at 1.
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PRSP
APPD

PP
PP

Ficure 48. CFLS forbids these 16 configurations, each contain a
monochromatic Ps.

There are 16 possible configurations that fit this description when we do not consider
those in which the third color never touches vertex e (these cases are summarized

separately). Figure 48| presents these 16 configurations.

3.3. Configurations containing an alternating Cj. Next, consider configu-
rations that contain a 2-colored Cy with alternating colors. If the configuration also
has two same-colored edges adjacent at the fifth vertex so that the other two end-
points are each incident to either endpoint of an edge of the C; (as shown by the
edge-colored cliques in Figure , then we can say that under CFLS, the color from
the fifth vertex must be distinct from any color spanned by the other four vertices.

Moreover, none of these spanned colors can be incident with the fifth vertex.

LEMMA 14.3. Let a,b,c,d,e be distinct vertices such that ¢(ab) = ¢(cd) = a,

o(bc) = p(ad) = B, p(ae) = p(de) = v, p(ac) = w1, @(bd) = 7, p(be) = A1, and
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DL

F1GURE 49. Configurations containing an alternating Cj.

o(ce) = Ag. Then
7, )‘1a )‘2 ¢ {a7 57 1, 7T2}~

ProoOF. Let By = (i, {x,y}). Without loss of generality, we may assume that
a) =z and d9 = y. If e) = z or e =y, then we get that 4, = 0 and 7; # 0, a
contradiction. Hence,

e =2 ¢ {x,y}.

This alone shows that v #£ .

If ¥ = a, then o; # 0 so it must be the case that b = y and ¢® = x. Therefore,
three distinct binary strings, x,y, z, pairwise have the same first index of difference

a;. This is impossible since two must either both be zero or both be one.

If v = 7y, then ¢® = y and so b® = z. Hence, the distinct binary strings z,vy, z
again pairwise have the same first index of difference, v;, a contradiction. The same

argument applies if v = ms.

Next, assume that A\; = . Since e = z and b € {x,y}, then ), is nonzero at 1.
Since ¢(ac) = A\; and a'? = z, then ¢ = y and so b = x. Hence, colors v and )\
must agree in coordinate 7. This again gives us that x,y, z all pairwise differ at the

same first index, a contradiction. The same argument applies if \y = 5.

If \; = 79, then b® = z and so ¢”) = y. So again v and \; agree at coordinate 7. This

again forces the contradiction with z,y, z. The same argument applies if Ay = 7.
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b b b b
c c e
>S9
d d d
d d e e

(4) (B) (©) (D) (E)

FiGUurE 50. Five additional configurations avoided by .

Finally, note that A\, Ay # 3 since e = z. If \; = «, then b®) = y and so v
and « agree at coordinate ¢ which gives the same contradiction as before. The same

reasoning applies if Ay = a. [ ]

3.4. Additional configurations. We finish this section by showing that the
modified CFLS coloring eliminates the additional cases shown in Figure |50, We
already showed in Chapter [12] that this coloring eliminates Figures and [50D.

LEMMA 14.4. Let a,b,c,d, e be distinct vertices. The CFLS coloring forbids ¢(ab) =

p(bc) = p(de) = a and p(cd) = p(ae) = B (see Figure[50c).

PROOF. Assume that this can happen and that ag = (¢, {z,y}). Without loss of
generality, assume that ) = z and a? = ¢ = y. Moreover, without loss we can
assume that d) = z and e® = y. Then o = e® implies that 8; = 0. But ¢ # d®

implies that §; = 0, a contradiction. [

LEMMA 14.5. Let a,b,c,d, e be distinct vertices. The CFLS coloring forbids ¢(ab) =
p(ed) = a, p(ae) = @(bc) = B, and p(ac) = ¢(de) =~ (see Figure [50d).

PROOF. Let 79 = (i,{z,y}). Without loss of generality we may assume that
a’) =z and ¢® = y. If dY = y and e® = z, then a; = 5, = 0 and so b = z and
b =9, a contradiction. Hence, d¥) = 2 and e = y. So b') = z & {z,y}. Moreover,
a; = [; both go between x and y. Therefore, the three distinct binary strings x,y, 2

are all pairwise different at the same first index, «;, a contradiction. [ |
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LEMMA 14.6. It cannot be the case that a,b,c,d,e are distinct vertices such that
p(ab) = p(cd) = a, p(be) = p(ad) = B, p(ae) = p(ac) = v, and p(bd) = @(bc) =7
(see Figure[50¢).

PRrROOF. Let my = (i, {x,y}). Without loss of generality we may assume that
e =z and ¢ = y. It follows from color v that a®” ¢ {z,y}. Since d¥ € {z,y},
then it follows that £; # 0. Hence, b = x and so d¥) = 5. So ¢(cd) = « implies

that a; = 0, but ¢(ab) = « implies that a; # 0, a contradiction. [ |

4. Configurations avoided by the algebraic coloring

We begin with two basic lemmas about the algebraic construction (.

LEMMA 14.7. Let a,b,c be three distinct vertices such that ((ab) = ((ac), then
b1 7é Ct.

PRrOOF. Let ((ab) = ((ac). Then

a1by —as — by = a1y —as — ¢

&1(1)1 — Cl) = b2 — Cg.

If by = ¢1, then by = c5 as well. Hence, b = ¢, a contradiction. |

LEMMA 14.8. Let a,b,c,d be four distinct vertices such that ((ab) = ((ac) and
¢(db) = ((dc), then a; = d;.

PROOF. Since b; # ¢; by Lemma then we know that

by — ¢

=d;.

ap =
by — ¢
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As shown in [35], the algebraic construction (; avoids monochromatic Cys (see Fig-
ure [5lal) as well as the configuration shown in Figure [51b. We provide these two

results for completeness.

LEMMA 14.9. Let a,b,c,d be distinct vertices. The algebraic coloring ¢ forbids
C(ab) = ((bc) = ((cd) = ((da) (see Figure :

PrROOF. By Lemma by # di. But by = d; by Lemma [14.8] a contradiction.
[ |

LEMMA 14.10. Let a,b,c,d be distinct vertices. The algebraic coloring ¢ forbids
¢(ab) = ¢(ac) = ¢(ad) and {(bc) = ((bd) (see Figure[518).

PrROOF. By Lemma a; = by. Therefore, 6(ay,b1) =0. So ¢; = a; = d;. But
¢1 # dy by Lemma [14.7 |

Now we will take care of a few additional configurations. We will use the following

technical lemma.

LEMMA 14.11. Let a,b,c,d be four distinct vertices such that ((ab) = ((cd) and
C(bc) = ((ad). Then
(a1 + Cl>(b1 — dl) = 2(62 — dg)

PROOF. The two colors give us the following relations:

a1by —ag — by = c1dy —ca — ds

a1d1 — adg — d2 = Clbl — b2 — bg.

We subtract the second equation from the first to get the desired equation. [ |

LEMMA 14.12. Let a,b,c,d, e be distinct vertices. Then C(ab) = C(cd), C(bc) =
C(ad), C(ae) = C(ce), and C(be) = C(de) (see Figure|51c) is forbidden by the coloring
C=¢pxC.



4. CONFIGURATIONS AVOIDED BY THE ALGEBRAIC COLORING 156
b b b b
c c
c a c a a a
d d
d d e e
(A) (B) (©) (
b b b
c c c
a a a
d d d
e e e

(E) (F) (@)

FicUure 51. Configurations eliminated by the modified algebraic coloring.

B C D)

PROOF. By Lemma we know that
(a1 4 c1)(by — dy) = 2(by — da),
and from ((be) = ((de) we get that
er(by — di) = by — do.
Therefore,

(a1 + )by — dy) = 2e1(by — i)

a; +c = 261

since by # dy by Lemma So fe,(a1) # fe,(¢1). By Lemma plae) =

©(ce) implies that either a,c < e or e < a,c. In either case, (2(ae) # (a(ce), a

contradiction. [ |

LEMMA 14.13. Let a,b,c,d, e be distinct vertices. Then C(ab) = C(cd), C(bc) =
C(ad) = C(be) = C(de), and C(ac) = C(ae) (see Figure is forbidden by the
coloring C = ¢ x (.



4. CONFIGURATIONS AVOIDED BY THE ALGEBRAIC COLORING 157

PROOF. As in the previous proof we get that a; + ¢; = 2e;. By Lemma we
know that b; = a;. Therefore, it follows from the second part of (; that ¢; = d;.
Therefore, by + dy = 2e; and so fe,(b1) # fe,(d1). As before, this fact along with
Lemma forces (o(be) # (2(de), a contradiction. |

LEMMA 14.14. Let a,b,c,d, e be distinct vertices. Then ((ab) = ((cd) = ((de) and
C(bc) = ((ad) = ((be) (see Figure|51e) is forbidden by the algebraic coloring (.

ProoF. By Lemma [14.11| we know that
(a1 + Cl>(b1 — dl) = 2(62 — dg),

and by Lemma we know that by = d;. Hence, by —dy = 0 and so b = d, a

contradiction. [}

LEMMA 14.15. Let a,b,c,d,e be distinct vertices. Then ((bc) = ((cd) = ((de),
¢(eb) = ¢(ba) = ((ad), and ((ac) = ((ae) (see Figure[51f) is forbidden by the algebraic

coloring C.

PRrROOF. By Lemma we get that by # d;. By Lemma|14.8|we get that a; = d;.
Therefore, since the color encodes equality in the first coordinate we see that b; = d,

a contradiction. [

LEMMA 14.16. Let a,b,c,d,e be distinct vertices. Then ((bc) = ((cd) = ((de),
((eb) = ¢(ba) = ((ad), and ((ec) = ((ae) (see Figure|51g) is forbidden by the algebraic

coloring C.

PrRoOOF. By Lemma we get that a; = ¢;. By Lemma we get that

ay # ¢1, a contradiction. |
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CHAPTER 15

Additional questions about (p, ¢)-colorings.

1. General (p, p)-coloring with n'/P=2+°(1) colors

In general, the method of combining a variation of the CFLS coloring with a general
algebraic construction using vectors from a space of dimension p — 2 has the potential
to show that

nl/(P=2) < f(n,p,p) = nl/(P=2)+o(1)

for p > 6. Once the difficulty of case analysis is circumvented, then properties of
vector spaces could hopefully be used to eliminate p-cliques which span only p — 1

colors.

2. A better bound for f(n,5,7)

The (5,5) and (5, 6)-colorings have left ¢ = 7 as the only remaining value for which
a polynomial gap (in the order) between the known upper and lower bounds exists
when p = 5. In this case we know that there are positive constants ¢; and ¢y such
that

en?? < f(n,5,7) < com’/%.

Is it possible to lower the upper bound to n?/3t°() using methods similar to those in

Chapters [13] and

3. The hypergraph version

Let fr(n,p,q) denote the minimum number of colors needed to color the edges of the
complete k-uniform hypergraph on n vertices in such a way so that every p vertices

span at least ¢ colors. To date, little work has been done on this hypergraph version
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of the problem. There appear to be only two papers published on the topic, one by
Conlon, Fox, Lee, and Sudakov [16] and one by Mubayi [36].

The main problem in the area is to determine for fixed p the threshold values for ¢
at which there are large jumps in the order of the f(n,p,q). For p > k > 3 and
0 < i < k, Conlon, Fox, Lee, and Sudakov [16] showed that there exists a constant ¢

dependent on k, p, and ¢ for which

fi (n », (Z - 2) + 1) = Q (logi_1)(n)°)

where we define logo(z) = z and log;(z) = log (log;_;(z)). They conjecture that this

value of ¢ is such a jump in the order. Is it true that

p—Z o
fk <n7pa <l€ o Z)) = (1Og(i—1) TL) (1)?

Perhaps algebraic constructions have a place in this area as well.
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APPENDIX A

Algorithm for reducing cases

This chapter contains material from a paper to be published in Combinatorics, Prob-

ability & Computing. [14]

The following algorithm is not difficult to verify, so we present it here without proof.
The specific implementation we rely on is a Python script that can be found (with
comments) at http: //homepages.math.uic.edu/~acamer4 /EdgeColors56.py. This par-
ticular script forbids monochromatic odd cycles and the edge-colorings shown in Fig-

ures [47], [48] as well as Figures and [51b. The output is seven edge-colored

copies of K5 that each contain one of the remaining configurations in Figure

Suppose we want to find every edge-coloring, up to isomorphism, of K, that uses
at most m colors and does not contain a copy of any F' € F, a list of edge-colored
complete graphs on n or fewer vertices. The algorithm takes F, n, and m as input

and returns a list R of edge-colorings of K, satisfying these requirements.

For each k = 3,...,n, the algorithm creates a list L, of acceptable edge-colorings of
K}, by adding a new vertex to each Kj_; listed in Ly_; (where L is the list of exactly
one K, with its single edge given color 1), and then coloring the k — 1 new edges in all
possible ways from the color set [m]. For each graph in Lj_; and each way to color
the new edges, we test the resulting graph to see if it contains any of the forbidden
edge-colorings. If it does, then we move on. If not, then we test it against the new
list Ly to see if it is isomorphic to any of the colorings of K}, already on the list. If it

is, then we move on. Otherwise, we add it to the list L,. The algorithm terminates


http://homepages.math.uic.edu/~acamer4/EdgeColors56.py
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when it has tested all colorings of K,.

Algorithm 1: List all edge-colorings with no forbidden subcoloring

Data: number of vertices n; maximum number of colors m; list of forbidden
colorings F

initialize Lo as list containing one Ky with its edges colored 1;

for k=3,....,ndo

initialize empty list Ly;

for He L, do

for each function f: [k — 1] — [m] do
let G be K} with edge-colors same as H on the first &k — 1 vertices

and color f(i) on edge ki for i =1,... k — 1;
if G contains no element of F and is isomorphic to no element of

L, then
| add G to the list Ly,

end

end

end
end

return L,
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