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SUMMARY

Let M0,n(Pr, d) denote the Kontsevich moduli space of n-pointed rational curves of degree d

in projective r-space. The rational Picard group of this space was computed by Pandharipande

in (1), and in the case n = 0, r ≥ d its cone of effective Q-divisors was computed by Coskun,

Harris and Starr in (2). In this thesis we extend the former result to certain Gromov-Witten

varieties, and the latter result to the case n = 1.
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CHAPTER 1

INTRODUCTION

In this thesis, we will describe the effective cone of the Kontsevich moduli space which

compactifies the space of pointed rational normal curves in terms of Pandharipande’s generators

and an additional geometrically meaningful class, the divisor Ddeg of degree d rational curves

in Pd whose image is contained in a hyperplane. We will also show that if we fix the image of a

marked point (thereby obtaining the simplest example of a so-called Gromov-Witten variety),

we can use Pandharipande’s generators to obtain a presentation for the rational Picard groups

of the Gromov-Witten variety.

The Kontsevich moduli space M0,n(Pr, d) is the course moduli space of the stackM0,n(Pr, d)

which represents the functor of families of stable maps, morphisms f : (C, p1, ..., pn)→ Pr such

that

• C is a reduced, connected, at-worst-nodal curve of arithmetic genus 0.

• The points p1, ..., pn ∈ C are distinct, smooth points.

• The line bundle L := f∗OPr(1) has degree d on C (i.e.
∑

i deg(L|Ci) = d).

These spaces were introduced by Maxim Kontsevich in (3) for use in the study of mirror

symmetry. Kontsevich employed them in an example to solve the problem of counting rational

plane curves of degree d passing through 3d − 1 points, which he proved is determined via a

recursive formula and the base case d = 1 (there is a unique line through any two distinct

points). Foundational issues are thoroughly treated in (4). In the special case d = 1, we recover

the Grassmannian of lines in Pr for n = 0, and the universal line over the Grassmannian for
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n = 1. For larger n, we get a simple compactification of the space of lines with n distinct

marked points; when two points come together, an additional copy of P1 “sprouts” from the

point of collision on which f has degree 0, and this configuration is unique up to isomorphism.

In (1) and (5), Rahul Pandharipande computed the rational Picard groups of these spaces and

subsequently their canonical classes in terms of his generators.

Of particular interest in the case n > 0 are an n-tuple of natural maps

evi : M0,n(Pr, d)→ Pr

given on closed points by (C, p1, ..., pn, f) 7→ f(pi), which by pulling back OPr(1) yield n natural

line bundles on the moduli space. One can also use these maps to define Gromov-Witten

varieties, which are obtained by taking preimages of linear spaces in Pr and intersecting them.

Let X be an algebraic variety; X may be singular, but no worse than Q-factorial. The

Picard group is one of the most fundamental invariants of X. It is the codimension-1 group of

Chow cycles, hence it is closely related to the 2nd topological cohomology group in the classical

topology over C, for example (at least in the smooth case) by the exponential exact sequence

0→ 2π
√
−1Z→ OX → O∗X → 0.

In certain situations it is more convenient to pass to the tensor product with Q, as we will do

here. In the simplest case of a Gromov-Witten variety, the preimage of a point, we will show

that the Picard group can be presented as a quotient, with one of Pandharipande’s generators

spanning the kernel of the quotient map.



3

Main Theorem 1. For a point p ∈ Pr and any i = 1, ..., n, the rational Picard group of ev−1i (p)

is a quotient of PicQ(M0,n(Pr, d)); the kernel of the quotient map is generated by L := ev∗iOPr(1).

In general, the rational Picard vector space contains a number of cones of divisors which

are in some sense “positive.” We are interested here in effective divisors; more precisely, we will

compute the closed cone of psuedoeffective divisors on the Kontsevich space when n = 1 and

d ≥ r, which encodes rational contractions of the space.

Main Theorem 2. The extremal rays of the effective cone of M0,1(Pr, d) for r ≥ d are

1. Ddeg, the divisor of stable maps whose image does not span a hyperplane in Pd.

2. L, the divisor of stable maps sending the marked point p to a fixed hyperplane.

3. Those rays which pullback to Sd+1-invariant extremal rays under Kapranov’s embedding

K : M0,d+2 ↪→ M0,1(Pd, d).
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CHAPTER 2

PRELIMINARIES & BACKGROUND

We first fix some conventions and notation for the remainder of this document. We assume

(for the most part tacitly) familiarity with the contents of Robin Hartshorne’s textbook (6), and

we follow his conventions unless stated otherwise. We work over the field of complex numbers

C. A scheme is Noetherian and separated. A variety is a reduced scheme of finite type over

C, but is not necessarily irreducible. Curves are connected (projective unless stated otherwise)

varieties of dimension 1. We denote by Sd the symmetric group on d symbols.

2.1 Effective Divisors

A more complete discussion of what follows in this section can be found in Positivity in

Algebraic Geometry I by R.K. Lazarsfeld (7).

A scheme X is Q-factorial if every Weil divisor on X is Q-Cartier. Let X be a Q-factorial

projective variety of dimension n, and let N1(X)Q denote the Neron-Severi group of Q-divisors

on X modulo numerical equivalence. Recall that a Cartier divisor D is effective if it is given

locally by a regular function; equivalently, D is effective if the associated line bundle OX(D)

admits a global section. A Q-divisor class is said to be effective if it is a Q>0-linear combination

of classes of effective Cartier divisors. We may thus define the psuedoeffective cone

Eff(X) ⊂ N1(X)Q

to be the closure of the convex cone of effective divisor classes. A divisor whose class lies in

this cone is called psuedoeffective.
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Remark 2.1.1. For all examples considered in this thesis, we have an isomorphism N1
Q
∼= PicQ.

As such, we will often refer to the Neron-Severi space as the Picard group; implicit in this abuse

of language is another abuse, namely that we will refer to the rational Picard vector space as

the Picard group throughout the remainder of the document since integral Picard groups are

never considered.

Remark 2.1.2. It is a useful convention in modern birational geometry to regard a curve on a

variety not as a closed subscheme C ⊂ X but as a map f : C → X, which may not be injective

or even immersive. This is a more natural and flexible setting for birational geometry which

allows us to do things like replace an immersed curve with its normalization or pass to a finite

cover without changing the type of object under consideration.

Definition 2.1.3. A curve f : C → X with irreducible domain is called moving if (images of)

its deformations cover a Zariski-dense subset of X.

The following lemma is fundamental to the study of cones of effective divisors:

Lemma 2.1.4. Let D be an irreducible effective divisor in X, and let f : C → X be a moving

curve. Then the intersection number C.D := deg(f∗(D)) is nonnegative.

Proof. Since C is moving, it has a deformation C ′ whose image is not contained in D, so that

C ′.D ≥ 0. Since the intersection number is invariant under flat deformations, we conclude that

C.D ≥ 0.

2.1.1 Computing Effective Cones

The simple idea underlying all cone computations in Mori theory is that an equality is two

inequalities, which in this case means that we need to produce cones contained in the effective
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cone as well as cones in which it is itself contained, and make these match up. In practice for

effective cones, the former amounts to producing a list of effective divisors (which tautologically

spans a subcone), which will be the appropriate “inner bound” if we list all extremal rays of

the cone. Obtaining the “outer bound” typically requires the construction of moving curves,

which by 2.1.4 cut out a hyperplane which cannot intersect the interior of the effective cone.

A suitable collection of moving curves thus induces a cone containing the effective cone, which

was the strategy employed by (2) in their investigation of the effective cone of the Kontsevich

space.

In some situations (such as ours) the construction of moving curves seems to be out of

reach; however, there are other less systematic approaches that may still yield the necessary

inequalities. For example: although the theory of positivity in higher codimension is still in

development, a higher dimensional subvariety which is well-understood can be just as useful

as a moving curve if the deformations needed to make transversality arguments work can be

described explicitly. In the proof of one of our main theorems, we make use of an observation

of Mikhail Kapranov that choosing d + 2 points in general position in Pd induces a closed

embedding M0,d+2/Sd+2 → M0,0(Pd, d) along which we may fruitfully pull back divisor classes.

It was noted by Sean Keel that by allowing the points which define the embedding to vary, we

obtain many deformations which lead to an alternative proof of the main theorem of (2). Our

theorem concerns the case when n = 1; we make use of a theorem of William Rulla regarding

the space of rational curves with a single distinguished marked point and many unlabelled

marked points to show that the family of Kapranov embeddings behaves just as nicely if we

slightly decrease the symmetry of the situation.
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2.1.2 An Example

Obviously divisorial cones are only interesting on varieties with Picard rank greater than 1;

we will begin with a simple such example:

Example 2.1.5. Let π : F1 → P2 denote the blowup of P2 at a point. The Picard group is

generated here by H, the pullback of the class of a line, and E, the class of the exceptional

divisor. To determine the effective cone in the Picard rank 2 case we just need to determine

the two extremal rays. To do this, we simply need to find a pair of effective divisors with a pair

of orthogonal moving curves. Since H is a moving curve but H.E = 0, E is one extremal ray.

Now consider the class of a line through the center of the blowup, H −E. This is a moving

curve, and (H − E)2 = H2 + E2 = 1 − 1 = 0, so H − E is the other extremal ray (associated

to the Fano fibration F1 → P1).

2.1.3 Other Notions of Positivity for Divisors

Along with effective divisors, the most familiar notion of positivity is ampleness; recall

that a divisor is ample if a multiple is very ample, that is to say the pullback of O(1) under

a projective embedding. The following lemma shows that ampleness is, unlike effectivity, a

numerical property:

Lemma 2.1.6. (Nakai-Moishezon Criterion) Let D be a divisor on a projective scheme X.

Then D is ample if and only if Dk.V > 0 for all irreducible k-dimensional subvarieties V ⊂ X

of positive dimension.

A theorem of Steve Kleiman says that a much weaker property, C.D ≥ 0 for all irreducible

curves, implies the weak versions of the intersection inequalities in the previous lemma, i.e.

limits of ample classes can be detected on curves. This motivates the following definition:
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Definition 2.1.7. A divisor D on a projective scheme X is nef if C.D ≥ 0 for all irreducible

curves C ⊂ X.

2.2 Moduli Spaces of Pointed Rational Curves

A smooth curve of genus 0 is stable if it is equipped with three or more marked points.

A point on a nodal curve of arithmetic genus 0 with marked smooth points is special if it is

marked or if it lies over a node in the normalization; such a curve is stable if every component

of its normalization has at least three special points. Since the action of PGL(2,C) on P1

is 3-transitive, there is a unique 3-pointed rational curve up to isomorphism (note that three

marked points are insufficient to stabilize a nodal union of two copies of P1). The moduli space

M0,n of stable n-pointed rational curves has dimension

dim(M0,n) = dim((P1)n)− dim(PGL(2,C) = n− 3.

The boundary of this moduli space was described by Finn Knudsen in (8), who showed

that a family of n-pointed curves (thought of as a codimension 1 fibration with n sections)

in which the marked points collide can be uniquely transformed into a family of nodal curves

with all marked points distinct by blowing up the loci along which sections intersect. What this

amounts to is that if p→ q, one replaces q by a rational tail now marked with p and q at distinct

points. Since this rational component has 3 special points, it is unique up to isomorphism.

The irreducible components of the boundary of M0,n are in bijection with partitions [n] =

S tT of the set [n] := {1, ..., n} such that |S|, |T | ≥ 2 (we do not distinguish between S tT and

T tS). The general point of the irreducible component which we will label BS,T parametrizes a

nodal union of two copies of P1, one labeled with S and the other with T . Since the PGL-action
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on each component normalizes the location of the node and two of the markings, the dimension

of this locus is

(|S| − 2) + (|T | − 2) = n− 4,

showing that we get a divisor in M0,n.

It is classical (Castelnuovo’s Lemma, see (9)) that through (r + 3) general points in Pr

there passes a unique rational normal curve, so through (r + 2) general points there is an

(r − 1)-dimensional family of rational normal curves. Taking r + 3 = n, we have an (n − 3)-

dimensional family of rational curves with n-marked points. This is highly suggestive of the

observation made by Kapranov (see (10)): the choice of n− 1 general points defines a rational

map Pn−3 99K M0,n which can be resolved by a sequence of blowups along smooth centers. The

resulting smooth variety P̃n−3 comes with a morphism f : P̃n−3 → M0,n which is a bijection on

closed points (the exceptional loci essentially parametrizing all possible “choices” left ambiguous

when the n−1 points are not in sufficiently general position). Since the moduli space is smooth

(because the moduli stack is smooth, and n-pointed rational curves have no automorphisms for

n ≥ 3), it follows by Zariski’s Main Theorem that f is an isomorphism.

Kapranov’s initial construction was later simplified by Brendan Hassett (see (11)) to a

beautiful description: in Hassett’s version, one simply blows up the n−1 basepoints of the family

of rational normal curves, then blows up the proper transforms of the
(
n−1
2

)
lines spanned by

pairs of base points, then the proper transforms of the
(
n−1
3

)
planes spanned by triples of base

points, and so on until one selects n−3 points and finds that one already has an effective Cartier

divisor. The beauty and curse of this description is that under the map we call f , the boundary

divisors pullback precisely to the exceptional divisors (which are naturally generators of the
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Picard group) and the proper transforms of the various hyperplanes spanned by (n− 3)-tuples

of basepoints (which all have class of the form H −
∑
Ei, the sum running over all exceptional

divisors coming from the n − 3 points). The beauty is that this description has reduced most

questions about the geometry of M0,n to purely combinatorial questions; the curse is that the

combinatorial complexity of these questions is immense.

Far better understood in many ways is the quotient moduli space M̃0,n := M0,n/Sn which

parametrizes stable rational curves with n unlabeled marked points. Although this variety is

worse than M0,n in the sense that it possesses finite quotient singularities, it remains a fine

moduli space and its birational geometry is far better understood. In particular we have the

beautiful theorem of Keel and McKernan:

Theorem 2.2.1. (12) The effective cone of M̃0,n is spanned by its bn/2c boundary divisors.

Sketch of Proof. The boundary divisors here are sums of the BS,T with fixed |S| and |T |, so

we can just write them B2, ..., Bbn/2c. Any positive linear combination of Bi is effective, so we

need to show that any effective D can be so expressed. To do so, we generalize the idea of

2.1.4: namely, a curve which is moving in an irreducible divisor (but not the entire space) still

intersects all other irreducible effective divisors nonnegatively.

It is simple to construct moving curves in the boundary divisors: consider a nodal union

of two copies of P1, fix i points on one component and n − i points on the other, and vary

the point of attachment on the second component. This curve is moving in Bi, and intersects

Bi+1 in n − i points when the varying point of attachment collides with one of the marked

points. This allows one to inductively prove positivity of the coefficients in an expression

D = b2B2 + · · · bbn/2cBbn/2c.



11

Although the effective cone of M0,n is still out of reach, some progress has been made on

quotients by subgroups of Sn, i.e. moduli spaces of rational curves with a few labelled markings

any many unlabelled. The following was proved by William Rulla in (13), and will be used in

our main theorems:

Proposition 2.2.2. The effective cone of M0,n/Sn−1 is generated by boundary divisors.

Sketch of Proof. The argument is a minor variation of that used by Keel and McKernan. Note

that on this space, boundary divisors can be indexed by the total number of marked points on

the component with the labelled point (hence there are now n − 3 such divisors), so what are

essentially the same moving curves can be used. The only new component of the argument is a

curve arising as the fiber of the map M0,n/Sn−1 → M̃0,n−1 forgetting the labelled point, which

is moving in the full moduli space and is used in establishing the base case of the induction.

2.3 The Kontsevich Moduli Space

Recall that an abstract curve is prestable if its singularities are at worst ordinary nodes.

The Kontsevich moduli space M0,n(Pr, d) is the coarse moduli space of the stack representing

the functor of flat families of degree d morphisms to Pr from prestable curves of genus 0 with

n marked smooth points.

The Kontsevich space was first introduced by Kontsevich in (3) in his investigation of

the mathematical foundations of mirror symmetry in order to formulate a rigorous algebro-

geometric definition of Gromov-Witten invariants. In this paper he investigated several ex-

amples, in particular the number of degree d rational curves in P2 through 3d − 1 points.

Using the inductive structure of the boundary, he was able to show that these characteristic

numbers are determined recursively from the fact that a unique line passes through any two
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distinct points. While Kontsevich’s work is principally concerned with enumerative calculations

and other applications, the basic properties of the moduli space are presented with details by

Fulton-Pandharipande (4). In fact the existence of a projective coarse moduli space is carried

out in greater generality than we need; maps from stable curves of arbitrary genus to arbitrary

projective schemes are covered. The foundational theorems of (4) specialized to our situation

read as follows:

Theorem 2.3.1. The coarse moduli space M0,n(Pr, d) is a normal projective variety of pure

dimension r+ d(r+ 1) + n− 3 which is locally the quotient of a nonsingular variety by a finite

group. The locus M
∗
0,n(Pr, d) of maps without automorphisms is nonsingular and a fine moduli

space with universal family. Up to finite group quotient, the boundary of M0,n(Pr, d) is a divisor

with normal crossings.

Although the spaces we are dealing with are nice varieties, the generalizations to the case

of positive genus domain curves or the case of hypersurface targets (even smooth Fano hyper-

surfaces) often result in moduli spaces with multiple components of different dimensions.

Example 2.3.2. Consider M1,0(P2, 3). The most naive hope would be that the general point

parametrizes a smooth plane cubic; unfortunately this is far from the case. We know that

smooth plane cubics vary in a 9-dimensional family. On the other hand, the space of cubic

maps P1 → P2 is birational to the discriminant hypersurface in the P9 of plane cubics, and

abstract curves of genus 1 have 1-dimensional moduli, so the space of maps from a curve with

one genus 0 (on which the map is cubic) and one genus 1 component (which the map contracts

to a point) has dimension 8 + 1 + 1 = 10 (8 for the rational cubic, one for the point in M1,1,

one for the attaching point on the rational curve).
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2.3.1 Divisors on Kontsevich Moduli Spaces

The study of the Kontsevich spaces as geometric objects in their own right was continued

by Rahul Pandharipande who computed the rational Picard group (here isomorphic to the

Neron-Severi group, in terms of which we phrased our previous discussion of effective divisors)

in terms of geometrically natural classes, and then computed the canonical class in terms of

his generators. Besides the irreducible components of the boundary, two of the simplest divisor

classes one can define are H, the class of maps intersecting a fixed codimension-2 linear space

in Pr, and the n classes Li, i = 1, ..., n, which are obtained by pulling back OPr(1) along the

canonical evaluation morphisms

evi : M0,n(Pr, d)→ Pr.

Theorem 2.3.3. (Pandharipande) Suppose d > 0 and r > 1, i.e. suppose the general point of

M0,n(Pr, d) parametrizes a generically injective map. Then PicQ(M0,n(Pr, d)) is generated by

the irreducible components of the boundary together with

• H when n ≥ 3 or n = 0,

• L1,L2 when n = 2,

• L1,H when n = 1.

All other relations among these generators come from pull back along the forgetful map

M0,n(Pr, d)→ M0,n.
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Remark 2.3.4. At this point we need to introduce an indexing scheme for the components of

the boundary. We will let ∆i(S) denote the class of the divisor whose general point parametrizes

a stable map whose domain has two components, one with |S| marked points labeled by S ⊂

{1, ..., n} and on which the map has degree i, and one with marked points labeled by the

complement of S and on which the map has degree d− i. Following Pandharipande, we will let

Di,j =
∑
|S|=j

∆i(S).

Theorem 2.3.5. (Pandharipande) Assume d > 0, r > 1. The canonical class of M0,0(Pr, d) is

−(d+ 1)(r + 1)

2d
H+

bd/2c∑
i=1

(
(r + 1)(d− i)i

2d
− 2

)
Di,0.

For n > 0, the canonical class of M0,n(Pr, d) is

−(d+ 1)(r + 1)d− 2n

2d2
H− 2

d

n∑
i=1

Li+
bd/2c∑
i=1

n∑
j=0

(
(r + 1)(d− i)di+ 2d2j − 4dij + 2ni2

2d2
− 2

)
Di,j .

The proofs of both theorems rely on intersections with test curves, which in this situation

amounts to studying linear systems on blowups of ruled surfaces.

2.3.2 The Stability of the Effective Cone

It was shown in (2) that for n = 0 and fixed d, the effective cones are “nested” in a precise

sense as r increases, and for r ≥ d the effective cone stabilizes: observe that for fixed d and n,

the Picard rank of M0,n(Pr, d) is constant as r ≥ 2 varies; in fact Pandharipande’s generators

for these spaces all have the same names. As such, let Pd,n denote the abstract Q-vector space
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whose basis is the set of symbols that label Pandharipande’s generators for any r ≥ 2. The

lemma of (2) is:

Lemma 2.3.6. For n = 0 there is a Q-linear isomorphism

ud,r,n : Pd,n → Pic(M0,n(Pr, d))

which yields an inclusion

u−1d,r,0(Eff) ⊂ u−1d,r+1,0(Eff)

stabilizing for r ≥ d.

This intuitively makes sense because a rational curve of degree d in Pr for r > d is degenerate.

The proof does not appear to depend on the assumption n = 0, so it seems that the same result

holds for any number of marked points. However we do not use the pointed version of the

lemma in any examples or theorems (and its proof is best phrased in the language of stacks

which would interrupt the flow of the paper), so we omit the proof, which would constitute an

exercise in synonym substitution.

2.3.3 Gromov-Witten Varieties

As noted above, moduli spaces of stable maps were introduced to rigorously define Gromov-

Witten invariants, which can be tautologically defined as intersection numbers of Gromov-

Witten varieties. The simplest Gromov-Witten varieties are obtained as preimages of projec-

tive varieties (usually single reduced points) under the evaluation morphisms, which one then

intersects to obtain more complicated varieties. Roughly, the intersection of Gromov-Witten

varieties with codimensions summing to 0 should count the number of stable maps mapping

the appropriate marked points to the corresponding subvarieties.
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In this thesis, we observe that much of the birational geometry of a Kontsevich space

is contained in the fibers of the evaluation maps, i.e. the 1-point Gromov-Witten varieties.

This is not terribly shocking since the evaluation maps are isotrivial fibrations over projective

space; nevertheless, we prove that the rational Picard group of these spaces is a quotient of

PicQ(M0,n(Pr, d)) with kernel generated by Li, and that the effective cone restricts in a similar

manner.
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CHAPTER 3

WORKING WITH MODULI SPACES

If one wishes to understand a coarse moduli space, a common first step is to study the

corresponding fine moduli stack, which has a canonical projection to the coarse space which

is well understood in good situations. Studying the stack amounts to studying families of

whatever objects the moduli space classifies.

3.1 Stable Reduction

One example is the separatedness and properness of the Deligne-Mumford compactification

of the moduli space of curves of genus g. This follows from the corresponding properties of

the stack, which when unwound amount to the existence of a unique central fiber (which is

a stable curve, i.e. a prestable curve with finite automorphism group) completing any flat

family of curves over a punctured disc (more precisely, the punctured spectrum of a discrete

valuation ring), possibly after making a finite base change; this is known as the Stable Reduction

Theorem. The incredible thing is that there is an algorithmic way to compute this fiber which is

frequently effective, even when working by hand. The key observation is that if any necessary

base changes are factored into base changes of prime degree, the induced map on the total

space of the family can be described topologically and combinatorially (i.e. computations can

be done without more subtle scheme-theoretic bookkeeping). A thorough exposition of these

computations can be found in (14), while we will simply summarize the steps of the algorithm:

1. Start with a 1-parameter family of stable curves whose central fiber is not stable.
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2. Blow up the excessively singular points of the central fiber until the supports of the

irreducible components all intersect transversely.

3. Make a series of base changes of prime degree, normalizing the resulting surface after each

step, until all components of the central fiber are reduced; the effect of a degree p base

change and normalization on the total space is the taking of a degree p cover whose branch

divisor is computed by viewing the central fiber as a divisor and reducing its coefficients

mod p.

4. Once the central fiber is reduced, blow down any (−1)-curves and any (−2)-curves.

5. We have arrived at the stable model of the central fiber. The total space may have

An singularities. If a smooth total space is desired, one can blow up these singularities

(bringing back the (−2)-curves) and instead work with the semistable model (a prestable

curve is semistable if its automorphism group is at most 1-dimensional).

Deployment of this algorithm also allows one to compute the degrees of divisor classes on

Mg in many cases, since the total space of a family of curves is frequently birational to a

familiar variety. Suppose π : X → B is a 1-parameter family of stable curves with relative

dualizing sheaf ωπ. The basic divisor classes are

• δ0, which counts non-separating nodes (in the transverse case),

• δi, i = 1, ...bg/2c, which counts nodes that separate a stable curve into connected compo-

nents of genus i and g − i (in the transverse case).

• δ := δ0 + δ1 + · · ·+ δbg/2c, which measures the total singularity of the family,

• λ, which is the degree of c1(π∗(ωπ)),

• κ = κ1, which is the degree of π∗(c1(ωπ)2).
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One may notice that the last two classes are defined by starting with the same sheaf and

applying the direct image and Chern class functors in different orders. The failure of these

functors to commute is measured by the Grothendieck-Riemann-Roch formula, and indeed

Mumford established the relation 12λ = δ + κ thereby in (15).

Example 3.1.1. Here we will compute the divisor class δ on M3 on a general pencil of plane

quartics specializing to a tacnode (a singular point with local equation y2 = x4).

The local description is as follows: blowing up P2 at the tacnode, we obtain a triple point

consisting of the proper transforms of the branches meeting the exceptional divisor E1 at the

same point (it is also worth noting here that as a fiber of the family treated as a divisor, E1

has multiplicity 2). Blowing up this point, we obtain another exceptional divisor E2 through

which E1 and the branches each pass at distinct points (and which occurs with multiplicity 4).

At this point, the components of the central fiber intersect transversely, but we have nonre-

duced components. Denoting by C̃ the proper transform of the initial tacnodal quartic C̃, we

can write this fiber as F = C̃ + 2E1 + 4E2. E2 meets E1 once and C̃ twice. By the algorithm

above, we now take a double cover of the total space branched along C̃, which means that

we will take a double cover of E2 branched at two points, so the inverse image of E2 is also

isomorphic to P1. This curve again meets C̃ twice, but there are now two disjoint copies of E1

(call them E′1 and E′′1 ) meeting what we will continue to call E2.

We now take another double cover, but this time the branch divisor is C̃+E′1 +E′′1 , so over

E2 we get an elliptic curve E. The central fiber is now semistable, but to obtain the stable

model we observe that any component meeting the rest of the central fiber in a single point is

a (−1) curve. In our case these are the rational curves E′1, E
′′
1 , so we blow them down to obtain
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the stable model: the normalization of the tacnodal curve, with an elliptic bridge connecting

the points lying over the tacnode.

Having analyzed the local picture, we can now carry out the necessary bookkeeping to do

the global calculation. First, let X ⊂ P2 × P1 denote the blowup of P2 at the 16 basepoints of

the pencil (we will call the exceptional divisors and their proper transforms Fi). The topological

Euler characteristic is χ(X) = 3 + 16 = 19. Blowing up the tacnode twice, we obtain a surface

X ′ → X with χ(X ′) = 21.

The global base change is obtained as the fiber product of π : X ′ → P1 with the double

cover P1 → P1 branched over 0 and ∞, so the double cover of the surface is branched along C̃,

a subcurve of the central fiber, and the fiber over ∞ which is a general smooth quartic. After

normalizing, the new surface f : Y → X ′ has χ(Y ) = 2(21− (−4)) + (−4) = 46.

The second base change is branched over C̃+E′1+E′′1 in the central fiber and the general fiber

at ∞. Normalizing again, the new surface has χ(Y ′) = 2(46) = 92 (the branch locus happens

to have Euler characteristic 0 here). Blowing down the two (−1)-curves we get χ(Y ′′) = 90.

Finally, note that a topological fiber bundle of genus 3 surfaces over a 2-sphere has χ =

(−4)(2) = −8, so there are 90 − (−8) = 98 nodes in the fibers of our pencil. Dividing by the

total degree of base change, we get δ = 241
2 . Since the non-central singular fibers are general,

their nodes are of type δ0, and the two nodes in central fiber with the elliptic bridge are as well

(since smoothing either node results in an irreducible curve). Thus in fact δ0 = 241
2 and δ1 = 0.

3.2 Computing Divisor Classes

Beyond the divisors from Pandharipande’s description of the Picard group, the key to the

description of the effective cone of the Kontsevich space is the divisor of stable maps whose

images are set-theoretically degenerate; that is, fail to span a hyperplane. One may imagine a
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conic degenerating to a double line or a twisted cubic degenerating to a nodal plane cubic as

basic examples of curves intersecting this divisor. This divisor is denoted Ddeg and its class was

computed by Coskun-Harris-Starr in (2):

Lemma 3.2.1. The class of Ddeg in M0,0(Pd, d) is

1

2d

(d+ 1)H−
bd/2c∑
k=1

k(d− k)∆k,d−k

 .
Sketch of Proof. We write Ddeg as an arbitrary linear combination of H and the boundary

classes, then compute its restriction to well-chosen “test families” to obtain relations among

the coefficients until we have enough to deduce the class.

A classic test family (used at length in (14) and ever since) is obtained by taking the union

of curves with genera totaling g, and varying the isomorphism class of one of these curves.

The first test family we use here is a variation on this idea: fix a rational normal curve R of

degree d − i − 1 in a linear subspace of Pd and a rational surface scroll S of degree i (lying in

a complimentary subspace) meeting it in one point p. Since the scroll is the image of either

F0 = P1 × P1 or F1, the blowup of P2 at a point (specifically the domain surface is Fimod 2),

we can treat the divisor theory uniformly. Let f denote the fiber class on either surface and e

the exceptional class or the other fiber class. If we take a general pencil of rational degree i+ 1

curves through p in the linear system |e+ b i+3
2 cf |, the union of these curves with R induces a

curve Ci in the Kontsevich space.

Since the curves in Ci by definition sweep out a scroll of degree i, we have Ci.H = i. In

(16), Coskun computed the cohomology of line bundles associated to effective divisors of type

e+mf , from which one concludes that on a scroll of degree i 6= 1, a pencil of rational curves of
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degree i+ 1 is determined by imposing i+ 2 general basepoints (except for plane conics, which

require i + 3 = 4), including p. The other i + 1 points together with R span Pd, so all Ci are

disjoint from Ddeg.

For 2 ≤ i ≤ bd/2c, the pencil becomes reducible i+1 times, once for each fiber that contains

a basepoint. The fiber is one component of the reducible curve, so we have Ci.∆i,d−i = 1 (from

the fiber through p) and Ci.∆1,d−1 = i+ 1 (for the other fibers). The last nonzero intersection

is Ci.∆i+1,d−i−1 = −1, coming from the normal bundle to the exceptional divisor lying over

p when one constructs the total space of this family. Also, note that we obtain contradictory

answers for C1.∆1,d−1 from these two formulae; in fact we need to sum these numbers to get

the correct answer of 3 (this “collapsing” of the calculations seems to correspond to i = 1 being

the lone case in which the Hirzebruch surface does not embed; rather the linear system |e+ 2f |

blows F1 down to a P2 ⊂ Pd).

The next test family is obtained by fixing d+ 2 general points and moving one more point

on a general line, and considering the induced family B1 of rational curves. By construction, B1

is disjoint from Ddeg and only intersects the boundary divisor ∆1,d−1: any partition of the d+2

points into i+ 1 and d− i+ 1 points corresponds to a pair of linear spaces of dimensions i and

d− i in Pd. But a general line can be chosen to avoid both of these linear spaces unless i = 1.

Similarly, when the curve breaks the degree 1 component must correspond to the size i+ 1 = 2

step of the partition, while the degree d−1 component is determined by the d remaining points
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and the intersection points of the (d− 1)-plane with the fixed line and the degree 1 component.

Concluding this line of thought, we have

B1.∆1,d−1 = # {(d− 1)− planes spanned by subsets of fixed points}

=

(
d+ 2

d

)
=

(d+ 2)(d+ 1)

2
.

The final intersection number here is B1.H, which is the number of rational curves of degree

d through d+ 2 general points, meeting a general line, and meeting a general (d− 2)-plane. To

compute this, we specialize the (d − 2)-plane to Λ, the hyperplane spanned by d of the fixed

points. By the above analysis, any reducible curves have a component of degree 1 or d−1 lying

in Λ, which we will refer to in the sequel as the Λ-component.

If the Λ-component is a line, there are d(d−1)
2 possible choices therefor; this line also nec-

essarily handles the intersection with the Pd−2. We have remaining d points through which

must pass the degree d − 1 component D, and in fact D must lie in the hyperplane spanned

by the d points. Since D must also intersect the general line and the Λ-component, each of

which meet the hyperplane in a point, D must pass through a total of d + 1 general points in

the hyperplane. Thus D is uniquely determined.

If the Λ-component has degree d−1, the complementary curve is the line between the other

two points. This line intersects Λ in the point at which it must meet the Λ-component, and

the general line intersects Λ at a (d+ 2)-nd point, proving uniqueness of the Λ-component. It
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intersects the Pd−2 in (d− 1) points hence counts with that multiplicity. Thus the intersection

number is

B1.H =
d(d− 1)

2
+ (d− 1) =

d2 + d− 2

2
.

Finally, fix a degree d − 1 curve and a general pencil of lines with basepoint on the curve.

It is straightforward that C.H = 1, C.Ddeg = 1, and C.∆1,d−1 = −1 are the only nonzero

intersection numbers, which is enough to conclude the calculation.

Remark 3.2.2. Since the definition is purely in terms of the underlying curves, one can pullback

Ddeg along the forgetful map M0,1(Pd, d)→ M0,0(Pd, d) and get almost the same class expression:

1

2d

(d+ 1)H−
bd/2c∑
k=1

2k(d− k)∆k,d−k

 ,
if d is odd, and

1

2d

(d+ 1)H− d2 − 1

4
∆d+2

2
−

d/2∑
k=1

2k(d− k)∆k,d−k

 ,
if d is even.

3.3 Examples of Main Theorem for small values of r, d, n

Our Main Theorem 2 is about the effective cone of M0,1(Pd, d). Nevertheless, it is instructive

to look at a number of small cases which do not fall under this exact heading, if only to get a

sense of the difficulties that begin to arise. We begin with the case d = n = 1 while allowing

r > 0 to be arbitrary. It is also useful to consider the case where we allow a second marked

point, which illustrates the kind of techniques needed, which do not carry through to the case

of degree d > 1 (largely due to tangencies that do not happen when working with lines).
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Example 3.3.1. Since no degenerations can happen, it is clear that M0,1(Pr, 1) is the universal

line over the Grassmannian, also known as the two-step flag variety F(1, 2, r + 1). From Pand-

haripande’s results, the Picard group of this space is spanned by H and L, which are of course

the Schubert divisors in the homogeneous space interpretation. From that interpretation we

know that the psuedoeffective cone is equal to the nef cone and is in fact spanned by H and L.

For a direct proof, note that a pencil of lines through a fixed point in Pr (which is taken as the

marked point) induces a moving curve on the moduli space whose intersection with L is 0, so

L is an extremal ray of the effective cone (corresponding to the fiber contraction

ev : M0,1(Pr, 1)→ Pr).

For the other extremal ray, consider a fixed line in Pr with a marked point moving there-

upon. This induces a moving curve which, since the line can be chosen to be disjoint from any

fixed codimension 2 linear space, has 0 intersection with H (this corresponds to the forgetful

morphism

M0,1(Pr, 1)→ M0,0(Pr, 1)).

Remark 3.3.2. Although we will not pursue this line of inquiry any further in this thesis, it

follows from the general theory of homogeneous varieties that the cone of effective codimension

k cycles on M0,1(Pr, 1) is spanned by Schubert classes for all k.

Example 3.3.3. On M0,2(Pr, 1), we begin to see degenerations occur when points collide.

On this space, the Picard group is generated by H, L1, and L2, and we have the relation

∆ = L1 + L2 − H for the only irreducible component of the boundary, which parametrizes

degree 1 maps from a transverse union of two copies of P1 with both marked points on the
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degree 0 component. We claim that the extremal rays are ∆,H,L1, and L2. To prove this, we

will find moving curves which are null on each face of the cone.

Take a general line L and a general point p in Pr, and consider the pencil of lines meeting

both. We can take the first marked point to be the intersection with L, and the second to be

p. This induces a moving curve in the moduli space which we call C1. Switching the marked

points gives another curve C2. Both are disjoint from the boundary and intersect H once, and

we clearly have CiLj = δij , where here δij is the Kronecker delta symbol. Thus Ci cuts out the

face spanned by ∆ and Li.

Take a general line in Pr, fix a point thereupon, and let another point move. When the

points coincide, the stable limit is a map of the type described in the definition of ∆, wherein

the degree 0 component is collapsed to the fixed point. Let C3 denote the moving curve in the

moduli space induced by letting the fixed point be the second marking, and let C4 be the curve

with the marked points switched. Each of these curve intersects ∆ once and is disjoint from H,

and we clearly have CiLj = δi,j+2. Thus Ci cuts out the face spanned by H and Li−2. Since we

have shown that the region connecting each of our extremal rays is in fact a face of the effective

cone, we have completed the computation.

Next, we will forget about marked points and consider incomplete linear systems, i.e. curves

whose degree exceeds the dimension of the projective space.

3.3.1 Eff(M0,0(P2, 3))

The Picard rank here is 2, with standard generators H and ∆ = ∆1 (here the boundary is

irreducible, which can be seen directly as it is clearly a blowup of P5 × P2∨). We also need the

divisor class NI, which is defined as follows: since all smooth cubics in P2 have genus 1, any

map parametrized by this moduli space has singular image, so the general map paramatrized
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by M (which has smooth domain) is not an isomorphism onto its image. NI is the class of

maps who “fail to be an isomorphism” along a fixed line. The basic strategy is to prove that

the extremal rays of the effective cone are ∆ and NI by exhibiting orthogonal moving curves.

We will also, for convenience, use the following lemma whose proof can be found in (17):

Lemma 3.3.4. Suppose that C is a moving curve in an irreducible effective divisor D satisfying

C.D < 0. Then D is extremal and rigid.

3.3.1.1 The curve C1

Let C1 denote the curve obtained by taking a pencil of lines in P2 together with a fixed conic

passing through the basepoint. If we fix a general reference line to establish a representative

of the class NI, its two points of intersection with the conic indicate the two members of the

pencil which contribute, hence C1.NI = 2. On the other hand, every map in the pencil has

reducible domain. The only contribution to ∆ comes from the exceptional divisor over the

basepoint, so C1.∆ = −1. By the lemma, ∆ is extremal.

3.3.1.2 The curve C2

Let C2 denote the curve obtained as follows: fix general points p, q1, ..., q5 ∈ P2, and consider

the pencil of cubic curves which are double at p and pass through q1, ..., q5. The general member

of this pencil is irreducible, while the singular members are the union of a smooth conic and

a line. Since the stable maps in the associated pencil fail to be an isomorphism only at p, by

calculating relative to a fixed line not through p we see C2.NI = 0. To compute the other

intersection number, observe that the line and the conic both need to pass through p, so we get

a ∆ contribution for each of the 5 points qi (which determines a line pqi, and a conic through

p and the remaining 4 base points), hence C2.∆ = 5. Since C2 is a moving curve, we conclude

that NI is an extremal ray of Eff. Since the Picard rank is 2, this completes the calculation.
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3.3.2 Eff(M0,0(P3, 4))

The Picard rank here is 3, with standard generators H, ∆1, and ∆2. We also again need

the divisor class NI, here and in higher dimensions more simply defined as the locus of maps

not isomorphic onto their images.

3.3.2.1 The curve C1

Let C1 denote the pencil of maps induced by a general pencil of (1, 3) curves on a smooth

quadric surface Q ⊂ P3. The topological Euler characteristic of the total space is

χ(P1 × P1) + (1, 3).(1, 3) = 4 + 6 = 10,

while the total space of an abstract pencil of smooth rational curves has χ = 4, so there must

be 6 singular fibers. Since a (1, 3) curve cannot break into a pair of conics (i.e. a pair of (1, 1)

curves), we conclude that C1.∆1 = 6 and C1.∆2 = 0, while C1.NI = 0 since every curve in the

(flat) family on Q has arithmetic genus 0.

3.3.2.2 The curve C2

Consider the Veronese surface v2(P2) ⊂ P5, its general projection the quartic surface V ⊂ P4,

and its general projection S ⊂ P3, a Steiner surface. While P2 ∼= v2(P2) ∼= V abstractly, S

acquires three double lines, which meet at a triple point. In terms of the original plane, the

singular locus of S is the image of a “triangle” of three lines in P2; each of these double covers

one of the double lines with branching over the triple point, which is the image of the three

vertices of the triangle.

Observe now that a pencil of conics in P2 induces a pencil of quartic curves on v2(P2) hence

a pencil of quartics on V . We claim that this pencil can be chosen so that the resulting pencil
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of curves on S never acquires a node. Obviously this can only happen along one of the double

lines, specifically if the underlying conic in P2 meets the underlying line in two points p, q of a

fiber of f : P2 → S ⊂ P3. This happens precisely if every conic through p also passes through

q, so obtaining a pencil of smooth quartics in P3 from this construction is a simple matter of

choosing a pencil of conics whose four base points avoid the triangle f−1(Ssing). So C2.NI = 0.

To compute the intersection with the boundary, observe that the three singular conics in

the underlying plane pencil are responsible for the only contribution. Since the singular conics

are transversely intersecting line pairs, they map to pairs of transversely (on S) intersecting

conics, so C2.∆2 = 3 and C2.∆1 = 0.

3.3.2.3 Conclusion

The preceding two test curves are both moving curves in in the moduli space, hence identify

faces 〈NI,∆2〉 and 〈NI,∆1〉 of the effective cone. By the Stability Lemma and the Theorem of

(2) on M0,0(Pd, d), 〈∆1,∆2〉 is also a face, so these three divisors constitute the three extremal

rays of Eff4,3,0.

3.3.3 Eff(M0,1(P2, 2))

The Picard rank here is 3, with standard generators H, ∆ = ∆1(1), and L = L1. We claim

that the extremal rays of Eff are Ddeg,∆ and L.

3.3.3.1 The curve C1

Fix a smooth conic in P2 and vary a marked point thereon. Evidently

C1.∆ = C1.Ddeg = 0.
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A general reference line intersects the conic twice, so the marked point lies on that line in two

fibers, hence C1.L = 2. Since C1 is a moving curve in the moduli space, we conclude that

〈Ddeg,∆〉 is an extremal face.

3.3.3.2 The curve C2

Consider a general pencil of conics marked at a base point. Since the pencil has four

noncollinear base points, C2.Ddeg = 0, and since the marked point is fixed, C2.L = 0. Finally,

since the pencil has three reducible members, C2.∆ = 3. Since C3 moves in the moduli space,

we conclude that 〈Ddeg,L〉 is an extremal face.

3.3.3.3 The curve C3

Fix a line ` and a point p in P2, and consider the pencil of lines Λt through p. We can

construct a pencil of stable maps by taking the double cover of Λt branched at p and Λt ∩ `,

with marked point p. Since the branch points never collide, the domain of every stable map in

the pencil is P1 and C3.∆ = 0. Since the marked point does not move, C3.L = 0. Finally, we

recall the class

Ddeg = 1
4(3H− 2∆),

so

C4.Ddeg = 3
4(C4.H) = 3

4 .

As such, 〈∆,L〉 is the final extremal face (or rather, any effective divisor whose base locus does

not contain Ddeg is in the span of the three indicated).

3.3.4 Eff(M0,1(P3, 3))

Proposition 3.3.5. The extremal rays of Eff3,3,1 are Ddeg, ∆1(0), ∆1(1), and L.
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Proof. We analyze a sequence of test curves, using the expression of an arbitrary effective divisor

as

a′H+ b′∆1(0) + c′∆1(1) + dL

to study the claimed expression as a nonnegative combination

aDdeg + b∆1(0) + c∆1(1) + dL.

3.3.4.1 Plan

Modulo the construction and analysis of test curves, the proof is basic linear algebra. How-

ever, the logical implications can easily get lost in the analysis, so we provide a roadmap:

suppose a < 0, then substituting in the expression for Ddeg we get a′ < 0. Therefore, to prove

what we want, namely a ≥ 0, it suffices to show a′ ≥ 0, which we do below. Then, since the

coefficient d is the same in both expressions, we simply show that d ≥ 0. Finally, we find curves

vanishing on Ddeg, L, and each of the boundary divisors in turn, verifying that b, c ≥ 0.

3.3.4.2 The curve C1

We claim that if an effective divisor has class D = aH + b∆1(0) + c∆1(1) + dL, then a ≥ 0.

Embed v3 : P2 ↪→ P9 via |O(3)| and project generally to P3. The proper transform of a pencil of

lines in P2 under this construction is a pencil of mostly smooth twisted cubics with a basepoint

(which we mark). This is a moving curve in the moduli space with C1.H = deg(v2(P2)) = 9,

and

C1.∆1(0) = C1.∆1(1) = C1.L = 0,

proving the claim.
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3.3.4.3 The curve C2

Next, we claim that d ≥ 0. Fix a smooth twisted cubic in P3 and vary a marked point on

it. Then C2.L = 3 and

C2.∆1(0) = C2.∆1(1) = C2.H = 0.

Since C2 is moving in the moduli space, we conclude that d ≥ 0.

3.3.4.4 The curve C3

Consider the complete linear system of

Dcub = 3H −
6∑
i=1

Ei

on S, the blowup of P2 in 6 general points. We obtain a moving curve C3 ⊂ M0,1(P3, 3) by

taking the proper transform under |Dcub| of a pencil of lines in P2, with the basepoint of the

pencil marked so C3.L = 0. The lines are mapped to curves of degree Dcub.H = 3 on the

embedded image of the cubic surface S ⊂ P3. The six singular curves all have the marked

point on the conic component since Dcub.Ei = −E2
i = 1, so we have the following intersection

numbers:

. H ∆1(0) ∆1(1) L

C3 3 6 0 0.

Thus C3.Ddeg = 0, proving that b ≥ 0.

3.3.4.5 The curve C4

Fix a line ` ⊂ P3 and a transverse plane Λ ⊂ P3. Let p = ` ∩ Λ, and consider the pencil of

conics Bt through p and three other general points q1, q2, q3 ∈ Λ. Then Ct := Bt ∪ `, with q1 as

marked point, induces a moving curve C4 ⊂ ∆1(0). We have C4.H = 1 and C4.L = 0, and the
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basepoint at p contributes −1 to ∆1(0). Meanwhile, the three singular fibers of Bt give rise to

three 3-component fibers of Ct. The “middle” component and one of the “edge” components

come from Bt, with one of the qi on the middle in each case and the other two on the edge.

Thus the node separating the edge from the rest of the curve has type ∆1(1) when q1 lies on

the edge component, and type ∆1(0) when q1 lies on the middle component, so we conclude

C4.∆1(0) = 0, C4.∆1(1) = 2.

We thus have C4.Ddeg = 0. Suppose now that D (as expressed throughout this proof) is

irreducible, effective, and not equal to ∆1(0). Then D∩∆1(0) has codimension ≥ 2 in M0,1(P3, 3),

and the curve class C4 (being moving in ∆1(0)) has C4.D ≥ 0. We conclude that c ≥ 0, finishing

the proof.
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CHAPTER 4

PROOFS OF MAIN THEOREMS

4.1 The First Theorem

Recall the statement of our first theorem on the rational Picard groups of one-point Gromov-

Witten varieties:

Main Theorem 1. For a point p ∈ Pr and any i = 1, ..., n, the rational Picard group of

Mp := ev−1i (p) is a quotient of PicQ(M0,n(Pr, d)); the kernel of the quotient map is generated

by Li = ev∗iOPr(1).

The proof essentially boils down to the fact that the evaluation maps are locally trivial

fibrations.

Proof. During this proof, we will abbreviate M0,n(Pr, d) to M. Furthermore, we will be working

with a single evaluation map, so we will drop the index and simply write ev and L. Consider

the closed subvariety of M obtained by taking the inverse image of a hyperplane in Pr. After

twisting by Q, the excision sequence of Hartshorne II.6.5(c) evaluates to

0→ Q→ Pic(M)→ Pic(M \ ev−1(H))→ 0,

where the first map sends 1 to L. We claim that

M \ ev−1(H) ∼= Mp × Ar,
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which implies the result. Set-theoretically,

M \ ev−1(H) = {(C, x, f) | f(x) ∈ Pr \H} ,

while

Mp × Ar = {(C, x, f, q) | f(x) = p} .

We wish to give an isomorphism; we have maps

M \ ev−1(H)→ Mp

(C, x, f) 7→ (C, x, αf(x) ◦ f),

where α is a family of automorphisms of Pr constant along fibers of ev which takes f(x) 7→ p

for all elements of the domain. If we choose coordinates (x0 : · · · : xr) ∈ Pr such that H is given

by the vanishing of x0, p = (1 : 0 : · · · : 0), and f(x) = (a0 : a1 : · · · : an), the family is given by

the matrix



1/a0 0 0 0 · · · 0

−a1/a0 1 0 0 · · · 0

−a2/a0 0 1 0 · · · 0

−a3/a0 0 0 1 · · · 0

...
...

...
...

. . .
...

−ar/a0 0 0 0 · · · 1



.

Furthermore, restricting the evaluation morphism yields
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M \ ev−1(H)→ Ar

(C, x, f) 7→ f(x).

Since we have an inverse isomorphism

Mp × Ar → M \ ev−1(H)

[(C, x, f), q] 7→ (C, x, α−1q ◦ f),

we are done.

Remark 4.1.1. Although the case of two-point Gromov-Witten varieties should be similarly

straightforward due to the (r+2)-transitivity of the PGL action on closed points, the necessity

of cutting away a hyperplane makes constructing another compatible local trivialization highly

nontrivial (perhaps impossible). As such, more advanced techniques may be necessary.

4.2 The Second Theorem

Our primary result is

Main Theorem 2. The extremal rays of the effective cone of M0,1(Pr, d) for r ≥ d are

1. Ddeg, the divisor of stable maps whose image does not span a hyperplane in Pd.

2. L, the divisor of stable maps sending the marked point p to a fixed hyperplane.

3. Those rays which pullback to Sd+1-invariant extremal rays under Kapranov’s embedding

K : M0,d+2 ↪→ M0,1(Pd, d).
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This is a generalization of a theorem of Coskun-Harris-Starr:

Theorem 4.2.1. (2) A Q-divisor class on M0,0(Pr, d), where r ≥ d, is psuedoeffective if and

only if it lies in the Q>0-linear span of Ddeg and the irreducible components of the boundary.

When r < d, every effective divisor lies in this span (in this case, by Ddeg we mean the divisor

with class

1

2d

(d+ 1)H−
bd/2c∑
k=1

k(d− k)∆k,d−k

 ,
which is no longer effective).

The proof of the above cited theorem proceeds by the construction of moving curves which

cut out the faces of the effective cone. If the Harbourne-Hirschowitz conjecture is proved,

Coskun-Harris-Starr have constructed curves which will then cut out the faces exactly. In the

meantime, they have also constructed infinite sequences of curves which cut out the cone in the

limit, which is sufficient to prove the statement.

In our investigations of the pointed case, several things became apparent. First, a curve

which lies entirely in the boundary introduces complications into any systematic attempt to

study the cone. Second, everything would work out smoothly if we could find lots of families

of rational normal curves which contained basepoints, since the basepoint provides a natural

choice of marked point which has the advantage of making the divisor class L vanish. Thirdly,

since families with basepoints are not sufficiently abundant, one must mark sections, but this

is not conducive to constructing useful moving curves.

Instead, we have found that an argument due to Keel which does not construct moving curves

(instead proving positivity of coefficients by a different manner) can be slightly generalized to

our situation:



38

Proof. By the stability lemma, we need only concentrate on the case r = d. Suppose D is an

effective divisor class on M0,1(Pd, d). The claim is that we can write

D ≡ aDdeg + `L+
d−1∑
k=1

dk∆k, a, `, dk ≥ 0,

where ∆k parametrizes maps from reducible curves with degrees k and d−k on the components,

and the marked point on the degree k component. Positivity of a, as in the unpointed case,

follows from taking the image of a pencil of lines in P2 under the d-th Veronese embedding

which is then projected to Pd from a general linear space of the appropriate dimension, yielding

a moving curve Ca. We take the basepoint of the pencil to be our marked point, so this curve

has intersection 0 with L. Furthermore, observe that all of these maps have irreducible domain

so that the curve meets each ∆k trivially. Finally, the images of a finite number of these maps

meet a general codimension 2 linear space. Since Ca is a moving curve and

Ca.Ddeg =
d+ 1

2d
Ca.H =

d(d+ 1)

2
≥ 0,

we conclude that a ≥ 0.

Next, consider C`, a moving curve obtained by fixing a rational normal curve in Pd and

varying a marked point thereupon. Again, no maps in this family have reducible domain so

C`.∆k = 0 for all k, and all of the images are the fixed rational normal curve so C`.Ddeg = 0.

If we fix a hyperplane in Pd, the moving marked point will intersect it d times, so C`.L = d.

Since C` is a moving curve, we conclude that ` ≥ 0.

Finally, we use Kapranov’s embedding: fix p1, ..., pd+2 ∈ Pd linearly general, and consider

the subscheme of M0,1(Pd, d) parametrizing stable maps which meet the d+ 2 points and take
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the marked point to p1. This subscheme is isomorphic to M0,d+2, so we have an embedding

K : M0,d+2 ↪→ M0,1(Pd, d) and the divisor ∆k restricts to the boundary divisor parametrizing

two-component rational curves with one component containing the labelled marked point p1

and k additional unlabelled (but still marked) points, i.e.

K∗(∆k) =
∑

1∈S,|S|=k+1

BS,T .

In the unpointed case, it was observed by Keel that since the embedding is Sd+2-invariant,

the boundary divisors of the Kontsevich space restrict precisely to the boundary divisors of

M0,d+2/Sd+2, which are precisely the extremal rays of that space by a theorem of Keel and

McKernan.

We observe that, since the embedding is also tautologically invariant under subgroups of

Sd+2, in particular the subgroup isomorphic to Sd+1 which fixes p1, we obtain the analogous

restrictions in the one-pointed case: the display in the last paragraph computesK∗(∆k) = Bk+1,

where we are as in Chapter 2 using Bi to denote the divisor on M0,d+2/Sd+1 which partitions

the markings into sets of i (containing the labelled point) and d− i+ 2 points. Note also that

by construction (all maps pass through a collection of d + 2 general points) the image of K is

disjoint from Ddeg. Furthermore, we can choose the reference hyperplane for computing K∗(L)

to be disjoint from p1, ..., pd+2, so that line bundle is trivial. Finally, given an arbitrary effective

divisor D on the Kontsevich space, we can choose the points defining K to avoid the images of
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the maps parametrized by D so that D pulls back to an effective divisor DK ⊂ M0,n and we

can apply results on the effective cone of M0,d+2, i.e.

DK = K∗(D)

= K∗

(
aDdeg + `L+

d−1∑
k=1

dk∆k

)

=

d−1∑
k=1

dkBk+1.

By effectivity of DK and the proposition 2.2.2 (the effective cone of M0,d+2/Sd+1 is generated

by boundary divisors), we conclude that dk ≥ 0 for all k = 1, ..., d−1, hence we have completely

characterized the effective cone of M0,1(Pd, d).

Corollary 4.2.2. The extremal rays of the effective cone of the Gromov-Witten variety Mp ⊂

M0,1(Pd, d) are

1. Ddeg, the divisor of stable maps whose image does not span a hyperplane in Pd.

2. Those rays which pullback to Sd+1-invariant extremal rays under Kapranov’s embedding

K : M0,d+2 ↪→ M0,1(Pd, d).

Proof. Observe that since it is defined in terms of fixed points which are taken as the mark-

ings, the Kapranov Embedding factors through Mp1 (recalling the notation from the first main

theorem):

M0,d+2
� � K //
� r

K̃

$$

M0,1(Pd, d).

Mp1

, �

99
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Furthermore, the curve Ca (the d-th Veronese twist of a pencil of lines in the plane) also

takes a basepoint as the marked point. As such, the argument from the previous theorem goes

through mutatis mutandis (simply dropping all mentions of the divisor L).
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