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SUMMARY

This thesis has two parts. The first part, about Turán-type problems for directed

hypergraphs, consists of Chapters 1 through 10. The second part, about a variation

of the Ramsey problem, consists of Chapters 11 through 15. All of the material is

related under the umbrella of extremal combinatorics.

The first part of this thesis primarily examines the extremal number of edges for

directed hypergraphs given certain forbidden subgraphs. These sorts of questions

are a big area of research for graphs and hypergraphs. Here the question is applied

to the 2 ! 1 directed hypergraph. Chapter 1 defines all of the relevant concepts.

Chapters 2 through 8 give the extremal numbers for every 2! 1 directed hypergraph

with exactly two edges. Chapter 9 generalizes the concept of a directed hypergraph

to include many di↵erent relational structures and extends some classical extremal

results to this larger class of models. Chapter 10 concludes the first part of the thesis

with a few stray results and open questions.

The second part of this thesis is about the (p, q)-coloring problem. A (p, q)-coloring

is an edge-coloring of the complete graph Kn for which any p vertices must span at

least q distinct colors. The goal is to find the minimum number of colors necessary for

which such a coloring exists. Chapter 11 defines the necessary concepts and provides

background. Chapter 12 provides a construction that will be used in subsequent

chapters. Chapter 13 details a (5, 5)-coloring. Chapter 14 details a (5, 6)-coloring.

Finally, Chapter 15 briefly explores some additional ideas for continued research.

xi



1. INTRODUCTION TO EXTREMAL PROBLEMS AND DIRECTED HYPERGRAPHS 1

CHAPTER 1

Introduction to Extremal Problems and Directed

Hypergraphs

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

We will begin this chapter with the basic definitions of uniform graphs and hyper-

graphs. For any set V and any positive integer r we let
�
V
r

�
denote the set of r-subsets

of V in what follows. Additionally, given a positive integer n, we let [n] denote the

set {1, 2, . . . , n}.

DEFINITION 1.1. A graph is an ordered pair of sets G = (V,E) where V , the set

of vertices, is finite, and E, the set of edges, is some subset of
�
V
2

�
.

Technically, this defines a simple graph in that it has no loops (an edge from a vertex

to itself) or multiedges (two or more edges between the same two vertices). This

definition generalizes to larger r.

DEFINITION 1.2. For some integer r � 2, an r-uniform hypergraph is an ordered

pair of sets H = (V,E) where V , the set of vertices, is finite, and E, the set of edges

(or hyperedges), is some subset of
�
V
r

�
. Often, we let V (H) and E(H) denote the

vertex and edge sets of H when these sets have not been given explicitly.

Graphs and hypergraphs are widely-studied combinatorial objects, and many ques-

tions have been asked (and sometimes answered) about them. Here, we are concerned

primarily with extremal questions.
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1. The forbidden subgraph problem

Turán-type extremal problems for uniform graphs and hypergraphs make up a large

and well-known area of research in combinatorics. Of these problems, the forbid-

den subgraph problem is the most basic: “Given a family of forbidden r-uniform

hypergraphs F , what is the maximum number of edges an r-uniform hypergraph on

n vertices can have without containing any member of F as a (not necessarily in-

duced) subgraph?” Such problems were named after Paul Turán due to his important

early results and conjectures concerning forbidden complete r-graphs [42, 43, 44]. We

formalize this idea in the definitions that follow.

DEFINITION 1.3. Given two r-uniform hypergraphs, H and G, we call a function

� : V (H)! V (G) a homomorphism if it preserves the edges of H:

v1v2 · · · vr 2 E(H) =) �(v1)�(v2) · · ·�(vr) 2 E(G).

We will write � : H ! G to indicate that � is a homomorphism.

DEFINITION 1.4. Given a family F of r-uniform hypergraphs, we say that a hy-

pergraph H is F -free if no injective homomorphism � : F ! H exists for any F 2 F .

If F = {F} we will simply write that G is F -free.

DEFINITION 1.5. Given a family F of r-uniform hypergraphs, let the nth extremal

number ex(n,F) denote the maximum number of edges that any F-free hypergraph

on n vertices can have.

The extremal numbers of families of forbidden hypergraphs indicate the threshold

number of edges at which any hypergraph, no matter how unstructured, is forced to

have some local substructure.

For example, if a graph on n vertices has more than n2/4 edges, then it must contain

a 3-clique, three vertices that are all pairwise adjacent, no matter its structure. The

complete bipartite graph with nearly equal parts (see Figure 1) demonstrates that we
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Figure 1. A triangle-free graph with many edges.

can have at least this many edges without a 3-clique. The fact that this is the best

that we can do is called Mantel’s Theorem, and we say that n2/4 is the nth extremal

number for the 3-clique K3, ex(n,K3) = n2/4. Turán’s Theorem generalized this

result for cliques of any size [42, 43, 44]. It states that the maximum number of

edges that a graph can have before it is forced to contain a clique of k vertices is the

same as the number of edges found in the complete balanced (k � 1)-partite graph.

These kinds of questions are di�cult to answer in general for hypergraphs and other

combinatorial structures. Even for 3-uniform hypergraphs, the extremal number of a

4-clique is unknown.

Often, it is easier to discuss these notions in terms of edge density rather than number

of edges.

DEFINITION 1.6. Let H be an r-uniform hypergraph with n vertices and e(H)

edges. Then the edge density of H is

dH =
e(H)�

n
r

� .

DEFINITION 1.7. Given a forbidden family of r-uniform hypergraphs F , the limit

of the maximum edge densities of F-free hypergraphs as the number of vertices goes

to infinity is known as the Turán density of the family,

⇡(F) = lim
n!1

ex(n,F)�
n
r

� .

A simple averaging argument demonstrates that such a limit always exists. For

graphs, it is well-known that the Turán density of any forbidden family is determined
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by the minimum chromatic number of the graphs in the family. This is the famous

Erdős-Stone Theorem [23]. Loosely speaking, the chromatic number of a graph is the

minimum number of parts that any partition of the vertices can have such that no

edge is contained inside a part.

DEFINITION 1.8. Let G be a graph and k be a positive integer. A proper vertex

coloring of G with k colors is an assignment f : V (G)! [k] such that f(x) 6= f(y)

for any xy 2 E(G). The minimum k for which a proper vertex coloring of G exists

is known as the chromatic number of G, �(G). When �(G) = 2, we say that G is

bipartite.

For any forbidden family of graphs F , Erdős and Stone [23] showed that ⇡(F) = k�2

k�1

where

k = min
F2F

{�(F )}.

In particular, a forbidden graph F has Turán density zero if and only if it is bipartite.

This idea extends to hypergraphs as well.

DEFINITION 1.9. Let H be an r-uniform hypergraph. We call H degenerate if

⇡(H) = 0.

DEFINITION 1.10. Let H be an r-uniform hypergraph. We say that H is r-partite

if there exists a partition of the vertices of H into r parts such that every edge of H

contains exactly one vertex from each part.

Erdős [18] showed that an r-uniform hypergraph is degenerate if and only if it is r-

partite. Moreover, ⇡(H) � r!
rr for any r-uniform hypergraph H that is not r-partite.

This can be seen by taking the sequence of r-partite hypergraphs with nearly equal

parts and every possible edge. The hypergraphs in this sequence are all H-free and

their edge densities tend towards r!
rr as the number of vertices increase.
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However, there is no known generalization of the result relating chromatic number

and Turán density to hypergraphs. Even for the complete 3-graph on 4 vertices, K(3)

4
,

the Turán density is unknown.

2. Additional extremal concepts

The label “Turán-type problem” is applied to more than just the forbidden subgraph

problem. A closely related result for hypergraphs known as supersaturation says

any large hypergraph with an edge density slightly more than the Turán density of

some forbidden hypergraph F will not only contain a copy of F , but many copies.

That is, let F be a an r-uniform hypergraph and let ✏ > 0. For su�ciently large

n � n0(F, ✏), any r-uniform hypergraph H on n elements with density dH � ⇡(F )+ ✏

will contain at least c
�
n
r

�
copies of F for some constant c = c(F, ✏). In fact, this

supersaturation result is used to prove the characterization of degenerate hypergraphs

mentioned above.

Another, closely related, extremal question for hypergraphs known as the “jumping

constant conjecture” was proposed by Erdős [22, 23].

DEFINITION 1.11. A real number ↵ 2 [0, 1) is called a jump for an integer r � 2

if there exists some positive constant c which depends only on ↵ such that for any

✏ > 0 and positive integer l there exists a positive integer N for which any r-uniform

hypergraph on n � N vertices which has edge density at least ↵+✏ contains a subgraph

on l vertices with edge density at least ↵ + c.

Informally, a jump is an edge density ↵ for which any very large hypergraph with

a slightly larger edge density must contain an arbitrarily large subgraph with edge

density at least ↵ + c(↵). That is, the density “jumps” by some fixed length c(↵)

when the overall edge density increases beyond ↵. The overall edge structure must

get “clumpy.”
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It is well-known that when r = 2, every ↵ 2 [0, 1) is a jump [22, 23]. Moreover, every

↵ 2
⇥
0, r!

rr

�
is a jump for r � 3 [19]. The jumping constant conjecture asserted that

every ↵ 2 [0, 1) is a jump for any r.

In 1984, Frankl and Rödl disproved the conjecture when they found the first instance

of a nonjump for each r � 3 [27]. Since then many infinite sequences of nonjumps

have been found, but the smallest known nonjump to date is 5r!
2rr for each r � 3

determined by Frankl, Peng, Rödl, and Talbot [26]. The only additional jumps that

have been found are all ↵ 2 [0.2299, 0.2316),
⇥
0.2871, 8

27

�
for r = 3 found by Baber

and Talbot [4], using Razborov’s flag algebra method [40].

3. Directed graphs and hypergraphs

Extremal problems like these have also been considered for directed graphs and multi-

graphs (with bounded multiplicity) [5, 6] and for the more general directed multi-

hypergraphs [7].

Brown and Harary [6] determined the extremal numbers for several types of spe-

cific directed graphs including all tournaments - that is, a digraph with one edge in

some orientation between every pair of vertices. Brown, Erdős, and Simonovits [5]

determined the general structure of extremal sequences for every forbidden family of

digraphs analogous to the Turán graphs for simple graphs.

The model of directed hypergraphs studied in [7] have r-uniform edges such that the

vertices of each edge are given a linear ordering. However, there are many other

ways that one could conceivably define a uniform directed hypergraph. The graph

theoretic properties of a more general definition of a nonuniform directed hypergraph

were studied by Gallo, Longo, Pallottino, and Nguyen [28]. They defined a directed

hyperedge as some subset of vertices with a partition into head vertices and tail

vertices.
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Langlois, Mubayi, Sloan, and Gy. Turán [31, 32] studied extremal properties of certain

small configurations in a directed hypergraph model. This model can be thought of

as a 2! 1 directed hypergraph where each edge has three vertices, two of which are

“tails” and the third is a “head.” They determined the extremal number for one such

subgraph with two edges, and found the extremal number of a second configuration

with two edges up to asymptotic equivalence. We will discuss their results in more

detail in the following section. In Chapters 2 through 8, we determine the exact

extremal numbers for every 2! 1 directed hypergraph with exactly two edges.

The totally directed hypergraph model considered in [7] and the r ! 1 directed hy-

pergraph model resulting from the study of Horn clauses both lead to the natural

question of all possible ways to define a directed hypergraph. The definition in this

paper of the class of general directed hypergraph models attempts to unify all of

the possible “natural” ways one could define a directed hypergraph so that certain

extremal questions can be answered about all of them at once. Adding to the mo-

tivation of considering more general structures is the recent interest in Razborov’s

flag algebra method which applies to all relational theories and not just undirected

hypergraphs. The fact that the d-simplex model studied by Leader as well as many

other somewhat geometric models come out of the class defined in Chapter 9 was a

very interesting accident.

4. 2! 1 directed hypergraphs

The combinatorial structure treated in Chapters 2- 8 is the 2! 1 directed hypergraph

defined as follows.

DEFINITION 1.12. A 2! 1 directed hypergraph is a pair H = (V,E) where V is

a finite set of vertices and the set of edges E is some subset of the set of all pointed

3-subsets of V . That is, each edge is three distinct elements of V with one marked

as special. This special vertex can be thought of as the head vertex of the edge while

the other two make up the tail set of the edge. If H is such that every 3-subset of
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V contains at most one edge of E, then we call H oriented. For a given H we will

typically write its vertex and edge sets as V (H) and E(H). We will write an edge as

ab! c when the underlying 3-set is {a, b, c} and the head vertex is c.

For simplicity we will usually refer to 2 ! 1 directed hypergraphs as graphs or

sometimes as (2! 1)-graphs when needed to avoid confusion. This structure comes

up as a particular instance of the model used to represent definite Horn formulas in the

study of propositional logic and knowledge representation [1, 41]. Some combinatorial

properties of this model were recently studied by Langlois, Mubayi, Sloan, and Turán

[32, 31].

Before we can discuss their results we will need the following definitions which extend

the concepts defined earlier in the chapter for graphs and hypergraphs to 2 ! 1

directed hypergraphs.

DEFINITION 1.13. Given two graphs H and G, we call a function � : V (H) !

V (G) a homomorphism if it preserves the edges of H:

ab! c 2 E(H) =) �(a)�(b)! �(c) 2 E(G).

We will write � : H ! G to indicate that � is a homomorphism.

DEFINITION 1.14. Given a family F of graphs, we say that a graph G is F -free

if no injective homomorphism � : F ! G exists for any F 2 F . If F = {F} we will

write that G is F -free.

DEFINITION 1.15. Given a family F of graphs, let the nth extremal number

ex(n,F) denote the maximum number of edges that any F-free graph on n vertices

can have. Similarly, let the nth oriented extremal number exo(n,F) be the maximum

number of edges that any F-free oriented graph on n vertices can have. Sometimes

we will call the extremal number the standard extremal number or refer to the prob-

lem of determining the extremal number as the standard version of the problem to
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distinguish these concepts from their oriented counterparts. As before, if F = {F},

then we will write ex(n, F ) or exo(n, F ) for simplicity.

In [32, 31], the authors studied the extremal numbers for two small (2! 1)-graphs.

They refer to these two graphs as the 4-resolvent and the 3-resolvent configurations

after their relevance in propositional logic. Here, we will denote these graphs as R4

and R3 respectively and define them formally as

V (R4) = {a, b, c, d, e} and E(R4) = {ab! c, cd! e}

and

V (R3) = {a, b, c, d} and E(R3) = {ab! c, bc! d}.

In [31], the authors determined ex(n,R4) exactly for su�ciently large n, and in [32]

they determined the sequence ex(n,R3) up to asymptotic equivalence. In these pa-

pers, the authors discuss a third graph with two edges which they call an Escher

configuration because it calls to mind the famous M.C. Escher piece in which two

hands draw each other. This graph is on four vertices {a, b, c, d} and has edge set

{ab! c, cd! b}. In this paper, we will denote this graph by E. These three graphs

turn out to be the only three graphs with exactly two edges and more than three

vertices for which the extremal numbers are cubic in n. They are also the only three

with two edges on more than three vertices that do not satisfy the following definition.

DEFINITION 1.16. A graph H is degenerate if its vertices can be partitioned into

three sets, V (H) = T1 [ T2 [K such that every edge of E(H) is of the form t1t2 ! k

for some t1 2 T1, t2 2 T2, and k 2 K.

An immediate consequence of Theorem 9.4 shown in Chapter 9 is that the extremal

numbers for a graph H are cubic in n if and only if H is not degenerate.

In this specific model of directed hypergraphs, there are nine di↵erent graphs with

exactly two edges. Of these, four are not degenerate. One of these is the graph on
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three vertices with exactly two edges, V = {a, b, c} and E = {ab ! c, ac ! b}. It is

trivial to see that both the standard and oriented extremal numbers for this graph

are
�
n
3

�
. The other three nondegenerate graphs are R4, R3, and E. We will determine

both the standard and oriented extremal numbers for each of these graphs in Sections

2, 3, and 4 respectively.

Of the five degenerate graphs with exactly two edges, one has extremal numbers that

are trivial to find. This is the graph with two independent edges, V = {a, b, c, d, e, f}

and E = {ab ! c, de ! f}. The extremal number for this graph comes directly

from the known extremal number of the undirected 3-graph that consists of two

independent edges - that is, the maximum number of edges in a 3-graph with edge

intersection sizes never equal to zero. That extremal number is
�
n�1

2

�
for su�ciently

large n. Therefore, the oriented extremal number for two independent 2 ! 1 edges

is also
�
n�1

2

�
and the standard extremal number is 3

�
n�1

2

�
.

We will call the other four degenerate graphs with two edges I0, I1, H1, and H2 and

define them as follows:

• V (I0) = {a, b, c, d, x} and E(I0) = {ab! x, cd! x}

• V (I1) = {a, b, c, d} and E(I1) = {ab! c, ad! c}

• V (H1) = {a, b, c, d, x} and E(H1) = {ax! b, cx! d}

• V (H2) = {a, b, c, d} and E(H2) = {ab! c, ab! d}

Here, the subscripts indicate the number of tail vertices common to both edges. The

I graphs also share a head vertex while the H graphs do not. We will determine the

oriented and extremal numbers for each of these graphs in Chapters 5- 8.

The proofs that follow rely heavily on the concept of a link graph. For undirected

r-graphs, the link graph of a vertex is the (r � 1)-graph induced on the remaining

vertices such that each (r � 1)-set is an (r � 1)-edge if and only if that set together

with the specified vertex makes an r-edge in the original r-graph [29]. In the directed
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hypergraph model here, there are a few ways that we could define the link graph of

a vertex. We will need the following three definitions.

DEFINITION 1.17. Let x 2 V (H) for some graph H. The tail link graph of x Tx

is the simple undirected 2-graph on the other n � 1 vertices of V (H) with edge set

defined by all pairs of vertices that exist as tails pointing to x in some edge of H.

That is, V (Tx) = V (H) \ {x} and

E(Tx) = {yz : yz ! x 2 H}.

The size of this set, |Tx| will be called the tail degree of x. The degree of a particular

vertex y in the tail link graph of x will be denoted dx(y).

Similarly, let Dx be the directed link graph of x on the remaining n � 1 vertices of

V (H). That is, let V (Dx) = V (H) \ {x} and

E(Dx) = {y ! z : xy ! z 2 E(H)}.

Finally, let Lx denote the total link graph of x on the remaining n� 1 vertices. That

is, V (Lx) = V (H) \ {x} and

E(Lx) = E(Tx) [ E(Dx).

So Lx is a partially directed 2-graph.

The following notation will also be used when we want to count edges by tail sets.

DEFINITION 1.18. For any pair of vertices x, y 2 V (H) for some graph H let

t(x, y) denote the number of edges with tail set {x, y}. That is

t(x, y) = |{v : xy ! v 2 E(H)}|.



2. THE 4-RESOLVENT GRAPH R4 12

CHAPTER 2

The 4-resolvent Graph R4

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

In [32], the authors gave a simple construction for an R4-free graph. Partition the

vertices into sets T and K and take all possible edges with tail sets in T and head

vertex in K. When there are n vertices, this construction gives
�
t
2

�
(n� t) edges where

t = |T |. This is optimized when t =
⌃
2n
3

⌥
. In [31], the authors showed that this

number of edges is maximum for R4-free graphs for su�ciently large n and that the

construction is the unique extremal R4-free graph.

We now give an alternate shorter proof that
⌅
n
3

⇧ �d 2n3 e
2

�
is an upper bound on the

extremal number for R4 for su�ciently large n in both the standard and oriented

versions of the problem. The proof also establishes the uniqueness of the construction.

Figure 2. The 4-resolvent graph R4.

T
K

�
n�k
2

�
tail pairs k heads

Figure 3. The lower bound construction for a graph with no R4.
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H
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()
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a

b
y

z

Figure 4. H contains a copy of R4 if and only if the link graph of
some vertex v contains a directed edge and an undirected edge that do
not intersect.

THEOREM 2.1. For all n � 29,

exo(n,R4) =
jn
3

k✓⌃2n
3

⌥

2

◆

and for all n � 56,

ex(n,R4) =
jn
3

k✓⌃2n
3

⌥

2

◆
.

Moreover, in each case there is one unique extremal construction up to isomorphism

when n ⌘ 0, 1 mod 3 and exactly two when n ⌘ 2 mod 3.

Proof. In either the standard or the oriented model, let H be an R4-free graph

on n vertices. Partition V (H) into sets T [K [B where T is the set of vertices that

appear in tail sets of edges but never appear as the head of any edge, K is the set of

vertices that do not belong to any tail set, and B is the set of vertices that appear as

both heads and tails.

If B is empty, then H is a subgraph of some R4-free graph with the same structure as

the lower bound construction. Therefore, H is either isomorphic to this construction

or has strictly fewer edges. So assume that there exists some v 2 B. The link graph

Lv must contain at least one undirected edge and at least one directed edge. If any

undirected edge is independent from any directed edge in Lv, then v would be the

intersection vertex for an R4 in H. Therefore, every directed edge in Lv is incident

to every undirected edge.
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y

x z

n� 4

· · ·

Figure 5. A simple graph on n � 1 vertices with red and blue edges
such that each red edge is incident to each blue edge and there is at
least one blue edge, xy, and at least one red edge, yz, can have no edge
contained in the remaining n�4 vertices. Moreover, only red edges can
go from x to the remaining vertices and only blue edges can go from z
to the remaining vertices.

We want to show that if v 2 B, then |E(Lv)| = O(n). Determining an upper bound

on the number of edges in Lv is equivalent to determining an upper bound on the

number of red and blue edges on n� 1 vertices such that each red edge is incident to

each blue edge and there is at least one edge of each color.

If we are working in the oriented model where multiple edges on the same triple are

not allowed then no pair of vertices in Lv can hold more than one edge. If we are

working in the standard model, then two vertices in this graph may have up to three

edges between them, say two red and one blue.

First, we consider the oriented version. In this case we have at least one edge of each

color and they must be incident. So let xy be blue and let yz be red. Then all other

edges must be incident to x, y, or z. Moreover, any edge from x to the remaining

n � 4 vertices must be red since it is independent from yz and any edge from z to

the remaining n� 4 must be blue. Therefore, there are at most 2(n� 4) edges from

{x, y, z} to the remaining n� 4 vertices.
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y

x z

y

x

Figure 6. When two vertices are allowed to have up to two red edges
and one blue edge, then an adjacent red and blue edge pair is either
incident in one or two vertices.

In the standard case our initial two red and blue edges may either be incident as

before with xy blue and yz red or they might be incident in two vertices so that xy

holds both a red and a blue edge. If none of the first type of incidence exists, then

there can be at most 3 edges, all on xy.

So assume that the first type of incidence exists - xy is a blue edge and yz is a red

edge. As before, all other edges must be incident to these three vertices such that

any edge from x to the remaining n� 4 vertices must be red, and any edge from z to

these vertices must be blue. Edges from y may be either color.

However, note that if any vertex of the n � 4 has a red edge from x, then none of

the other vertices can have a blue edge from y or z. Similarly, any vertex with a blue

edge from z means that no other vertices can have red edges from x or y. Therefore,

if x has more than one red neighbor among the n� 4 vertices, then there are at most

4(n � 4) edges between {x, y, z} and the n � 4 remaining vertices (since red edges

have multiplicity up to 2). If z has more than one blue neighbor, then there are at

most 2(n � 4) edges between {x, y, z} and the n � 4 remaining vertices. Otherwise,

x and z each have at most one neighbor among the n � 4 vertices, and the best we

can do is 3(n� 4) edges, all from y. Therefore, there are at most 4(n� 4) additional

edges.
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In either the standard or oriented versions of the problem, edges that do not contain

vertices of B must have their tails in T and their heads in K. So there are at most

�
n� b

3

⌫✓l2(n�b)
3

m

2

◆

edges that do not intersect B where b = |B|. Hence,

|E(H)| <
�
n� b

3

⌫✓l2(n�b)
3

m

2

◆
+ cnb

where c = 2 in the oriented case and c = 5 in the standard case.

This expression is maximum on b 2 [0, n] only at the endpoint b = 0 for all n � 29

when c = 2 and for all n � 56 when c = 4.

Therefore, we can never do better than the lower bound construction. Moreover,

since B must be empty to reach this bound, then the construction is unique when

n ⌘ 0, 1 mod 3. When n ⌘ 2 mod 3, then

jn
3

k✓⌃2n
3

⌥

2

◆
=
ln
3

m✓⌅2n
3

⇧

2

◆

so there are exactly two non-isomorphic extremal constructions in that case. ⌅
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CHAPTER 3

The 3-resolvent Graph R3

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

In [32], the authors gave a simple construction for an R3-free graph. Partition the

vertices into sets A and B and take all possible edges with a tail set in A and head

vertex in B plus all possible edges with a tail set in B and head vertex in A. When

there are n vertices, this construction gives (n� a)
�
a
2

�
+ a
�
n�a
2

�
edges where a = |A|.

This is optimized when a =
⌃
n
2

⌥
. The authors showed that this number of edges is

asymptotically equivalent to the extremal numbers for R3.

We show that in both the standard and the oriented versions of this problem that

this construction is in fact the best that we can do. We will start with the oriented

case since it is less technical.

Figure 7. The 3-resolvent graph R3.

A B

Figure 8. The unique R3-free extremal construction.



1. THE ORIENTED VERSION 18

Figure 9. Forbidden intersection types in Lx for any vertex x in an
R3-free graph.

1. The oriented version

THEOREM 3.1. For all n,

exo(n,R3) =
jn
2

k ln
2

m n� 2

2
.

Moreover, there is one unique extremal R3-free construction up to isomorphism for

each n.

Proof. Let H be an R3-free oriented graph on n vertices. Consider the total link

graph, Lx, for some x 2 V (H). If

yz, z ! t 2 E(Lx)

or if

y ! z, z ! t 2 E(Lx),

then H is not R3-free (See Figure 9).

Let Ux ✓ V (Lx) be the set of vertices that appear as the tail vertex of some directed

edge in Lx. Then no edges of Lx can be contained entirely inside Ux - it is an

independent set with respect to both directed and undirected edges. Moreover, all

undirected edges of Lx must appear entirely within the complement, Cx := V (Lx)\Ux.

Hence, if we let ux = |Ux|, then

2|E(H)| =
X

x2V (H)

|Dx| 
X

x2V (H)

ux(n� 1� ux).

Each term of this sum is maximized when ux 2
�⌅

n�1

2

⇧
,
⌃
n�1

2

⌥ 
. Therefore, the result

is immediate if n is even. The situation is slightly more complicated for odd n.
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Cx

Ux

Figure 10. The structure of Lx for any x in an R3-free graph

In this case,

ux(n� 1� ux) 
✓
n� 1

2

◆2

for each x. However, we need ux = n�1

2
in order to attain this maximum value. This

would mean that there are n�1

2
vertices in Cx, and so there are at most

�n�1
2
2

�
edges

in Tx. Therefore, if ux = n�1

2
for each x 2 V (H), then

|E(H)| =
X

x2V (H)

|Tx| <
(n� 2)(n� 1)(n+ 1)

8
=
jn
2

k ln
2

m n� 2

2
.

Hence, we must assume that there exist some vertices for which ux 6= n�1

2
.

For each x let ix 2 {0, . . . , n�1

2
} be the integer such that

ux(n� 1� ux) =

✓
n� 1

2
� ix

◆✓
n� 1

2
+ ix

◆
.

Then,

|E(H)|  1

2

X

x2V (H)

✓
n� 1

2
� ix

◆✓
n� 1

2
+ ix

◆
=

n(n� 1)2

8
� 1

2

n�1
2X

j=0

kjj
2

where kj is the number of vertices x 2 V (H) for which ix = j.
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Since the construction gives (n�2)(n�1)(n+1)

8
for odd n, then we are only interested in

beating this. So set

(n� 2)(n� 1)(n+ 1)

8
 n(n� 1)2

8
� 1

2

n�1
2X

j=0

kjj
2.

This gives

(1)

n�1
2X

j=0

kjj
2  n� 1

2
.

Since we can also find |E(H)| by counting the number of undirected edges over the

Lx, then we can upper bound the number of these by assuming ux = n�1

2
� ix for each

x since this increases the size of Cx. This gives

|E(H)| 
X

x2V (H)

✓n�1

2
+ ix
2

◆
=

n3 � 4n2 + 3n

8
+

1

2

n�1
2X

j=0

j(n+ j � 2)kj.

We can also set this greater than or equal to the known lower bound:

(n� 2)(n� 1)(n+ 1)

8
 n3 � 4n2 + 3n

8
+

1

2

n�1
2X

j=0

j(n+ j � 2)kj

to get

(2)
(n� 1)2

2


n�1
2X

j=0

kjj
2 + (n� 2)

n�1
2X

j=0

kjj.

Subtracting (1) from (2) gives

(n� 1)(n� 2)

2
 (n� 2)

n�1
2X

j=0

kjj.

Therefore,
n�1
2X

j=0

kjj
2  n� 1

2


n�1
2X

j=0

kjj,
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and so

0 
n�1
2X

j=0

kj(j � j2).

Since j� j2 < 0 for any j � 2 and j� j2 = 0 when j = 0, 1, then kj = 0 for all j � 2.

Moreover, once all these are set to zero we get that

k1 
n� 1

2
 k1.

Therefore, k1 = n�1

2
and so k0 = n+1

2
since

P
kj = n. This gives the desired upper

bound.

Now we can show that the lower bound construction is the unique extremal example

up to isomorphism. LetH be an extremal example on n vertices, and define a relation,

⇠, on the vertices such that x ⇠ y if and only if either x = y or y 2 Ux. This defines

an equivalence relation on V (H). Reflexivity and symmetry are both immediate.

For transitivity note that the proof of the upper bound requires that every possible

directed edge be taken from Ux to Cx for each x 2 V (H). Therefore, if we assume

towards a contradiction that y 2 Ux and z 2 Uy but z 62 Ux, then z 2 Cx. So

xy ! z 2 E(H) which means z 2 Cy, a contradiction.

When n is even there must be exactly two equivalence classes each of size n
2
. Similarly,

when n is odd there must be two equivalence classes of sizes n�1

2
and n+1

2
. Therefore,

the lower bound construction must be unique. ⌅

2. The standard version

THEOREM 3.2. For all n � 6,

ex(n,R3) =
jn
2

k ln
2

m n� 2

2
.

Moreover, there is one unique extremal R3-free construction up to isomorphism for

each n.
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Proof. Let H be an R3-free graph on n vertices. Let x 2 V (H), and call

any pair of vertices in Lx a multiedge if they contain more than one edge. Let

V (Lx) = Ux[Cx[Mx where Mx is the set of vertices that are incident to multiedges

(that is, the minimal subset of vertices that contains all multiedges) and Ux and

Cx are defined on the rest of the vertices as in Theorem 3.1. The goal is to show

that if Mx is nonempty for any vertex x, then H has strictly fewer than the number

of edges in the unique oriented construction given in Theorem 3.1. Therefore, that

construction must be the unique extremal R3 example for the standard problem as

well.

There are three possibilities for multiedges in Mx: two oppositely directed edges, one

directed edge and one undirected edge, and one undirected edge with two oppositely

directed edges. If y, z 2 Mx have two directed edges between them, then neither y

nor z is incident to any other edge in Lx since any incidence would create one of the

two forbidden edge incidences of Lx as discussed in the previous theorem.

If y and z have only one directed edge (assume it is y ! z) and one undirected edge

between them, then y cannot be incident to any more edges for the same reason as

before, but z can be incident to undirected edges as well as directed edges with z at

the head. This means that z may be the vertex of intersection of a star of these types

of multiedges within Mx. Between any two such stars, the vertices of intersection

may have an undirected edge between them, but no directed edges.

Therefore, the structure of the internal directed edges of Mx looks like Figure 11 with

only the vertices of intersection of the single directed edge stars able to accept more

edges from the rest of Lx. Directed edges from the rest of the graph to Mx must

originate in Ux. Therefore, if Mx consists of d double directed edge pairs of vertices

and k single directed stars with the ith star containing si vertices, then the total

number of directed edges incident to vertices of Mx is at most

2d+
kX

i=1

(si � 1 + u)
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Mx

Figure 11. Example structure of Mx with 3 single directed edge stars
and 4 double directed pairs.

where u is the number of vertices in Ux.

If we assume that Mx is nonempty, then |Mx| = m � 2. The number of directed

edges incident to or inside of Mx is at most m + k(u� 1). Therefore, for u � 2, the

number of directed edges incident to vertices of Mx is maximized when the number

of single directed edge stars is maximized. This is
⌅
m
2

⇧
stars. Therefore, there are at

most
m

2
(u+ 1)

directed edges incident to vertices of Mx. Thus, if |Cx| = c, then Lx can have at most

uc+ m
2
(u+ 1) directed edges. And since u � 2, then

uc+
m

2
(u+ 1) < u(c+m).

So Lx has strictly less directed edges than a complete bipartite graph on the same

number of vertices would. In Theorem 3.1 every Lx needed to be a complete bipartite

graph in terms of the directed edges in order for the maximum number of edges to

be obtained, and only in the case of odd n could some of these bipartitions be less

than equal or almost equal. In those cases the parts could only have n�1

2
� 1 and
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n�1

2
+ 1 vertices. Therefore, the only way that u(c+m) could have more than this is

if u = c+m and so u = n�1

2
.

We assume that m � 2 and u � 2, but if both are equal to 2, then c = u �m = 0

and n = 4, a contradiction since n is odd. Therefore, one of them must be strictly

greater. So

uc+
m

2
(u+ 1) < (u� 1)(u+ 1) =

✓
n� 1

2
� 1

◆✓
n� 1

2
+ 1

◆
.

This leaves only the cases where u = 0 and u = 1 which are both trivial.

So every link graph of H that contains a multiedge has strictly fewer than (n�1

2
)2� 1

directed edges. This is enough to prove that an extremal R3-free graph on an even

number of vertices must be oriented. However, if there are an odd number of vertices

it is possible that there could be enough directed link graphs with the maximum
�
n�1

2

�2
directed edges to make up the deficit for the directed link graphs with strictly

less than
⇣

(n�3)(n+1)

4

⌘
due to multiedges.

In this case there would need to be at least n+3

2
vertices with directed link graphs

that are complete bipartite graphs with parts of size n�1

2
each. Let S be the set of

these vertices. For any x, y 2 S define the relation x ⇠ y if and only if y 2 Ux. As

in the proof of Theorem 3.1, this turns out to be an equivalence relation. By the

definition of S one equivalence class can hold at most n+1

2
vertices. So there must be

two nonempty classes. Let these classes be A and B.

Given some x, y 2 A, suppose there is some z 62 S such that z 2 Ux and z 62 Uy. Then

it follows that z 2 Cy and therefore there is an edge xy ! z and an edge xz ! w for

some w 2 Cx. Together these make a copy of R3, a contradiction. Therefore, any z

that is in Ux for some x 2 A is in Uy for all y 2 A.

Let C be the set of vertices that are in every Ux for x 2 A but not in A itself. Since

A is nonempty, there is at least one vertex x 2 A, and by definition |Ux| = n�1

2
.

Therefore, |A|+ |C| = n+1

2
. Similarly, let D be the set of vertices that are in every Ux
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for x 2 B but are not in B itself. By the same reasoning we get that |B|+ |D| = n+1

2
.

Hence, |A| + |B| + |C| + |D| = n + 1. However, note that the sets A, B, C, and D

are disjoint. So |A| + |B| + |C| + |D|  n, a contradiction. This is enough to show

the result. ⌅
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CHAPTER 4

The Escher Graph E

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

In this chapter, we will prove the following result on the maximum number of edges

of an E-free graph.

THEOREM 4.1. For all n,

ex(n,E) =

✓
n

3

◆
+ 2

and there are exactly two extremal construction up to isomorphism for each n � 4.

But first we will prove the easier oriented version of the problem. This result will be

needed to prove Theorem 4.1.

1. The oriented version

THEOREM 4.2. For all n,

exo(n,E) =

✓
n

3

◆

and there is exactly one extremal construction up to isomorphism.

Figure 12. The Escher graph E.
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< < < · · · <
1

2

3 4 n

Figure 13. An “almost” linear ordering on the vertices of an E-free
directed hypergraph.

Proof. The upper bound here is trivial so we need only come up with an E-free

construction that uses
�
n
3

�
edges. Let H be the directed hypergraph defined on vertex

set V (H) = [n] and edge set,

E(H) = {ab! c : a < b < c} .

That is take some linear ordering on the n vertices and for each triple direct the edge

to the largest vertex. Then every triple has an edge and H contains no copy of E.

Now we will show that this construction is unique. Let H be an E-free graph on n

vertices and
�
n
3

�
edges. Define a relation on the vertices, �, where x � y if and only

if there exists an edge in E(H) with x in the tail and y as the head vertex. Then �

is a partial ordering of the vertices that is almost linear in that every pair of vertices

are comparable except for the two smallest elements (see Figure 13). ⌅

We now shift our attention to the standard version of the problem where a triple of

vertices can have more than one edge. Here, both of the lower bound constructions

are similar to the unique extremal construction in the oriented version.

2. Two lower bound constructions for ex(n,E)

The first construction is the same as the extremal construction in the oriented case but

with two additional edges placed on the “smallest” triple. That is, let H1 = ([n], E1)

where

E1 = {ab! c : a < b < c} [ {13! 2, 23! 1}.

See Figure 14.
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! ! · · · !

1

2

3
4 n

Figure 14. The first extremal construction, H1, for an E-free directed
hypergraph on n vertices.

! ! · · · !1

2

3

4

5 n

Figure 15. The second extremal construction, H2, for an E-free graph
on n vertices.

Moreover, it is important to note that if an E-free graph with
�
n
3

�
+ 2 edges has

at least one edge on every vertex triple, then it must be isomorphic to H1. This

is because we can remove two edges to get an E-free subgraph where each triple

has exactly one edge. Therefore, this must be the unique extremal construction

established in Theorem 4.2. The only way to add two edges to this construction and

avoid creating an Escher graph is to add the additional edges to the smallest triple

under the ordering.

The second construction is also based on the oriented extremal construction. Let

H2 = ([n], E2) where

E2 = (E1 \ {23! 4, 23! 1}) [ {14! 2, 14! 3}.

See Figure 15.

For the rest of this section we will show that any E-free graph is either isomorphic to

one of these two constructions or has fewer than
�
n
3

�
+2 edges. Roughly speaking, the
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strategy is to take any E-free graph and show that we can add and remove edges to

it so that we preserve E-freeness, remove most multiple edges from triples that had

more than one, and never decrease the overall number of edges.

3. Add and remove edges

Let H be an E-free graph and represent its vertices as the disjoint union of three sets:

V (H) = D [R [ T

where D (for ‘Done’) is the set of all vertices that have complete graphs on three or

more vertices as tail link graphs, R (for ‘Ready to change’) is the set of vertices not

in D that have at least three edges in their tail link graphs, and T is the set of all

other vertices (those with ‘Two or fewer edges in their tail link graphs’).

The plan is now to remove and add edges in order make a new graph H 0 which is also

E-free, has at least as many edges as H, and whose vertices make a disjoint union,

V (H 0) = D0 [ T 0

where D0 and T 0 are defined exactly the same as D and T except in terms of the

vertices of H 0.

That is, for each vertex x 2 R, we will add all possible edges to complete Tx. This

moves x from R to D. The edges removed will be all those that pointed from x to a

vertex that points to x. This will destroy triples with more than one edge as we go.

The following observation will ensure that this procedure only ever moves vertices

from R to D, from R to T , from R to R, and from T to T . Since each step moves one

vertex from R to D and ends when R is empty, then the procedure is finite. Here is

the observation:
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LEMMA 4.1. Let H be an E-free graph, and let x, y 2 V (H). If dx(y), dy(x) > 0,

then dx(y) = dy(x) = 1. In other words, for any two vertices, x and y, if dy(x) � 2,

then dx(y) = 0.

Proof. Suppose not. Let dx(y), dy(x) > 0 and suppose dx(y) � 2. Then there

exist two distinct vertices, a and b such that

ay ! x, by ! x 2 E(H).

There also exists a vertex c such that xc! y 2 E(H). Since c must be distinct from

either a or b if not both, then this yields an Escher graph. ⌅

Now, let us make the procedure slightly more formal: While there exist vertices in

R, pick one, x 2 R, and for each pair a, b 2 V (Tx), add the edge ab ! x to E(H) if

it is not already an edge. Then, for each a 2 V (Tx), remove all edges of E(H) of the

form xs! a for any third vertex s.

Since there were at least three edges in Tx, then the added edges will move x from

R to D. The removed edges, if any, will only a↵ect vertices in R or in T since if xs

is removed from Ta, then this implies that a 2 Tx and that x 2 Ta and so both had

degree one in the other’s tail link graph. Hence, a 62 D. Moreover, an a↵ected vertex

in R will either stay in R or move to T while an a↵ected vertex in T will stay in T

since it is only losing edges from its tail link graph.

At the end of this process D0 will contain no triple of vertices with more than one

edge. Therefore, the only such triples of vertices of H 0 will be entirely in T 0 or will

consist of vertices from both T 0 and D0. We will show later that there cannot be too

many of these triples. First, we need to show that after each step of this procedure,

no Escher graph is created and at least as many edges are added to the graph as

removed.
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4. No copy of E is created and the number of edges can only increase

Fix a particular vertex x 2 R to move to D. Add and remove all of the designated

edges. Suppose that we have created an Escher graph. Since the only added edges

point to x, then the configuration must be of the form, ab ! x, xc ! a for some

distinct vertices, a, b, and c. Therefore, a 2 V (Tx) and so xc ! a would have been

removed in the process.

Now we will show that at least as many edges have been added to H as removed by

induction on the number of independent edges in Tx. Start by assuming there are 0

independent edges in Tx and assume that there are k vertices in Tx that have degree

one. Then at most k edges will be removed. If k = 0, then no edges are removed and

there is a strict increase in the number of edges.

If k = 1, then let y1 be the vertex with degree one and let y2 be the vertex it is

incident to. Since dx(y2) 6= 1 and dx(y2) � 1, then dx(y2) � 2. So there exists a third

vertex, y3, and similarly, dx(y3) � 2 but y3 is not adjacent to y1. Hence, there exists

a fourth vertex, y4. So at most one edge is removed and at least two edges are added,

y1y3 ! x and y1y4 ! x. Therefore, there is a strict increase in the number of edges.

If k = 2, then the fact that Tx has at least three edges means that there must be at

least two additional vertices in Tx. Hence, at most two edges are removed but at least

three are added. If k � 3, then at most k are removed but
�
k
2

�
are added which nets

✓
k

2

◆
� k =

k(k � 3)

2
� 0

edges added.

Now, for the induction step, assume that Tx has m > 0 independent edges and that

the process on a Tx with m � 1 independent edges adds just as many edges as it

removes. Let yz be an independent edge in Tx and let A be the set of vertices of Tx

that are not y or z. Since Tx has at least three edges, then A contains at least three

vertices. Therefore, the number of added edges is at least 6 between A and {y, z}.
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The number of edges removed from Ty and Tz together is at most 2. By assumption,

the number of edges removed from the other tail link graphs of vertices in A is o↵set

by the number of edges added inside A. Therefore, there is a strict increase in the

number of edges.

To summarize, we have shown that H 0 is an E-free graph such that

|E(H)|  |E(H 0)|

and

V (H 0) = D0 [ T 0

such that any triple of vertices of H 0 with more than one edge must intersect the set

T 0. We will now consider what is happening in T 0 by cases.

5. Case 1: |T 0| � 5

Let T 0 = {x1, x2, . . . , xt} for t � 5. For each xi remove all edges of H 0 that have xi

as a head. By the definition of T 0 this will remove at most 2t edges from H 0.

Next, add all edges to T 0 that follow the index ordering. That is, for each triple

{xi, xj, xk} add the edge that points to the largest index, xixj ! xk where i < j < k.

This will add
�
t
3

�
edges. The new graph has

✓
t

3

◆
� 2t � 0

more edges than H 0. Moreover, it is E-free and oriented. Therefore, |E(H)| <
�
n
3

�
.

6. Case 2: |T 0|  4 and some x 2 T 0 gives an Tx with 2 independent edges

Assume that some x 2 T 0 has a tail link graph Tx such that ab, cd 2 E(Tx) for four

distinct vertices, {a, b, c, d}. If

da(x) = db(x) = dc(x) = dd(x) = 1,



7. CASE 3: |T 0| = 0, 1, 2 33

then a, b, c, d, x 2 T 0, a contradiction of the assumption that |T 0|  4.

Therefore, we can add the edges

ac! x, ad! x, bc! x, bd! x

and remove any edges that point to a vertex from {a, b, c, d} with x in the tail set.

Because x has zero degree in at least one of those tail link graphs, then we have

removed at most three edges and added four, a strict increase. We have also not

created any triples of vertices with more than one edge or any Escher graphs.

We may now assume that |T 0|  4 and that the tail link graphs of vertices in T 0 are

never two independent edges.

7. Case 3: |T 0| = 0, 1, 2

First, note that if H 0 has a triple with more than one edge {x, y, z} then at least two

of its vertices must be in T 0 as a consequence of Lemma 4.1. Therefore, if |T 0| = 0, 1,

then H 0 is oriented and so

|E(H)|  |E(H 0)| 
✓
n

3

◆
.

Moreover, if T 0 = {x, y} and H 0 is not oriented, then any vertex triple with more

than one edge must have two edges of the form,

zx! y, zy ! x

for some third vertex z. If there exist two such vertices z1 6= z2 that satisfy this, then

there would be an Escher graph. Hence, there is at most one vertex triple with more

than one edge and it would have at most two edges. Therefore,

|E(H)|  |E(H 0)| 
✓
n

3

◆
+ 1.
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8. Case 4: |T 0| = 3

First, suppose that there exists a triple {x, y, z} with all three possible edges. Then

T 0 = {x, y, z}. Since any triple with multiple edges must intersect T 0 in at least two

vertices, then any additional such triple would make an Escher graph with one of the

edges in T 0. Therefore, H 0 has exactly one triple of vertices with all three edges on it

and no others. So

|E(H)  |E(H 0)| 
✓
n

3

◆
+ 2.

Moreover, to attain this number of edges, no triple of vertices can be empty of edges.

In this case, H 0 must be isomorphic to the first construction H1.

Next, assume that no triple of vertices has all three edges and let T 0 = {x, y, z}.

Therefore, H 0 needs at least two triples of vertices that each hold two edges or else

|E(H)|  |E(H 0)| 
✓
n

3

◆
+ 1

automatically. Suppose one of the multiedges is {x, y, z} itself. Then without loss of

generality let the edges be xy ! z and xz ! y. The second triple with two edges

must have its third vertex in D0. Call this vertex v. The vertex x cannot be in this

second triple of vertices without creating an Escher graph. So the edges must be

vy ! z and vz ! y. But this also creates an Escher graph.

Therefore, neither of the two triples that hold two edges are contained entirely within

T 0. So without loss of generality they must be vx! y, vy ! x and wy ! z, wz ! y.

If v 6= w, then vx, wz 2 Ty, a contradiction to our assumption that T 0 contains no

vertices with tail link graphs that are two independent edges. Hence, v = w.

Since v 2 D, then Tv has at least three vertices. Moreover, since v is in the tail link

graphs of each vertex of T 0, then none of these vertices can be in Tv. Remove all

edges pointing to the vertices of T 0. This is at most 6 edges. Add all possible edges

with v as the head and a tail set among the set V (Tv) [ {x, y, z}. This adds at least

12 new edges. The new graph is oriented and E-free. Therefore, |E(H)| <
�
n
3

�
.
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9. Case 5: |T 0| = 4

First, assume that there is some triple {x, y, z} that contains all three possible edges.

As before, there are no additional triples with more than one edge. So

|E(H)|  |E(H 0)| 
✓
n

3

◆
+ 2.

The first construction H1 is the unique extremal construction under this condition

since all triples must be used at least once.

So assume that all triples with more than one edge have two edges each. Then we

must have at least two. Assume that one of them is contained within T 0 = {a, b, c, d}.

Without loss of generality let it be ab ! c, ac ! b. Since the second such triple

intersects T 0 in at least two vertices, then it must intersect {a, b, c} in at least one

vertex.

If it intersects {a, b, c} in two vertices, then without loss of generality (to avoid a copy

of E) the second triple must be of the form ab! x, ax! b. Hence, x 2 T 0 so x = d.

But now there is no edge possible on {b, c, d}. Therefore, there must be a third such

triple for H 0 to have
�
n
3

�
+ 2 edges. This triple must be ac ! d, ad ! c. And the

only way to actually make it to the maximum number of edges now must be to have

an edge on every other triple.

Every triple of the form {b, c, s} for s 2 D must have the edge bc! s since the other

two options would create an Escher graph. Similarly, bd! s and cd! s are the only

options for triples of the form {b, d, s} and {c, d, s} respectively. Next, any triple of

the form {a, b, s} must hold the edge ab! s since the other two edges create Escher

graphs. Similarly, every triple of the forms {a, c, s} and {a, d, s} must hold the edges

ac! s and ad! s respectively.

Since each triple contained in D holds exactly one edge, then the induced subgraph on

D must be isomorphic to the oriented extremal example of an E-free graph on n� 4
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vertices. Therefore, the entire graph H 0 must be isomorphic to the second extremal

construction H2 in order to attain
�
n
3

�
+ 2 edges.

So assume that the second triple with two edges intersects {a, b, c} in only one vertex.

Then these edges must be xa ! d, xd ! a. This can be the only additional triple

with two edges. So to make it to
�
n
3

�
+ 2 edges we need each triple to have an edge.

However, the edge for {a, b, d} is forced to be ad ! b and the edge for {b, c, d} is

forced to be bc! d. This makes an Escher graph. So

|E(H)|  |E(H 0)| 
✓
n

3

◆
+ 1.

Now assume that no vertex triple with multiple edges is contained entirely within T 0,

but assume that there are at least two such triples in H 0. The only way that two

triples could have distinct vertices in D0 is if they were of the forms (without loss of

generality), xa ! b, xb ! a, and yc ! d, yd ! c. Otherwise, the pairs of the two

triples that are in T 0 would intersect resulting in either a copy of E (if both triples

use the same pair) or a vertex in T 0 with two independent edges as a tail link graph.

So there must be exactly two such triples. Therefore, all other triples of vertices

must contain exactly one edge in order to reach
�
n
3

�
+ 2 edges overall. To avoid the

forbidden subgraph this edge must be ab ! c for the triple {a, b, c} and cd ! a for

the triple {a, c, d}. But this is an Escher graph. Hence, not all triples may be used

and so

|E(H)|  |E(H 0)| 
✓
n

3

◆
+ 1.

Therefore, we may now assume for each multiedge triple that the vertex from D0 is

always x. First, assume that there are only two such triples. As before, if we assume

that the only two such triples are xa! b, xb! a and xc! d, xd! c, then there can

be not be an edge on both {a, b, c} and {a, c, d}. Hence, there would be a suboptimal

number of edges overall.
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On the other hand, if the only two such triples are adjacent in T 0, then they are,

without loss of generality, xa! b, xb! a and xb! c, xc! a. In this case, no edge

can go on the triple {a, b, c} at all and so there are at most
�
n
3

�
+ 1 edges overall.

Therefore, we must assume there are at least three such triples that meet at x. If these

three triples make a triangle in T 0, then they are xa ! b, xb ! a, xb ! c, xc ! b,

and xc ! a, xa ! c. Again, there can be no edges on the triple {a, b, c}. Hence,

every other triple must hold an edge to attain
�
n
3

�
+ 2 edges overall.

On the triple {a, b, d} this edge must be ab ! d to avoid making a copy of E.

Similarly, we must have the edges ac! d and bc! d. But this means that d 62 T 0, a

contradiction.

On the other hand, if there are three triples of vertices with more than one edge on

each that do not make a triangle in T 0 or if there are four or more such triples, then

x is in the tail link graphs for each vertex in T 0. Hence, none of these vertices may

be in the tail link graph, Tx. However, x 2 D0 so its tail link graph has at least

three vertices. Remove all edges pointing to vertices of T 0 (at most 8). Add all edges

pointing to x with tail sets in T 0 (6 new edges) and between T 0 and V (Tx) (at least

12 new edges). So this adds at least ten edges to H 0 to create H 00. H 00 is oriented so

|E(H)| < |E(H 00)| 
✓
n

3

◆
.

This exhausts all of the cases and establishes that

ex(n,E) =

✓
n

3

◆
+ 2

with exactly two extremal examples up to isomorphism.
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CHAPTER 5

The Graph I0

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let I0 denote the forbidden graph where two edges intersect in exactly one vertex

such that this vertex is the head of both edges. That is V (I0) = {a, b, c, d, x} and

E(I0) = {ab! x, cd! x} (see Figure 16). In this chapter, we will prove the following

result on the oriented extremal numbers of I0.

THEOREM 5.1. For all n � 9,

exo(n, I0) =

8
>>>>><

>>>>>:

n(n� 3) + n
3

n ⌘ 0 mod 3

n(n� 3) + n�4

3
n ⌘ 1 mod 3

n(n� 3) + n�5

3
n ⌘ 2 mod 3

with exactly one extremal example up to isomorphism when 3|n, exactly 18 non-

isomorphic extremal constructions when

n ⌘ 1 mod 3,

and exactly 32 constructions when

n ⌘ 2 mod 3.

a

b

x

c

d

Figure 16. The graph I0.
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Tx

b d

a c

()

H

b d

a c

x

Figure 17. ab, cd 2 E(Tx) if and only if ab! x, cd! x 2 H.

The proof for this is rather long. However, the standard version of the problem is

much simpler so we will begin there.

THEOREM 5.2. For each n � 5,

ex(n, I0) = n(n� 2)

and for each n � 6, there are exactly (n � 1)n di↵erent labeled I0-free graphs that

attain this maximum number of edges.

Proof. Let H be I0-free on n � 5 vertices. For any x 2 V (H), the tail link

graph Tx cannot contain two independent edges (see Figure 17). Therefore, by the

Erdős-Ko-Rado Theorem [21] the edge structure of Tx is either a triangle or a star

with k edges all intersecting in a common vertex for some 0  k  n � 2. So each

vertex x 2 V (H) is at the head of at most n� 2 edges. Hence,

|E(H)| =
X

x2V (H)

|E(Tx)|  n(n� 2).

On the other hand, many di↵erent extremal constructions exist that give n(n � 2)

edges on n vertices without the forbidden intersection. Let

f : [n]! [n]
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be any function such that f(x) 6= x for any x 2 [n]. Define Hf as the graph with

vertex set V (Hf ) = [n] and edge set

E(Hf ) =
[

x2[n]

{f(x)y ! x : y 2 [n] \ {x, f(x)}} .

Certainly each vertex x is at the head of n� 2 edges and each of its tail sets contains

f(x) which prevents the forbidden subgraph. So |E(Hf )| = n(n�2), and Hf is I0-free

for any such function f .

Moreover, there are (n� 1)n di↵erent functions f that will make such a construction

on [n]. So this gives us (n � 1)n labeled extremal I0-free graphs. Conversely, since

any I0-free graph with the maximum number of edges must have n�2 edges in Tx for

each vertex x, then all tail link graphs must be (n� 2)-stars for all n � 6. Therefore,

these constructions give all possible extremal examples. ⌅

The oriented version of this problem is less straight forward, but determining exo(n, I0)

also begins with the observation that every tail link graph of an I0-free graph will

either be a triangle, a star, or empty. Broadly speaking, as n gets large, it would

make more sense for most, if not all, tail link graphs to be stars in order to fit as

many edges into an I0-free graph. This motivates the following auxiliary structure.

1. Gates

Let H be some I0-free graph. For each x 2 V (H) for which Tx is a star (with at least

one edge), let g(x) denote the common vertex for the edges of Tx. We will refer to

this vertex as the gatekeeper of x (in that it is the gatekeeper that any other vertex

must pair with in order to “access” x). In the case where Tx contains only a single

edge we may choose either of its vertices to serve as the gatekeeper. In this way, we

have constructed a partial function, g : V (H) 9 V (H).
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Ck

Figure 18. The structure of a connected component of the gate G.

Next, construct a directed 2-graph G on the vertex set V (H) based on this partial

function:

y ! x 2 E(G) () y = g(x).

We will call this digraph the gate of H (or more properly, G is the gate of H under

g since g is not necessarily unique).

The edge structure of any gate G is not di�cult to determine. Since g is a partial

function, then each vertex has in-degree at most one in G. Therefore, the structure

of any connected component of G can be described as a directed cycle on k vertices,

Ck, for 1  k (where k = 1 implies a single vertex) unioned with k disjoint directed

trees, each with its root vertex on this cycle (see Figure 18). We will refer to this

kind of general structure as a k-cycle with branches.

Let

C =
n[

k=1

Ck

be the set of maximal connected components of a gate of H where, for each k, Ck is

the set of maximal connected components that are k-cycles with branches. Note that

|E(H)| =
X

x2V (H)

|Tx| =
X

C2C

0

@
X

x2V (C)

|Tx|

1

A =
nX

k=1

0

@
X

C2Ck

0

@
X

x2V (C)

|Tx|

1

A

1

A .
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The next section determines for each k an upper bound on

X

x2V (C)

|Tx|

as a function of the number of vertices, |V (C)|, for any C 2 Ck.

2. Bounding
P

x2V (C)
|Tx| for any connected component C of the gate

Loosely speaking, each gatekeeper edge of a connected component C represents at

most n � 2 edges of H. We will arrive at an upper bound on the sum
P

x2V (C)
|Tx|

by adding this maximum for each edge of C, and then subtracting the number of

triples of vertices that such a count has included more than once. This will happen

for any triple of vertices which contain two or three gatekeeper edges. We make this

observation formal in the following definition and lemma.

DEFINITION 5.1. Let G be some gate and let C be a maximal connected component

of G. Let P (C) be the set of 2! 1 possible edges defined by

P (C) =
[

a!b2E(C)

{av ! b : v 2 V (H) \ {a, b}} .

LEMMA 5.2. Let G be a gate, and let C be a maximal connected component of G. If

a set of three distinct vertices {x, y, z} ✓ V (C) are spanned by two gatekeeper edges

of G, then P (C) contains at least two edges on these three vertices.

Proof. Without loss of generality, the two spanning edges on {x, y, z} are either

of the form

x! y ! z or x y ! z.

In the former case, P (C) contains the edges xz ! y and yx! z. In the latter case,

P (C) contains the edges yz ! x and yx! z. ⌅

Now comes the main counting lemma.
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LEMMA 5.3. Let H be an I0-free graph on n � 8 vertices. Let G be a gate of H.

Let C be a maximal connected component of G with m vertices. Then

•
P

x2V (C)
|Tx|  m(n� 3) if C 2 Ck for any k 6= 3 with equality possible only

if C = Ck for some k � 4,

•
P

x2V (C)
|Tx|  m(n� 3) + 1 if C = C3, and

•
P

x2V (C)
|Tx|  m(n� 3) for all other C 2 C3 with equality possible only if C

is a 3-cycle with exactly one nonempty directed path coming o↵ of it.

Proof. For convenience let

S =
X

x2V (C)

|Tx|.

Note that for each x 2 V (C) with in-degree one, ab 2 Tx implies that ab! x 2 P (C).

Hence, if C 62 C1, then every edge counted in the sum S is in P (C). Moreover,

|P (C)| = m(n� 2).

If C 2 Ck for k � 4, then by Lemma 5.2, each intersection of gatekeeper edges of C

yields two edges on the same triple of vertices in P (C). Conversely, since C contains

no C3, then each distinct triple of vertices contains at most two gatekeeper edges.

Therefore, each triple contains at most two edges of P (C). Hence,

S  m(n� 2)�
X

x2V (C)

✓
dG(x)

2

◆

where dG(x) denotes the total number of vertices incident to x in the gate.

Since C has m edges, then
P

x2V (C)
dG(x) = 2m. So

S  m(n� 2)�
X

x2V (C)

✓
dG(x)

2

◆
 m(n� 3)

by Jensen’s Inequality. Moreover, equality happens if and only if dG(x) = dG(y) for

all x, y 2 V (C). Therefore, this inequality is strict for all C 2 Ck unless C = Ck.
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Similarly, if C 2 C2, then P (C) contains at least
P

x2V (C)

�
dG(x)

2

�
multiedges for the

same reason as before. But here there are an additional n� 2 edges counted for each

triple containing the C2. Also,

X

x2V (C)

dG(x) = 2(m� 1).

Hence,

S  m(n� 2)� (n� 2)�
X

x2V (C)

✓
dG(x)

2

◆
 (m� 1)(n� 2)�m

✓
2(m�1)

m

2

◆

by Jensen’s Inequality. This is strictly less than m(n� 3).

In the acyclic case, Lemma 5.2 implies that the sum of all |Tx| for each x 2 V (C)

other than the root vertex is less than or equal to

(m� 1)(n� 2)�
X

x2V (C)

✓
dG(x)

2

◆
.

The root vertex itself is the head vertex of at most 3 edges in H so Jensen’s Inequality

gives

S  (m� 1)(n� 2)�m

✓
2(m�1)

m

2

◆
+ 3 < m(n� 3)

for all n � 8.

Finally, if C 2 C3, then each intersection of gatekeeper edges of C yields two edges on

the same triple of vertices in P (C). However, exactly one triple of vertices contains

three gatekeeper edges and has three edges in P (C). But the rest have at most two

since there is only one triangle in C. Therefore,
P

x2V (C)

�
dG(x)

2

�
counts each triple

of vertices that contain more than one gatekeeper edge exactly once except for the

triple that makes up the C3 which it counts three times. Since we must subtract o↵

two edges in P (C) on these three vertices to eliminate repeated triples, then we must
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subtract
P

x2V (C)

�
dG(x)

2

�
� 1 from |P (C)|. Therefore,

S  m(n� 2)�
X

x2V (C)

✓
dG(x)

2

◆
+ 1.

So by Jensen’s Inequality,

S  m(n� 3) + 1

with equality possible only if all of the degrees dG(x) are equal. This can only happen

if C = C3.

If we want to see for which C 2 C3 the second best bound of m(n � 3) could be

attained, then we need to set

X

x2V (C)

✓
dG(x)

2

◆
= m+ 1.

Assume that the vertices are x1, . . . , xm, and for each xi let

di = dG(xi)� 2.

Then
Pm

i=1
di = 0 and a quick calculation shows that

Pm
i=1

d2i = 2. Therefore, the

only possibility is for some di = 1 and another to equal �1 and all the rest must be

0. This corresponds with one vertex degree equal to 3, another equal to 1, and all

others equal to 2. The only way that this can happen in a C3 with branches is to

have exactly one branch, and that branch must be a directed path. ⌅

This shows that the best we can hope for in terms of the average number of edges

per vertex over any connected component of the gate is n� 3 + 1

3
, and this could be

attained only in the case where the component is a directed triangle with no branches.

Otherwise, the average number of edges of a component is at most n � 3, and this

is attainable only if the component is a directed triangle with a single directed path

coming o↵ of one of its vertices or a directed k-cycle with no branches for some k � 4.
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· · ·

Figure 19. Structure of the gate for an extremal I0-free graph when
n ⌘ 0 mod 3.

This is enough for us to establish the upper bound for exo(n, I0) and to characterize

the necessary structure of the gate for any graph attaining this upper bound.

3. Upper bound on exo(n, I0)

Let H be an I0-free graph on n � 9 vertices. Let G be a gate of H. Let C be the

set of maximal connected components of G and break C into three disjoint subsets

based on the maximum average number of edges attainable for the components in

each. That is, let

C = D1 [D2 [D3

where D1 contains all components with maximum average number of edges per vertex

strictly less than n�3: those components that are either acyclic, contain a C2, contain

a C3 with nonempty branches that are more than just a single path, or contain a Ck

for k � 4 with some nonempty branch; D2 is the set of all components with maximum

number of edges per vertex of n�3: those that contain a directed C3 and exactly one

directed path or those that are a directed k-cycles for any k � 4 and no branches;

and D3 is the set of components with a maximum average greater than n � 3: the

directed triangles.

For each i let di be the total number of vertices contained in the components of Di.

Then

|E(H)|  d3

✓
n� 3 +

1

3

◆
+ (n� d3)(n� 3)

with equality possible only if d1 = 0. This is enough to prove the following.
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· · ·

or

· · ·

Figure 20. The only possible structures of the gate of an extremal
I0-free graph when n ⌘ 1 mod 3.

LEMMA 5.4. Let H be an I0-free graph on n � 9 vertices such that n ⌘ 0 mod 3,

then

|E(H)|  n(n� 3) +
n

3
.

Moreover, the only way for H to attain this maximum number of edges is if the gate

of H is a disjoint union of directed triangles.

The next two lemmas give the maximum number when n ⌘ 1, 2 mod 3. There is only

slightly more to consider in these cases.

LEMMA 5.5. Let H be an I0-free graph on n � 9 vertices such that n ⌘ 1 mod 3,

then

|E(H)|  n(n� 3) +
n� 4

3
.

Moreover, the only way for H to attain this maximum number of edges is if the gate

of H is a disjoint union of n�4

3
directed triangles together with either a directed C4 or

a 3-cycle with an extra edge.

Proof. Since n ⌘ 1 mod 3, then d3  n�1. If d3 = n�1, then the gate consists

of n�1

3
disjoint directed triangles and one isolated vertex which means that

|E(H)|  (n� 1)

✓
n� 3 +

1

3

◆
+ 3.
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· · ·

· · ·

or

Figure 21. The only possible structures of the gate of an extremal
I0-free graph when n ⌘ 2 mod 3.

If d3  n� 4, then we can do better with

|E(H)|  (n� 4)

✓
n� 3 +

1

3

◆
+ 4(n� 3)

only in the case of n�4

3
disjoint directed triangles and one component from D2 in the

gate. Therefore,

|E(H)|  n(n� 3) +
n� 4

3
.

⌅

LEMMA 5.6. Let H be an I0-free graph on n � 11 vertices such that n ⌘ 2 mod 3,

then

|E(H)|  n(n� 3) +
n� 5

3
.

Moreover, the only way for H to attain this maximum number of edges is if the gate

of H is a disjoint union of n�5

3
directed triangles together with either a directed C5 or

a 3-cycle with a directed path of two edges.

Proof. Since n ⌘ 2 mod 3, then d3  n� 2 and equality implies that G consists

of n�2

3
disjoint directed triangles and two additional vertices that are either both

isolated, contain one edge, or are a C2 giving 6, 3+ (n� 2), or n� 2 additional edges
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respectively. The best we can do when d3 = n� 2 is therefore,

|E(H)|  (n� 2)

✓
n� 3 +

1

3

◆
+ (n+ 1).

Otherwise, d3  n� 5 and the best we can do is

|E(H)|  (n� 5)

✓
n� 3 +

1

3

◆
+ 5(n� 3).

This is better. Moreover, this will happen only when the five non-triangle vertices

are in a component (or components) of G that give an average of n�3. So they must

either make a C5 or a directed triangle with one path. ⌅

4. Lower bound constructions

The structure of the gates necessary to attain the maximum number of edges for a

I0-free graph determined in the previous section are also su�cient. Of these gates,

none of them have acyclic components. Therefore, any graph that produces one of

these gates has only vertices with stars for tail link graphs. This immediately implies

that there is no I0 in any graph that has such a gate.

Moreover, if H is a graph with a gate G that is one of these configurations, then

E(H) ✓
[

C2C

P (C)

where C is the set of maximal connected components of G. All that is left to do in

order to construct an extremal example is to pick which edges of each P (C) to delete

in order to eliminate triples of vertices with more than one edge.

LEMMA 5.7. Let H be an I0-free graph on n � 9 vertices such that n ⌘ 0 mod 3,

then

|E(H)| � n(n� 3) +
n

3

and there is exactly one extremal construction up to isomorphism.
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x

a

z y

Figure 22. C3 plus an edge.

Proof. We know from Lemma 5.4 that the only way H can possibly attain

n(n� 3) +
n

3

edges is if its gate is the disjoint union of n
3
directed triangles. Therefore, each P (C3)

contains exactly one vertex triple with all three possible edges. So two of these must

be deleted for each component in order to arrive at an extremal construction. The

three choices for this deletion on each component are all isomorphic to each other.

Therefore, there is exactly one extremal construction up to isomorphism. ⌅

LEMMA 5.8. Let H be an I0-free graph on n � 9 vertices such that n ⌘ 1 mod 3,

then

|E(H)| � n(n� 3) +
n� 4

3

and there are exactly 18 extremal constructions up to isomorphism.

Proof. We know from Lemma 5.5 that if H has n(n � 3) + n�4

3
edges, then its

gate is the disjoint union of n�4

3
directed triangles with either a directed C4 or a C3

plus an edge on the remaining 4 vertices. As in the previous proof, there is only one

choice up to isomorphism for which edges to delete from each P (C3). However, this

will not be true of the last component on the remaining four vertices.

First, let’s consider the case where the last component is a C3 plus one edge. Call the

vertices {x, y, z, a} where x! y ! z ! x is the C3 and x! a is the additional edge.

First, note that we have the following three mutually exclusive choices for edges with

head vertices in this component:

(1) xa 2 Ty or xy 2 Ta,
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2 2

Figure 23. C4 with 2 additional edges in opposite tail link graphs.

(2) za 2 Tx or xz 2 Ta, and

(3) zx 2 Ty, yz 2 Tx, or xy 2 Tz.

This gives 12 choices, and each choice is unique up to isomorphism.

Next consider the case of C4. Each 3-subset of these four vertices holds two edges of

P (C) - one that points along the direction of the two gatekeeper edges and one that

points the middle vertex of the two gatekeeper edges. For each triple one of these

edges must be deleted to arrive at a legal oriented construction.

Each tail link graph must have at least n� 4 edges, and combined they must contain

four additional edges. Since each can have up to two more edges, then the distribution

of these additional edges must be one of the following integer partitions of 4:

• 2, 2, 0, 0

• 2, 1, 1, 0

• 1, 1, 1, 1

There is only one choice up to isomorphism with a distribution of 2, 2, 0, 0. Each of

the three ways to place 2, 1, 1, 0 around C4 are possible but each distribution has only

one way up to isomorphism. Finally, there are two ways up to isomorphism to put

an extra edge into each tail link graph. So all together there are six nonisomorphic

ways to distribute these extra edges to the C4 tail link graphs. ⌅

LEMMA 5.9. Let H be an I0-free graph on n � 9 vertices such that n ⌘ 2 mod 3,

then

|E(H)| � n(n� 3) +
n� 5

3

and there are exactly 32 extremal constructions up to isomorphism.
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Proof. We can do the same kind of analysis when n = 3k+2 as in the previous

proof. We know from Lemma 5.6 that the gate of any extremal construction must be

all directed triangles together with either a directed C5 or a directed triangle with a

directed path of length two coming o↵ of it (see Figure 21).

First, consider the C5 case. Let the vertices be {x0, . . . , x4}. For each gatekeeper

edge, xi ! xi+1, every edge of the form xiv ! xi+1 must be an edge in H for any

vertex

v 6= xi, xi+1, xi�1, xi+2.

Each gatekeeper edge can represent up to two additional edges of H, but again, every

intersection of gatekeeper edges requires a mutually exclusive choice. Ultimately,

we can add 5 additional edges so the extra edges must be distributed in one of the

following ways:

• 2, 2, 1, 0, 0

• 2, 1, 1, 1, 0

• 1, 1, 1, 1, 1

There are 2 ways to get the first distribution up to isomorphism, 4 ways to get the

second, and 2 ways to get the third. Therefore, there are 8 extremal constructions

with this gate up to isomorphism.

Now consider the case of a directed triangle with a directed two path coming o↵ of it.

If we label the vertices as {x, y, z, a, b} (see Figure 24), the mutually exclusive choices

are

(1) ax! y or yx! a,

(2) az ! x or zx! a,

(3) zx! y, yz ! x, or xy ! z, and

(4) xa! b or bx! a
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z

x

y

a

b

Figure 24. C3 plus a 2-path.

This gives 24 ways of reaching the maximum, and each way is unique up to isomor-

phism. Therefore, there are 32 total distinct extremal graphs up to isomorphism. ⌅

This establishes the main result of this chapter.
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CHAPTER 6

The Graph I1

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let I1 denote the forbidden graph where two edges intersect in exactly two vertices

such that one vertex is the head for both edges and the other is in the tail set of each

edge. That is V (I1) = {a, b, c, d} and E(I1) = {ab! c, ad! c} (see Figure 40).

THEOREM 6.1. For all n � 4,

ex(n, I1) = exo(n, I1) = n

�
n� 1

2

⌫

and there are  
(n� 1)!

2b
n�1
2 c ⌅n�1

2

⇧
!

!n

labeled graphs that attain this maximum in the standard case.

Proof. Let H be an I1-free graph on n vertices. For any x 2 V (H), Tx is a

simple undirected 2-graph on n� 1 vertices such that no two edges are adjacent (this

is true for either version of the problem). Therefore, the edges of Tx are a matching

on at most n�1 vertices. So there are at most
⌅
n�1

2

⇧
edges in Tx for every x 2 V (H).

a

c

db

Figure 25. The graph I1.
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Thus,

|E(H)| =
X

x2V (H)

|Tx|  n

�
n� 1

2

⌫
.

This shows the upper bound for both versions.

Now we want to find lower bound constructions. In the standard version of the

problem there are many extremal constructions since for each vertex x, we may pick

any maximum matching on the remaining n� 1 vertices to serve as the edges of Tx.

So

ex(n, I1) = n

�
n� 1

2

⌫
.

Moreover, the number of labeled graphs that attain this maximum equals the number

of ways to take a maximum matching to construct each tail link graph. For even k,

the number of matchings on k vertices is

Mk = (k � 1)Mk�2

since if we fix some vertex, then we can pick any of the remaining k� 1 vertices to go

with it and then take the number of matchings on the remaining n�2. Since M2 = 1,

then in general for even k,

Mk =

k

2Y

i=1

(2i� 1).

If k is odd, then we can first select the vertex left out of the matching to get

Mk = kMk�1 = k ·
k�1
2Y

i=1

(2i� 1) =

k+1
2Y

i=1

(2i� 1).

Therefore, the number of labeled extremal I1-free graphs on n vertices is

0

B@
bn2 cY

i=1

(2i� 1)

1

CA

n

=

 
(n� 1)!

2b
n�1
2 c ⌅n�1

2

⇧
!

!n

.

In the oriented version of the problem we need to be more careful with the construc-

tion. First, assume that n is even and define a graph H with vertex set V (H) = Zn
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Ti

i+ 1

i+ 2 i+ 4 i� 2

i+ 3 i+ 5 i� 1

· · · i

Figure 26. Ti in the oriented extremal construction for even n.

Ti

i+ 1

v

i+ 2 i+ 4 i� 2

i+ 3 i+ 5 i� 1

· · · i

Figure 27. Ti in the oriented extremal construction on n+1 vertices
for even n.

and edge set

E(H) =
n�1[

i=0

⇢
(i+ 2k)(i+ 2k + 1)! i : k = 1, 2, . . . ,

n� 2

2

�
.

This construction creates a maximum matching for each tail link graph (with i+1 as

the odd vertex out for each Ti). So H has the extremal number of edges and contains

no I1. Therefore, all we need to show is that it has no triple with more than one edge.

If H does contain such a triple, then there exist three integers in Zn that can be

represented as both {a, a+2k, a+2k+1} and {b, b+2i, b+2i+1} with a 6= b. Without
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Tv

0

n
2

1 2
n
2
� 1

n� 1n� 2 n
2
+ 1

· · · v

Figure 28. Tv in the oriented extremal construction on n+1 vertices
for even n.

loss of generality we can assume that b = 0. If a+2k = 0, then a+2k+1 = 1, but 1 is

not in any tail set that points to 0. Therefore, it must be the case that a+2k+1 = 0,

but then a+2k = n�1. Therefore, the set is equal to {0, n�1, n�2}, and a = n�2,

but n � 1 does not point to n � 2, a contradiction. Therefore, H can have no such

triple.

Now, we consider odd n+1. Here, let V (H) = Zn [ {v} where v is a new vertex and

use all of the edges from the even construction plus some new ones that all contain

v. So E(H) = Eeven [ Enew [ Ev where

Eeven =
n�1[

i=0

⇢
(i+ 2k)(i+ 2k + 1)! i : k = 1, 2, . . . ,

n� 2

2

�
,

and

Enew = {v(i+ 1)! i : i = 0, 1, . . . , n� 1} .

Certainly, the construction has so far avoided the forbidden subgraph and given each

of the first n vertices the maximum number of tails. Now Ev can be constructed as

any set of n
2
disjoint pairs of elements from Zn all pointing at v so that no pair consists

of two sequential numbers mod n. So any maximum matching of the n elements that

observes this condition will do.
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In particular, we can let

Ev =
n
(i)(n� i)! v : i = 1, . . . ,

n

2
� 1
o
[
n
(0)
⇣n
2

⌘
! v

o
.

So

exo(n, I1) = n

�
n� 1

2

⌫
.

⌅



7. THE GRAPH H1 59

CHAPTER 7

The Graph H1

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let H1 denote the forbidden graph where two edges intersect in exactly one vertex

such that it is in the tail set of each edge. That is V (H1) = {a, b, c, d, x} and E(H1) =

{ax ! b, cx ! d} (see Figure 29). First we will show the following result for the

oriented version of the problem.

THEOREM 7.1. For all n � 6,

exo(n,H1) =
jn
2

k
(n� 2).

We will use this result to solve the standard version of the problem.

THEOREM 7.2. For all n � 8,

ex(n,H1) =

✓
n+ 1

2

◆
� 3.

Moreover, there is one unique extremal construction up to isomorphism for each n.

First, note that the proof of Theorem 7.1 is straightforward when n is even. To get

a lower bound construction we can take a maximum matching on the n vertices and

x
b d

a c

Figure 29. The graph H1.
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H x

y a

bz

Dx

z

y a

b

()

Figure 30. H has a copy of H1 with intersection vertex x if and only
if the directed link graph Dx has a pair of disjoint directed edges.

use each pair of this matching as the tail set to point at all n� 2 other vertices. That

is, let H be the graph with vertex set,

V (H) = {x1, . . . , xn

2
, y1, . . . , yn

2
}

and edge set,

E(H) =

n

2[

i=1

{xiyi ! z : z 2 V (H) \ {xi, yi}} .

To show that this is also an upper bound, let H be an H1-free oriented graph on

n vertices. Then for any x 2 V (H), the directed link graph Dx cannot have two

independent edges (see Figure 30). Therefore, Dx is either empty, a triangle, or a

star with at most n� 2 edges. Since n � 5, then |Dx|  n� 2 for each x. So

|E(H)| = 1

2

X

x2V (H)

|Dx| 
1

2
n(n� 2).

Hence, we are finished for even n. However, this proof falls apart when n is odd. We

will need a di↵erent strategy.
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1. Counting edges by possible tail pairs

The basis of our strategy in getting an upper bound on exo(n,H1) is to count the

edges of an H1-free graph H by its tail sets. That is,

|E(H)| =
X

{x,y}2(V (H)
2 )

t(x, y)

It is simple but important to note that if H is H1-free, then any two pairs of vertices

that each points to two or more other vertices must necessarily be disjoint.

LEMMA 7.1. Let H be a H1-free oriented graph. If x1, x2, y1, y2 2 V (H) so that

t(x1, y1), t(x2, y2) � 2

and {x1, y1} 6= {x2, y2}, then {x1, y1} \ {x2, y2} = ;.

Proof. Suppose, towards a contradiction, that x1 = x2 = x but y1 6= y2. Since

t(x, y1) � 2, then there exists some vertex z1 distinct from x, y1, and y2 such that

xy1 ! z1 2 E(H).

Similarly, since t(x, y2) � 2, then there exists some vertex z2 distinct from x, y1, and

y2 such that

xy2 ! z2 2 E(H).

If z1 6= z2, then this gives a copy of H1.

So assume that they are the same vertex, z1 = z2 = z. Since t(x, y1) � 2, then there

is some second vertex that x and y1 point to that is distinct from z. The only choice

that would not create a copy of H1 with the edge xy2 ! z is y2. Similarly, since

t(x, y2) � 2, then there is some second vertex that x and y2 point to that is distinct

from z. The only choice that would not create a copy of H1 with the edge xy1 ! z

is y1. So

xy1 ! y2, xy2 ! y1 2 E(H)
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H

x1

x2

xk

y1

y2

yk

...

R

Figure 31. An H1-free graph on n vertices breaks down into k disjoint
pairs that each point to at least two other vertices plus a remainder set
R with n� 2k vertices that belong to no such pair.

which contradicts the fact that H is oriented. ⌅

Therefore, if we assume that H is H1-free on n vertices, then we can split its vertices

up into k disjoint pairs such that each serves as a tail set to at least two edges of H

plus a set of n� 2k vertices that belong to no such pair. That is,

V (H) = {x1, y1, . . . , xk, yk} [R

so that t(xi, yi) � 2 for i = 1, . . . , k and t(w, v)  1 for all other vertex pairs, {w, v}

(see Figure 31).

We now have two cases to consider. Either there are no such pairs (k = 0) or there

is at least one (k � 1).

2. No pair points to more than one vertex

Assume that k = 0. Then t(x, y)  1 for every pair {x, y} 2
�
V (H)

2

�
. If |Dx|  n� 3

for all x 2 V (H), then

|E(H)| = 1

2

X

x2V (H)

|Dx| 
1

2
n(n� 3) <

1

2
(n� 1)(n� 2)
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n� 2

x

· · ·
y

Figure 32. The special case configuration discussed in Lemma 7.2.
Here, vertex x joins with every other element to point to vertex y.

and we are done. Otherwise, there exists some vertex x that belongs to n�2 tail sets.

Therefore, Dx is a star of directed edges with some common vertex of intersection y.

Either t(x, y) = 0 or t(x, y) = 1.

If t(x, y) = 0, then all of the n�2 directed edges of Dx must point to y (see Figure 32).

Such a configuration inH limits the number of edges to
�
n�1

2

�
as proven in Lemma 7.2.

On the other hand, if t(x, y) = 1, then xy ! z 2 E(H) for some vertex z, and xv ! y

for all other vertices v 6= x, y, z. Such a configuration in H will limit the number of

edges to
�
n�1

2

�
as proven in Lemma 7.3.

LEMMA 7.2. Let H be an oriented graph on n � 6 vertices such that t(x, y)  1 for

each pair {x, y} 2
�
V (H)

2

�
. If H is H1-free and contains vertices x and y such that

xv ! y 2 E(H) for each v 2 V (H) \ {x, y}, then

|E(H)| 
✓
n� 1

2

◆
.

See Figure 32.

Proof. We want to show that there can be no more than
�
n�2

2

�
additional edges

in H other than the n�2 edges described in the statement of the lemma. This would

give an upper bound on the total number of edges of

✓
n� 2

2

◆
+ (n� 2) =

✓
n� 1

2

◆
.
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First, note that every triple of the form {x, y, v} already holds an edge. This implies

that any additional edge cannot contain both x and y sinceH is oriented. On the other

hand, if we were to add an edge, vw ! u, that excluded both x and y completely, then

this new edge would create a copy of H1 with the existing edge, vx! y. Therefore,

every additional edge must be on a triple of the form {v, w, x} or {v, w, y}.

However, x is already in the maximum number of tails. So given any pair of non-{x, y}

vertices, {v, w}, the only possible additional edges are

vw ! x, vw ! y, yv ! w, and yw ! v.

The last three all appear on the triple, {v, w, y}, and are therefore mutually exclusive

choices when it comes to adding them to the graph. The first two are also mutually

exclusive choices since t(v, w)  1.

So assume, towards a contradiction, that we could add
�
n�2

2

�
+ 1 more edges to the

existing configuration. Then some pair {v, w} of non-{x, y} vertices must be used

twice. Without loss of generality, this means we must add the edges vw ! x and

yv ! w.

Now, let u be any of the remaining n� 4 vertices. The possible edge uv ! y would

create a copy of H1 with vw ! x, and the possible edge uv ! x would create a copy

of H1 with vy ! w. Therefore, the pair {v, u} cannot be a tail set for any edge.

We can also view the potential additional edges as two di↵erent types: those that

have a tail set of two non-{x, y} vertices and those that have a tail set that includes

y. There were originally at most
�
n�2

2

�
of the first type that we are allowed to add in

total, one edge for every distinct pair. However, v can now no longer be in a tail set

with any of the other n� 4 vertices. So there are now at most
�
n�2

2

�
� (n� 4) edges

of this first type left possible to add. Therefore, in order to add
�
n�2

2

�
+ 1 edges over

all, we will need at least n � 3 of them to be of the second type - those that have y

in the tail set.
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Note that x must be an isolated vertex in the directed link graph Dy. Hence, there

are at most n�3 tails containing y since otherwise the directed graph Dy would have

n�2 edges among n�2 vertices. In this case, Dy would have two independent directed

edges and so H would have a copy of H1 with y as its intersection vertex. Moreover,

Dy must be a star with a single vertex of intersection. Since v ! w 2 E(Dy), then

this vertex of intersection must either be v or w.

Hence, in order to add
�
n�2

2

�
+ 1 edges, we will need to have

�
n�2

2

�
� (n � 4) edges

that have non-{x, y} tail sets. Since the tail set, {v, w}, already points to x, then

this implies that all such edges must also point to x. Otherwise, we would have some

edge of the form ab! y. If a = w or b = w, then this would create a copy of H1 with

vw ! x. If both elements are distinct from w, then we would still need to point the

pair wa either to x or to y. Either choice would create a copy of H1.

Let u be one of the remaining vertices. Then u must be adjacent to a directed edge

of Dy for there to be n � 3 edges added with y in the tail set. If v is the vertex of

intersection of Dy, then this edge must either be u! v or v ! u. Either yields a copy

of H1. Similarly, if w is the vertex of intersection of Dy, then either wy ! u 2 E(H)

or uy ! w 2 E(H). Again, either of these yields a copy of H1. Therefore,
�
n�2

2

�
+ 1

edges cannot be added to the existing configuration. ⌅

LEMMA 7.3. Let H be an oriented graph on n � 6 vertices such that for each pair

x, y 2 V (H), t(x, y)  1. If H is H1-free and contains vertices x, y, and z such that

xy ! z 2 E(H) and xv ! y 2 E(H) for each v 2 V (H) \ {x, y, z} (see Figure 33),

then

|E(H)| 
✓
n� 1

2

◆
.

Proof. Let W = {1, 2, . . . , n � 3} be the set of non-{x, y, z} vertices. Any

additional edge to this graph must have a tail set of the form {i, j}, {i, y}, {i, z}, or

{y, z} for i, j 2 W . An ij tail can only point to x or to y and there are
�
n�3

2

�
pairs

like this possible. An iy tail cannot point to x because H is oriented. It cannot point
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n� 3

x

· · ·
y

z

Figure 33. The special case configuration discussed in Lemma 7.3.
Here, x joins with every vertex except z to point to y and then joins
with y to point to z.

to j since that would create a copy of H1 with xy ! z. Therefore, it could only point

to z. An iz tail could not point to any j since this would create a copy of H1 with

the edge ix! y. Therefore, it could only point to y or to x. And a yz tail could not

point to x since H is oriented. Therefore, it could only point to some i.

Assume, towards a contradiction, that we can add

✓
n� 2

2

◆
+ 1 =

✓
n� 3

2

◆
+ (n� 3) + 1

edges to the existing configuration. Since we can add at most
�
n�3

2

�
edges with tail

sets made entirely of vertices from W , then we must have at least n � 2 additional

edges from the other possibilities.

For each i 2 W we could have

iy ! z, yz ! i, iz ! y, and iz ! x.

The first three of these are mutually exclusive choices since they are all on the same

triple. Similarly, the last two are mutually exclusive choices since we are only allowing

up to one edge per possible tail set.

Therefore, in order to add n�2 of these types of edges, two must use the same element

of W . Given the mutually exclusive choices above this implies that there is some

vertex i 2 W such that either iz ! x, yi! z 2 E(H) or iz ! x, yz ! i 2 E(H).
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In the first case, ij is no longer a possible tail for any edge for all n � 4 remaining

vertices j 2 W . This is because iz ! x, yi! z, and ix! y create a triangle in Di.

So any additional edge with i in the tail would give two independent edges in Di and

therefore a copy of H1.

Hence, we can get at most
�
n�3

2

�
� (n � 4) edges with tails in W . This means that

we will need 2(n � 3) edges from the other possible edges to make up the di↵erence

if we want to add ✓
n� 3

2

◆
+ (n� 3) + 1

more edges.

Since each of the n�3 vertices from W can be in up to two of these additional edges,

then iz ! x would need to be an edge for every i 2 W and that {y, z, i} also needs

to hold one edge for every i 2 W .

If yz ! i is used once, then we get a copy of H1 with jz ! x for some other j 2 W .

Therefore, for all i 2 W we must have the edges iy ! z and iz ! x. However, any

pair i, j 2 W can now point to nothing since the only possibilities for such a tail were

x or y to begin with and both of these options create copies of H1. So in this case

the most that we can add is

2(n� 3) 
✓
n� 3

2

◆
+ (n� 3)

for all n � 6.

In the other case we have added iz ! x and yz ! i for some i. Which means that

yz ! j is not allowed for any j 6= i from W . Also, jz ! y would make a copy of H1

with iz ! x and jz ! x would make a copy of H1 with yz ! i. Therefore, for all

j 6= i we can only add the edge jy ! z.

In order to add
�
n�3

2

�
+ n � 2 edges, we will need all of these as well as all possible

edges with tails in W . However, since iz ! x, all of the edges with tails completely

in W must also point to x. Otherwise, some pair ab would point to y. If a = i or
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b = i, then this would make a copy of H1 with iz ! x. If i 6= a, b, then consider

where the pair ai points. It must either point to x or to y, but either of these would

create a copy of H1.

So all pairs of W must point to x and for all j 2 W not equal to i we must have the

edge jy ! z. But jy ! z and ij ! x create a copy of H1, a contradiction. Hence, it

is not possible to add more than
�
n�3

2

�
+(n� 3) edges to the configuration. Since the

configuration already has n � 2 edges, then there can be no more than
�
n�1

2

�
edges

total. ⌅

Together these two lemmas take care of the cases where all pairs of vertices point to

at most one vertex in H.

3. Some pair of vertices is the tail set to multiple edges of H

We return to our description of an H1-free oriented graph as being made up of k � 1

vertex pairs that each serve as tail sets to strictly more than one edge plus a set R of

the remaining n� 2k vertices,

V (H) = {x1, y1, . . . , xk, yk} [R

(see Figure 31). For each pair {xi, yi} we want to prove the following upper bound,

t(xi, yi) +
X

v 6=xi,yi

(t(xi, v) + t(yi, v))  n� 2.

That is, the total number of edges that include either xi or yi or both in the tail set

is at most n� 2.

Now,

|E(H)| =
X

{x,y}2(V (H)
2 )

t(x, y) 
kX

i=1

 
t(xi, yi) +

X

v 6=xi,yi

(t(xi, v) + t(yi, v))

!
+

X

{x,y}2(R2)

t(x, y).
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Note that each pair of vertices in R act as a tail set at most once so

X

{x,y}2(R2)

t(x, y) 
✓
n� 2k

2

◆
.

Therefore, proving the upper bound for each {xi, yi} pair would imply that

|E(H)|  k(n� 2) +

✓
n� 2k

2

◆
.

Since

k(n� 2) +

✓
n� 2k

2

◆
= 2k2 � (n+ 1)k +

✓
n

2

◆

is a quadratic polynomial with positive leading coe�cient in terms of k, then it is

maximized at the endpoints. Here, that means at k = 1 and at k =
⌅
n
2

⇧
.

When n is odd, both of these values for k give the upper bound,

|E(H)| 
✓
n� 1

2

◆
.

Only when n is even can we do better and get

|E(H)|  n(n� 2)

2

in the case where k = n
2
. In either case this give an upper bound of

|E(H)| 
jn
2

k
(n� 2).

So we need only prove that, in general,

t(xi, yi) +
X

v 6=xi,yi

(t(xi, v) + t(yi, v))  n� 2.

This is straightforward to show if t(xi, yi) � 3. However, when t(xi, yi) = 2 there is a

case where it fails to hold. This is taken care of in the following lemma.
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n� 4 ...

x

y

a

b

Figure 34. An H1-free graph containing this configuration with have
at most

�
n�1

2

�
edges as shown in Lemma 7.4.

LEMMA 7.4. Let H be an oriented graph on n � 6 vertices. If H is H1-free and

contains vertices x, y, a, and b such that {x, y} is the tail set to exactly 2 edges with

xy ! a, xy ! b, yb! a 2 E(H),

and for each v 2 V (H) \ {x, y, a, b}, xv ! y (see Figure 34), then

|E(H)| 
✓
n� 1

2

◆
.

Proof. First consider which pairs of vertices could possibly be a tail set to an

edge in this graph. LetW = {1, . . . , n�4} be the set of vertices other than {x, y, a, b}.

Then {i, j} can be a tail set to ij ! x and ij ! y for any pair i, j 2 W . Since xy ! a,

then xi can point to nothing other than y. Similarly, xa and xb could only possibly

point to b and a respectively, but either would create a copy of H1 with xi ! y for

any i 2 W . Also, by assumption xy can point to nothing else. Hence, x is in no

additional tail sets.

Since yb ! a and xy ! a, then ya cannot point to b or to x. It can also not point

to any i 2 W since this would create a copy of H1 with xy ! b. So y can be in no

additional tails. The pair ab can point to anything aside from y since H is oriented,

and ai can point to x or y for any i 2 W but not to b or another element of W since

either would create a copy of H1 with xi ! y. Similarly, bi can point to y for each
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i 2 W but not to x or to a or to another element of W since these would create a

copy of H1 with either yb! a or xi! y.

Leaving aside the edges with tail sets completely in W for the moment, this means

there are 4(n�4)+1 possible edges remaining. There are n�4 each of types ai! x,

ai! y, bi! y, and ab! i plus one extra edge which is ab! x.

Suppose we are able to use at least 2(n� 4) + 1 of these edges. First, if one of them

is ab! x, then there could be none of the types ai! y or bi! y. So all of the ones

of type ab! i and ai! x would need to be used. But since n � 6, there are at least

two vertices in W . So there would exist edges ai! x and ab! j with i 6= j, a copy

of H1. Therefore, ab ! x cannot be used if we want to get more than 2(n � 4) of

these edges.

Hence, we need to use at least three types of edges from the four possible types. Since

any of the types ai ! x, ai ! y, and bi ! y eliminate the possibility of using any

edge ab! j where j 6= i, then we can use at most one of this last type of edge. But

since n � 6, then 2(n � 4) + 1 � 5 which means one of the other types gets used at

least twice. Regardless of which one it is, there can be nothing used from the ab! i

types of edges.

Therefore, we must use 2(n � 4) + 1 edges from only the first three types. So there

must be a vertex i from W that belongs to three of these edges, say

ai! y, bi! y, and ai! x.

But the edges bi! y and ai! x form an H1, a contradiction. Thus, at most 2(n�4)

of these kinds of edges can be used over all.

Now let us look at the edges with tail sets contained in W . We have seen that each

ij can point to x or to y, but nothing so far has kept the pair from pointing to both.

However, if some pair does point to both, then no other tail could use either of these

vertices since this would create a copy of H1. Therefore, if there are 1  l such pairs,
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then there are at most 2l+
�
n�4�2l

2

�
edges with tails from W . If n = 6, then this gives

exactly one such pair and only 7 edges overall. If n � 7, then l  n�4

2
implies that

2l  n� 4 
✓
n� 4

2

◆
�
✓
n� 4� 2l

2

◆
.

Hence,

2l +

✓
n� 4� 2l

2

◆

✓
n� 4

2

◆
.

So there are at most
�
n�1

2

�
edges in H. ⌅

4. The oriented extremal number

Now we can proceed with establishing the upper bound under the assumption that

the configuration presented in Lemma 7.4 does not occur in our directed hypergraph.

As we’ve seen, all that is necessary to show is that

t(xi, yi) +
X

v 6=xi,yi

(t(xi, v) + t(yi, v))  n� 2

for any pair of vertices {xi, yi} that serves as the tail set to at least two edges.

So let {x, y} be such a pair, and divide the rest of the vertices of H into two groups,

those that are a head vertex to some edge with xy as the tail and those that are not.

That is,

V (H) \ {x, y} = {h1, . . . , hm} [ {n1, . . . , nt}

where for each i = 1, . . . ,m, there exists an edge, xy ! hi 2 E(H) and for each

j = 1, . . . , t, xy ! nj 62 E(H) (note that t(x, y) = m and that m+ t = n� 2).

Now, consider an edge that contains either x or y in the tail but not both. Then the

other tail vertex is either some hi or some nj. In the case of nj, this edge must either

be of the form xnj ! y or ynj ! x to avoid a copy of H1 with both xy ! h1 and
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xy ! h2. Moreover, since H is oriented, there can be at most one. Hence,

tX

j=1

(t(x, nj) + t(y, nj))  t.

Now consider a tail set that includes either x or y and some hi. Without loss of

generality, assume that xh1 is the tail to some edge. Since t(x, y) � 2, there is some

other vertex h2 such that xy ! h2 2 E(H). In order to avoid a copy of H1 with this

edge, xh1 must either point to y or to h2. However, xh1 ! y 62 E(H) since this would

give the triple {x, y, h1} more than one edge.

Therefore, xh1 ! h2 is the only option. However, if t(x, y) � 3, then this will create

a copy of H1 with xy ! h3. So xhi and yhi cannot be tails to any edge. So

mX

i=1

(t(x, hi) + t(y, hi)) = 0.

Therefore,

t(x, y) +
X

v 6=x,y

(t(x, v) + t(y, v))

= m+
tX

j=1

(t(x, nj) + t(y, nj)) +
mX

i=1

(t(x, hi) + t(y, hi))

 m+ t

= n� 2

when t(x, y) � 3.

The only other possibility is that t(x, y) = 2. So suppose this is the case and that

the head vertices to xy are a and b. Without loss of generality, assume that yb !

a 2 E(H). Note that this precludes any edges of the form ynj ! x. Similarly, if we

added the edge xa ! b or the edge xb ! a, then we could not add any edges of the
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form xnj ! y and so
tX

j=1

(t(x, nj) + t(y, nj)) = 0.

Moreover, ya! b would lead to more than one edge on the triple {y, a, b}. So

mX

i=1

(t(x, hi) + t(y, hi)) = 2

and in total we would have,

t(x, y) +
X

v 6=x,y

(t(x, v) + t(y, v)) = 4  n� 2.

On the other hand, if xa and xb are not tails to any edge, then the only way we could

get a sum of more than n� 2 is if xnj ! y 2 E(H) for all j = 1, . . . , n� 4. But this

is exactly the configuration described in Lemma 7.4 which we have excluded.

Therefore,

t(x, y) +
X

v 6=x,y

(t(x, v) + t(y, v))  n� 2

for any such pair, and this is enough to establish that

exo(n,H1) 
jn
2

k
(n� 2).

Conversely, we have already considered an extremal construction in the case where n

is even, and this same construction will work when n is odd. That is, take a maximum

matching of the vertices (leaving one out) and use each matched pair as the tail set

for all n� 2 possible edges.

Another construction that works for odd n that is not extremal for even n is to

designate one vertex as the only head vertex and then make all
�
n�1

2

�
pairs of the rest

of the vertices tail sets.

Therefore,

exo(n,H1) =
jn
2

k
(n� 2).
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Also, note that the only way that any construction could have more than
�
n�1

2

�
edges

is if n is even and the vertices are partitioned into n
2
pairs such that each points to

at least two other vertices. This fact comes directly from the requirement that k = n
2

in the optimization of

k(n� 2) +

✓
n� 2k

2

◆

in order for the expression to be more than
�
n�1

2

�
.

5. Intersections of multiedge triples in the standard version

Now, let H be an H1-free graph on n vertices under the standard version of the

problem so that any triple of vertices can now have up to all three possible directed

edges. If we let tH be the number of triples of vertices of H that hold at least one

edge, and we let mH be the number of triples that hold at least two, then we have

the following simple observation:

|E(H)|  tH + 2mH .

We start our path towards an upper bound on |E(H)| by finding an upper bound on

the number of multiedge triples, mH . We will need to prove some facts about the

multiedge triples of H. First, any triple which holds two edges of H might as well

hold three.

LEMMA 7.5. Let H be an H1-free graph such that some triple of vertices {x, y, z}

contains two edges. Define H 0 by V (H 0) = V (H) and

E(H 0) = E(H) [ {xy ! z, xz ! y, yz ! x}.

Then H 0 is also H1-free.

Proof. Suppose H 0 is not H1-free. Since H is H1-free and the two graphs di↵er

by at most one edge, then they must di↵er by exactly one edge. Without loss of
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generality, say

{xy ! z} = E(H 0) \ E(H).

This edge must be responsible for creating the copy of H1 in H 0. So it must intersect

another edge in exactly one vertex that is in the tail set of both.

Therefore, without loss of generality, there is an edge xt ! s 2 H where {s, t} \

{y, z} = ;. However, since {x, y, z} already contained two edges of H, then xz !

y 2 H. Since xt ! s and xz ! y make a copy of H1, then H cannot be H1-free, a

contradiction. ⌅

Next, we want to show that no two multiedge triples can intersect in exactly one

vertex.

LEMMA 7.6. Let H be a H1-free graph. If two vertex triples {x, y, z} and {s, t, r}

each contain two or more edges of H, then

|{x, y, z} \ {s, t, r}| 6= 1.

Proof. Suppose

|{x, y, z} \ {s, t, r}| = 1

By Lemma 7.5, since H is H1-free, the graph created from H by adding all three

possible edges on the triples {x, y, z} and {s, t, r} is also H1-free. But if x = r and x,

y, z, s, and t are all distinct, then this graph contains xy ! z and xs! t which is a

copy of H1, a contradiction. ⌅

Therefore, we can use an upper bound on the number of undirected 3-uniform hy-

peredges such that no two intersect in exactly one vertex as an upper bound on the

number of multiedge triples. Moreover, the extremal examples are easy to describe

which will be important for finding the upper bound for ex(n,H1) as well as for

establishing the uniqueness of the lower bound construction.
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LEMMA 7.7. Let H be a 3-uniform undirected hypergraph on n vertices such that

no two edges intersect in exactly one vertex, then

|E(H)| 

8
>>>>><

>>>>>:

n n ⌘ 0 mod 4

n� 1 n ⌘ 1 mod 4

n� 2 n ⌘ 2, 3 mod 4

and H is the disjoint union of K(3)

4
s, K(3)

4
s minus an edge (K�

4
), and sets of edges

that all share a common intersection of two vertices - a sunflower with a two vertex

core.

Proof. Two edges of H are either disjoint or they intersect in two vertices. So

connected components of H that have 1 or 2 edges are both sunflowers. A third edge

can be added to a two-edge sunflower by either using the two common vertices to

overlap with both edges in two or by using one common vertex and the two petal

vertices. So a connected component of H with 3 edges is either a sunflower or a K�
4
.

The only way to connect a fourth edge to the three-edge sunflower is to make a four-

edge sunflower, and this is true for a k-edge sunflower to a (k+ 1)-edge sunflower for

all k � 3. The only way to add a fourth edge to the K�
4
is to make a K(3)

4
and then no

new edges may be connected to a K(3)

4
without intersecting two of its edges in exactly

one vertex each. Therefore, these are the only possible connected components of H.

A sunflower with k edges uses k+2 vertices, and a K(3)

4
has four edges on 4 vertices.

Therefore, if n ⌘ 0 mod 4 we can get at most n edges with a disjoint collection of

K(3)

4
s. Similarly, the best we can do when n ⌘ 1 mod 4 is n� 1 edges with a disjoint

collection of K(3)

4
s plus one isolated vertex since any sunflower will automatically limit

the number of edges to n� 2. And if n ⌘ 2 mod 4 or n ⌘ 3 mod 4, then n� 2 is the

best that we can do. ⌅
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K(3)

4
K(3)

4

Figure 35. An edge that intersects a K(3)

4
block of multiedge triples

in one or two tail vertices will create a copy of H1.

In general, the only way to actually have an H1-free graph with n multiedge triples is

if the multiedge triples form an undirected 3-uniform hypergraph of n
4
disjoint K(3)

4

blocks when n ⌘ 0 mod 4.

In this case there can be no additional directed edges in H since such an edge would

either intersect one of these K(3)

4
s in one tail vertex which would create a copy of H1

since this means it intersects three of the multiedge triples in exactly one tail vertex

(we may assume that each multiedge has all three edges per Lemma 7.5) or it would

intersect one of the K(3)

4
s in two tail vertices which means that it intersects two of

the multiedge triples in exactly one tail vertex (see Figure 35).

So in this case, the number of total edges would be bound by

3n <

✓
n+ 1

2

◆
� 3

for all n � 7.

Next, the only way to have n � 1 multiedge triples is to either have n�1

4
disjoint

K(3)

4
blocks when n ⌘ 1 mod 4 or to have n

4
� 1 disjoint K(3)

4
blocks with one K�

4

when n ⌘ 0 mod 4. In the first case any additional edge must have at least one and

perhaps two of its tail vertices in a single K(3)

4
block of multiedge triples which we

have already seen will create a copy of H1. So there are at most

3(n� 1) < 3n <

✓
n+ 1

2

◆
� 3

total edges in this case.
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In the second case, any additional edge that has no tail vertices in a K(3)

4
block must

have both tail vertices in the K�
4
. If the head to such an edge were outside of the K�

4
,

then the edge must intersect one of the three multiedge triples of the block in exactly

one tail vertex since there are two triples that it intersects in one tail vertex each,

one of which must be a multiedge triple. On the other hand, it could have its head

vertex inside the K�
4
. In this case, the additional edge must lie on the triple without

multiple edges. This is the only edge that can be added. So there are at most

3(n� 1) + 1 < 3n <

✓
n+ 1

2

◆
� 3

total edges in this case.

6. An H1-free graph with n� 2 multiedge triples

Now, the only ways to have exactly n� 2 multiedge triples is either to have n
4
� 2 of

the K(3)

4
blocks plus two K�

4
blocks of multiedge triples when n ⌘ 0 mod 4 or to have

k of the K(3)

4
blocks of multiedge triples plus a sunflower with n� 4k� 2 petals. The

first case is suboptimal for the same reasons already considered. So let us consider

the second case.

First, assume that k = 0 and that we have n � 2 multiedge triples that make a

sunflower (see Figure 36). How many edges can we add? This structure already has

all possible edges with 2 vertices in the core (or so we may assume by Lemma 7.5).

On the other hand, if an additional edge has no vertices in the core, then it would

intersect two multiedge triples in one tail vertex each which would create a copy of

H1.

Therefore, any additional edge must include exactly one vertex from the core. If this

vertex is in the tail set to the additional edge and the sunflower has at least three

petals, then the additional edge intersects in exactly one tail vertex of the multiedge

triples of the sunflower, a contradiction. Since we assume that n � 6, then the
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· · ·

core vertices

n� 2 petals

�
n�2

2

�
edges pointing back

Figure 36. The unique extremal construction for an H1-free graph
has

�
n�2

2

�
+ 3(n� 2) edges.

sunflower has at least three petals. Hence, any additional edge must intersect the

core in only its head vertex.

If any two additional edges have di↵erent core vertices as the head, then either the

tail sets of these edges must be exactly the same or completely disjoint to avoid a

copy of H1. Hence, pairs of petal vertices that point to both core vertices must be

independent of all other tail sets. And all other petal vertices fall into disjoint sets

as to whether they are in additional edges that point to the first core vertex or the

second. The number of additional edges will be maximized if every pair of petal

vertices point to the same core vertex. Moreover, this will give a total of

3(n� 2) +

✓
n� 2

2

◆
=

✓
n+ 1

2

◆
� 3

edges.

We will soon see that this is the best that we can do and that this construction,

where the multiedge triples make a sunflower with n� 2 petals with
�
n�2

2

�
additional

edges pointing from pairs of petal vertices to a single core vertex, is unique up to

isomorphism.

First we will need to see that k = 0 is the number of K(3)

4
multiedge triple blocks

that optimizes the total number of edges. So suppose there are k such blocks and

that the other n� 4k vertices are in a sunflower. Then from prior considerations we

know that any additional edge must have both tail vertices in this sunflower. If one

of these tail vertices coincides with a petal vertex of the sunflower, then there will be
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a copy of H1. Therefore, the tail vertices must coincide with the core and the only

possibility for such an edge is to point out to a vertex in one of the k blocks.

Therefore, there are at most

3(4k) + 3(n� 4k � 2) +

✓
n� 4k � 2

2

◆
+ 4k

edges in such a construction. Since this expression is quadratic in k with positive

leading coe�cient, then it must maximize at the endpoints, k = 0 or k = n
4
, and

we already know that k = n
4
is suboptimal. Therefore, if there are exactly n � 2

multiedge triples, then they must form a sunflower with a two-vertex core and from

there the only way to maximize the total number of edges is to add every possible

edge with tail set among the petal vertices all pointing to the same head vertex in

the core.

7. Fewer than n� 2 multiedge triples

Now suppose that H has fewer than n� 2 multiedge triples. If tH 
�
n�1

2

�
, then

|E(H)|  tH + 2mH <

✓
n� 1

2

◆
+ 2(n� 2) =

✓
n+ 1

2

◆
� 3.

So we must assume that tH >
�
n�1

2

�
. Also, if mH = 0, then we know that

|E(H)|  exo(n,H1) =
jn
2

k
(n� 2) <

✓
n+ 1

2

◆
� 3.

So assume that there is at least one multiedge triple, {x, y, z}. This triple has at least

two edges. Assume without loss of generality that they are xy ! z and xz ! y.

Let H 0 be an oriented graph arrived at by deleting edges from multiedge triples of

H until each triple has at most one edge and every triple that had at least one edge

in H still has at least one in H 0. In other words, H 0 is any subgraph of H such that

tH0 = tH and mH0 = 0. Without loss of generality, assume that

xy ! z 2 E(H 0).
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Since tH0 >
�
n�1

2

�
, then n must be even. Moreover, there is a matching on the

vertices so that every matched pair {a, b} points to at least two other vertices. That

is, t(a, b) � 2.

Now consider the directed link graphs of the vertices. As stated before, these are

either triangles or stars with a common vertex. However, if two or more of these link

digraphs have three or fewer edges each (for instance, if they are triangles), then there

are fewer edges than we are assuming since

|E(H 0)| = 1

2

X

x2V (H0)

|Dx| 
1

2
(6 + (n� 3)(n� 2)) <

✓
n� 1

2

◆

for all n � 8. We will show that it must be the case that here at least two directed

link graphs are restricted to at most three directed edges each, contradicting our

assumptions about the number of edges in H.

First, note that x ! z 2 Dy and y ! z 2 Dx. To avoid a contradiction, at least

one of these two directed link graphs must have four or more edges. Without loss of

generality, assume that it is Dy. Therefore, Dy is a star and not a triangle. So the

additional three directed edges in Dy must either all be incident to z or to x.

If these directed edges are all incident to z, then y and z must be partners under the

matching which means that x has another partner x0 distinct from y and z. Since

t(x, x0) � 2 in H 0, then x0 must point to two vertices in Dx. Since Dx already has

y ! z and no two edges may be independent in any directed link graph, then x0 must

point to y and to z, forming a triangle.

Next, consider Dx0 . We know that

x! y, x! z 2 Dx0 .

If there is an additional edge in Dx0 that does not complete this triangle then it is

either of the form x ! t or t ! x. If x ! t 2 Dx0 then x0 ! t, y ! z 2 Dx, a

contradiction. If t ! x 2 Dx0 , then x0 ! x 2 Dt. But since t has its own matched
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vertex, then there exists a distinct t0 such that

t0 ! x, t0 ! x0 2 Dt0 .

So either |Dx0 |  3 or |Dt0 |  3. Either way, this gives us two directed link graphs

that have at most three edges each. So tH0 <
�
n�1

2

�
.

Therefore, we must assume that the three additional edges in Dy are incident to x

and that y and x are partners under the matching. So z has some other partner under

the matching z0 distinct from x and y. Now, delete the edge xy ! z from H 0 and add

xz ! y to get a new directed hypergraph H 00. It follows that H 00 has no multiedge

triples and is H1-free since we still have a subgraph of H.

In adding xz ! y we have added x! y to Dz. Since z0 must point to two vertices in

Dz, then this addition means that Dz is a triangle under H 00. Hence, |Dz| = 2 under

H 0.

Now, the same argument as above applies to Dz0 . The only way for |Dz0 | > 3 would

mean either z ! a 2 Dz0 or a ! z 2 Dz0 for some a distinct from x, y, z, and z0.

The first case would mean that two independent directed edges, z0 ! a and x ! y

are in Dz, a contradiction. The second case would mean that z0 ! z 2 Da. Since a

has its own partner under the matching that must point to two vertices in Da, then

in this case, Da is a triangle.

Therefore, tH >
�
n�1

2

�
and mH � 1 cannot both be true in any H1-free graph. This

is enough to complete the result,

ex(n,H1) =

✓
n+ 1

2

◆
� 3.

This also exhausts the remaining cases in order to demonstrate that the extremal

construction is unique.
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CHAPTER 8

The Graph H2

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

Let H2 denote the forbidden graph where two edges intersect in exactly two vertices

such that the set of intersection is the tail set to each edge. That is V (H2) = {a, b, c, d}

and E(H2) = {ab! c, ab! d} (see Figure 37).

THEOREM 8.1. For all n � 5,

ex(n,H2) = exo(n,H2) =

✓
n

2

◆
.

Moreover, there are (n� 2)(
n

2) di↵erent labeled H2-free graphs attaining this extremal

number when in the standard version of the problem.

Proof. Let H be H2-free. Regardless of which version of the problem we are

considering, each pair of vertices acts as the tail set to at most one directed edge.

Therefore,

ex(n,H2), exo(n,H2) 
✓
n

2

◆
.

c d

a

b

Figure 37. The graph H2.
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Gn+1

Gn

n

n� 1
0

1

Figure 38. Inductive construction of H2-free oriented graphs.

In the standard version of the problem any function, f :
�
[n]
2

�
! [n], that sends each

pair of vertices to a distinct third vertex, f({a, b}) 62 {a, b}, has an associated H2-free

construction Hf with
�
n
2

�
edges. That is, for any such function, f , let V (Hf ) = [n]

and

E(Hf ) =

⇢
a, b! f({a, b}) : {a, b} 2

✓
[n]

2

◆�
.

Since each pair of vertices acts as the tail set to exactly one directed edge, then Hf

is H2-free and has
�
n
2

�
edges. So

ex(n,H2) =

✓
n

2

◆
.

Moreover, there are (n� 2)(
n

2) distinct functions from
�
[n]
2

�
to [n] such that no pair is

mapped to one of its members. Therefore, there are (n � 2)(
n

2) labeled graphs that

are H2-free with
�
n
2

�
edges.

In the oriented version of the problem lower bound constructions can be defined

inductively on n.

First, let n = 5 and define G5 as the oriented graph with vertex set

V (G5) = {0, 1, 2, 3, 4}

and the following edges: 0, 1 ! 2; 1, 3 ! 0; 0, 4 ! 1; 0, 2 ! 3; 2, 4 ! 0; 0, 3 ! 4;

2, 3! 1; 1, 2! 4; 1, 4! 3; and 3, 4! 2.



8. THE GRAPH H2 86

Each pair of vertices of G5 are in exactly one tail set, and each triple of vertices

appear together in exactly one edge. Therefore, this construction is H2-free with
�
5

2

�

edges.

Now, let n � 5, and define Gn+1 by V (Gn+1) = {0, 1, . . . , n} and

E(Gn+1) = E(Gn) [ {ni! (i+ 1) : i = 0, . . . , n� 1}

where addition is taken modulo n.

Then Gn+1 has n more edges than Gn. So |E(Gn+1)| =
�
n+1

2

�
.

Any two new edges intersect in at most two vertices. Similarly, any new edge and

any old edge also intersect in at most two vertices. Hence, at most one edge appears

on a given triple of vertices. So Gn+1 is oriented.

Moreover, all tail sets for the new edges are distinct from each other and from any

tail sets for the edges of Gn. So Gn+1 is H2-free. Therefore,

exo(n,H2) =

✓
n

2

◆
.

⌅
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CHAPTER 9

Generalized Directed Hypergraphs

In this chapter we will generalize the standard version of a 2! 1 directed hypergraph

to a class of combinatorial structures that can all be considered to be uniform directed

hypergraphs. This chapter is organized as follows. In Section 1, we define the class of

generalized directed hypergraphs (GDH) and extend the concepts of Turán density,

blowups, and supersaturation to this setting. In Section 2, we define the idea of a

jump for a given model of directed hypergraphs and prove several results about these

jumps and how the jumps from one instance of the class relate to jumps in another. In

Section 3, we adapt a couple of results proved in [7] for totally directed hypergraphs

with multiplicity to any GDH.

1. Basic definitions and results

The following definition for a generalized directed hypergraph is intended to include

most uniform models that could reasonably be called uniform directed hypergraphs.

This includes models where the edges are r-sets each under some partition into k parts

of fixed sizes r1, . . . , rk with some linear ordering on the k parts. The definition only

includes structures where an r-set could include multiple edges up to the number of

possible orientations allowed. That is, we do not consider the “oriented” versions of

the models where only one edge is allowed per r-set. The definition is given in terms

of logic and model theory for convenience only. No deep results from those subfields

are used. The use of this notation also makes further generalizations like nonuniform

directed hypergraphs or oriented directed hypergraphs easy.
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DEFINITION 9.1. Let L = {E}, a language with one r-ary relation symbol E. Let

T be an L-theory that consists of a single sentence of the form

8x1 · · · xrE(x1, . . . , xr) =)
^

i 6=j

xi 6= xj ^
^

⇡2JT

E(x⇡(1), . . . , x⇡(r))

for some subgroup of the group of permutations on r elements, JT ✓ Sr. Call such

a theory a generalized directed hypergraph theory and any finite model of T is a

generalized directed hypergraph (GDH).

Note that this definition includes graphs, hypergraphs, and r ! 1 directed hyper-

graphs. For example, the theory for a 2! 1 directed hypergraph is

T = {8xyzE(x, y, z) =) x 6= y ^ x 6= z ^ y 6= z ^ E(y, x, z)}.

It is easy to see that when r = 2 we have only two GDH theories. The theory

associated with the group S2 is the theory of graphs, and the theory associated with

the trivial group is the theory of directed graphs.

When r = 3 there are six subgroups of S3. Three of these are all isomorphic to Z2

with each generated by a permutation that swaps two elements. The corresponding

GDH theory for any of these can be thought of as having pointed 3-sets for edges

or as being (2 ! 1)-graphs. Of the other subgroups, S3 itself gives the theory of

undirected 3-uniform hypergraphs, the trivial group gives totally directed 3-edges,

and the subgroup generated by a three-cycle isomorphic to Z3 yields a GDH theory

where the edges can be thought of as 3-sets that have some kind of cyclic orientation

- either clockwise or counter-clockwise. Figure 39 summarizes the models of GDHs

when r = 3. Note that in general, Sr always corresponds to the normal undirected r-

graph model and the trivial group always corresponds to totally directed hypergraphs.

A fun thought experiment is to consider the kinds of edges that arise when r = 4.

Many of them are geometric in nature. For instance, the alternating group A4 gives

a theory where edges can be thought of tetrahedrons (at least in an abstract sense).
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S3

Z3

Z2

< i >

=)

Figure 39. The subgroup lattice of S3 and the corresponding lattice
of directed hypergraphs.

In fact, Leader and Tan [33] study the “oriented” versions of the models that come

from the alternating groups for any r � 3.

In this chapter, when the theory is not specified we are simply discussing GDHs that

are all models of the same fixed theory. When discussing multiple theories we will

often refer to T -graphs to mean models of a GDH theory T . Throughout the chapter,

JT will always stand for the subgroup JT ✓ Sr that determines the GDH theory T

and mT will always be the order of this subgroup, mT = |JT |. Also, VG and EG will

be used to denote the underlying set of elements of a model G and its relation set

respectively.

The following basic propositions are given without proof. The first is a simple conse-

quence that we are working in a relational language, and the second results from the

fact that JT is a group.

PROPOSITION 9.2. For any GDH theory T and any nonnegative integer n, there

exists a GDH G |= T on n elements. Moreover, for any nonnegative integer k < n,

the substructure of G induced on any k-subset of the elements of G is also a T -graph.

PROPOSITION 9.3. Given a GDH G with r-ary relation set EG, there exists an

equivalence relation ⇠ on EG defined by

(a1, . . . , ar) ⇠ (b1, . . . , br)

if and only if for each i, bi = a⇡(i) for some ⇡ 2 JT .
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We can now use these propositions to extend the concepts of extremal graph theory

to GDHs in a natural way.

DEFINITION 9.4. For any GDH G, an edge of G will always refer to an equivalence

class of [EG]⇠.

DEFINITION 9.5. Given a GDH G on n elements, denote the number of edges of

G by eT (G) and let the edge density of G be defined as

dT (G) :=
eT (G)
r!
mT

�
n
r

� .

Note that since

eT (G) =
|EG|
mT

,

then the density is

dT (G) =
(n� r)!|EG|

n!

and could have been defined this way while mostly avoiding talk of edges as equiv-

alence classes of EG. However, the above definition makes the following extremal

concepts reduce to their standard definitions in the undirected case.

DEFINITION 9.6. Given two GDHs G and H and a function  : VH ! VG, we say

that  is a homomorphism if for all (a1, . . . , ar) 2 EH , ( (a1), . . . , (ar)) 2 EG.

We say that G contains a copy of H if there exists some injective homomorphism,

 : VH ! VG. Otherwise, we say that G is H-free. Similarly, we would say that a

GDH G is F-free for some family F of GDHs if G is F -free for all F 2 F .

DEFINITION 9.7. Given a family of GDHs F and a positive integer n, let the nth

extremal number, exT (n,F), be defined as the maximum number of edges over all

F-free GDHs on n elements,

exT (n,F) := max
F-free Gn

{eT (Gn)}.
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The Turán density of F is defined as

⇡T (F) := lim
n!1

exT (n,F)
r!
mT

�
n
r

� .

Our first main result is to show that these Turán densities exist for any GDH the-

ory. The proof is the standard averaging argument used to show that these limiting

densities exist for families of undirected hypergraphs [29].

THEOREM 9.1. For any GDH family F the Turán density exists.

Proof. Let G be an F -free GDH on n elements with exT (n,F) edges. For each

i = 1, . . . , n let Gi be the subGDH of G induced by removing the ith vertex. Each

edge of G appears in exactly n� r of these subGDHs. Therefore,

(n� r)eT (G) = eT (G
1) + · · · eT (Gn).

Moreover, eT (G) = exT (n,F) and each Gi is also F -free so eT (Gi)  exT (n � 1,F).

Therefore,

exT (n,G)  n

n� r
exT (n� 1,F).

So
exT (n,G)

r!
mT

�
n
r

�  n

n� r

exT (n� 1,F)
r!
mT

�
n
r

� =
exT (n� 1,F)

r!
mT

�
n�1

r

� .

Therefore, the sequence of these extremal densities is monotone decreasing as a func-

tion of n in the range [0, 1]. Hence, the limit exists. ⌅

1.1. Blowups and blowup density. We’ll now extend the concept of the blowup

of uniform hypergraphs to the more general setting of GDHs and define the corre-

sponding notion of the blowup density. As with hypergraphs, the blowup of a GDH

can be thought of as the replacement of each vertex with many copies and taking all

of the resulting edges. Formally,

DEFINITION 9.8. Let G be a GDH with VG = {x1, . . . , xn}, and let t = (t1, . . . , tn)

be a tuple of positive integers. Define the t-blowup of G to be the L-structure G(t)
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where

VG(t) = {x11, . . . , x1t1 , . . . , xn1, . . . , xntn}

and

(xi1j1 , . . . , xirjr) 2 EG(t) () (xi1 , . . . , xir) 2 EG.

PROPOSITION 9.9. Let G be a GDH on n vertices, and let t = (t1, . . . , tn) be a

tuple of positive integers. Then the t-blowup of G is also a GDH.

Proof. We need only show that the L-structure G(t) models T . So let

(xi1j1 , . . . , xirjr) 2 EG(t).

Then (xi1 , . . . , xir) 2 EG. Since G |= T this implies that ia 6= ib whenever a 6= b.

Hence, the elements xiaja 6= xibjb whenever a 6= b. It also implies that (xi⇡(1)
, . . . , xi⇡(r)

) 2

EG for any ⇡ 2 JT . Hence,

(xi⇡(1)j⇡(1)
, . . . , xi⇡(r)j⇡(r)

) 2 EG(t)

for any ⇡ 2 JT . Therefore, G(t) |= T . ⌅

Next, we consider the edge density of a given blowup by defining the edge polynomial

for a GDH.

DEFINITION 9.10. Let G be a GDH on n vertices. For each r-set R 2
�
VG

r

�
, let eR

be the number of edges of G in R. Then let the edge polynomial be

pG(x) :=
X

R2(VG
r
)

eR
Y

i2R

xi.

This polynomial is a simple generalization of the standard edge polynomial for undi-

rected hypergraphs. To see this more easily note that for a given GDH G, the edges

of G are in bijection with the monomials the sum pG were we to write the sum out

with no coe�cients greater than one.
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From this we see that the edge density of the (t1, . . . , tn)-blowup of G is

pG(t1, . . . , tn)
r!
mT

�
t
r

� = mT
pG(t1, . . . , tn)

t(t� 1) · · · (t� r + 1)

where t =
P

ti. Let t increase to infinity and for each t pick a vector (t1, . . . , tn)

that maximizes this edge density. Then this sequence of densities is asymptotically

equivalent to the sequence of numbers

mTpG

✓
t1
t
, . . . ,

tn
t

◆
.

This motivates the following definition.

DEFINITION 9.11. Let G be a GDH on n vertices. Let

Sn =

(
(x1, . . . , xn)|xi � 0 ^

nX

i=1

xi = 1

)
,

the standard (n� 1)-dimensional simplex. Define the blowup density of G as

bT (G) = mT max
x2Sn

{pG(x)}.

Since any x 2 Sn is the limit of some sequence
��

t1
t , . . . ,

tn
t

� 
with positive ti as

t ! 1, then the blowup density of a GDH G is the best limiting density of any

sequence of blowups of G.

The remaining definition and basic result about blowups given in this subsection

will be useful when extending results about jumps and nonjumps from undirected

hypergraphs to GDHs generally in Section 3.

DEFINITION 9.12. Let T 0 and T be GDH theories such that JT 0 ✓ JT ✓ Sr. For

a T -graph F and a T 0-graph F 0 we say that F contains F 0 if VF = VF 0 and every

edge of F 0 is contained in some edge of F (where the edges are considered under their

equivalence class definition as subsets of EF and EF 0). We say that F is the minimum

T -container of F 0 if F has no edges that do not contain edges of F 0.
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PROPOSITION 9.13. Let T 0 and T be GDH theories such that JT 0 ✓ JT ✓ Sr. Let

F 0 be a T 0-graph and let F be the minimum T -container of F 0. Then

mT 0

mT
bT (F )  bT 0(F 0)  bT (F )

with equality on the left if F 0 has exactly one edge contained in each edge of F and

equality on the right if each edge of F contains all mT

m
T 0

possible edges of F 0.

Moreover, if F 0 has exactly k edges contained in each edge of F , then

bT 0(F 0) =
kmT 0

mT
bT (F ).

Proof. Let |VF 0 | = |VF | = v, then for any x 2 Sv,

pF (x)  pF 0(x)  mT

mT 0
pF (x)

with equality on the left if F 0 has exactly one edge contained in each edge of F and

equality on the right if each edge of F contains all mT

m
T 0

possible edges of F 0. Hence,

max
x2Sv

pF (x)  max
x2Sv

pF 0(x)  max
x2Sv

mT

mT 0
pF (x).

This implies that
mT 0

mT
bT (F )  bT 0(F 0)  bT (F ).

In particular, if F 0 has exactly k edges contained in each edge of F , then for any

x 2 Sv,

pF 0(x) = kpF (x)

which implies the result. ⌅

1.2. Supersaturation and related results. Supersaturation holds for GDHs

as it does for undirected hypergraphs, and the proof of this result is the same as the

one for hypergraphs found in [29] with only minor di↵erences.
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THEOREM 9.2 (Supersaturation). Let F be a GDH on k elements. Let ✏ > 0.

For su�ciently large n � n0(F, ✏), any GDH G on n elements with density d(G) �

⇡T (F ) + ✏ will contain at least c
�
n
k

�
copies of F for some constant c = c(F, ✏).

Proof. Fix some positive integer l so that

exT (l, F ) <
⇣
⇡T (F ) +

✏

2

⌘ r!

mT

✓
l

r

◆
.

Let G be a GDH on n > l elements with edge density dT (G) � ⇡(F ) + ✏. Then G

must contain more than ✏
2

�
n
l

�
l-sets with density at least ⇡T (F ) + ✏

2
. Otherwise, at

most ✏
2

�
n
l

�
l-sets contain more than

�
⇡T (F ) + ✏

2

� �
l
r

�
edges. Therefore, we can count

the number of edges in G by l-sets and get an upper bound of

✓
n� r

l � r

◆
eT (G)  ✏

2

✓
n

l

◆✓
l

r

◆
r!

mT
+
⇣
1� ✏

2

⌘✓n
l

◆⇣
⇡T (F ) +

✏

2

⌘✓l
r

◆
r!

mT
.

We can now replace eT (G) since

eT (G) � (⇡T (F ) + ✏)

✓
n

r

◆
r!

mT
.

This is enough to get the contradiction.

Since G contains more than ✏
2

�
n
l

�
l-sets with density at least ⇡T (F )+ ✏

2
, then it contains

a copy of F in each. A given copy of F appears in
�
n�k
l�k

�
l-sets of G. Therefore, there

are more than
✏

2

✓
n

l

◆✓
n� k

l � k

◆�1

= c

✓
n

k

◆

distinct copies of F in G where

c =
✏

2

✓
l

k

◆�1

.

⌅

Similarly, the following theorem is an extension from the same result for undirected

hypergraphs, and the proof is an adaptation of the one found in [29].
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THEOREM 9.3. Let F be a GDH on k vertices and let t = (t1, . . . , tk) be an k-tuple

of positive integers. Then ⇡T (F ) = ⇡T (F (t)).

Proof. That ⇡T (F )  ⇡T (F (t)) is trivial since F (t) contains a copy of F so any

F -free GDH is automatically F (t)-free.

Therefore, we only need to show that ⇡T (F ) � ⇡T (F (t)). Suppose not, then for

su�ciently large n there exists some F (t)-free GDH G on n elements with edge

density strictly greater than ⇡T (F ). By supersaturation this implies that G contains

c
�
n
k

�
copies of F .

Define G⇤ to be the k-uniform hypergraph where VG⇤ = VG and {a1, . . . , ak} 2 EG⇤

i↵ and only if {a1, . . . , ak} contains a copy of F in G. Since the edge density of G⇤

is c > 0, then for large enough n, G⇤ must contain an arbitrarily large complete

k-partite subgraph.

For each edge F maps to the vertices in at least one out of k! total possible ways to

make an injective homomorphism in G. Therefore, by Ramsey Theory, if we take the

parts of this complete k-partite subgraph large enough and color the edges by the

finite number of non-isomorphic ways that F could possibly map to the k vertices,

we will get an arbitrarily large monochromatic k-partite subgraph where each part

has t vertices. This must have been a copy of F (t) in G, a contradiction. ⌅

The fact that the Turán density of a blowup equals the Turán density of the original

GDH leads to the following nice characterization of degenerate families of GDH -

those families with Turán density zero.

THEOREM 9.4 (Characterization of Degenerate GDH). Let F be some family of

GDHs, then ⇡T (F) = 0 if and only if some member F 2 F is a subGDH of the

t-blowup of a single edge for some vector, t = (t1, . . . , tr), of positive integers. Other-

wise, ⇡(F) � mT

rr .
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Proof. Suppose that no member of F is such a blowup. Then no member is

contained in the (t, t, . . . , t)-blowup of S. Let S(t) stand for this blowup, then the

sequence of GDHs, {S(t)}1t=1
, is an F -free sequence. The density of any such S(t) is

dT (S(t)) =
tr

r!
mT

�
tr
r

� =
mT tr(tr � r)!

(tr)!
.

These densities tend to mT

rr as t increases. Therefore,

⇡T (F) � mT

rr
> 0.

Conversely, suppose some F 2 F is a (t1, . . . , tr)-blowup of a single edge. By Theo-

rem 9.3, ⇡T (F ) = ⇡T (S) = 0 since exT (n, S)=0 for all n. Therefore, ⇡T (F) = 0. ⌅

2. Jumps

Now we turn to the issue of finding jumps and nonjumps for GDH theories. The

definition of a jump for undirected hypergraphs extends naturally to this setting as

does the important connection between jumps and blowup densities.

DEFINITION 9.14. Let T be a GDH theory, then ↵ 2 [0, 1) is a jump for T if

there exists a c > 0 such that for any ✏ > 0 and any positive integer l, there exists

a positive integer n0(↵, ✏, l) such that any GDH G on n � n0 elements that has at

least (↵+ ✏) r!
mT

�
n
r

�
edges contains a subGDH on l elements with at least (↵+ c) r!

mT

�
l
r

�

edges.

Note that by Theorem 9.4 every ↵ 2
⇥
0, mT

rr

�
is a jump for any r-ary GDH theory

T . This generalizes the well-known result of Erdős [18] that every ↵ 2 [0, r!
rr ) is a

jump for r-graphs. The following important theorem on jumps for GDH theories was

originally shown by Frankl and Rödl [27] for undirected hypergraphs. Their proof

works equally well in this setting so the di↵erences here are in name only.
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THEOREM 9.5. The GDH theory T has a jump ↵ if and only if there exists a finite

family F of GDHs such that ⇡T (F)  ↵ and bT (F ) > ↵ for each F 2 F .

Proof. Let ↵ be a jump and let c be the supremum of all corresponding lengths

c to the jump. Fix a positive integer k so that

✓
k

r

◆⇣
↵ +

c

2

⌘
> ↵

kr

r!
.

Let F be the family of all GDHs on k elements with at least
�
↵ + c

2

� �
k
r

�
r!
mT

edges.

Then ⇡T (F)  ↵ since any slightly larger density implies arbitrarily large subsets

with density ↵+ c. This in turn would imply the existence of a k-subset with density

at least ↵ + c. This k-subset would include some member of F . On the other hand,

a given F 2 F will have blowup density

bT (F ) � mTpF

✓
1

k
, . . . ,

1

k

◆
> ↵.

Conversely, suppose that such a finite family F = {F1, . . . , Fk} exists. Let ✏ > 0 and

let {Gn} be an infinite sequence of GDHs with density that tends to ↵ + ✏. As in

the proof of Theorem 9.2, for any positive integer l, Gn must contain at least ✏
2

�
n
l

�

l-subsets with density at least ↵ + ✏
2
.

Let l be large enough so that any GDH on l vertices with density at least ↵ + ✏
2

contains some Fi from F . Therefore, any Gn with n > l contains ✏
2

�
n
l

�
l-sets each

with some Fi. Since there are only k members of F , then this implies that at least

✏
2k

�
n
l

�
l-sets contain the same Fi.

Let |V (Fi)| = vi. By the proof of Theorem 9.2 this implies that there is some positive

constant b such that Gn contains at least b
�
n
vi

�
distinct copies of Fi. By the proof of

Theorem 9.3 this shows that if n is large enough, then we get a copy of an arbitrarily

large t-blowup of Fi.

Let c = minFi2F bT (Fi). For some subset F 0 ✓ F , each Fi 2 F 0 yields an infinite

subsequence of {Gn} which contains arbitrarily large t-blowups of Fi. The densities
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of these blowups all tend to at least c. Therefore, for any positive integer m, there

exists an m-set of each {Gn} for su�ciently large n with density at least ↵+c. Hence,

↵ is a jump. ⌅

The following proposition is needed to compare jumps between di↵erent GDH theo-

ries.

PROPOSITION 9.15. The GDH theory T has a jump ↵ if and only if there exists

some c > 0 such that for all families F of GDHs, either ⇡T (F)  ↵ or ⇡T (F) � ↵+c.

Proof. Let ↵ be a jump for T and let c > 0 be some corresponding length to the

jump. Suppose that F is a finite family of GDHs of type T for which ↵ < ⇡T (F) <

↵+ c. Let {Gn} be a sequence of extremal F -free GDHs. For each positive integer k

there exists some Gn that contains a k-subset with at least (↵+ c)
�
k
r

�
r!
mT

edges. Take

the sequence of these subsets. They are all F -free by assumption, and the limit of

their densities is at least ↵ + c. Therefore, ⇡T (F) � ↵ + c, a contradiction.

Conversely, assume that ↵ is not a jump. Let c > 0, then for some 0 < ✏ < c and

some positive integer l, there exists an infinite sequence of GDHs, {Gn} for which each

GDH has density at least ↵+✏ and all l-sets have strictly less than (✏+c)
�
l
r

�
r!
mT

edges.

Hence, {Gn} is F -free where F is the set of all l-GHDs with at least (↵ + c)
�
l
r

�
r!
mT

edges. So ⇡T (F) � ↵ + ✏. Since any GDH with density at least ↵ + c must have an

l-set with density at least ↵ + c, then ⇡T (F) < ↵ + c. ⌅

We will now look at how jumps are related between two di↵erent GDH theories for

some fixed edge size r. We will see that in general jumps always “pass up” the

subgroup lattice. That is, if JT 0 ✓ JT for GDH theories T 0 and T , then a jump for T 0

is a jump for T . The converse is not true in general. In fact, for any GDH theories

T 0 and T with JT 0 ✓ JT such that the order of JT is at least three times that of JT 0

we will show that the set of jumps for T 0 is not equal to the set of jumps for T . The

case where mT = 2mT 0 is open.
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2.1. Jumps pass up the lattice. First, we will show that for GDH theories T

and T 0 with JT 0 ✓ JT the set of Turán densities of forbidden families of T -graphs is

a subset of the set of Turán densities for T 0.

THEOREM 9.6. Let T and T 0 be two GDH theories such that JT 0 ✓ JT . Then for

any family F of T -graphs there exists a family F 0 of T 0-graphs for which ⇡T 0(F 0) =

⇡T (F). Moreover, if F is a finite family, then F 0 is also finite.

Proof. For each F 2 F let FT 0 be the set of all T 0-graphs that have exactly

one edge contained in every edge of F . That is, since JT 0 ✓ JT , then there are mT

m
T 0

possible T 0 edges contained within one T edge. So FT 0 is a finite set with at most
⇣

mT

m
T 0

⌘eT (F )

members. Let

F 0 =
[

F2F

FT 0 .

Then F 0 is a family of T 0-graphs. Moreover, F 0 is finite if F is finite. We want to

show that ⇡T 0(F 0) = ⇡T (F).

First, let {G0
n} be an extremal F 0-free sequence of T 0-graphs. For each G0

n let Gn be

the T -graph constructed by replacing each T 0-edge of G0
n with its containing T -edge

(multiple T 0-edges could correspond to the same T -edge but each T -edge can only be

added once).

The sequence {Gn} is F -free since otherwise some Gn contains some F 2 F which

means that G0
n must have contained at least one member of FT 0 . Therefore,

⇡T (F) � lim
n!1

dT (Gn) � lim
n!1

m
T 0

mT

eT 0(G0
n)

r!
mT

�
n
r

� = lim
n!1

exT 0(n,F 0)
r!

m
T 0

�
n
r

� = ⇡T 0(F 0).

Conversely, now let {Gn} be an extremal F -free sequence of T -graphs. For each Gn

construct a T 0-graph G0
n by replacing each T -edge with all mT

m
T 0

T 0-edges contained in

it. The sequence {G0
n} is F 0-free with mT

m
T 0
exT (n,F) edges. Therefore,

⇡T 0(F 0) � lim
n!1

mT

m
T 0
exT (n,F)
r!

m
T 0

�
n
r

� = ⇡T (F).
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Figure 40. ⇡(F ) = 4

27
.

So ⇡T 0(F 0) = ⇡T (F). ⌅

The converse of Theorem 9.6 is false in general. For example, the permutation sub-

group for the theory T 0 of (2 ! 1)-uniform directed hypergraphs is a subgroup of

the permutation group for the theory T of undirected 3-graphs, S3. The extremal

number for the directed hypergraph R4 (see Chapter 2) is

exT 0(n,R4) =
jn
3

k✓⌃2n
3

⌥

2

◆
.

Therefore, the Turán density is ⇡T 0(R4) = 4

27
. However, it is well-known that no

Turán densities exist for 3-graphs in the interval
�
0, 6

27

�
.

COROLLARY 9.16. Let T and T 0 be two GDH theories such that JT 0 ✓ JT . If ↵ is

a jump for T 0, then it is also a jump for T .

Proof. If ↵ is not a jump for T , then for any c > 0 there exists by Proposi-

tion 9.15 a family F such that ↵ < ⇡T (F) < ↵+ c. So by Theorem 9.6 there exists a

family F 0 of T 0-graphs with ↵ < ⇡T 0(F 0) < ↵ + c. So ↵ is not a jump for T 0. ⌅

Corollary 9.16 immediately implies that all nonjumps found for r-uniform undirected

hypergraphs must also be non-jumps for any GDH with an r-ary relation. However,

the converse is not true in general.

2.2. Jumps do not pass down the lattice. Roughly speaking, the current best

method of demonstrating that a particular ↵ is not a jump for r-uniform hypergraphs

is to construct a sequence of hypergraphs each with blowup densities that are strictly
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larger than ↵ but for which any relatively small subgraph has blowup density at most

↵. This method originated in [27] and generalizes to GDHs as the following definition

and lemma demonstrate.

DEFINITION 9.17. Let ↵ 2 [0, 1). Call ↵ a demonstrated nonjump for a GDH

theory T if there exists an infinite sequence of GDHs, {Gn}, such that bT (Gn) > ↵ for

each Gn in the sequence and for any positive integer l there exists a positive integer

n0 such that whenever n � n0 then any subGDH H ✓ Gn on l or fewer vertices has

blowup density bT (H)  ↵.

LEMMA 9.18. Every demonstrated nonjump is a nonjump.

Proof. Suppose not. Assume that ↵ is a demonstrated nonjump but is a jump.

Then there exists a finite family of GDHs F such that ⇡T (F)  ↵ and bT (F ) > ↵ for

each F 2 F . Let l be the maximum number of vertices over the members of F . Let

n be large enough so that any subGDH on l or fewer vertices has blowup density at

most ↵. Then some large enough blowup of Gn contains some F 2 F as a subGDH

since the blowup density of each Gn tends to something strictly greater than ↵. Let

H be the minimal subGDH of Gn for which the corresponding blowup contains this

copy of F . Since H has at most l vertices, then it has a blowup density at most ↵.

Hence,

bT (F )  bT (H(t))  bT (H)  ↵,

a contradiction. ⌅

We can now show that a demonstrated nonjump for a GDH theory T yields multiple

nonjumps of equal and lesser values down the lattice to GDH theories T 0 for which

JT 0 ✓ JT .

THEOREM 9.7. Let T and T 0 be GDH theories such that JT 0 ✓ JT . Let ↵ be a

demonstrated nonjump for T . Then km
T 0

mT

↵ is a demonstrated nonjump for T 0 for

k = 1, . . . , mT

m
T 0
.
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Proof. Let ↵ be a demonstrated nonjump for T . Let {Gn} be the corresponding

infinite sequence of GDHs. Fix some k 2 {1, . . . , mT

m
T 0
}. For each n letG0

n be a T
0-graph

constructed from Gn by replacing each T -edge with k T 0-edges in any orientation.

Then by Proposition 9.13 we know that

bT 0(G0
n) =

kmT 0

mT
bT (Gn)

and any H 0 ✓ G0
n corresponding to H ✓ Gn also gives:

bT 0(H 0) =
kmT 0

mT
bT (H).

Therefore, bT 0(G0
n) >

km
T 0

mT

↵ for each n and for any positive integer l, there exists a

n0 such that bT 0(H)  ↵ for any subGDH H ✓ Gn for all n � n0. ⌅

Constructions of sequences of undirected r-graphs which show that 5r!
2rr is a demon-

strated nonjump for each r � 3 were given in [26]. This gives the following corollary.

COROLLARY 9.19. Let T be an r-ary GDH theory for r � 3. Then 5mT k
2rr is a

nonjump for T for k = 1, . . . , r!
mT

.

This in turn shows that the set of jumps for a theory T 0 is a proper subset of the set

of jumps for T for any T such that JT 0 ✓ JT and mT � 3mT 0 .

COROLLARY 9.20. Let T and T 0 be r-ary GDH theories such that JT 0 ✓ JT and

mT � 3mT 0. Then there exists an ↵ that is a nonjump for T 0 and a jump for T .

Proof. Take k = 1, then 5m
T 0

2rr is a nonjump for T 0. Since mT � 3mT 0 , then

mT > 2.5mT 0 . So
5mT 0

2rr
<

mT

rr
.

Therefore, 5m
T 0

2rr is a jump for T since every ↵ 2
⇥
0, mT

rr

�
is a jump for T . ⌅
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3. Continuity and approximation

The following two results are direct adaptations of two theorems from [7]. They are

both general extremal results related to everything discussed in this chapter but did

not fit nicely into the other sections. The first result on continuity relates extremal

numbers of any infinite family of GDHs to the extremal numbers of its finite sub-

families. The second result on approximation discusses structural aspects of (nearly)

extremal sequences for any forbidden family.

THEOREM 9.8 (Continuity). Let F be an infinite family of T -graphs. For each

✏ > 0 there exists a finite subfamily F✏ ⇢ F such that

exT (n,F)  exT (n,F✏) < exT (n,F) + ✏nr

for su�ciently large n.

Proof. Let F be the infinite family of GDHs. For each positive integer k let Fk

be the subfamily of F where each member has at most k vertices. Let

�k = lim
n!1

exT (n,Fk)
r!
mT

�
n
r

�

and let

� = lim
n!1

exT (n,F)
r!
mT

�
n
r

� .

Since Fk ⇢ F , then {�k}1k=1
is a monotone decreasing sequence and �k � � for all k.

Assume for some ✏ > 0 that �k > � + ✏ for all k. Note that

exT (n,Fk)
r!
mT

�
n
r

� � �k

is true for all n. In particular, when n = k there is an Fn-free GDH on n vertices

with strictly more than (� + ✏) r!
mT

�
n
r

�
edges. Since an Fn-free GDH on n vertices is
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also necessarily F -free, then this implies that

exT (n,F) > (� + ✏)
r!

mT

✓
n

r

◆
,

a contradiction. ⌅

Theorem 6 in [7] is the Approximation Theorem for totally directed r-uniform hyper-

graphs with bounded multiplicity. We will use the following equivalent statement (in

the case of multiplicity one) written in terms of Turán densities as a lemma to prove

that this approximation result holds for all GDHs.

LEMMA 9.21. Let F 0 be a family of forbidden totally directed r-graphs (r-GDHs

under the trivial group), and let ✏ > 0. Then there exists some totally directed r-

graph G0 such that every blowup of G0 is F 0-free and

⇡(F 0) � b(G) > ⇡(F 0)� ✏.

THEOREM 9.9 (Approximation). Let F be a family of forbidden T -graphs, and let

✏ > 0, then there exists some T -graph G for which all blowups of G are F-free and

⇡T (F) � bT (G) > ⇡T (F)� ✏.

Proof. Let F 0 be the family of totally directed r-graphs as defined in the proof

of Theorem 9.6. That is, the family of directed hypergraphs for which we know that

⇡(F 0) = ⇡T (F). We know from the proof of that theorem that any T -graph that is

the minimal container for an F 0-free graph is F -free. By Lemma 9.21 there exists

some totally directed F 0-free r-graph , G0, such that

⇡(F 0) � b(G) > ⇡(F 0)� ✏.
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By Proposition 9.13 we know that if G0 is the minimal containing T -graph of G, then

bT (G) � b(G0). Hence,

⇡T (F) � bT (G) � b(G0) > ⇡(F 0)� ✏ = ⇡T (F)� ✏.

⌅
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CHAPTER 10

Additional Questions about Directed Hypergraphs

This chapter contains material from a paper published by the Electronic Journal of

Combinatorics. [12]

There are many additional questions that we can ask about 2 ! 1 directed hyper-

graphs and about GDHs in general. In this chapter, we will briefly review several

open questions that come up naturally in this work.

1. Extremal numbers for tournaments

Brown and Harary [6] started studying extremal problems for directed 2-graphs by

determining the extremal numbers for many “small” digraphs and for some more

general types of digraphs such as tournaments - a digraph where every pair of vertices

has exactly one directed edge. We could follow their plan of attack in studying the

2! 1 model and look for the extremal numbers of tournaments. Here, a tournament

could be defined as a graph with exactly one directed edge on every three vertices.

In particular, a transitive tournament might be an interesting place to begin. A

transitive tournament is a tournament where the direction of each edge is based on an

underlying linear ordering of the vertices as in the oriented lower bound construction

of Theorem 4.2.

Denote the 2 ! 1 transitive tournament on k vertices by TTk. Since the “winning”

vertex of the tournament will have a complete Kk�1 as its tail link graph, then any

H on n vertices for which each Tx is Kk�1-free must be TTk-free. Therefore,

n

✓
n� 1

k � 2

◆2✓k � 2

2

◆
 ex(n, TTk), exo(n, TTk).
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This also immediately shows that the transitive tournament on four vertices with the

“bottom” edge removed has this extremal number exactly.

THEOREM 10.1. Let TT�
4

denote the graph with vertex set V (TT�
4
) = {a, b, c, d}

and edge set

E(TT�
4
) = {ab! d, bc! d, ac! d}.

Then

ex(n, TT�
4
) = n

�
n� 1

2

⌫⇠
n� 1

2

⇡
.

Is it still true if we add an edge to {a, b, c}?

CONJECTURE 10.1. Let TT4 denote the graph with vertex set V (TT4) = {a, b, c, d}

and edge set

E(TT4) = {ab! d, bc! d, ac! d, ab! c}.

Then

ex(n, TT4) = n

�
n� 1

2

⌫⇠
n� 1

2

⇡
.

2. GDHs with r ! 1 edges

The 2 ! 1 directed hypergraph originally came to the author’s attention as a way

to model definite Horn clauses in propositional logic. Definite Horn clauses are more

generally modeled by r ! 1 edges for any r. Therefore, it seems natural to ask

about the extremal numbers for graphs with two (r ! 1)-edges. If we look at every

(r ! 1)-graph with exactly two edges, then we see that these fall into four main types

of graph. Let i be the number of vertices that belong to the tail set of both edges.

Then let Ir(i) denote the graph where both edges point to the same head vertex, let

Hr(i) denote the graph where the edges point to di↵erent head vertices neither of

which are in the tail set of the other, let Rr(i) denote the graph where the first edge

points to a head vertex in the tail set of the second edge and the second edge points

to a head not in the tail set of the first edge, and let Er(i) denote the graph where

both edges point to heads in the tail sets of each other.
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This extends the notation used in this paper. The degenerate cases are generalized

to Ir(i) and Hr(i), and the nondegenerate cases generalize to Rr(i) and Er(i). For

example, the 3-resolventR3 isR2(1). The split between degenerate and nondegenerate

is maintained in this way as well as shown in Theorem 9.4.

To what extent do the proofs presented in this paper extend to these graphs? Some

translate immediately. For example, in the standard version of the problem it can

easily be seen that

ex(n, Ir(0)) = n

✓
n� 2

r � 1

◆

using Erdős-Ko-Rado [21] for the upper bound and the same basic construction for

the lower bound that we used in proving the same result for I0. More generally, we

can get an upper bound of

ex(n, Ir(i))  n

✓
n� 1

r � 1

◆

by applying the uniform Ray-Chaudhuri - Wilson Theorem [39] to the tail link graph

of each vertex of an Ir(i)-free graph. We can get a general lower bound of

n

✓
n� i� 2

r � i� 1

◆
 ex(n, Ir(i))

by constructing an Ir(i)-free graph in the following way: for each vertex x fix a set

of i+ 1 vertices not including x, Cx, and then add every possible edge with x at the

head and Cx in the tail set.

An easy lower bound construction for an Hr(i)-free graph is to fix a vertex x and take

all possible edges that point to it giving

✓
n� 1

r

◆
 ex(n,Hr(i)).

To get an upper bound also on the order of nr note that we can extend the concept

of the directed link graph to apply to more than one vertices. For instance, here

let the directed link graph of a set of vertices A of cardinality i be the (r � i) ! 1
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directed hypergraph on n� i vertices, V \A, for which every edge becomes an edge of

the original (r ! 1)-graph when A is added to the tail set. In this case, no directed

tail link graph for any set of i vertices can contain two independent directed edges.

Therefore,

ex(n,Hr(i)) 
(r � i+ 1)

�
n�i�1

r�i

��
n
i

�
�
r
i

� =
n(r � i+ 1)

n� i

✓
n� 1

r

◆
.

It is easy to see that any r ! 1 transitive tournament on n vertices would be Er(i)-

free. This immediately solves the oriented version and gives a lower bound for the

standard version:

exo(n,Er(i)) =

✓
n

r + 1

◆
.

As in the first lower bound construction for E we can add r edges to the smallest

r+1 vertices in the linear order given by the transitive tournament to get a few more

edges in the standard case. Is this the best that we can do?

CONJECTURE 10.2.

ex(n,Er(i)) =

✓
n

r + 1

◆
+ r.

For the generalized resolvent configurations, the lower bound constructions for R3

and R4 both generalize to the r ! 1 setting. When i � 1, then the construction

that worked for R3 gives the better lower bound. Split the vertices into two equal or

almost equal parts and take all edges that point from an r-set in one to a vertex in

the other. This gives

n

✓n
2

r

◆
 ex(n,Rr(i))

for i � 1. When i = 0, the same generalization of the construction for R4 will produce

an Rr(0)-free graph.
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3. Di↵erences between oriented and standard extremal numbers

It is interesting to look at the di↵erences between the oriented and standard extremal

problems for a given forbidden graph not only in their values but in the di�culty

level of their proofs. For instance, the proof of the standard case of I0 is quite easy

while the proof of the oriented case took a lot of e↵ort. For the Escher graph E the

situation was reversed. What about the character of these two graphs determines

that one version of the problem should be easy and the other di�cult, and what is

the di↵erence between the two that swaps which version is which?

A more exact request is to ask for a characterization that determines the di↵erence

in the value. For instance, H2, I1, R3, R4, and the case of two completely overlapping

edges each have oriented and standard numbers that are exactly the same while H1

and I0 each have di↵erences that are linear in n, the Escher graph E has a constant

di↵erence, and the graph made up of two independent edges has a quadratic di↵erence.

Of course, we get an immediate easy bound by observing that every non-oriented

F -free graph contains an oriented F -free graph that can be arrived at by removing

edges from each triple of vertices until only one remains. So

ex(n, F )  3exo(n, F )  3ex(n, F )

for any forbidden graph F . The cases in this paper where the di↵erence between

the two numbers is zero shows that the upper bound is tight while the case of two

independent edges shows that the lower bound is also tight.

But what causes the di↵erence? Perhaps, it would be good to begin answering this

question by narrowing the focus to nondegenerate graphs since in this paper almost

every nondegenerate case had no di↵erence in the values, and the only one that did

had only constant di↵erence. Will the di↵erence always be at most constant or at

least o(n3)? No, any graph F that contains a triple with all three possible edges is
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certainly not degenerate, and the standard extremal number of F is at least twice as

much as the oriented extremal number.

But what if we restrict ourselves further and only consider oriented nondegenerate

forbidden graphs, then is

ex(n, F )� exo(n, F ) = o(n3)

for every oriented nondegenerate F? Dániel Gerbner and Balázs Keszegh produced

an interesting counterexample to this claim as well. At this point it is unclear to

the author what might be an appropriate characterization for graphs with small

di↵erences between extremal numbers.

4. General structural results

On a more general level we can ask about the structure of extremal (2! 1)-graphs.

For instance, it was already shown in [32] that the 4-resolvent configuration R4 has

a stability result. Roughly speaking, R4-free graphs with many edges di↵er only

slightly from the given extremal construction. While we have shown that several of

the extremal constructions in this paper are unique, we have not shown that any are

stable.

Another avenue of research is to ask for canonical extremal structures. That is, for a

forbidden graph F can we fix some constant r such that we can construct an F -free

graph on n vertices such that the n vertices are partitioned into r parts and whether

xy ! z is an edge or not depends entirely on which parts x, y, and z are in? If we

have a general r-part structure like this that is F -free for every n and the limit of

the ratio of the number of edges given by the structure over ex(n, F ) is one, then

we call this a canonical F -free extremal structure. For instance, the Turán graphs

are canonical extremal structures with respect to 2-graphs. Applying this idea to

hypergraphs is already a major area of research (see [38]) so it seems likely that the
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question of whether every (2 ! 1)-graph has such a canonical extremal structure

would be even more di�cult.

5. GDH questions

It would be nice to show that the set of jumps for some GDH theory T 0 is a proper

subset of the set of jumps of any theory T 0 up the lattice including those for which

mT = 2mT 0 . Or on the other hand it would be very interesting to learn that this is

not true in certain cases for r � 3!

CONJECTURE 10.3. Let T 0 and T be r-ary GDH theories for r � 3 such that

JT 0 ✓ JT and mT = 2mT 0. Then there exists some ↵ 2 [0, 1) for which ↵ is a jump

for T but not for T 0.

It is known by a result in [7] that every ↵ 2 [0, 1) is a jump for digraphs. Therefore,

the conjecture is not true when r = 2. On a related note, is it always true that

when JT 0 ⇢ JT , there always exists a family F 0 of T 0-graphs such that ⇡T 0(F 0) is not

contained in the set of Turán densities for T?

CONJECTURE 10.4. Let T 0 and T be theories such that JT 0 ✓ JT . Then there

exists some family F 0 of T 0-graphs such that ⇡T 0(F 0) is not contained in the set of

Turán densities for T .

Finally, it would be nice to generalize the definition of a GDH to include other com-

binatorial structures. For instance we could easily change the current formulation

to include multiple relations in order to capture nonuniform GDHs and those with

edges that have bounded multiplicity like the structures studied in [7]. We could even

allow these theories to contain general statements that relate the di↵erent relations.

An example of this might be the theory of some kind of GDH with an edge-coloring

that behaves in a certain way (at least locally). In another direction we could take

away the requirement that all vertices of an edge be distinct to allow for kinds of
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generalized loops or add a condition that the existence of certain edges preclude the

existence of others such as in the oriented cases studied here and in [33].
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CHAPTER 11

Introduction to the (p, q)-coloring problem.

We will use the standard asymptotic notation in the following chapters. That is, for

two functions, f(n) and g(n), we write f = O(g) if there exists some constant c and

some integer N such that f(n)  cg(n) for all n � N . We write f = o(g) if f/g ! 0

as n ! 1. We write f = ⌦(g) if g = O(f) and f = !(g) if g = o(f). Finally, we

write f = ⇥(g) if f = O(g) and f = ⌦(g).

Given two integers s, t � 2, the central question in classical Ramsey theory for graphs

asks for the minimum number of vertices N for which any 2-coloring, say red and

blue, of the edges of KN must yield a red Ks or a blue Kt. We say that N = R(s, t),

the Ramsey number for s, t. This question generalizes to more than 2 colors in a

natural way. That is, we let R(s1, . . . , sk) denote the minimum number of vertices N

for which a coloring of the edges of KN with k colors results in either an s1-clique in

the first color, or an s2-clique in the second color, etc.

A variation of the Ramsey problem is given by the following definition.

DEFINITION 11.1. Let n, p, and q be positive integers such that q 
�
p
2

�
. A

(p, q)-coloring of the complete graph on n vertices, Kn, is an edge coloring,

c : E(Kn)! [k],

for which every subset of p vertices of V (Kn) span at least q distinct edge colors. Let

f(n, p, q) denote the minimum number of colors k for which a (p, q)-coloring of Kn

exists.

If we let q = 2 in the above definition, then determining an upper bound for the

function f(n, p, 2)  k is equivalent to giving a lower bound, n + 1  R(p, . . . , p),
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for the Ramsey number with k colors. Similarly, giving a lower bound k  f(n, p, q)

is equivalent to giving the upper bound R(p, . . . , p)  n on the Ramsey number for

k � 1 colors.

Erdős and Shelah [20, 24] introduced the function f(n, p, q) in 1975, but it was not

studied in depth until 1997 when Erdős and Gyárfás [25] looked at the growth rate

of f(n, p, q) as n!1 for fixed values of p and q. They used the local lemma to give

a general upper bound for the function,

f(n, p, q)  cn
p�2

(p2)�q+1 .

Other than this, they looked for threshold values for q in terms of p for which f(n, p, q)

jumps in order of magnitude. For instance, they showed that when

q =

✓
p

2

◆
� p+ 3,

f(n, p, q) = ⇥(n) and f(n, p, q � 1) = o(n). So the function becomes linear in n at

this particular value of q. Similarly, they determined that

q =

✓
p

2

◆
�
jp
2

k
+ 2

is the first value at which f(n, p, q) is quadratic in n and

q =

✓
p

2

◆
�
jp
4

k
+ 1

is the first value for which ✓
n

2

◆
� c  f(n, p, q)

where c is some constant depending only on p.

Left as an open question was determining the threshold value of q for which f(n, p, q)

first becomes polynomial in n. They showed that

n
1

p�2 � 1  f(n, p, p).



11. INTRODUCTION TO THE (p, q)-COLORING PROBLEM. 117

So therefore, any q � p gives a function f(n, p, q) that is polynomial in n. However, it

was unclear what the order of magnitude of f(n, p, p�1) is in general. To this end they

considered some small cases. When p = 3, they pointed out that since determining

f(n, 3, 2) is equivalent to solving the multicolor Ramsey problem for 3-cliques, then

c1
log n

log log n
 f(n, 3, 2)  c2 log n

for constants c1, c2. However, for p = 4, they could not beat the probabilistic upper

bound

f(n, 4, 3) = O(n1/2).

For this reason, they called this the “most annoying” case.

In 1998, Mubayi [34] gave an explicit (4, 3)-coloring using a subpolynomial number

of colors. Specifically, he showed that

f(n, 4, 3)  eO(
p
logn).

In 2000, Mubayi and Eichhorn [17] demonstrated that for p � 5, this construction

is in general a (p, q)-coloring for q = 2 dlog
2
pe � 2. In 2015, Conlon, Fox, Lee, and

Sudakov [15] finally proved that f(n, p, p� 1) is subpolynomial for all p � 3. We will

discuss the construction they came up with to demonstrate this in Chapter 12.

In addition to their general results, Erdős and Gyárfás looked at several cases for

small values of p. They found that

5

6
(n� 1)  f(n, 4, 5)  n

and that

f(n, 9, 34) =

✓
n

2

◆
� o(n2).

Moreover, they singled out the cases of (4, 4) and (5, 9)-colorings as being particu-

larly interesting to look at. In 2000, Axenovich [2] gave a construction showing that

f(n, 5, 9)  n1+o(1). Since Erdős and Gyárfás showed that f(n, 5, 8) = ⇥(n), then this
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reduced the di↵erence between the known upper and lower bounds for f(n, 5, 9) to a

subpolynomial factor. In 2013, E. Krop and I. Krop [30] improved the lower bound

to
7

4
n� 3  f(n, 5, 9).

In 2004, Mubayi gave an explicit (4, 4)-coloring which reduced the upper bound to

f(n, 4, 4)  n1/2+o(1),

a subpolynomial factor away from the best known lower bound given by Erdős and

Gyárfás of n1/2 � 1. We will discuss his construction in more detail in Chapter 14.

In Chapter 13 we will give an explicit (5, 5)-coloring that uses only n1/3+o(1) colors, a

subpolynomial factor away from the best known lower bound of n1/3 � 1. Similarly,

in Chapter 14 we will give an explicit (5, 5)-coloring that uses only n1/2+o(1) colors,

a subpolynomial factor away from the best known lower bound of ⌦(n1/2). In both

cases, the constructions will be combinations of a modified version of the construction

given in [15] which we will define in Chapter 12 and certain “algebraic” colorings that

extend the idea behind Mubayi’s (4, 4)-coloring [35].
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CHAPTER 12

The Modified CFLS coloring.

This chapter contains material from a paper to be published in Combinatorics, Prob-

ability & Computing. [14]

In this chapter, we will define a particular instance of the general (p, p�1)-coloring of

Conlon, Fox, Lee, and Sudakov [15] which we will refer to as the CFLS coloring, and

we will show that this coloring avoids certain configurations. These properties will be

useful in later chapters. Then we will modify the coloring and give some additional

useful properties. We will not define the CFLS coloring in full generality since only

a simple case is needed. We borrow part of the notation used in [15], but change it

somewhat for clarity in this particular instance.

Let n = 2�
2
for some positive integer �. Associate each vertex of Kn with a unique

binary string of length �2. That is, we may assume that our vertex set is

V = {0, 1}�2
.

For any vertex v 2 V , let v(i) denote the ith block of bits of length � in v so that

v = (v(1), . . . , v(�))

where each v(i) 2 {0, 1}�.

Between two vertices x, y 2 V , the CFLS coloring is defined by

'1(x, y) =
��
i, {x(i), y(i)}

�
, i1, . . . , i�

�
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where i is the first index for which x(i) 6= y(i), and for each k = 1, . . . , �, ik = 0

if x(k) = y(k) and otherwise is the first index at which a bit of x(k) di↵ers from the

corresponding bit in y(k).

For convenience, when discussing any edge color ↵, we will let ↵0 denote the first

coordinate of the color (of the form (i, {x(i), y(i)})) and let ↵k denote the index of the

first bit di↵erence of the kth block for k = 1, . . . , �. Furthermore, throughout this

section, we will say that two vertices x and y agree at i if x(i) = y(i) and that x and

y di↵er at i if x(i) 6= y(i).

1. Avoided configurations

We will show through the following series of lemmas that the CFLS coloring avoids

certain specified arrangements of edge colors.

LEMMA 12.1. The CFLS coloring forbids monochromatic odd cycles.

Proof. Suppose there exists a sequence of distinct vertices, v1, . . . , vk, for which

k is odd and

'1(v1, v2) = '1(v2, v3) = · · · = '1(vk�1, vk) = '1(vk, v1) = ↵.

Let ↵0 = (i, {x, y}). Without loss of generality we may assume that v(i)
1

= x and

v(i)
2

= y. It follows that

y = v(i)
2

= v(i)
4

= · · · = v(i)k�1
= v(i)

1
= x,

a contradiction. ⌅

LEMMA 12.2. The CFLS coloring forbids four distinct vertices a, b, c, d 2 V for

which '1(a, b) = '1(c, d) and '1(a, c) = '1(a, d) (see Figure 50a).

Proof. Assume towards a contradiction that '1(a, b) = '1(c, d) = ↵ and '1(a, c) =

'1(a, d) = �. Let ↵0 = (i, {x, y}). Without loss of generality, a(i) = c(i) = x and
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a

b

c

d

(a)

a

b

c

d

(b)

a

b

c

d
e

(c)

a

b

c

d
e

(d)

Figure 41. Four configurations avoided by the CFLS coloring.

b(i) = d(i) = y. Then �i = 0 since a and c agree at i, but �i 6= 0 as a and d di↵er at i,

a contradiction. ⌅

LEMMA 12.3. The CFLS coloring forbids four distinct vertices a, b, c, d 2 V for

which '1(a, b) = '1(a, c), '1(b, d) = '1(b, c), and '1(a, d) = '1(c, d) (see Figure 41b).

Proof. Assume towards a contradiction that we have '1(a, b) = '1(a, c) = ↵,

'1(b, d) = '1(b, c) = �, and '1(a, d) = '1(c, d) = ⇡. Let ↵0 = (i, {x, y}), �0 =

(j, {s, t}), and ⇡0 = (k, {w, v}). Without loss of generality we may assume that

a(i) = x and b(i) = c(i) = y. Since b and c di↵er at j, then i 6= j. Without loss

of generality we may assume that b(j) = s and c(j) = d(j) = t. So ⇡j = 0, and

hence, a(j) = t since '1(a, d) = ⇡. Therefore, ↵j = 0, which implies that b(j) = t, a

contradiction since s 6= t. ⌅

LEMMA 12.4. The CFLS coloring forbids five distinct vertices a, b, c, d, e 2 V that

contain two monochromatic paths of three edges each that share endpoints: '1(a, b) =

'1(b, c) = '1(c, d) and '1(a, c) = '1(c, e) = '1(e, d) (see Figure 41c).

Proof. Assume towards a contradiction that

'1(a, b) = '1(b, c) = '1(c, d) = ↵

and

'1(a, c) = '1(c, e) = '1(e, d) = �.
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Let ↵0 = (i, {x, y}) and �0 = (j, {s, t}). Without loss of generality we may assume

that a(i) = c(i) = x and b(i) = d(i) = y. Note that '1(a, c) = � implies �i = 0. Then

e(i) = d(i) = y and e(i) = c(i) = x. So x = y, a contradiction. ⌅

LEMMA 12.5. The CFLS coloring forbids five distinct vertices a, b, c, d, e 2 V for

which '1(a, b) = '1(a, e) = '1(e, c) and '1(a, d) = '1(d, e) = '1(b, c) (see Fig-

ure 41d).

Proof. Assume towards a contradiction that '1(a, b) = '1(a, e) = '1(e, c) = ↵

and '1(a, d) = '1(d, e) = '1(b, c) = �. Let ↵0 = (i, {x, y}). We may assume without

a loss of generality that b(i) = e(i) = x and a(i) = c(i) = y. We also know that

b(k) = a(k) = e(k) = c(k) for all k < i. Since '1(b, c) = �, then �0 = (i, {x, y}).

So either d(i) = x or d(i) = y. Therefore, d must agree with either a or e at i, a

contradiction. ⌅

2. Modified CFLS

We will now add to the CFLS coloring to avoid the striped K4, an edge-coloring of

four distinct vertices a, b, c, d such that every pair of non-incident edges have the same

color (see Figure 42). The CFLS coloring alone will not avoid such arrangements,

but the product of '1 with another small edge-coloring, '2, will.

We will define the coloring '2 on the same set of vertices as the CFLS coloring,

V = {0, 1}�2
. However, we will also need to consider the vertices as an ordered set.

Consider each vertex to be an integer represented in binary. Then order the vertices

by the standard ordering of the integers. That is, x < y if and only if the first bit

at which x and y di↵er is zero in x and one in y. This ordering plays a large role

in a recent construction by Mubayi [36] for a small case of the hypergraph version of

the (p, q)-coloring problem. Note that each �-block is a binary representation of an

integer from 0 to 2� � 1, so these blocks can be considered ordered in the same way.
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↵
�

⇡

b

a

d

c

Figure 42. A striped K4.

Moreover, note that if x < y and if the first �-block at which x and y di↵er is i, then

it must be the case that x(i) < y(i).

Let x, y 2 V such that x < y. We define the second coloring as

'2(x, y) = (�1(x, y), . . . , ��(x, y))

where for each i,

�i(x, y) =

8
<

:
�1 x(i) > y(i)

+1 x(i)  y(i)

This construction uses 2� colors. Therefore, the modified CFLS coloring, ' = '1⇥'2,

uses

��+123� =
p
log n

p
logn+1

23
p
logn = 2O(

p
logn log logn)

colors.

LEMMA 12.6. The modified CFLS coloring ' forbids four distinct vertices a, b, c, d 2

V with '(a, b) = '(c, d), '(a, c) = '(b, d), and '(a, d) = '(b, c) (see Figure 42).

Proof. Assume towards a contradiction that a striped K4 can occur. Then,

'1(a, b) = '1(c, d) = ↵, '1(a, c) = '1(b, d) = �, and '1(a, d) = '1(b, c) = ⇡. Let

↵0 = (i, {x, y}), �0 = (j, {s, t}), and ⇡0 = (k, {v, w}). Without loss of generality,

assume that i = min{i, j, k}. Since '1(a, b) = '1(c, d), exactly one of d(i) and c(i)

equals a(i). Say d(i) = a(i) without loss of generality. Then, by the minimality of i, it

must be the case that j = i and that i < k.
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Let a(i) = d(i) = x, b(i) = c(i) = y, a(k) = b(k) = v, and c(k) = d(k) = w. Without loss

of generality we may assume that x < y. This implies that a, d < b, c in the ordering

of V as integers represented in binary. If v < w, then �k(a, c) = +1 and �k(d, b) = �1.

Therefore, '2(a, c) 6= '2(b, d), a contradiction. So, it must be the case that w < v.

But then �k(a, c) = �1 and �k(b, d) = +1, which yields the same contradiction. ⌅

Note that to eliminate the striped K4 configuration we needed just

�23� =
p
log n23

p
logn = 2O(

p
logn)

colors since only the first coordinate of the CFLS coloring was needed in the proof.

Mubayi used on the order of n1/2 colors to eliminate it while defining his (4, 4)-

construction [35].

Before we move on from discussing the modified CFLS coloring, we need to point out

one nice fact that will be used in Chapter 13.

LEMMA 12.7. If a < b < c, then '(a, b) 6= '(b, c).

Proof. Suppose '1(a, b) = '1(b, c) = ↵ and that ↵0 = (i, {x, y}) for x < y. Then

a(i) = x and b(i) = y. But then c(i) = x. Therefore, c < b, a contradiction. ⌅
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CHAPTER 13

A (5, 5)-coloring construction.

This chapter contains material from a paper to be published in Combinatorics, Prob-

ability & Computing. [14]

As previously stated, we know in general that f(n, p, p) � ⌦
�
n1/(p�2)

�
. However, the

local lemma gives the best general upper bound,

f(n, p, p)  O
�
n2/(p�1)

�
.

Only for p = 3, 4 do we know of a better upper bound.

A (3, 3)-coloring is equivalent to a proper edge coloring, one in which no two incident

edges can have the same color. Therefore, it is well known that

f(n, 3, 3) =

8
<

:
n n is odd

n� 1 n is even

In 2004, Mubayi [35] provided an explicit (4, 4)-coloring of Kn with only n1/2eO(
p
logn)

colors. This closed the gap for p = 4 to

n1/2 � 1  f(n, 4, 4)  n1/2+o(1).

His construction was the product of two colorings. The first was his earlier (4, 3)-

coloring which used no(1) colors. The second was an “algebraic” coloring that assigned

to each vertex a vector from a two-dimensional vector space over a finite field, and

then colored each edge with an element from the base field, giving n1/2 colors. The

algebraic part of his construction will be detailed further in Chapter 14.
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The (5, 5)-coloring defined in this chapter extends Mubayi’s idea of combining a small

(p, p� 1)-coloring with an algebraic coloring to obtain the following result.

THEOREM 13.1. As n!1,

f(n, 5, 5)  n1/32O(
p
logn log logn).

Before defining the algebraic part of our construction, we can systematically look at

all edge-colorings of a K5 up to isomorphism that use no more than four colors and

do not contain any of the configurations eliminated in Chapter 12 to get a list of

possible “bad” colorings of a K5 that could survive the modified CFLS coloring. A

careful mathematician with a free day could work through these cases by hand. A

simple computer program like the inelegant one detailed in Appendix A is easier to

verify. However this process is executed, we end up with three possible bad colorings

of K5 (see Figure 43). Avoiding these will require both the modified CFLS coloring

and the MIP coloring defined in Section 1.

In Section 1, we define the first part of an algebraic coloring which we call the Modified

Inner Product (MIP) coloring. Under this construction, each vertex is associated with

a vector in a three-dimensional space over a finite field. As in Mubayi’s construction

[35] each edge is colored with a specific element in the base field. Some slight mod-

ifications are needed for special cases, but these will only split each color a constant

number of times, ultimately giving O
�
n1/3

�
colors used in the MIP construction.

In Section 2, we will take the product of the modified CFLS coloring defined in

Chapter 12 and the first part of the MIP to get a construction that uses n1/3+o(1)

colors and eliminates the first two of the three remaining bad configurations. Finally,

in Section 3 we define the rest of the MIP coloring to eliminate the third configuration.
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Figure 43. Three configurations not avoided by the modified CFLS
coloring.

1. The Modified Inner Product coloring

Let q be some odd prime power, and let F*

q denote the nonzero elements of the finite

field with q elements. The vertices of our graph will be the three-dimensional vectors

over this set,

V =
�
F*

q

�3
.

All algebraic operations used in defining the MIP coloring are the standard ones from

the underlying field, and · will denote the standard inner product of two vectors,

x · y = x1y1 + x2y2 + x3y3

where x = (x1, x2, x3) and y = (y1, y2, y3). Additionally, let < be any linear order on

the elements of Fq, and extend this to a linear order on the vectors so that

x < y () xi < yi

where i 2 {1, 2, 3} is the first position at which xi 6= yi.

The MIP coloring will be broken up into two parts, � = �1 ⇥ �2. The first part �1

uses at most 12n1/3 colors. The second part �2 uses only four colors and is used to

split up colors from �1 in order to avoid one particularly di�cult configuration. In

this section, we will first define �1. Then, after a brief review of the necessary linear
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Fq

Fq

Fq

a

Figure 44. The geometric visualization can be misleading since we
are working over a finite field, but monochromatic neighborhoods are
contained in a�ne planes.

algebra concepts, we will prove some key properties of �1. The second part �2 will

be defined in Section 5.

1.1. Motivation. The MIP coloring should be viewed as coloring each edge with

the inner product of the two vectors with some adjustments for special cases. As

motivation for this coloring, note that each of the three configurations with four

colors that survive the modified CFLS coloring (see Figure 43) contains at least one

pair of vertices in the intersection of monochromatic neighborhoods of the other three

vertices.

For instance, vertices d and e in Figure 50b are in the same monochromatic neighbor-

hood with respect to vertices a, b, and c. Under the MIP coloring, the monochromatic

neighborhood of any vertex is contained in an a�ne plane of F3

q. So, if a, b, and c are

linearly independent, then these planes intersect in one point, not two. Therefore,

the 50b configuration could only happen under an inner product coloring if the span

of a, b, and c has dimension at most 2.

This same idea applies to the other two configurations, and the adjustments to color-

ing with the inner product are all dedicated to handling the cases for which the five

vectors are not in general position. In these cases we frequently end up with three

vectors that must all lie on the same a�ne line, and the o↵ending configurations
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Fq

Fq

Fq

Figure 45. The intersection of two monochromatic neighborhoods
usually lies on an a�ne line.

would be destroyed if the coloring could be modified to give a proper coloring on

every a�ne line.

1.2. The coloring �1. In Lemma 13.11 we will show that �1 induces a proper

edge coloring on every line, not just one-dimensional linear spaces but a�ne lines as

well. This will be one of the key lemmas in showing that our construction avoids

the remaining configurations. By itself, the inner product almost accomplishes this

goal. However, a problem arises when one vector on a given line is orthogonal to

the direction of the line. In this case, that particular vector has the same inner

product with all other vectors on the line, so we must give these edges new colors.

We accomplish this by replacing the inner product with another function.

The first part of �1 labels the type of edge-coloring we will have. For two distinct

vectors, x, y 2 V , let T (x, y) be a function defined by

T (x, y) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

UP1 x · y = x · x and x1 < y1

UP2 x · y = x · x, x1 = y1, and x < y

DOWN1 x · y 6= x · x, x · y = y · y, and x1 < y1

DOWN2 x · y 6= x · x, x · y = y · y, x1 = y1, and x < y

ZERO x · y 62 {x · x, y · y} and x · y = 0

DOT otherwise
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Here, the categories UPi and DOWNi let us know that at least one of the two vectors

is orthogonal to the direction of the line between the two, and therefore this edge will

need to receive something other than the inner product in the next part of the color.

The words UP and DOWN describe the edge from the perspective of the “special”

vertex. For instance, if x is orthogonal to the direction of the line it makes with y

and x < y, then x looks up the edge to y. The need for di↵erent categories when

x1 = y1 is a technical point. The category DOT stands for the inner product (or the

“dot” product), and ZERO is the special case where the inner product is zero. The

need to split the colors with zero inner product is also a technical point.

Let fT (x, y) : F3

q ! Fq be a function defined by

fT (x, y) =

8
>>><

>>>:

x1 + y1 T 2 {UP1,DOWN1,ZERO}

x2 + y2 T 2 {UP2,DOWN2}

x · y T = DOT

One final technical point is to di↵erentiate colors based on whether the two vectors

are linearly dependent or independent. Let

�(x, y) =

8
<

:
0 {x, y} is linearly dependent

1 {x, y} is linearly independent

This is enough to define the coloring. For vertices x < y, let T = T (x, y), and set

�1(x, y) = (T, fT (x, y), �(x, y)) .

1.3. Algebraic definitions and facts. We assume that the reader has some

familiarity with basic linear algebra notions such as dimension, linear independence,

linear combination, and span. The following definitions and facts are perhaps less

familiar. All are reproduced from definitions and propositions in Chapter 2 of the

great Linear Algebra Methods in Combinatorics book by László Babai and Péter

Frankl [3].
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DEFINITION 13.1. Let Fn be a vector space, and let S ✓ Fn be a set of vectors.

The rank of S is the dimension of the linear space spanned by S.

FACT 13.2. Let F be a field, and let A be a k ⇥ n matrix over F. Then the rank of

the set of column vectors as vectors in Fk is equal to the rank of the set of row vectors

as vectors in Fn. We know this value as the rank of the matrix A, rk(A). ⌅

DEFINITION 13.3. Let Fn be a vector space. An a�ne combination of vectors

v1, . . . , vk 2 Fn is a linear combination �1v1 + · · ·+ �kvk for �1, . . . ,�k 2 F such that

�1+ · · ·+�k = 1. An a�ne subspace is a subset of vectors that is closed under a�ne

combinations.

FACT 13.4. Any a�ne subspace U is either empty or the translation of some linear

subspace V . That is, each vector u 2 U can be written in the form u = v + t where v

is some vector in V and t is a fixed translation vector. ⌅

DEFINITION 13.5. The dimension dim(U) of an a�ne subspace U is the dimension

of the unique linear subspace of which U is a translate.

DEFINITION 13.6. Let Fn be a vector space. Let v1, . . . , vk 2 Fn. We say that

these vectors are a�ne independent if

�1v1 + · · ·+ �kvk = 0

implies that

�1 = · · · = �k = 0

for any �1, . . . ,�k 2 F for which �1+ · · ·+�k = 0. Otherwise, these vectors are a�ne

dependent. We say that a set of vectors S is a basis for an a�ne subspace if they

are a�ne independent and every vector in the subspace is an a�ne combination of

vectors in S.

FACT 13.7. A basis of an a�ne subspace U contains exactly dim(U) + 1 elements.

⌅
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FACT 13.8. Let Fn be some vector space. Let A be a k⇥n matrix over F and b 2 Fn.

Then the solution set to Ax = b is an a�ne subspace of dimension n� rk(A). ⌅

DEFINITION 13.9. A vector x 2 Fn is isotropic if x · x = 0. A linear subspace

U ✓ Fn is totally isotropic if x, y 2 U implies that x · y = 0.

FACT 13.10. For any nonzero vector x 2 Fn, the set of vectors {y : x · y = 0} is a

linear subspace of Fn with dimension n� 1. ⌅

1.4. Properties of �1.

LEMMA 13.11. The coloring �1 induces a proper edge coloring on every one-dimensional

a�ne subspace.

Proof. Let a, b, c 2 F3

q be three distinct vectors in a one-dimensional a�ne sub-

space. Then there exists some � 2 Fq such that c = �a + (1 � �)b. Suppose to-

wards a contradiction that �1(a, b) = �1(a, c), and let T = T (a, b) = T (a, c). If

T 2 {ZERO,DOT}, then

a · b = a · (�a+ (1� �)b).

So �a · (a � b) = 0. Since c 6= b, then � 6= 0. Therefore, a · (a � b) = 0. But this

contradicts the assumption that T 2 {ZERO,DOT}.

If T 2 {UP1,DOWN1}, then fT (a, b) = fT (a, c) gives

a1 + b1 = a1 + �a1 + (1� �)b1.

So b1 = a1, a contradiction since T 2 {UP1,DOWN1} implies that a1 6= b1. Similarly,

if T 2 {UP2,DOWN2}, then a2 = b2 by the same argument and a1 = b1 by definition.

But then either a3(a3� b3) = 0 or b3(b3� a3) = 0. Both cases imply that a3 = b3. So

a = b, a contradiction. ⌅
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DEFINITION 13.12. Given a vertex a 2 V and an edge-color A, let

NA(a) = {x : �1(a, x) = A}

be the A-neighborhood of a

OBSERVATION 13.13. Given a vector a 2 V and a color A = (T,↵, i), the vectors

in NA(a) all belong to the two-dimensional a�ne subspace defined by {x : fT (a, x) =

↵}. In particular, this plane can be defined as the solution space to either a · x =

↵ when T = DOT, (1, 0, 0) · x = ↵ � a1 when T 2 {ZERO,UP1,DOWN1}, and

(0, 1, 0) · x = ↵� a2 when T 2 {UP2,DOWN2}.

In certain cases, we can actually say something a little stronger. First, note that if

T (a, x) 2 {UP1,DOWN1}, then we will have a1 < x1 if, and only if, a < x. Therefore,

if fT (a, x) = ↵, since fT (a, x) = a1 + x1, we will have a1 < ↵ = a1 if, and only if,

a < x.

LEMMA 13.14. Given a vector a 2 V , and a color A = (T,↵, i), the vectors of

NA(a) all belong to a one-dimensional a�ne subspace if one of the following three

cases holds for all x 2 NA(a):

(1) T 2 {ZERO,UP2,DOWN2};

(2) T = UP1 and a < x;

(3) T = DOWN1 and a > x.

Proof. In the first case, if T = ZERO, then every x 2 NA(a) must satisfy the

system of linear equations

a · x = 0

(1, 0, 0) · x = ↵� a1.

Since a contains no zero components, then the rank of {a, (1, 0, 0)} is two. Therefore,

the solution space must be a one-dimensional a�ne subspace. If T 2 {UP2,DOWN2},
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a

b

c

d
e

Figure 46. The intersection of two monochromatic neighborhoods.

then every x 2 NA(a) must satisfy the system

(1, 0, 0) · x = a1

(0, 1, 0) · x = ↵� a2.

Since (1, 0, 0) and (0, 1, 0) are linearly independent, then, as before, the set of solutions

is a one-dimensional a�ne subspace.

In each of the other two cases, we see that every x 2 NA(a) must satisfy the system

a · x = a · a

(1, 0, 0) · x = ↵� a1.

As before, the solution space must be a one-dimensional a�ne subspace. ⌅

Therefore, we immediately get the following corollary by Lemma 13.11.

COROLLARY 13.15. Let a, b, c, d 2 V be four distinct vertices such that

�1(a, b) = �1(a, c) = �1(a, d) = (T,↵, i).

The set of vertices {b, c, d} span three distinct edge colors under �1 if any of the

following are true:

(1) T 2 {ZERO,UP2,DOWN2};

(2) T = UP1 and a < b, c, d;

(3) T = DOWN1 and a > b, c, d.



2. COMBINING THE COLORINGS 135

LEMMA 13.16. Let a, b, c, d, e 2 V be vectors such that {a, b} is linearly independent,

�1(a, c) = �1(a, d) = �1(a, e), and �1(b, c) = �1(b, d) = �1(b, e) (see Figure 46). Then

the set {c, d, e} spans three distinct edge colors.

Proof. Let �1(a, c) = �1(a, d) = �1(a, e) = A and �1(b, c) = �1(b, d) = �1(b, e) =

B. The result is immediate if either pair (a,A) or (b, B) satisfies the conditions listed

in Corollary 13.15. So assume not. If A = (Ta,↵, i), then by Observation 13.13 we

know that c, d, and e must either satisfy a · x = ↵ or (1, 0, 0) · x = ↵� a1. Similarly,

if B = (Tb, �, j), then c, d, and e must either satisfy b · x = � or (1, 0, 0) · x = � � b1.

Since the sets {a, b}, {a, (1, 0, 0)}, and {(1, 0, 0), b} are all linearly independent, then

every case gives us the result immediately except when Ta, Tb 2 {UP1,DOWN1}.

Since we assume that none of the cases from Corollary 13.15 hold, then this can only

happen when x · (x� a) = x · (x� b) = 0 for x = c, d, e. In this case, c, d, and e all

satisfy the two linear equations,

(a� b) · x = 0

(1, 0, 0) · x = ↵� a1.

Hence, c, d, and e are a�ne independent, and the result follows from Lemma 13.11

unless

a2 � b2 = a3 � b3 = 0.

But if this is true, then c · (c� a) = c · (c� b) implies that a = b, a contradiction. ⌅

2. Combining the colorings

Let n = (q � 1)3 where q is an odd prime power. To each ↵ 2 Fq we associate the

unique element ↵0 2 {0, 1}dlog qe which represents in binary the rank of ↵ under the

linear order given to the elements of Fq in Section 1. Let � be the minimum positive

integer for which

3 dlog qe  �2.
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We associate each of the n vertices of Kn with a unique vector in
�
F*

q

�3
as in Section 1.

To each vertex (x1, x2, x3), we associate (x0
1
, x0

2
, x0

3
, 0) 2 {0, 1}�2

as well, where for

each i, x0
i is the binary representation of the rank of xi, and 0 denotes a string of

�2 � 3 dlog qe zeros. Let

C = '⇥ �1.

Since

� = ⇥
⇣p

3 log q
⌘
= ⇥

⇣p
log n

⌘
,

it follows that the number of colors used in this combined coloring is at most

12q�23� = n1/32O(
p
logn log logn)

colors. This bound on the number of colors generalizes to all n by the standard

density of primes argument [37].

2.1. The first two configurations.

LEMMA 13.17. Any distinct vertices a, b, c, d, e 2 V for which C(a, c) = C(a, d) =

C(a, e), C(b, c) = C(b, d) = C(b, e), and C(a, c) 6= C(b, c) (see Figure 46) span at

least five distinct edge colors.

Proof. Lemma 12.1 implies that neither color between {a, b} and {c, d, e} can be

repeated on the edges spanned by {c, d, e}. Therefore, if {a, b} is linearly independent

it follows from Lemma 14.1 that {a, b, c, d, e} span at least 5 colors.

Otherwise, b = �a for some � 2 Fq. If C(a, b) repeats one of the colors from the edges

spanned by {c, d, e}, then this gives us the configuration forbidden by Lemma 12.2. If

C(a, b) = C(a, c) or C(a, b) = C(b, c), then all five vectors belong to a one-dimensional

linear subspace spanned by a which must be properly edge-colored by Lemma 13.11.

Therefore, the set of vertices {a, b, c, d, e} spans at least 5 colors. ⌅
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This immediately shows that the first configuration will not appear under the com-

bined coloring.

COROLLARY 13.18. Let a, b, c, d, e 2 V be five distinct vertices. It cannot be the

case that C(a, b) = C(a, c) = C(a, d) = C(a, e), C(b, c) = C(b, d) = C(b, e), and

C(c, d) = C(c, e) as in Figure 50b.

The second configuration also will not appear under the combined coloring.

LEMMA 13.19. Let a, b, c, d, e 2 V be five distinct vertices. It cannot be the case

that

C(a, c) = C(a, d) = C(a, e) = C(b, c) = C(b, d) = C(b, e),

and C(c, d) = C(c, e) as in Figure 43b.

Proof. By Lemma 14.1, this can happen only if there exists some � 2 Fq such

that b = �a. In this case,

�1(a, c) = �1(a, d) = �1(a, e) = �1(�a, c) = �1(�a, d) = �1(�a, e).

If this color is in DOT, then c ·a = c ·�a. So either � = 1, a contradiction, or c ·a = 0,

a contradiction that the color is in DOT. If the color is not in DOT, then it must be

the case that a1 = �a1. Since a1 6= 0, then this forces � = 1, a contradiction. ⌅

3. Splitting the coloring

Now we will split the colors of C to make a new coloring C 0 = C ⇥ �2, where �2 is

the second part of the MIP coloring.

Let U ✓ F3

q be a two-dimensional linear subspace. Let GU be an auxiliary graph

where V (GU) is the set of non-isotropic vectors in U , and

xy 2 E(GU) () x · y = 0.
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We wish to show that GU is bipartite. Note that x · y = 0 implies that ↵x · �y = 0

for any ↵, � 2 Fq. Suppose that x · z = 0 for some z 2 V (GU) such that z 6= �y

for any � 2 Fq. Then the intersection between U and the two-dimensional linear

subspace orthogonal to x must also be a two-dimensional linear subspace. Therefore,

x is contained in its own orthogonal linear subspace. So x is isotropic, a contradiction.

Hence, GU is comprised of disjoint complete bipartite graphs and so is itself bipartite.

For each two-dimensional linear subspace U , we label the vertices of GU with AU and

BU depending on their part in the bipartition, and then label all isotropic vectors in

U with AU as well.

For any two-dimensional linear subspace U ✓ F3

q and any x 2 U we define

S(x, U) =

8
<

:
A x 2 AU

B x 2 BU

For a given vector a 2 V , and a given color type T , define

aT =

8
>>><

>>>:

a T = DOT

(1, 0, 0) T 2 {UP1,DOWN1,ZERO}

(0, 1, 0) T 2 {UP2,DOWN2}

and let

Ua,T = {x : aT · x = 0}.

For convenience, let

ab =

8
<

:
0 aT · aT = 0

(aT · b)(aT · aT )�1aT aT · aT 6= 0

for any vectors a and b where T = T (a, b).
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Now we can define the second part of the MIP coloring. For any two vectors, a < b

with T = T (a, b), let

�2(a, b) = (S(a� ba, Ub,T ), S(b� ab, Ua,T )) .

3.1. The third configuration. Let a, b, c, d, e 2 V be five distinct vertices such

that

C 0(a, b) = C 0(a, c) = C 0(a, d) = C 0(a, e) = Black,

and let

C 0(b, c) = C 0(c, d) = C 0(d, e) = C 0(e, b) = Red

as shown in Figure 43c. By Lemma 12.7 we know that either b, d < c, e or c, e < b, d.

Similarly, we know that either a < b, c, d, e or b, c, d, e < a. So without loss of

generality, we can say that either a < b, d < c, e or b, d < c, e < a. In either case,

S(b� ab, Ua,T ) = S(c� ac, Ua,T )

where T = T (a, b) = T (a, c).

By Corollary 13.15 we know that one of the following three cases must be true:

(1) Black 2 DOT,

(2) Black 2 UP1 such that b, d < c, e < a, or

(3) Black 2 DOWN1 such that a < b, d < c, e.

This abuses our notation slightly, but the meaning is hopefully clear. For example,

Black 2 DOT means that the first component of the �1 part of the color Black is

DOT.

We will show that none of these cases are possible through the following series of

lemmas.

LEMMA 13.20. If Black 2 DOT and RED 2 DOT, then the configuration in Fig-

ure 43c is not possible under the coloring C 0.
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Proof. Let the inner product part of color Black be ↵ and the inner product

part of Red be �. Note that if either Black or Red encodes linear independence,

then b, c, d, and e would all belong to the same one-dimensional linear subspace, a

contradiction of Lemma 13.11. Also, since c � e satisfies the three linear equations,

a · x = 0, b · x = 0, and d · x = 0, then {a, b, d} cannot be linearly independent since

then c = e, a contradiction. So there exist nonzero �1,�2 2 Fq such that d = �1a+�2b.

Note that a · a 6= 0 since otherwise

a · d = a · (�1a+ �2b)

↵ = �2↵

implies that �2 = 1 since ↵ 6= 0. If �2 = 1, then we would reach a contradiction by

taking the inner product of both sides of d = �1a+ b with c to get that � = �1↵+ �,

a contradiction since d 6= b.

So ab = ac = ↵(a · a)�1a, then

d = �0
1
ab + �2b

where �0
1
= �1↵�1(a · a). Taking the inner product of both side of this with a gives

that

↵ = (�0
1
+ �2)↵.

So it follows that ab, b, and d are a�ne dependent. By the same arguments we can

conclude that ab, c, and e are also a�ne dependent.

Note that (b� d) · (c� e) = 0. Therefore, (b� ab) · (c� ac) = 0. Since

S (b� ab, Ua,DOT) = S (c� ac, Ua,DOT) ,

then b�ab and c�ac are contained in the same part of the bipartition of the auxiliary

graph on Ua,DOT. Therefore, either b� ab or c� ac must be isotropic since otherwise

the fact that they are orthogonal would have made them adjacent in the auxiliary

graph.
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Assume without loss of generality that b� ab is isotropic. Since

(b� ab) · (b� ab) = 0,

then b · b = ↵2(a · a)�1. Since (b� ab) · (c� ac) = 0, then � = ↵2(a · a)�1. Therefore,

b · b = �. Hence,

b · (b� c) = 0.

This contradicts our assumption that Red 2 DOT. ⌅

Note in what follows that if Red 62 DOT, then b1 = d1 and c1 = e1.

LEMMA 13.21. If Black 2 DOT and RED 2 ZERO, then the configuration in

Figure 43c is not possible under the coloring C 0.

Proof. If Red 2 ZERO, then

b · (c� e) = d · (c� e) = 0.

Also, recall that

a · (c� e) = 0.

If a, b, d are linearly independent, then c = e, a contradiction. So we must assume

that a, b, d are linearly dependent.

If either b or d depends on a, then �(a, x) = 0 for x = b, c, d, e which implies that all

five vectors belong to a one-dimensional linear subspace spanned by a, contradicting

Lemma 13.11. If d = �b for some � 2 Fq, then b1 = d1 = �b1. So either b1 = 0

or � = 1, both contradictions. So we must assume that d = �1a + �2b for nonzero

�1,�2 2 Fq. But then

d · c = �1(a · c) + �2(b · c)

0 = �1(a · c)

Since �1 6= 0, then a · c = 0 which implies that Black 62 DOT, a contradiction. ⌅
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LEMMA 13.22. If Black 2 DOT and RED /2 {DOT,ZERO}, then the configuration

in Figure 43c is not possible under the coloring C 0.

Proof. If Red 2 UP2 [ DOWN2, then b1 = c1 = d1 = e1. So all four vectors

b, c, d, e satisfy the linear equations a · x = ↵ and (1, 0, 0) · x = b1. Therefore, b, c, d,

and e all belong to a one-dimensional a�ne subspace, a contradiction of Lemma 13.11.

If Red 2 UP1, then

b · (b� c) = b · (b� e) = d · (d� c) = d · (d� e) = 0

since we assume that b, d < c, e. Therefore,

b · (c� e) = b · c� b · e = b · b� b · b = 0.

Similarly, d · (c� e) = 0. Since c1 = e1, then it follows that

0

BBB@

a1 a2 a3

b1 b2 b3

b1 d2 d3

1

CCCA

0

BBB@

0

c2 � e2

c3 � e3

1

CCCA
= 0.

Therefore, if any two of (a2, a3), (b2, b3), and (d2, d3) are linearly independent as

vectors in F2

q, then c = e, a contradiction. Hence, there must exist �1,�2 2 Fq such

that (a2, a3) = �1(b2, b3) and (d2, d3) = �2(b2, b3).

From the equations of the form x · (x� c) = 0 for x = b, d we get

b1(b1 � c1) + b2
2
+ b2

3
� b2c2 � b3c3 = 0

b1(b1 � c1) + �2
2
b2
2
+ �2

2
b2
3
� �2b2c2 � �2b3c3 = 0

So it follows that

c3 = b�1

3

�
b1(b1 � c1) + b2

2
+ b2

3
� b2c2

�
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which in turn gives that

(1� �2)b1(b1 � c1) = �2(1� �2)(b22 + b2
3
).

Since �2 6= 1, then

b1(b1 � c1) = �2(b
2

2
+ b2

3
).

Since b1 6= 0 and b1 6= c1, then b2
2
+ b2

3
6= 0.

Now, since Black 2 DOT, we get

a · b = a · d

a1b1 + �1b
2

2
+ �1b

2

3
= a1b1 + �1�2b

2

2
+ �1�2b

2

3

�1(1� �2)(b22 + b2
3
) = 0

But this is a contradiction, since none of these three terms are zero.

If Red 2 DOWN1, then we swap b, d and e, c in the previous argument to obtain the

same contradiction. ⌅

LEMMA 13.23. If Black 62 DOT, then the configuration in Figure 43c is not possible

under the coloring C 0.

Proof. In this case, either b, d < c, e < a and Black 2 UP1, or c, e > b, d > a

and Black 2 DOWN1. In both cases,

b · (b� a) = c · (c� a) = d · (d� a) = e · (e� a) = 0.

Moreover, b1 = c1 = d1 = e1, which implies that

Red 2 ZERO [ UP2 [DOWN2 [DOT.

If Red 2 ZERO, then

b · (c� e) = d · (c� e) = 0.
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Therefore, 0

@ b2 b3

d2 d3

1

A

0

@ c2 � e2

c3 � e3

1

A = 0.

So (d2, d3) = �(b2, b3) for some � 2 Fq, and b · c = d · c gives

b2
1
+ c2b2 + c3b3 = b2

1
+ �c2b2 + �c3b3.

Thus, (1 � �)(c2b2 + c3b3) = 0. Therefore, either � = 1, a contradiction since b 6= d,

or c2b2 + c3b3 = 0, also a contradiction since this implies that b · c = b2
1
6= 0.

If Red 2 UP2 [ DOWN2, then we have b2 = d2, c2 = e2, and either b · (b � c) =

b · (b � e) = 0 or c · (c � b) = c · (c � d) = 0. In the first case, b · (e � c) = 0

so b3(e3 � c3) = 0. So either b3 = 0 or e3 = c3, both contradictions. Similarly, in

the second case, c · (b � d) = 0 means that c3(b3 � d3) = 0, which gives the same

contradictions.

Finally, if Red 2 DOT, then b · (c� e) = 0 and d · (c� e) = 0. So

0

@ b2 b3

d2 d3

1

A

0

@ c2 � e2

c3 � e3

1

A = 0.

Therefore, either c = e, a contradiction, or (d2, d3) = �(b2, b3) for some nonzero

� 2 Fq.

If � is the inner product represented by Red, then we get that

� = b2
1
+ b2c2 + b3c3

� = b2
1
+ �b2c2 + �b3c3

So,

(1� �)(b2c2 + b3c3) = 0.
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Therefore, either � = 1 or b2c2 + b3c3 = 0. If � = 1, then b = d, a contradiction. So

we must assume that b2c2 + b3c3 = 0. But then

(b� (b1, 0, 0)) · (c� (b1, 0, 0)) = 0.

Since ab = ac = (b1, 0, 0) we know that

(b� ab) · (c� ac) = 0.

Therefore, since

S(b� ab, Ua,T ) = S(c� ac, Ua,T ),

it must be that either (0, b2, b3) or (0, c2, c3) is isotropic.

First, assume that (0, b2, b3) and (0, c2, c3) are linearly independent. Then they must

span the linear subspace Ua,T . Without loss of generality assume that (0, b2, b3) is

isotropic. Therefore, it is orthogonal to every vector in the subspace Ua,T . Since this

space is defined to be orthogonal to (1, 0, 0), then this means that (0, b2, b3) is linearly

dependent on (1, 0, 0), a contradiction.

So we must assume that (0, b2, b3) and (0, c2, c3) are linearly dependent. Since at least

one of them is isotropic, then they belong to a totally isotropic one-dimensional linear

subspace. So b2
2
+b2

3
= 0 and c = (b1,�b2,�b3) for some � 2 Fq. But then b·(b�c) = 0,

a contradiction of the assumption that Red 2 DOT. ⌅

Since these lemmas show that the third and final configuration does not appear, the

coloring C 0 is a (5, 5)-coloring of Kn.
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CHAPTER 14

A (5, 6)-coloring construction.

In this chapter, we improve the probabilistic upper bound of f(n, 5, 6)  cn3/5 by

giving an explicit (5, 6)-coloring of Kn that uses few colors. The new upper bound

comes close to matching the best known lower bound in order of magnitude.

THEOREM 14.1. As n!1,

✓
5

6
n� 95

144

◆1/2

 f(n, 5, 6)  n1/22O(
p
logn log logn).

The lower bound comes from the following lemma, a generalization of an argument

used by Erdős and Gyárfás [25], and stated explicitly as equation 11 in [15].

LEMMA 14.1. Let t = f(n, p, q), then

f

✓⇠
n� 1

t

⇡
, p� 1, q � 1

◆
 t.

Proof. Suppose we have a (p, q)-coloring of Kn with t colors. Fix some vertex

x, then at least
⌃
n�1

t

⌥
vertices must appear in a monochromatic neighborhood of x.

The number of colors t must be enough to give a (p�1, q�1)-coloring on this set. ⌅

Erdős and Gyárfás showed that 5

6
(n � 1)  f(n, 4, 5) [25]. This, combined with the

lemma, gives the stated lower bound in Theorem 14.1.

The construction providing the upper bound combines two existing constructions with

some modification. The first is the modified CFLS construction given in Chapter 12.

The second construction is the “algebraic” part of the (4, 4)-coloring given by Mubayi

in [35].
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After defining the construction in the next section, we will demonstrate that it avoids

many di↵erent configurations of colored edges on five or fewer vertices. By ruling

these cases out, the algorithm in Appendix A is used to show that no copy of K5 can

span fewer than six distinct colors.

1. The algebraic construction

We will now define the algebraic part of the construction, ⇣ = ⇣1 ⇥ ⇣2. The first part

of this construction, ⇣1, is exactly the algebraic part of the (4, 4)-coloring given by

Mubayi [35]. The second part, ⇣2, is a modification original to this chapter but based

on a similar modification used to alter the algebraic portion of the (5, 5)-coloring in

Chapter 13.

Let n = q2 where q is some odd prime power. Associate each vertex of Kn with a

unique vector in the space F2

q over the finite field with q elements. Between any two

vectors x = (x1, x2) and y = (y1, y2), we define the color ⇣1 of the edge between them

as

⇣1(xy) = (x1y1 � x2 � y2, �(x1, y1))

where

�(x1, y1) =

8
<

:
0 x1 = y1

1 x1 6= y1
.

Here, all algebraic operations are taken to be the standard ones defined by the finite

field.

The modification to this coloring, ⇣2, requires that we give the elements of F2

q some

linear order. When we combine the algebraic part of the coloring with the modified

CFLS coloring, this order will agree with the order put on the binary strings, but for

now we just assume that there is some linear order.

For each element ↵ 2 Fq let G↵ be the graph with vertex set Fq \ {↵} such that

xy 2 E(G) () x+ y = 2↵.
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It is straightforward to show that the edges of G↵ form a complete matching of the

vertices. The vertices can therefore be partitioned into two sets, S↵ and T↵, such that

no edge lies inside either set.

For two distinct elements, ↵, � 2 Fq, define the function

f↵(�) =

8
<

:
S � 2 S↵

T � 2 T↵

.

Now we can define ⇣2 for two vectors, x < y, as

⇣2(xy) = (fx1(y1), fy1(x1)) .

The coloring, ⇣1, gives at most 2q colors on q2 vertices, and the modification, ⇣2, gives

four colors. So overall the modified algebraic coloring ⇣ uses at most 8q = 8
p
n colors.

2. Combining the constructions

Begin with n = q2 for some odd prime power q, and associate each vertex with

a distinct vector of F2

q as in the previous section. Give some linear order for the

elements of the base field, Fq. To each ↵ 2 Fq we associate the unique element

↵0 2 {0, 1}dlog qe which represents in binary the rank of ↵ under the this linear order.

Let � be the minimum positive integer for which

2 dlog qe  �2.

To a vertex of Kn associated with vector (x1, x2) 2 F2

q, we also associate the binary

string (x0
1
, x0

2
, 0) 2 {0, 1}�2

where for each i, x0
i is the binary representation of the

rank of xi, and 0 denotes a string of �2 � 2 dlog qe zeros.

The edge-coloring '⇥⇣ is then given by applying ⇣ to the vectors and ' to the binary

strings. Since

� = ⇥
⇣p

2 log q
⌘
= ⇥

⇣p
log n

⌘
,
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Figure 47. Four configurations that each contain a forbidden “color cycle.”

it follows that the number of colors used in this combined coloring is at most

8q�22� = n1/22O(
p
logn log logn)

colors. This upper bound on the number of colors generalizes to all n by the standard

density of primes argument [35, 37].

3. Configurations avoided by CFLS

In Chapter 12, we showed that the modified CFLS coloring, ', avoids several pos-

sible configurations of edge colors on small cliques. Several of these cases, including

monochromatic odd cycles, are covered by Lemma 14.2.

3.1. General “color cycle” configurations. Let p and q be positive integers.

Assume that we have a copy of Kp under an edge-coloring

c : E(Kp)! {C1, . . . , Cq}.

Define an auxiliary digraph D on the set of edge colors, V (D) = {C1, C2, . . . , Cq},

such that Ci ! Cj 2 E(D) if and only if there exist vertices v1, . . . , vk 2 V (Kp) for

k � 3 such that

c(v1v2) = c(v2v3) = · · · = c(vk�1vk) = Ci

and c(vkv1) = Cj.

Now, color the directed edges of D “Odd” or “Even” depending on the parity of the

number of vertices k that gives the directed edge. Note that multiedges with di↵erent

parities are possible in D.
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LEMMA 14.2. The CFLS coloring avoids any edge-colored copy of Kp for which the

auxiliary digraph on the colors spanned by that clique contains a directed cycle with

at least one Odd edge.

Proof. Suppose that colors C1, . . . , Cm make such a directed cycle:

C1 ! C2, C2 ! C3, . . . , Cm ! C1 2 E(D)

such that (without loss of generality) C1 ! C2 is colored Odd. Then there exist

vertices v1, . . . , vk 2 V (Kp) for some odd integer k � 3 for which '1(vivi+1) = C1

for i = 1, . . . , k � 1 and '1(vkv1) = C2. Let the zero coordinate of the color C1

be (i, {x, y}). Without loss, assume that v(i)
1

= x. It follows that v(i)k = x as well.

Therefore, the ith coordinate of C2 is zero.

Now, each subsequent directed edge Cj ! Cj+1 for j = 2, . . . ,m, regardless of color,

forces the ith coordinate of the “head” color to be zero as well. To see this assume

that Cj is zero in its ith coordinate. A monochromatic path in color Cj, u1u2 · · · ul,

implies that u1 agrees with ul at i. Therefore, the ith coordinate of Cj+1 must also be

zero. The same must be true for C1 since this is a directed cycle, a contradiction. ⌅

For the (5, 6)-coloring we use Lemma 14.2 to eliminate the configurations shown in

Figure 47 as well as monochromatic odd cycles.

3.2. Configurations containing a monochromatic P3. Assume that we have

an edge-colored K5 that contains a monochromatic P3 on vertices abcd in color Black.

The edges ac and bd cannot be Black since color classes are bipartite in CFLS. So we

color edge ac Red. Let Black0 = (i, {x, y}), then Redi = 0. Therefore, any Red edge

from the Black P3 to vertex e fixes the value of e(i) as either x or y. CFLS would

then forbid any third color from having an edge between an x and a y as well as one

between two vertices that agree at i.
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Figure 48. CFLS forbids these 16 configurations, each contain a
monochromatic P3.

There are 16 possible configurations that fit this description when we do not consider

those in which the third color never touches vertex e (these cases are summarized

separately). Figure 48 presents these 16 configurations.

3.3. Configurations containing an alternating C4. Next, consider configu-

rations that contain a 2-colored C4 with alternating colors. If the configuration also

has two same-colored edges adjacent at the fifth vertex so that the other two end-

points are each incident to either endpoint of an edge of the C4 (as shown by the

edge-colored cliques in Figure 49), then we can say that under CFLS, the color from

the fifth vertex must be distinct from any color spanned by the other four vertices.

Moreover, none of these spanned colors can be incident with the fifth vertex.

LEMMA 14.3. Let a, b, c, d, e be distinct vertices such that '(ab) = '(cd) = ↵,

'(bc) = '(ad) = �, '(ae) = '(de) = �, '(ac) = ⇡1, '(bd) = ⇡2, '(be) = �1, and
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Figure 49. Configurations containing an alternating C4.

'(ce) = �2. Then

�,�1,�2 62 {↵, �, ⇡1, ⇡2}.

Proof. Let �0 = (i, {x, y}). Without loss of generality, we may assume that

a(i) = x and d(i) = y. If e(i) = x or e(i) = y, then we get that �i = 0 and �i 6= 0, a

contradiction. Hence,

e(i) = z 62 {x, y}.

This alone shows that � 6= �.

If � = ↵, then ↵i 6= 0 so it must be the case that b(i) = y and c(i) = x. Therefore,

three distinct binary strings, x, y, z, pairwise have the same first index of di↵erence

↵i. This is impossible since two must either both be zero or both be one.

If � = ⇡1, then c(i) = y and so b(i) = x. Hence, the distinct binary strings x, y, z

again pairwise have the same first index of di↵erence, �i, a contradiction. The same

argument applies if � = ⇡2.

Next, assume that �1 = ⇡1. Since e(i) = z and b(i) 2 {x, y}, then �1 is nonzero at i.

Since '(ac) = �1 and a(i) = x, then c(i) = y and so b(i) = x. Hence, colors � and �1

must agree in coordinate i. This again gives us that x, y, z all pairwise di↵er at the

same first index, a contradiction. The same argument applies if �2 = ⇡2.

If �1 = ⇡2, then b(i) = x and so c(i) = y. So again � and �1 agree at coordinate i. This

again forces the contradiction with x, y, z. The same argument applies if �2 = ⇡1.
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Figure 50. Five additional configurations avoided by '.

Finally, note that �1,�2 6= � since e(i) = z. If �1 = ↵, then b(i) = y and so �

and ↵ agree at coordinate i which gives the same contradiction as before. The same

reasoning applies if �2 = ↵. ⌅

3.4. Additional configurations. We finish this section by showing that the

modified CFLS coloring eliminates the additional cases shown in Figure 50. We

already showed in Chapter 12 that this coloring eliminates Figures 50a and 50b.

LEMMA 14.4. Let a, b, c, d, e be distinct vertices. The CFLS coloring forbids '(ab) =

'(bc) = '(de) = ↵ and '(cd) = '(ae) = � (see Figure 50c).

Proof. Assume that this can happen and that ↵0 = (i, {x, y}). Without loss of

generality, assume that b(i) = x and a(i) = c(i) = y. Moreover, without loss we can

assume that d(i) = x and e(i) = y. Then a(i) = e(i) implies that �i = 0. But c(i) 6= d(i)

implies that �i = 0, a contradiction. ⌅

LEMMA 14.5. Let a, b, c, d, e be distinct vertices. The CFLS coloring forbids '(ab) =

'(cd) = ↵, '(ae) = '(bc) = �, and '(ac) = '(de) = � (see Figure 50d).

Proof. Let �0 = (i, {x, y}). Without loss of generality we may assume that

a(i) = x and c(i) = y. If d(i) = y and e(i) = x, then ↵i = �i = 0 and so b(i) = x and

b(i) = y, a contradiction. Hence, d(i) = x and e(i) = y. So b(i) = z 62 {x, y}. Moreover,

↵i = �i both go between x and y. Therefore, the three distinct binary strings x, y, z

are all pairwise di↵erent at the same first index, ↵i, a contradiction. ⌅
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LEMMA 14.6. It cannot be the case that a, b, c, d, e are distinct vertices such that

'(ab) = '(cd) = ↵, '(bc) = '(ad) = �, '(ae) = '(ac) = �, and '(bd) = '(bc) = ⇡

(see Figure 50e).

Proof. Let ⇡0 = (i, {x, y}). Without loss of generality we may assume that

e(i) = x and c(i) = y. It follows from color � that a(i) 62 {x, y}. Since d(i) 2 {x, y},

then it follows that �i 6= 0. Hence, b(i) = x and so d(i) = y. So '(cd) = ↵ implies

that ↵i = 0, but '(ab) = ↵ implies that ↵i 6= 0, a contradiction. ⌅

4. Configurations avoided by the algebraic coloring

We begin with two basic lemmas about the algebraic construction ⇣.

LEMMA 14.7. Let a, b, c be three distinct vertices such that ⇣(ab) = ⇣(ac), then

b1 6= c1.

Proof. Let ⇣(ab) = ⇣(ac). Then

a1b1 � a2 � b2 = a1c1 � a2 � c2

a1(b1 � c1) = b2 � c2.

If b1 = c1, then b2 = c2 as well. Hence, b = c, a contradiction. ⌅

LEMMA 14.8. Let a, b, c, d be four distinct vertices such that ⇣(ab) = ⇣(ac) and

⇣(db) = ⇣(dc), then a1 = d1.

Proof. Since b1 6= c1 by Lemma 14.7, then we know that

a1 =
b2 � c2
b1 � c1

= d1.

⌅
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As shown in [35], the algebraic construction ⇣1 avoids monochromatic C4s (see Fig-

ure 51a) as well as the configuration shown in Figure 51b. We provide these two

results for completeness.

LEMMA 14.9. Let a, b, c, d be distinct vertices. The algebraic coloring ⇣ forbids

⇣(ab) = ⇣(bc) = ⇣(cd) = ⇣(da) (see Figure 51a).

Proof. By Lemma 14.7, b1 6= d1. But b1 = d1 by Lemma 14.8, a contradiction.

⌅

LEMMA 14.10. Let a, b, c, d be distinct vertices. The algebraic coloring ⇣ forbids

⇣(ab) = ⇣(ac) = ⇣(ad) and ⇣(bc) = ⇣(bd) (see Figure 51b).

Proof. By Lemma 14.8, a1 = b1. Therefore, �(a1, b1) = 0. So c1 = a1 = d1. But

c1 6= d1 by Lemma 14.7. ⌅

Now we will take care of a few additional configurations. We will use the following

technical lemma.

LEMMA 14.11. Let a, b, c, d be four distinct vertices such that ⇣(ab) = ⇣(cd) and

⇣(bc) = ⇣(ad). Then

(a1 + c1)(b1 � d1) = 2(b2 � d2).

Proof. The two colors give us the following relations:

a1b1 � a2 � b2 = c1d1 � c2 � d2

a1d1 � a2 � d2 = c1b1 � b2 � b2.

We subtract the second equation from the first to get the desired equation. ⌅

LEMMA 14.12. Let a, b, c, d, e be distinct vertices. Then C(ab) = C(cd), C(bc) =

C(ad), C(ae) = C(ce), and C(be) = C(de) (see Figure 51c) is forbidden by the coloring

C = '⇥ ⇣.
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Figure 51. Configurations eliminated by the modified algebraic coloring.

Proof. By Lemma 14.11, we know that

(a1 + c1)(b1 � d1) = 2(b2 � d2),

and from ⇣(be) = ⇣(de) we get that

e1(b1 � d1) = b2 � d2.

Therefore,

(a1 + c1)(b1 � d1) = 2e1(b1 � d1)

a1 + c1 = 2e1

since b1 6= d1 by Lemma 14.7. So fe1(a1) 6= fe1(c1). By Lemma 12.7, '(ae) =

'(ce) implies that either a, c < e or e < a, c. In either case, ⇣2(ae) 6= ⇣2(ce), a

contradiction. ⌅

LEMMA 14.13. Let a, b, c, d, e be distinct vertices. Then C(ab) = C(cd), C(bc) =

C(ad) = C(be) = C(de), and C(ac) = C(ae) (see Figure 51d) is forbidden by the

coloring C = '⇥ ⇣.
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Proof. As in the previous proof we get that a1 + c1 = 2e1. By Lemma 14.8 we

know that b1 = a1. Therefore, it follows from the second part of ⇣1 that c1 = d1.

Therefore, b1 + d1 = 2e1 and so fe1(b1) 6= fe1(d1). As before, this fact along with

Lemma 12.7 forces ⇣2(be) 6= ⇣2(de), a contradiction. ⌅

LEMMA 14.14. Let a, b, c, d, e be distinct vertices. Then ⇣(ab) = ⇣(cd) = ⇣(de) and

⇣(bc) = ⇣(ad) = ⇣(be) (see Figure 51e) is forbidden by the algebraic coloring ⇣.

Proof. By Lemma 14.11 we know that

(a1 + c1)(b1 � d1) = 2(b2 � d2),

and by Lemma 14.8 we know that b1 = d1. Hence, b2 � d2 = 0 and so b = d, a

contradiction. ⌅

LEMMA 14.15. Let a, b, c, d, e be distinct vertices. Then ⇣(bc) = ⇣(cd) = ⇣(de),

⇣(eb) = ⇣(ba) = ⇣(ad), and ⇣(ac) = ⇣(ae) (see Figure 51f) is forbidden by the algebraic

coloring ⇣.

Proof. By Lemma 14.7 we get that b1 6= d1. By Lemma 14.8 we get that a1 = d1.

Therefore, since the color encodes equality in the first coordinate we see that b1 = d1,

a contradiction. ⌅

LEMMA 14.16. Let a, b, c, d, e be distinct vertices. Then ⇣(bc) = ⇣(cd) = ⇣(de),

⇣(eb) = ⇣(ba) = ⇣(ad), and ⇣(ec) = ⇣(ae) (see Figure 51g) is forbidden by the algebraic

coloring ⇣.

Proof. By Lemma 14.8 we get that a1 = c1. By Lemma 14.7, we get that

a1 6= c1, a contradiction. ⌅
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CHAPTER 15

Additional questions about (p, q)-colorings.

1. General (p, p)-coloring with n1/(p�2)+o(1) colors

In general, the method of combining a variation of the CFLS coloring with a general

algebraic construction using vectors from a space of dimension p�2 has the potential

to show that

n1/(p�2)  f(n, p, p) = n1/(p�2)+o(1)

for p � 6. Once the di�culty of case analysis is circumvented, then properties of

vector spaces could hopefully be used to eliminate p-cliques which span only p � 1

colors.

2. A better bound for f(n, 5, 7)

The (5, 5) and (5, 6)-colorings have left q = 7 as the only remaining value for which

a polynomial gap (in the order) between the known upper and lower bounds exists

when p = 5. In this case we know that there are positive constants c1 and c2 such

that

c1n
2/3  f(n, 5, 7)  c2n

3/4.

Is it possible to lower the upper bound to n2/3+o(1) using methods similar to those in

Chapters 13 and 14?

3. The hypergraph version

Let fk(n, p, q) denote the minimum number of colors needed to color the edges of the

complete k-uniform hypergraph on n vertices in such a way so that every p vertices

span at least q colors. To date, little work has been done on this hypergraph version
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of the problem. There appear to be only two papers published on the topic, one by

Conlon, Fox, Lee, and Sudakov [16] and one by Mubayi [36].

The main problem in the area is to determine for fixed p the threshold values for q

at which there are large jumps in the order of the f(n, p, q). For p > k � 3 and

0 < i < k, Conlon, Fox, Lee, and Sudakov [16] showed that there exists a constant c

dependent on k, p, and i for which

fk

✓
n, p,

✓
p� i

k � i

◆
+ 1

◆
= ⌦

�
log(i�1)(n)

c
�

where we define log0(x) = x and logi(x) = log
�
logi�1

(x)
�
. They conjecture that this

value of q is such a jump in the order. Is it true that

fk

✓
n, p,

✓
p� i

k � i

◆◆
=
�
log

(i�1)
n
�o(1)

?

Perhaps algebraic constructions have a place in this area as well.
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APPENDIX A

Algorithm for reducing cases

This chapter contains material from a paper to be published in Combinatorics, Prob-

ability & Computing. [14]

The following algorithm is not di�cult to verify, so we present it here without proof.

The specific implementation we rely on is a Python script that can be found (with

comments) at http://homepages.math.uic.edu/⇠acamer4/EdgeColors56.py. This par-

ticular script forbids monochromatic odd cycles and the edge-colorings shown in Fig-

ures 47, 48, 49, 50, as well as Figures 51a and 51b. The output is seven edge-colored

copies of K5 that each contain one of the remaining configurations in Figure 51.

Suppose we want to find every edge-coloring, up to isomorphism, of Kn that uses

at most m colors and does not contain a copy of any F 2 F , a list of edge-colored

complete graphs on n or fewer vertices. The algorithm takes F , n, and m as input

and returns a list R of edge-colorings of Kn satisfying these requirements.

For each k = 3, . . . , n, the algorithm creates a list Lk of acceptable edge-colorings of

Kk by adding a new vertex to each Kk�1 listed in Lk�1 (where L2 is the list of exactly

one K2 with its single edge given color 1), and then coloring the k�1 new edges in all

possible ways from the color set [m]. For each graph in Lk�1 and each way to color

the new edges, we test the resulting graph to see if it contains any of the forbidden

edge-colorings. If it does, then we move on. If not, then we test it against the new

list Lk to see if it is isomorphic to any of the colorings of Kk already on the list. If it

is, then we move on. Otherwise, we add it to the list Lk. The algorithm terminates

http://homepages.math.uic.edu/~acamer4/EdgeColors56.py
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when it has tested all colorings of Kn.

Algorithm 1: List all edge-colorings with no forbidden subcoloring
Data: number of vertices n; maximum number of colors m; list of forbidden

colorings F

initialize L2 as list containing one K2 with its edges colored 1;

for k = 3, . . . , n do

initialize empty list Lk;

for H 2 Lk�1 do

for each function f : [k � 1]! [m] do
let G be Kk with edge-colors same as H on the first k � 1 vertices

and color f(i) on edge ki for i = 1, . . . , k � 1;

if G contains no element of F and is isomorphic to no element of

Lk then
add G to the list Lk

end

end

end

end

return Ln
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[24] P Erdős. Solved and unsolved problems in combinatorics and combinatorial
number theory. European Journal of Combinatorics, 2:1–11, 1981.
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