
Specifying and Enforcing Workflows in Ruby on Rails

BY

Daniele Rossetti
Laurea, Politecnico di Milano, Milan, Italy, 2011

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:

Lenore D. Zuck, Chair and Advisor
V.N. Venkatakrishnan
Tim Hinrichs
Pier Luca Lanzi, Politecnico di Milano

To my family.

To my friends.

ii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Lenore Zuck for her steady and precious

support. She gave me substantial liberties, but was always available for a lot of good

advices and formative chit-chats when I needed them. I also thank Tim Hinrichs and V.N.

Venkatakrishnan, who have been helping me since the very beginning of my work and

greatly contributed to the development of this thesis. Finally, I want to say to everyone,

who directly or indirectly helped me and supported me during the time I wrote this thesis:

Thank you!

DR

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 BACKGROUND . 7
2.1 Enforcing workflows through HTTP: Where we are 7
2.2 Ruby on Rails . 9

3 APPROACH . 12
3.1 Workflow Specification . 12
3.2 Workflow Enforcements . 16
3.3 Workflow Enforcement - Challenges 17
3.3.1 Accessed Step . 17
3.3.2 Concurrent workflows . 18
3.3.3 Ambiguity . 19
3.3.4 Multiple Instance Workflows . 20
3.3.5 Redirection and Resume . 21
3.4 Workflow Enforcement - Solution to Challenges 21
3.4.1 Accessed State . 21
3.4.2 Cuncurrent Workflows . 22
3.4.3 Ambiguity . 23
3.4.4 Multiple Instance Workflows . 30
3.4.5 Redirection and Resume . 32

4 IMPLEMENTATION . 34
4.1 Extending Ruby on Rails . 34
4.2 Workflows Specifications with Workflower 35
4.3 Exploiting Ruby on Rails features 36

5 EVALUATION . 44
5.1 E-commerce application and Workflow Specification 44
5.2 Enforcements . 49
5.3 Performance . 51

6 RELATED WORKS . 54

7 CONCLUSIONS . 57

CITED LITERATURE . 59

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

VITA . 60

v

LIST OF TABLES

TABLE PAGE

I PERFORMANCES . 53
II RELATED WORKS . 54

vi

LIST OF FIGURES

FIGURE PAGE

1 Checkout process example. 4
2 Ruby on Rails request handler overview. 11
3 Ambiguos workflow. 19
4 Ambiguity between initial steps. 23
5 Ambiguity between non-initial steps. 24
6 Ambiguity between an initial step and a non-initial step. 24
7 Example of ambiguous workflow with repeated pages. 28
8 Example of ambiguos workflow for a questionnaire application. . . 29
9 Example of ambiguos multiple instance workflow 32
10 Workflows for the sample application. 48

vii

SUMMARY

Nowadays, Web applications are afflicted by numerous vulnerabilities and there ex-

ist many attacks that exploit them to execute malicious tasks. In this thesis we focus on

vulnerabilities related to workflows, which are sequences of steps that the user must per-

form in order to complete some transaction. When the Web application fails to correctly

enforce the workflows, undesired violations may be allowed. Currently, there is no system-

atic methodology for enforcing workflows and the implementation is left to the developer,

which may result in a weak application, vulnerable to attacks. In order to address this

issue, we present the framework Workflower, which allows the developer to easily specify

workflows and automatically enforce them. The framework allows the specification to be

declarative and separated from the application logic, so that it is easier to understand and

maintain. The specification is securely and automatically enforced in the application, so

that any violation is prevented without requiring the developer to manually implement any

defense. Additionally, it supports several features such as concurrent workflows, multiple

instances workflows, automatic redirection and request resuming.

viii

CHAPTER 1

INTRODUCTION

Web applications are quickly becoming the most common way to access services offered by

different environments and they are being used to provide functionalities that range from

simple tasks such as writing an email to more delicate operations such as payments for

online shopping or banking operations. The more common web applications are, the more

they have become an attractive target for attacks. Numerous vulnerabilities afflict imple-

mentation of web applications and, consequently, many attacks target those vulnerabilities

to execute malicious and unauthorized operations [1].

Here we focus on a particular type of vulnerabilities of web applications – those whose

origin is the workflow of the applications. Roughly speaking, each application can be

associated with a workflow logic that captures the "correct" order of executions of steps

that the user needs to perform in order to complete some transaction, e.g., pay before

checkout. Workflow attacks exploit ill management of the workflow logic (and e.g., may

allow to checkout before paying). Ideally, one would think of a workflow logic as the

high-level description of the intended workflow, and the actual workflow as the workflows

practically allowed by the application. Of course, one would wish for them to be the same,

however, in practice, they could differ, which renders them vulnerable to security attacks

based on this incompatibility.

1

2

Workflow attacks are enabled when the design of the application does not strictly en-

force the intended workflow logic and permits violation of the behavior assumed by the

developer [2]. For example, an attacker may be able to skip a required step and avoid pro-

viding with payment information on a checkout process, and directly purchase an item

without ever paying for it. This could happen when the application does not not enforce

proper restriction policies on the navigation, thus allowing an attacker to violate the in-

tended workflow.

Typically, to defend against workflow attacks, a web application is written so that every

possible entry point to the application enforces the developer’s intended workflow logic.

Each time the application receives an HTTP request, it checks if the request indeed fol-

lows the intended workflow. Usually, a module stores the current navigation state, e.g.,

whether or not the current user has logged in or has already visited a certain page, and

then other modules use this information to deny or authorize access to other parts of the

application. In addition, the application needs to check the correctness of the data carried

on by the HTTP request, so that the it can be properly processed and the navigation can

move forward.

Unfortunately, to date, there are no algorithmic solutions to enforce worflows logic

in web applications [4]. The implementation is arbitrary left to the developer, who needs

to take care of the vast number of scenarios and variables that may render a manual

implementation cumbersome and error-prone. We identified the following issues relating

to workflows enforcements:

3

1. Having no methodical ways for specifying or enforcing workflows logic entails their

enforcements in an ad-hoc manner and having it tightly intertwined with the applica-

tion logic in the implementation.

2. Having both application and workflow logics intertwined in the implementation ren-

ders the maintenance of the code less manageable.

3. This intertwining may obfuscate redundancy in implementation of workflow logic,

causing lack of consistency and potential vulnerabilities when similar components

are not identified as such, and modifications of them are not consistently applied.

To address these issues, we present Workflower — a framework that allows the de-

veloper to easily specify and automatically enforce the intended workflow logic. Work-

flower enables to separate the specification of the workflow logic from the application

logic. Workflower, allowing for a declarative specification of a workflows logic, makes it

easy to understand and maintain. The goals behind the design of Workflower are:

1. Providing the developer a clear and declarative way to specify the workflow logic and

its intended interaction with the application logics.

2. Starting from the specification of the workflow logic, Workflower automatically syn-

thesizes its implementation and enforcements in the web application.

3. Workflower allows for application logic to be modified while enforcing the same work-

flow logic, as well as for workflow logic to be modified without altering the application

logic.

4

Thus, our approach consists of the developer writing the specifications to define the

workflow logic, by specifying sequences of steps that need be performed to complete a

transaction. Workflower automatically enforces those requirements by guaranteeing, with

each HTTP request, that all preconditions are met and no violations occur.

We conclude the introduction with a simple example of the use of Workflower.

Checkout

Consider the checkout transaction workflow logic depicted in the solid lines of Figure 1.

The dashed line in the figure describes a workflow that should be prevented. An example

Figure 1: Checkout process example.

of typical implementation is described in Listing 1.1, where each step checks whether the

right sequence of actions occurs before it performs validates the input and performs its

operation.

5

Listing 1.1: Typical approach
1 #step 1
2 if user_loggedin
3 set_visited(step1)
4 display shipping_form
5 else
6 redirect_to login_page
7 end
8 #step2
9 if is_visited(step1) and valid_shipping_data

10 set_visited(step2)
11 display payment_form
12 else
13 redirect_to step1
14 end
15 #step3
16 if is_visited(step2) and valid_payment_data
17 set_visited(step2)
18 checkout_procedure
19 else
20 redirect_to step2
21 end

Note that the code of Listing 1.1 is redundant – each step has the flavour ”if previous

step was taken and the input is valid then goto the next step else redirect somewhere

else” – the application logic (preparing pages for display) is not clearly separated from the

workflow logic.

Listing 1.2 shows how an equivalent code is described with Workflower. Note that

the code provides for better readability and maintainability. The declarative specifications

allow to easily define an ordered sequence of steps, enriched by proper requirements,

which is then automatically enforced in the application.

The rest of the dissertation is organized as follows: In Chapter 2 we describe of current

methodologies for enforcement of workflow logics in HTTP, as well as provide with a short

introduction to Ruby-on-Rails (RoR) on top of which Workflower is built. Chapter 3 de-

6

Listing 1.2: Workflower example
1 #workflows specifications
2 checkout_process:
3 step1 : requires (user_logged_in), redirect_to login_page
4 step2 : requires(valid_shipping_data)
5 step3 : requires(valid_payment_data)
6

7 #step 1
8 display shipping_form
9 #step2

10 display payment_form
11 #step3
12 checkout_procedure
13 end

scribes in detail our approach. Chapter 4 describes the implementation of Workflower and

discusses some of its intricacies. Chapter 5 presents an evaluation of Workflower. Chapter

6 summarize the related literature, and we conclude in Chapter 7.

CHAPTER 2

BACKGROUND

2.1 Enforcing workflows through HTTP: Where we are

A workflow defines a set of sequences of steps that the application expects the user to

perform in order to complete some transaction. The sequences describe a dependence be-

tween the next step on the previous ones. The stateless [6] nature of the HTTP protocol that

treats each request as independent of prior ones makes the implementation of workflow

logic in HTTP non trivial. To address the lack of a state and the independence between

HTTP transactions, two main expedients can be used, namely Session variables and HTTP

Parameters.

Session variables are used to overcome the stateless behavior of the HTTP protocol

by storing information associated to the user current session and allows the server to

follow necessary details about the transaction. Session variables are only alive as long as

the session exists and they are invalidated as soon as the user leaves the application, by

closing the browser, for example.

HTTP Parameters [7] are data used to provide additional information to an HTTP request

as to enable an exchange of informations between multiple HTTP requests. They exist

as either GET parameters that are appended to the URL, (e.g., www.myhost.com/path/

to/page?parameter=value) or as POST parameters, that are enclosed in the body of the

7

www.myhost.com/path/to/page?parameter=value
www.myhost.com/path/to/page?parameter=value

8

HTTP request. For example of a POST request with parameters see Listing 2.1. The most

common use is gathering data from the user and exchanging it between pages.

Listing 2.1: POST parameters example
1 POST /somepage.php HTTP/1.1
2 Host: example.com
3 Content-Type: application/x-www-form-urlencoded
4 Content-Length: 27
5

6 param1=value1¶m2=value2

The common approach used to enforce intended workflow logic is to combine the use

of session variables and HTTP parameters with the proper validations [3]. One of the typ-

ical techniques for doing so is to store ad-hoc values in the session variables so that the

application can tell whether the user visited a certain page.

Listing 2.2 shows a toy example of this approach, where the workflow consists of a

simple sequence of two pages, page_one and page_two, that must be visited in order.

Listing 2.2: Typical workflow example #1
1 # request page_one
2 session[’page_one_visited’] = TRUE
3 #request page_two
4 if session[’page_one_visited’] == FALSE
5 redirect_to page_one
6 else
7 display page_two
8 end

A more realistic is displayed in Listing 2.3. It shows a fragment of an application that

enforces that the user has logged-in in order to access certain pages. When this condition

is not met, the user is directed to the login page, from which the user will be returned to

9

Listing 2.3: Login example
1 # login page
2 login procedure
3 if session[’pending_request’] is_set
4 redirect_to session[’pending_request’]
5 # page_one
6 if user_not_logged_in
7 redirect_to login_page
8 session[’pending_request’] = page_one
9 else

10 display page_one ...
11 end
12 #request page_two
13 if user_not_logged_in
14 redirect_to login_page
15 session[’pending_request’] = page_two
16 else
17 display page_two ...
18 end

the originally requested page. This example can also be used to demonstrate the amount

of redundant code and checks needed to enforce proper workflow logic even for a small

fragment of an application. It is to be anticipated that this overhead is significant for

"real-life" applications such as often encountered in e-commerce.

2.2 Ruby on Rails

While the concepts and architecture for our approach can be applied to a variety of Web de-

velopment frameworks, Workflower is built on top of Ruby on Rails and leverages some of

its features. Ruby on Rails (RoR) [8] is a web application development framework written in

the Ruby programming language. The goal of the framework is to make web programming

easier, faster, and more productive. It comes standard with various sane defaults, assumes

various conventions that users must also follow, embraces the RESTful approach [15], highly

encourages DRY or "Don’t Repeat Yourself", and it is fundamentally based on the Model

10

Listing 2.4: Controller example
1 class LogicController < ApplicationController
2 def index
3 #do stuff e.g. fetch the database, process the parameters and so on
4 render "index" #render the index view template
5 end
6 def contacts
7 #do stuff
8 render "contacts" #render the contacts view template
9 end

10 end

View Controller (MVC) [16] architecture, which is a software architecture model that sepa-

rates the concerns between the representation of information (the Model), the interaction

with that information (the Controller), and its presentation (the View).

The basic idea of the MVC pattern adopted by RoR is that each page’s request has to

be served by a specific controller. More specifically, each HTTP request is handled by a

function defined within a controller, called an action. Each action takes an HTTP request

as input and returns a web page. An example of a simple controller is shown in Listing 2.4.

Each action of a controller is in charge of executing the logic of the associated application,

possibly by fetching the database or processing the request parameters, and dynamically

rendering the template of the page. From hereon, we will refer to an action a on controller

c as c#a. For example, we refer to the action index of the controller LogicController in

Listing 2.4 as logic_controller#index. RoR relies on the router to map, consistent with the

developer’s specifications, each URL request to the proper controller#action. An example

of some router entries are shown in Listing 2.5

11

Listing 2.5: Router example
1 match ’/’ => ’logic_controller#index’
2 match ’/contacts’ => ’logic_controller#contacts’

These entries specify that an incoming request to the home page is served by the action

index of the controller LogicController, while a request to the contacts page is served by

the action contacts of the controller LogicController. Figure 2 presents an overview of

how RoR handles requests.

Figure 2: Ruby on Rails request handler overview.

CHAPTER 3

APPROACH

This Chapter describes the notion of workflow logic, how it can be described independently

of the application logic and how it provides sufficient expressiveness so to represent a

large number of use-cases. We further describe how the workflow logic is enforced by

Workflower in the application, with all its challenges and solutions.

3.1 Workflow Specification

A Web application can potentially allow the user to navigate through any existing Web

page in an unconstrained order. We define navigation path as an unconstrained sequence

of pages that the Web application allows to visit, where each page represents a step of

the navigation path. A workflow is a special category of navigation paths and describes

a constrained sequence of steps that the developer wants the user to perform in order

to complete some transaction. The constraints may enforce a particular order on the se-

quence of steps accessible by the user and require conditions about requests parameters

or the session. A workflow logic is the set of all the workflows associated with a web

application, and it is clearly a subset of the set of navigation paths.

Workflower allows to define workflows logic through the workflows specification, which

permits to list all the workflows allowed by the developer. Each workflow can be described

by enumerating all the steps that it consists of, as follows:

12

13

workflowx = (step0, step1, step2, ..., stepn−1, stepn)

where each step is mapped to a web page

stepi = pagek|pagek ∈{set of existing web pages}

and the i-th step of a workflow is the step that occupies the i-th position in the sequence

workflowx[i] = stepi

This specification demands the navigation to follows the order such that:

∀i, 0 ≤ i ≤ n, access(workflowx[i]) > access(workflowx[i− 1])

where the predicate access(stepi) describes the action of visiting the page mapped to stepi

and the relation > act as "immediately after". Thus, the semantic of the specification

translates in

"access step1 then step2 ... then stepn"

Moreover, if we define the following predicates:

ACCESSED(stepx) = TRUE iff the stepx has been accessed

ACCESSIBLE(stepx) = TRUE iff the stepx is allowed to be accessed

ACCESSED(stepx) =⇒ ACCESSIBLE(stepx)

we can claim, from the description above, the following property:

∀i, 0 < i ≤ n,ACCESSIBLE(workflowx[0]) ∧ (ACCESSIBLE(workflowx[i]) =⇒

ACCESSED(workflowx[i− 1]))

14

This property guarantees that the user will reach a certain step only after having gone

through all the preceding steps, thus respecting the defined order.

Furthermore, workflows may not only requires the user to navigate through the web

pages in a particular order, but to satisfies some conditions related to the requests param-

eters or the session. Thus, we enrich the definition of step with a set of conditions that

needs to be verified before accessing the step:

workflowx[i] = stepi = (pagek, conditionsi)

where conditionsi is a boolean expression containing conditions on requests parameters

or session variables. This description states that the user needs to fulfill the requirements

described by conditionsi when trying to access pagek, mapped to stepi of workflowx. From

this, we adapt the property above such that:

∀i, 0 < i ≤ n,ACCESSIBLE(workflowx[i]) =⇒

(conditionsi ∧ACCESSED(workflowx[i− 1])) ∧ACCESSIBLE(workflowx[0])

Moreover, the specification allows to define an action to be triggered in case the conditions

are not satisfied. As a matter of facts, when the user lacks of some requirements, a common

solution in practice is to redirect the user to a more sensible page, which is in charge of

fulfilling those requirements. Thus, each step allows the developer to dictate what happens

when the user violates the requirements. Currently we support redirection to another

workflow as action to be triggered in case of a requirements violation and it can be defined

as:

15

workflowx[i] = stepi = (pagek, conditionsi, redirect_to(workflowy))

which states that if the user tries to access pagek, mapped to stepi of workflowx, and fails

in fulfilling the requirements described by conditionsi, then it will be redirected to the

firs step of workflowy. Lastly, the specification also allows to create multiple instance

workflows. With this term, we refer to workflows that can be entered, or instantiated,

multiple times and coexist during the same session. The multiplicity of the instances is

due to the fact that the user is allowed to access a workflow many times in different tabs

or windows of a browser, inside the same session, thus creating more coexisting instances

of the same workflow. Furthermore, one of the things we have discovered is that different

behaviors may be needed in this situation, i.e. some workflows are qualitatively different

than others in terms of the number of instances of the workflow any given user is supposed

to be involved in. For example, typically a login workflow is one where only a single

instance is permitted: there can not exist coexisting multiple instances of a login process

since the state of the user, which the workflow will eventually modify, is unique. In contrast,

assume an application that allows the user to upload pictures through a workflow-based

process. The user may want the chance of opening multiple tabs on the browser at the

same time and initiate the submission process on each of them to upload different pictures

at once. Consequently, the specification allows a developer to dictate whether a given

workflow can be instantiated multiple times or just once using the keyword multiple.

To sum things up, the workflow specification allows to:

• Define the workflow logic, i.e. list all the accepted workflows.

16

• Define a workflow as a sequence of steps that the navigation must follows.

• Define a step as a Web page, with conditions that needs to be verified before access-

ing it, and with an action to be triggered when the conditions are not met.

• Define Multiple Instance Workflow

3.2 Workflow Enforcements

Workflower must ensures that the workflow logic, described in the specification, is cor-

rectly enforced in the application and that the navigation proceeds accordingly. Thus, to

guarantee that the navigation is consistent with the specification and no violation occur,

we make sure that the user can visit the requested page only if the step mapped to the

page is accessible. Accordingly to what we defined in Section 3.1, the accessibility of a

step is defined by the property:

∀i, 0 < i ≤ n,ACCESSIBLE(workflowx[i]) =⇒

(conditionsi ∧ACCESSED(workflowx[i− 1])) ∧ACCESSIBLE(workflowx[0])

Consequently the enforcement is accomplished by ensuring that this property holds at

every request, with the following algorithm. We keep track of the last step accessed by the

user, as:

accessed_step = (workflowx[i])

Furthermore, each time a request for pagez arrives:

1. Fetches the step stepk of some workflow workflowy associated with the requested

page such that

17

stepk = (pagez, conditionsk, redirect_to(workflowj))

2. Checks whether the step stepk if accessible

• Check the conditions conditionsk

• If k > 0 check whether the previous step has been accessed

k = i+ 1 ∧ x = y|accessed_step = (workflowx[i])

3. if accessible, update the accessed step and let the user visit the page

accessed_step = (workflowy[k])

4. if not accessible, redirect to the page mapped to the first step of the specified work-

flow workflowj

By applying this algorithm to each incoming request, we ensure that the navigation is

consistent with the workflow logic.

3.3 Workflow Enforcement - Challenges

We now describe the main challenges related to the workflow enforcement.

3.3.1 Accessed Step

In the enforcement approach described above, we are assuming that once a step is acces-

sible, the corresponding page can be visited and the step can be considered as successfully

accessed(phase 3 of the enforcement algorithm). Nevertheless, we need to clarify that in

practice, once the user request a page, some process takes care of generating it and sub-

sequently returning it to the user to be displayed. Thus, assuming that an accessible step

18

can be immediately considered as accessed, would mean considering that the process that

generates the page always succeeds in its task. On the contrary, some event, that would

make the process deviates from its expected path, could still occur in this stage, namely

some internal error, e.g. SQL exceptions, or logical error. In this case, even if the execu-

tion of the process terminates, the step should not be considered as successfully accessed

because of the errors that occurred. Assume, for instance, a sign-in process, whose last

step requires the user to submit a username which is going to be stored in the database if it

has not been taken already. From the point of view of Workflower, once the requirements

are fulfilled, e.g. the username has been chosen and submitted, and the action gets exe-

cuted, it would be impossible to distinguish a successful registration, which ends with an

update of the database, from an unsuccessful one, where the database can not be update,

because, for instance, the username has already been chosen. That is because the action

will terminate in both case, but the two outcomes will be very different. Under those cir-

cumstances, the main issues is how to distinguish a correct execution from an invalid one,

since in presence of an incorrect execution the step can not be considered as accessed.

3.3.2 Concurrent workflows

One of the challenges related to the design of Workflower is about how to allow the user

to be concurrently involved in several workflows during the same session. Despite the fact

that the session is unique, a user may be enrolled in multiple worklows at the same time.

As a simple real use case, assume the user is submitting a workflow-based survey on a tab

of the browser, and at the same time he is involved, on another tab, in a checkout process

19

in the same application. It could be the case that the user may want to moves forward

on a workflow and then switches to the other one, without completing the first, and keep

moving back and forth as he prefers. Without a proper approach, when the user switches

from a workflow to another, the state of the left workflow will be lost and he would need to

start over in case he tries to resume it.

3.3.3 Ambiguity

While parsing the workflows specification, ambiguities may arise when the same page

appears on different workflow, as shown in Figure 3 (since our work is based on the RoR

environment, each page is represented by a controller#action). The given specification

Figure 3: Ambiguos workflow.

describes two workflows which share the same web page for different steps. This would be

the case where a page could perform multiple actions, depending on the request parameter

20

for instance. Notice that nothing is specified about the requirements of the steps, meaning

that the two ambiguous steps may have different requirements, even if they share the

same page. To better understand where the ambiguity hides, assume a request for a

page mapped to controller_A#action_Y occurs and the specification is the same as shown

on Figure 3. Workflower need to verify the proper conditions and behave accordingly,

but without further expedients, we could not tell if the request is addressed to workflow

A rather than to workflow B, meaning that we could not decide whether to check the

requirements for step2 of WorkflowA or for step3 of WorkflowB .

More generally, there exists two steps stepi and stepj of two different workflows, workflowx

and workflowy, with different conditions, conditionsi and conditionsj , mapped to the same

page pagek.

workflowx[i] = stepi = (pagek, conditionsi, ..)

workflowy[j] = stepj = (pagek, conditionsj , ..)

With this specification we do not know which requirements needs to be checked when a

request for pagek arrives, which means that we can not guarantee that the navigation will

be consistent with the workflow logic.

3.3.4 Multiple Instance Workflows

As described in Section 3.1, we want to allow the developer to create multiple instance

workflows, namely workflows that can be instantiated multiple times and can coexists

during the same session. The problem here is how to make each instance independent of

each other, since we do not want the state of one instance to be influenced by the state

21

of a different instance. In other words, a request for a certain page, mapped to a certain

step of a multiple instance workflow, must be treated differently whether it belongs to one

instance or another. Clearly, without further modification, this would be unfeasible, since

an HTTP request to a certain page would be indistinguishable to another request to the

same page.

3.3.5 Redirection and Resume

The challenge about the redirection behavior we discussed in Section 3.3.4 comes with the

addition that we want to resume, at a proper time, the original request of the user, meaning

that once he completes the workflow he has been redirected to, he should be brought back

to the page he requested at first. In order to accomplish this, it will be needed a smart and

aware navigation tracking system, able to detect whether it is the right time to resume the

user original request.

3.4 Workflow Enforcement - Solution to Challenges

Here we describe the solutions needed to solve the challenges we defined on Section 3.3.

3.4.1 Accessed State

As described in Section 3.3.1, once the requirements for a step are met and the process

that takes care of generating the web page gets executed, we need a way to recognize

whether the execution ends in a successful way or not. Since it would be impossible to

Workflower to analyze all the possible paths that the code could follow and eventually re-

alize whether the execution ends with a positive outcome or not, we introduced a way that

allows the developer to exchange information with Workflower and suggest to it whether

22

to consider the action as unsuccessfully execute, namely some internal or logic error oc-

curred. Considering that, once the constraints are satisfied and no information from the

developer suggests differently, we assume the step as effectively executed.

ACCESSED(stepi) =⇒ ACCESSIBLE(stepi) ∧ ¬(INTERNAL_ERRORSi)

3.4.2 Cuncurrent Workflows

To let multiple workflows be active at the same time, it was necessary to extend the book-

keeping component to trace the user navigation to a more advanced level. As a matter of

facts, without a proper tracking, when the user switches from a workflow to another, the

state of the left workflow will be overwritten by the new one. For this reason, we defined,

for each active session, a set :

active_workflows = {}

that we use to keep track of the active workflows, i.e. all the workflows where the user is

currently enrolled. More specifically, as soon as a request for a page occurs Workflower

parses the workflows specification as follows:

1. Fetches the step stepi and workflowx associated with the requested page

2. Checks whether the step if accessible, i.e. if its constraints are satisfied and whether

active_workflows contains workflowx[i− 1], in case i > 0.

(a) If it is accessible, allows the process execution to begin

i. If it is accessed successfully, namely no internal errors occurred, updates

the set of active workflow

23

active_workflows = active_workflows ∪ {(workflowx[i])}

If there exists an entry workflowx[i−1], removes it, so that only the last step

of a workflow is tracked.

ii. If some internal errors occur, does not update the set of active workflows.

(b) If it is not accessible, denies the request, i.e. does not let the process executes

and does not update the set of active workflows.

By the end of this process, at every request, the navigation tracer will be aware of any

possible steps of any possible workflow that the user may be active in.

3.4.3 Ambiguity

In Section 3.3.3 we broadly described how ambiguities may arise from the workflows speci-

fication. More specifically, we identified three base types of ambiguities that could happen:

1. Ambiguity between initial steps. Two workflows share the same initial step, as show

in Figure 4

Figure 4: Ambiguity between initial steps.

24

2. Ambiguity between non-initial steps. Two workflows share one step, which is not

initial, as show in Figure 5

Figure 5: Ambiguity between non-initial steps.

3. Ambiguity between an initial step and a non-initial step. Two workflows share one

step, which is initial in one workflow and non-initial in the other, as show in Figure 6

Figure 6: Ambiguity between an initial step and a non-initial step.

25

These three base kinds of ambiguities can be combined and extended to more than two

workflows or more than a shared step to create any kind of complex ambiguous workflow.

Solving these ambiguities by precisely identifying to which workflow the request is ad-

dressed is not feasible, since the request does not contain information that may suggest

which workflow it is referring to and, furthermore, we would not be able to tell which step

the user will move to after the current request. However, we aim to prove that this is not an

issue and that the navigation constraints, described by the workflow logic, are preserved

even in the presence of ambiguities. As a matter of facts, the workflow logic is enforced

in such a way that the user can visit the requested page only if the step mapped to the

page is accessible. Consequently, in case of ambiguities, the navigation can be consistent

with the workflow logic only if there exists at least one step whose condition are verified.

To make this principle holds, we had to extend the fetching phase (phase 1 at page 22) of

the multiple workflow process showed in Section 3.4.2, so that every step mapped to the

page is retrieved. Consequently, if at least one step is accessible, the user is allowed to

visit the page. Furthermore, if more than one step is successfully accessed, we consider

each of them as active. In other words, in case the accessed step is shared among several

workflows, we consider all of them as active. This assumption is needed to preserve the

navigation consistency with the workflow logic.

Thus, the ambiguities are solved according to the following algorithm:

26

1. In presence of ambiguity between initial steps, when a request for the ambiguous

page occurs, we fetch all the initial steps mapped to the requested page, check the

requirements for each of them and update the active workflows accordingly.

Assume the specification is the same as the one shown in Figure 4 and a request for

controller_A#action_Y occurs. Therefore, if the requirements are fulfilled for both

the initial steps of workflowA and workflowB and the step is successfully accessed,

namely no internal errors occur, the tracker will update the set of active workflows

as:

active_workflows = {workflowA[0], workflowB[0]]}

and the execution of the action will be started. If for instance only the requirements

of step0 of workflowA are fulfilled, the active worflows would be:

active_workflows = {workflowA[0]}

If none of the initial steps has its requirements satisfied, then none of the step is

accessed, the request is denied and the execution of the action will not be started.

2. In presence of ambiguity between non-initial steps, when a request for the ambiguous

page occurs, we fetch only those steps, mapped to the requested page, belonging to

active workflows, check the requirements for each of them and update the active

workflows accordingly.

Assume the specification is the same as the one shown in Figure 5 and a request for

controller_A#action_Y occurs and the active workflows are as:

27

active_workflows = {(workflowA[0])}

Therefore, we fetch only step1 of workflowA, since workflowB is not active at the

moment, and we process the step with its requirements as before, meaning that if at

least one step has its requirements satisfied then the step is accessed and the action

is allowed to execute. On the other hand, if the active workflows were as:

active_workflows = {(workflowA[0]), (workflowB[0])}

we would have fetched both the steps belonging to workflowA and workflowB and

check both the requirements. Notice, in this case, that while step1 of workflowA

has a chance to be accessed, step2 of workflowB will not be accessed since step2 of

workflowB has not been visited.

3. In presence of ambiguity between an initial step and a non-initial step, when a request

for the ambiguous page occurs, we fetch only those steps, mapped to the requested

page, that are initial steps for any workflow and that are non-initial steps only for

active workflows, then check the requirements for each of them and update the active

workflows accordingly.

Assume the specification is the same as the one shown in Figure 6 and a request for

controller_A#action_Y occurs and the active workflows are as:

active_workflows = {workflowB[0]}

28

Therefore, we need to fetch both step0 of workflowA, since it is initial, and step1 of

workflowB, since it belongs to an active workflow. Afterwards, we process the steps

as we described in the previous cases.

To sum things up, we handle the ambiguity issue, not by trying to identifying one single

step of a single workflow, but instead by checking whether at least one step is accessible.

Moreover we recognize as active all the shared steps that are successfully accessed. Doing

so, we are assuring that the navigation is consistent with the workflow logic, since if at

least one step can be accessed then the request would be accepted, while it would be

denied otherwise.

Beside the ambiguities discussed so far, there exists another kind of ambiguity that

we did not addressed yet. It might be the case where a specification like the one shown

in Figure 7 could be needed, where multiple steps belonging the same workflow share

the same page. An example of real application could be a questionnaire application that

Figure 7: Example of ambiguous workflow with repeated pages.

29

uses the same page to dynamically display the questions, based on the request parameters

which specifies the range of questions to be displayed, as shown in Figure 8. With the

Figure 8: Example of ambiguos workflow for a questionnaire application.

approach presented so far, it would be unfeasible to handle properly each request since

identifying a step simply according to the mapped page would lead to an uncontrolled

behavior. While we did not implemented a solution for this issue, which we consider an

isolated case not much relevant to our study, we believe that it could be easily managed

by extending the proposed approach so that each step would be identified not only by the

page but also by the request parameters it expects. Doing so, from the previous example,

we could identify, for instance, the first step as

step1 = (controller#questions, {paramfrom = 0, paramto = 5})

which would be different from the second step, being

30

step2 = (controller#questions, {paramfrom = 6, paramto = 10})

so that any ambiguity would be solved.

3.4.4 Multiple Instance Workflows

To address the issues related to Multiple Instance Workflows described in Section 3.3.4,

we provided a way to distinguish different instance of the same workflow, based on the

use of tokens. The high level approach is to associate each instance of a workflow with

a token and embed that token into every request so that we could identify each time the

proper instance. Specifically, each time an initial step of a multiple instance workflow is

accessed, we generate a token, unique in the context of that workflow, and we inject it

into the output page (details about the implementation will follow on Chapter 4) so that it

will be carried on every subsequent request coming from that page. Therefore, we extend

algorithm as follows:

1. Each time an initial state step0 is accessed and a token tx is generated, update the

active workflows set as follows:

active_workflows = active_workflows ∪ {(workflowx[0], tx)}

2. Each time a non initial state stepi|i > 0 is accessed and the request comes with the

token tz, update the active workflows set, as follows:

active_workflows = active_workflows ∪ {(workflowx[i], tz)}

removing the entry (workflowx[i− 1], tz)

31

Moreover, we need to extend the conditions of the steps to require that the token received

with a request is valid and associated with an existing workflow instance :

ACCESSIBLE(stepi, tx) =⇒ ACCESSIBLE(stepi) ∧ V ALID(stepi, tx)

where

V ALID(stepi, tx) ⇐⇒ ∃w|(w[i− 1], tx) ∈ active_workflows

As a last expedient, we need to handle tokens in case of ambiguities. As a matter of

facts, suppose there exists multiple instance ambiguous workflows and a request for a

shared page occurs. Assume for simplicity we are dealing with the first type of ambiguity

among initial steps (see page 23). In this scenario we would have the same page with

different generated tokens and only one token to render as output. In order to remove this

kind of ambiguities, we modify our approach by making sure that each page is associated

with exactly one token, even if it is shared by different workflows. This means that every

time we need to generate a token for a page, we check whether there exists any token

already associated with that page and we assign that same token in case it does. For

instance, assume the specification given in Figure 9 and the currently active workflows as:

active_workflows = {(workflowB[0], tx)}

Now assume that a request for controller_A#action_Y occurs with token tx and that the

requirements are satisfied for all step0 of workflowA, step1 of workflowB and step0 of

workflowC . The active workflows will be then updated as described before, leading to:

active_workflows = {(workflowB[1], tx), (workflowA[0], tx), (workflowC [0], tx)}

32

Figure 9: Example of ambiguos multiple instance workflow

3.4.5 Redirection and Resume

In order to support redirection and request resume, we extend our approach so that every

time a step is not accessible, the user gets redirected to the workflow described in the

specification. We refer to this workflow as supporting workflow. Moreover, a pending

request gets allocated so that, once the supporting workflow is entirely executed, the

original request will be resumed.

Specifically, every time a redirection occurs, a pending request is created as follows:

pending_requests = pending_requests ∪ (resumable_workflow, supporting_workflow)

Furthermore, every time a final step of a workflow is successfully accessed, Workflower

checks whether there are any pending request associated with that workflow, so that the

user gets redirected back to the proper resumable_workflow.

33

Lastly, in case of ambiguities, which occur whether a controller#action is shared by

different steps and there exist more than one step with unfulfilled requirements, we could

end up with multiple supporting workflows where the user could be redirected to. To solve

this issue, we allow the developer to specify a default action, namely a default support

workflow, that will be triggered whether the described ambiguity occurs.

CHAPTER 4

IMPLEMENTATION

In this section we are going to present the most interesting details about the implemen-

tation of Workflower, how it is integrated in the RoR environment and the API we make

available to the developer in order to write workflows specifications.

4.1 Extending Ruby on Rails

Workflower is implemented in Ruby and consists of an extension of Ruby on Rails. We

chose it because we believe that RoR is a really complete mature framework, widely spread

and used by major brands1 (e.g. Twitter, Github, Groupon, Yellow Pages, Hulu, Shopify)

and rich of features that we leveraged and that allowed us to easily implement all the

functionalities that Workflower provides. Ruby on Rails is by design a deeply customiz-

able framework, born under the DIY or "Do It Yourself" philosophy, that easily allows third

developers to add new features and integrate them as plugins, or gems [9] in Ruby terminol-

ogy, that are automatically loaded with the RoR infrastructure and that can fully exploits

all of its functionalities. Thus we build Workflower as a Ruby gem, so that it can be easily

deployed and integrated in any RoR application.

1http://rubyonrails.org/applications

34

http://rubyonrails.org/applications

35

4.2 Workflows Specifications with Workflower

Workflower allows the developer to enforce workflows with a very little effort. The work-

flows specifications must be written in a dedicated file ’workflows.rb’ automatically cre-

ated into the RoR application’s configuration directory that it is loaded once the applica-

tion is launched. The syntax required by Workflower to describe a specification is shown

in Listing 4.1

Listing 4.1: Workflows specification syntax
1 workflow "workflow_name", multiple_instance:(true || false) do
2 step conditions: {"boolean_expression"} , page: "controller#action",

redirect_to_wf:’some_workflow’
3 step conditions: {"boolean_expression"} , page: "controller#action"
4 ...
5 end

With the code shown in Line 1 a workflow named "workflow_name" is created by the key-

word "workflow" with the optional parameter "multiple_instance" that allows the devel-

oper to specify whether the workflow can be instantiable multiple times. Lines 2 and 3

shows the syntax needed to describe a step: the keyword step creates a new step for the

current workflows, fetching the requirements needed to access the step from the "condi-

tions" parameter, where the developer can specify any kind of boolean expression exploit-

ing any valid RoR API to access session variables (e.g. session[’some_variable’]) or request

parameters (e.g. params[’some_parameter’]). Besides, the step description must contain

the page mapped to that step, by providing the associated controller#action, through the

"page" parameter. Optionally he could also specify whether the user should be redirect

to some other workflows in case the conditions are not met, by using the "redirect_to"

36

parameter. Furthermore, the sequence of steps is built according to the order in which the

steps are specified.

4.3 Exploiting Ruby on Rails features

Instantiation

The first stage of a Ruby on Rails application lifecycle consists of the instantiation of the

ApplicationController, that keeps running as long as the application lives and it is respon-

sible to handle each incoming request by invoking the proper controller associated with

the requested page. In order to have our workflows management system be included into

the application so that it could fully interact with all the RoR environment, we exploited

the marvelous metaprogramming nature of Ruby to extend the ApplicationController at

runtime so that it would load the workflows specifications as soon as the application gets

initiated and launched. The loading of the specifications consists of the execution of the

configuration file, ’workflows.rb’ , described in Section 4.2, that will allocate and create

the proper data structure that will be needed to correctly process the requests.

Data Structure

Once the specifications are parsed and loaded, data structures are allocated to represent

the workflows component. All the existing workflows are stored in an array where each

workflow is represent as a class, shown in Listing 4.2, containing an array of steps and at-

tributes that characterize it. The steps arrays contains the steps that the workflow consist

of and they are represented as the class shown in Listing 4.3.

37

Listing 4.2: Workflow class
1 @workflows = [:workflow_x,:workflow_y..]
2

3 Class Workflow
4 @identifier = :workflow_x
5 @steps = [step1,step2,step3 ..]
6 @multiple_instance = false

Listing 4.3: Step class
1 Class Step
2 @page = "controller#action"
3 @conditions = "boolean condition"
4 @redirect = "some_wf"

In order to efficiently interact with these data, we also provide some index structures that

allows us to quickly identify and access the proper data. Namely, we define an hashmap,

whose key is the page identifier, i.e. controller#action, while the value is a set containing

the steps mapped to that page. Consequently, each time a request for some page occurs,

we can immediately obtain the proper steps.

Listing 4.4: Indexes
1@index["controller1#action2"] = {step_x,step_y}
2@index["controller2#action3"] = {step_z,step_y}

All the data structures provided, namely the index and the workflows, are made available

as global variables and they can only be read and not modified once they have been instan-

tiated. Doing so, we make sure that if the application lives in a multithreaded environment,

no race conditions or consistency issues arise.

38

Navigation State

In order to perform the proper requirements validations we need to track the navigation

per user, meaning that we need to keep trace of the accessed steps for each user currently

involved in using the application, by associating a set of active workflows, as we showed

in Section 3.4.2. So as to accomplish that, we exploit session variables and we forge one

that acts as the active workflows set. Thus, by accessing SESSION[active_workflows], we

can obtain the navigation tracker associated with the active user and succeed in following

the user navigation correctly.

Listing 4.5: Navigation state
1

2 session[’active_workflows’] = {(:wf_x,:step_1),(:wf_2,:step_3)}

Runtime

Once Workflower is loaded into the system, it needs to interact with the requests han-

dling system so that it can check if a page is allowed to be accessed depending on its

requirements and behave properly according to the approaches described in Section 3.4.

More specifically it needs to intercept a request as soon as it occurs, verify whether the

requirements are met before allowing the execution of the controller#action and conse-

quently keep track of the navigation. This behavior can be accomplished thanks to the

many hooks [10], that RoR provides, around the request handling: more specifically we are

interested in the hooks before the execution of the controller#action, i.e. before hook

39

and after the execution, i.e. after hook. Thus, we exploit those hooks to implement our

solutions:

• Before Hook: This hook gets called just before invoking the controller to start its

execution. Thus we inject here the code that check whether the requirements are

met and let the execution begins. Otherwise, we deny the controller to start its

execution and we redirect the user to the proper workflow, in case it is needed. We

show in Listing 4.6 a simplified version of the before_hook

Listing 4.6: Before hook
1 def before_hook(requested_page,token)
2 mapped_steps = get_possibile_steps(requested_page)
3 mapped_steps.each do |step|
4 if check_token(step,token) && check_conditions(step)
5 allowed_steps << step
6 else
7 denied_steps << step
8 end
9 if allowed_steps.empty?

10 if denied_steps.count > 1
11 AMBIGUOS DESIGN
12 else
13 redirect_to denied_steps.first.redirect
14 end
15 else
16 mark allowed_steps as about to be accessed
17 end
18 end

Furthermore, the function get_possible_states fetches the steps mapped to the re-

quested page, according to the approaches described in Section 3.3.3 to handle am-

biguities, by combining the use of the index and the active workflows structures.

• After Hook: This hook gets called as soon as the controller terminates its processing

phase. As we described in Section 3.4.1, we need to know whether some internal

errors occurred during the controller execution. In order to accomplish that, we

40

make a global variable WORKFLOWS_ERRORS accessible to the developer so that it

can provide us the needed information from inside the controller. Thus, in presence of

no errors, we update the state of the user navigation to reflect the current step access

and proceed with tokens management if necessary. Otherwise, we leave the state as

it is and communicate the error to the user. We show in Listing 4.7 a simplified

version of the after_hook

Listing 4.7: After hook
1 def after_hook(WORKFLOWS_ERRORS)
2 if !WORKFLOWS_ERRORS
3 mark allowed_steps as successfully accessed
4 generate/update token if necessary
5 else
6 notify the user about the error
7 end
8 end

Redirection

Furthermore, we want to briefly describe how the redirection to another workflows is ac-

complished, in case the conditions to access a step are not met. RoR provides a useful API,

called redirect_to, which inject a 3xx Status Code, which stands for redirection according

to the HTTP standard, into the HTTP response header, so that the browser will proceed by

requesting the proper page, which is specified by fetching the first step of the workflow

where the user should be redirected to.

Multiple Instance Workflows

Lastly, we describe how we implement the solution for the multiple instance workflow

shown in Section 3.4.4. The high level approach requires to identify each request with a

41

token associate to a certain workflow, in order to distinguish among requests addressed to

different instances of the same workflow. Firstly, we assume that a request is triggered by

the user visiting a page through:

1. Links: the user requests the next page by clicking on a link contained in the currently

visited page.

2. Forms: the user requests the next page by submitting a form contained in the cur-

rently visited page.

From this assumption, we make sure to embed the proper token, associate with the work-

flow whom the page belongs to, to each request caused by any of the two methods above.

Thus, we embed the token with two strategies, simarly to the method described by Jo-

vanovic et al. [11] to prevent CSRF attacks:

1. We append the token to each link’s destination as a GET parameter, so that a link

1

becomes

1

2. We embed an hidden input to each form, as follows:

1 <input type="hidden" name="wf_token" value="some_token">

More specifically, we provide two options to accomplish this result:

1. We inject a javascript script into the final rendered page, just before the HTTP re-

sponse is sent back to the user, by exploiting another RoR useful hook, before_render.

42

Thus, the script will run on the client and inject the token into every link and form

that the parser detects.

2. We override two functions provided by RoR that helps the developer to quickly build

links and forms, namely link_to and form_tag, so that the result includes the token.

Thanks to this approach we are sure that almost every request coming from a page will

carry on the token needed to identify the correct instance of the workflow. Furthermore,

the implementation could be extended to handle also situation where links and forms are

dynamically generated by Javascript scripts, which are not yet supported by the current im-

plementation. Beside that, this approach comes with a drawback, namely an overwhelming

number of tokens are embedded in the page, even into links or forms that are not asso-

ciated with a multiple instance workflow. To guarantee that this issue would not cause

misbehaviors we provide a tokens tracking system that assure that the tokens are vali-

dated exclusively when the request is addressed to a page belonging to a multiple instance

workflow and discarded otherwise.

Complexity

Lastly, we discuss the complexity of the algorithms we implemented. We built Workflower

keeping in mind that the code gets executed each time an HTTP request occurs. Thus, we

implemented it trying to affect the application performances as little as possible. Firstly,

the specification gets loaded and the data structures gets allocated just once, as the ap-

plication gets launched. Thus, it does not influence on the processing of a request. The

before_hook gets executed at every request and it consists of:

43

• Retrieving the steps mapped to the requested page: O(1), thanks to the index and

active workflows structures that allow direct access.

• Checking the requirements for each retrieved steps: O(n), where n is the number of

retrieved steps, i.e. ambiguous steps. The requirements and token validation can be

accomplished with O(1) complexity, by using the proper expedients, e.g. hashmaps.

The after_hook gets executed after the controller execution and it consists of:

• Updating the state for each retrieved steps:O(n), where n is the number of retrieved

steps, i.e. ambiguous steps.

• Token Management: generating or updating tokens requires O(1), since it is done by

exploiting hashmaps as well.

Consequently, the overall complexity is O(n), where n is the number of steps associated

with the requested page. This means that ambiguity of the design will penalize the pro-

cessing of a request.

CHAPTER 5

EVALUATION

To evaluate Workflower, we built a skeleton e-commerce application in Ruby on Rails, spec-

ified the intended workflows, observed the behavior of the application with and without the

workflows being enforced, and measured the performance overheads of the workflow en-

forcement implementation.

5.1 E-commerce application and Workflow Specification

The application features some basic functionalities of an e-commerce platform. Namely, it

consists of a simple catalog of products that the user can add to its own cart and eventually

purchase through a checkout process. The checkout consists of a multiple step sequence,

where the user is asked to provide shipment informations and payment details and eventu-

ally review and submit the order. The application also presents an administrative multiple

step process that allows products to be added to the catalog, by providing the product

details and a picture. Ultimately, login processes are provided to distinguish between reg-

ular users and administrator users. Namely, the checkout process can be accessed only by

authenticated users, while the administrative process is accessible only to administrators.

In addition, the login processes consists of multiple step, where the user is required to

provide its credential and answer a security question.

44

45

As far as the RoR implementation concerns, we are going to show the most interesting

parts of the application. Notice that the code shown as been simplified to allow an easier

reading. Listing 5.1, 5.2 and 5.3 show respectively the skeleton of the Checkout Controller,

responsible for the checkout process, the Catalog Controller, responsible for the catalog

management, and the Login Controller, responsible for the login process.

Listing 5.1: Checkout Controller
1 class CheckoutController < ApplicationController
2 def valid_payment(payment)
3 #check the validity of payment information
4 end
5 def valid_shipment(ship)
6 #check the validity of shipping information
7 end
8 def payment
9 #ask for payment information

10 end
11 def shipment
12 #process payment information
13 #ask for shipment information
14 end
15 def submit
16 #retrive payment information
17 #submit the order
18 end
19 end

These controllers only takes care of the functional parts of the processes they are in

charge of. Namely they provide methods to validate the user input, to store it and process

the request.

46

Listing 5.2: Catalog Controller
1 class CatalogController < ApplicationController
2 def valid_details(details)
3 #check the validity of the details
4 end
5 def valid_picture(picture)
6 #check the validity of the picture
7 end
8 def details
9 #ask for product details

10 end
11 def picture
12 #process product details
13 #ask for product picture
14 end
15 def add
16 #add the product
17 end
18 end

Listing 5.3: Login Controller
1 class LoginController < ApplicationController
2 def is_logged
3 #check if the user is logged in
4 end
5 def is_admin
6 #check if the user is logged as admin
7 end
8 def valid_login(credentials)
9 #check the validity of the credentials

10 end
11 def valid_answer(answer)
12 #check the validity of the security answer
13 end
14 def credentials
15 #ask for the credentials
16 end
17 def security_question
18 #process credentials
19 #ask for security question
20 end
21 def submit
22 #log the user in
23 end
24 end

47

On the other hand, the workflows constraints are specified and enforced thanks to

Workflower. Namely we want to enforce workflows as such:

• Login Workflow – the first step gathers the login credentials, the second step ask for

a security question, while the third step logs the user in.

• Checkout Workflow – the first step gathers the payment information, the second step

gathers the shipping information, while the third step review and submit the order.

Furthermore, it requires the user to be logged in, otherwise it should redirect the

user to the login process and afterwards resume the checkout.

• Catalog Management Workflow – the first step gathers the product details, the sec-

ond step let the administrator submit a picture, while the third step add the product

to the catalog. Furthermore, it requires the administrator to be logged in , otherwise

it should redirect him to the login process and afterwards resume the process. In

addition, this workflow needs to be multiply instantiable, since we want to allow to

the user to add multiple products at once, because, for instance, pictures uploading

may require some time.

The workflows are graphically shown in Figure 10.

From the overview of the workflows we want to enforce, we can easily write the spec-

ification as shown in Listing 5.4. One notice how the workflows specifications and the

application logic are neatly separated, allowing a clear understanding of what the appli-

cation does and how the user interaction is expected to be. Moreover, once the workflows

48

Figure 10: Workflows for the sample application.

Listing 5.4: Workflows Specification
1 workflow :login do
2 step page:’login#credentials’
3 step conditions: {valid_login(params[:login])}, page:’login#security_question’
4 step conditions: {valid_answer(params[:question])}, page:’login#submit’
5 end
6

7 workflow :checkout do
8 step conditions: {is_logged}, page:’checkout#payment’, redirect_to_wf: ’login’
9 step conditions: {valid_payment(params[:card_number])}, page:’checkout#shipment’

10 step conditions: {valid_ship(params[:shipping_info])}, page:’checkout#submit’
11 end
12

13 workflow :catalog, multiple_instance:true do
14 step conditions: {is_admin}, page:’catalog#details’, redirect_to_wf: ’login’
15 step conditions: {valid_details(params[:details])}, page:’catalog#picture’
16 step conditions: {valid_ship(params[:picture])}, page:’catalog#add’
17 end

49

overview has been defined, the complete specification follows naturally from it. The build-

ing of the application took barely one hour, and all of the time has been spent on the actual

logic of the application, without taking care of the workflows requirements. These are

indeed automatically enforced from the specification, which has been written in few min-

utes, so that the correct behavior is provided without having the developer spending time

on implementing defense from workflows attacks.

5.2 Enforcements

To ensure that our implementation actually enforced the intended behavior, we tested that:

1. the navigation followed the described ordered. Namely, we wanted to test that one

step was accessible only if the preceding step had been already visited. Thus, we

tried to access the second step of the checkout process and provide shipment infor-

mations without having already submitted the payment informations (first step of the

checkout process). The framework correctly identified the violation and redirected

us to the correct step, i.e. the first one.

2. the inputs were properly validated. Namely, we wanted to test that each step val-

idated the request parameter so that they could have been correctly processed in

the succeeding step. Thus, we tried to access the shipment step providing invalid

payment informations, e.g. invalid credit card number. The framework successfully

detected the incorrectness of the inputs and asked us to submit again correct infor-

mation.

50

3. redirection were supported. Namely, we wanted to test that, if the user tried to

initiate a workflow without the proper requirements, the framework would have redi-

rected the user to the workflow in charge of fulfilling those requirements. Thus, we

tried to access the checkout workflow without being authenticated. The framework

detected the violation and automatically redirected us to the login workflow. Fur-

thermore, once we completed the logic process, we got taken back to the checkout

workflow.

4. Concurrent Workflows were supported. We wanted to test whether the user was

allowed to be concurrently enrolled in several workflows during the same session.

Thus, we initiated the checkout workflow and the catalog management workflow in

two different browser tabs and tried to alternate between them. The framework

showed the expected behavior, allowing to independently proceed in the two different

workflows and correctly validating the requirements for each of them.

5. Multiple Instance were supported. We wanted to test whether the user was allowed

to instantiate multiple instances of the same workflow, when the specification allowed

it. Thus, we initiated both the checkout workflow and the catalog management work-

flow twice, in different tabs, and observed the behavior. The instances of the catalog

management workflows were correctly treated as independent of each other, as ex-

pected from the specification. Namely, proceeding in one instance did not reflected

on the other instance of the same workflow. On the contrary, the two instances of the

51

checkout workflow were treated as they were the same, namely a progress in one

instance was shown also in the other.

5.3 Performance

In order to measure the actual impact on the application performances, due to the use of

Workflower, we ran some tests. More specifically, we measured the time needed for the

request to be processed in different cases, with and without Workflower. The test were

performed using the testing suite included in Ruby on Rails, which we used to measure

the time needed to generate the response once the request occurs. Furthermore, we built

a fictitious application, consisting just of random pages, and measured the performances

with different types of workflows specifications. Thus, we performed a base test case (Test

A) and modified it to show how the performances would have been affected by the number

of workflow (Test B), the number of steps (Test C), number of active instances of the same

workflow(Test D-E) and the number of concurrent workflows (Test F-G). Afterwards, we

focused on the impact due to ambiguities and built Test H-L to identify the overhead due

to the number of steps shared between different workflows.

• Test A: Specification with three 4-steps workflows, no ambiguities, no multiple in-

stances and no concurrent workflows. We requested iteratively any page of each

workflow and compute the average time to build the response.

• Test B: We modified test A to include twenty workflows.

• Test C: We modified test A to include 10-steps workflows.

52

• Test D: We modified test A to include 2 active instances of the same workflow.

• Test E: We modified test A to include 10 active instances of the same workflow.

• Test F: We modified test A to include 2 concurrent active workflows.

• Test G: We modified test A to include 10 concurrent active workflows.

• Test H: Specification with five workflows sharing the same page. We requested the

shared page.

• Test I: Specification with ten workflows sharing the same page. We requested the

shared page.

• Test L: Specification with twenty workflows sharing the same page. We requested

the shared page.

The results of the tests are shown in Table I. Tests A-G showed that the use of the frame-

work slightly impacts the application performances in case of no ambiguities and, further-

more, that the overhead is independent of factors such as the number of steps, the number

of workflows, the number of active instances and the number of concurrent workflows.

On the other hand, Tests H-L showed that the overhead increases when the specification

includes ambiguities, e.g. shared states. Moreover, as we expected from the complexity

discussion we presented in Section 4.3, the processing time is proportional to the number

of shared steps. Nevertheless, the performances overhead brought by ambiguities is still

acceptable for a real-use small or medium application. As a matter of facts, we assume

that Tests I-L are cases that can rarely occur in real-life applications.

53

TABLE I: PERFORMANCES

Test Case Processing Time with Framework Processing Time without Framework

A 7ms 6ms
B 7ms 6ms
C 7ms 6ms
D 7ms 6ms
E 7ms 6ms
F 7ms 6ms
G 7ms 6ms
H 8ms 6ms
I 9ms 6ms
L 11ms 6ms

CHAPTER 6

RELATED WORKS

In this section we compare our work to closely related existing approaches to workflow

specification and enforcement. TableII summarizes how the related work compares.

TABLE II: RELATED WORKS

Work Approach Specification Enforcements

Halle et al. FSA Manual Automatic
Memento FSA Learning Automatic
Swaddler Anomaly Detection Learning Automatic
Book et al. Formal Input Validation Manual Automatic

Jayaraman et al. Design Methodology Manual Manual
Workflower Framework Manual Automatic

The work of Halle et al. [13] is the most closely related to ours and they base their

approach on modeling web applications as state machines, which has been previously sug-

gested in the work of Yuen et al. [12]. More specifically, they present a runtime enforcement

mechanism that associate the workflow of a web application to a state machine model

specified by the developer through an XML schema. Thus they restrict the user navi-

gation through conditions validation and navigation tracking, based on session variables

54

55

and request parameters. Therefore, similarly to us, they provide automatic workflows en-

forcement by building a model from the specification manually given by the developer. In

contrast, they focus on basic instances of workflows, i.e. they do not discuss and handle

cases of concurrent workflows or multiple instance workflows, which, on the other hand,

our work takes into account.

Another approach based on state machines is Memento [5], which models a web appli-

cation’s behavior using a deterministic finite automata (DFA), directly derived from the

application. They use DFA to defend against cross-site request forgery (CSRF), cross- site-

scripting (XSS) attacks and workflows attacks. In contrast with our work, they automati-

cally extract the DFA by analyzing the source code of the application, and this inherently

fails in capturing workflows, intended by the developer, that the code does not clearly

express.

Swaddler [2] is another example of approach based on the extraction of the workflows

by learning from code. Swaddler is a server-side method that uses a anomaly detection ap-

proach and probabilistic models for characterizing the attributes of internal session vari-

ables and for associating invariants with blocks of code for automatic detection of workflow

violations. The detection effectiveness however is dependent on the accuracy of learning

the invariants associated with blocks of code and does not prove to be always effective.

Differently, Book et al. [14] present a formal model for specifying input validation rules

for web applications and present a framework where an implementation can be generated

from the formal specification. While their approach is based on manual specification and

56

automatic enforcements as ours, they just focus on validating input provided by the user,

which can lead to an incomplete solution for workflows attacks. In contrast, our approach

combines constraints on sequences of user actions with constraints on input data. More-

over, our approach can be integrated in existing applications and does not require users to

adopt a new framework for developing web applications.

Lastly, Jayaraman et al. [4] present a systematic methodology for constructing web ap-

plications to avoid the attacks in the first place. The proposed methodology leads to appli-

cations that are secure from several forms of forgeries by design. Their work addresses

the lack of a systematic approach and our work embeds most of principles they describes,

e.g. session and parameters validation. Nevertheless, they did not provide an automatic

technique to implement the methodology they describe.

CHAPTER 7

CONCLUSIONS

In this thesis we described the concept of workflow logic, how it is needed to capture the

expected user interaction with the application, and how the lack of systematic methodolo-

gies for implementing workflow logics may lead to a weak application, vulnerable to at-

tacks. We presented the approach we followed to build the Workflower framework, which

allows the developer to specify and automatically enforce the workflow logic. Namely,

Workflower enables to specify workflow logic separately from the application logic, in a

declarative manner, so that the specification clearly describes the expected behavior and

the maintenance of the code is proved to be easier. From the specification, the work-

flow logic is automatically enforced in the application, so that the navigation fulfills all

the requirements and no violations occur. Furthermore, Workflower supports concurrent

workflows, multiple instances workflows, automatic redirection and request resuming.

While the described approach can be applied to different Web development framework,

we currently built Workflower on top of Ruby on Rails, which made the development of

several features easier. We evaluated the usability and effectiveness of Workflower by

building a simple e-commerce application and tested the performances of the implementa-

tion. We showed how the current implementation does not significantly affect the requests

processing time in most of the cases, while it may bring penalties in case of workflows with

enforcement ambiguity.

57

58

Future Works

Lastly, we aim to propose possible enhancements that may extend our work in order to

provide additional features.

Firstly, the described approach does not handle ambiguities where the same page ap-

pears more than once in the same workflow. Despite that, our method is extensible enough

to easily allow the modification we already discussed at the end of Section 3.4.3, i.e. iden-

tify each step not only by the page, but also by the request parameters it expects.

In addition, Workflower could reach more expressive power if it would give the possi-

bility of associating the proper redirect action for each violated step requirement, instead

of having one general redirect for any violation. Assume, for instance, that a workflows

requires the user to be logged in and to have previously read and agreed the application

terms and conditions. Since the conditions are independent of each other, they would

need different redirection in case either of them is violated. One possible solution would

be modifying the specification and substitute the set of requirements with a set of couples

(requirement, action), so that each condition has the proper redirect action.

Lastly, a more substantial modification would be adapting the presented approach so

that it would accepts specifications more complex than simple sequences of steps, e.g.

with possible branches. Despite we believe that extending our approach, to handle the

described modification, is feasible, it would require a deeper study focused on the issues

that may arise from having workflows consisting of complex paths.

CITED LITERATURE

1. Christey, S., and Martin,R. A.: Vulnerability type distributions in CVE. http://cwe.
mitre.org/documents/vuln-trends/index.html.

2. Cova, M., Balzarotti, D., Felmetsger, V., and Vigna, G.: Swaddler, An Approach for the
Anomaly-based Detection of State Violations in Web Applications, 2007.

3. Cova, M., Balzarotti, D., Felmetsger, V., and Vigna, G.: Multi-Module Vulnerability
Analysis of Web-based Applications, 2007.

4. Jayaraman, K., Lewandowski, G., Talaga, P. G., Chapin, S. J., and Hafiz, M.: Modeling
User Interactions for (Fun and) Profit: Preventing Workflow-based Attacks in Web
Applications, 2010.

5. Jayaraman, K., Lewandowski, G., Talaga, P. G., and Chapin, S. J.: Memento: A Frame-
work for Hardening Web Applications, 2009

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-
Lee, T.: Hypertext Transfer Protocol, HTTP/1.1. RFC 2616 ,1999. http://www.w3.
org/Protocols/rfc2616/rfc2616.html.

7. Hypertext Transfer Protocol, Protocol Parameters. http://www.w3.org/Protocols/
rfc2616/rfc2616-sec3.html.

8. Ruby on Rails. http://rubyonrails.org.

9. RubyGems. http://docs.rubygems.org/read/chapter/20.

10. Ruby on Rails, Callbacks. http://api.rubyonrails.org.

11. Jovanovic, N., Kirda, E., and Kruegel, C.: Preventing cross site request forgery attacks,
2006.

12. Yuen S., Kato K., Kato D., and Agusa K.: Web automata: A behavioral model of web
applications based on the mvc model, 2006.

13. Halle, S., Ettema, T., Bunch, C. and Bultan, T.: Eliminating Navigation Errors in Web
Applications via Model Checking and Runtime Enforcement of Navigation State Ma-
chines, 2010.

14. Book, M., Bruckmann, T., Gruhn, V., and Hulder, M.: Specification and control of inter-
face responses to user input in rich internet applications.

15. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based soft-
ware architectures, 2000.

16. Reenskaug, T.: THING-MODEL-VIEW-EDITOR - an Example from a planningsystem,
Xerox PARC, 1979.

59

http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html
http://rubyonrails.org
http://docs.rubygems.org/read/chapter/20
http://api.rubyonrails.org

VITA

Daniele Rossetti

Education B.S., Engineering of Computing Systems
Politecnico di Milano, Milano, Italy
2011

M.S., Computer Science (current)
University of Illinois at Chicago, Chicago, IL
2013

M.S., Engineering of Computing Systems (current)
Politecnico di Milano, Milano, Italy
2013

Working experience Research Assistant at University of Illinois at Chicago
Fall 2012 to Spring 2013

60

	1Introduction
	2Background
	 Enforcing workflows through HTTP: Where we are
	 Ruby on Rails

	3Approach
	 Workflow Specification
	 Workflow Enforcements
	 Workflow Enforcement - Challenges
	 Accessed Step
	 Concurrent workflows
	 Ambiguity
	 Multiple Instance Workflows
	 Redirection and Resume

	 Workflow Enforcement - Solution to Challenges
	 Accessed State
	 Cuncurrent Workflows
	 Ambiguity
	 Multiple Instance Workflows
	 Redirection and Resume

	4Implementation
	 Extending Ruby on Rails
	 Workflows Specifications with Workflower
	 Exploiting Ruby on Rails features

	5Evaluation
	 E-commerce application and Workflow Specification
	 Enforcements
	 Performance

	6Related Works
	7Conclusions
	 CITED LITERATURE
	 VITA

