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SUMMARY 

Modeling the contact problem is a fundamental feature in a variety of multibody system (MBS) 

dynamics applications. It is of particular importance in the area of railroad vehicle dynamics. In 

this case, the interaction of the vehicle and track can significantly impact the kinematics and 

kinetics of the system. In many cases, the rail is treated as a rigid solid, however there are some 

physical phenomena, such as the effect of broken or missing ties, which cannot be appropriately 

captured under this assumption. It is for this reason that the development of an alternative 

method for modeling the flexibility of the track is one of the contributions of this thesis. There 

are, of course, many phenomena which can be captured under the assumption that the rail is a 

rigid solid. In a subset of these cases, the geometry can vary along the length of the rail as is 

evident in special trackwork, such as turnouts, frogs, and crossing diamonds. These cases differ 

from the case of stock rail in which the rail geometry has no appreciable variation along the 

length of the rail. To accurately model this geometry for the rigid body contact problem, there are 

certain criteria related to the position and spatial derivatives of the surface which must be taken 

into account for the contact evaluation method chosen. Many existing contact surface 

representations do not meet these criteria for certain contact evaluation methods. As such, it is 

one of the contributions of this thesis to develop a contact surface representation that satisfies 

these requirements. 

 The finite segment method (FSM) has been used in the literature to model the dynamics 

of a deformable body by using a set of rigid bodies connected by elastic force elements. This 

approach can be applied, as demonstrated in this thesis, to the simulation of some rail 

movements. In order to ensure that the rail geometry is not distorted as the result of the finite 

segment   displacements,   a  new  track  model  that  consistently  integrates  the  absolute  nodal  
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SUMMARY (continued) 

coordinate formulation (ANCF) geometry and the FSM is developed. ANCF finite elements 

define the track geometry in the reference configuration as well as the change in the geometry 

due to the movement of the finite segments of the track. Using ANCF geometry and the FS 

kinematics, the location of the wheel/rail contact point is predicted on-line and used to update the 

creepage expressions due to the finite segment displacements and rotations.  

 The location of the wheel/rail contact point and the updated creepage expressions are 

used to evaluate the creep forces. The three-dimensional non-conformal elastic contact 

formulation – algebraic equations  (ECF-A), which allows for wheel/rail separation, is used in 

this thesis to determine the point of contact between two rigid bodies. The rail displacement due 

to the applied loads is modeled by a set of rigid finite segments that are connected by a series of 

spring-damper elements. Each rail FS is assumed to have all six rigid body degrees of freedom. 

The equations of motion of the finite segments are integrated with the railroad vehicle system 

equations of motion in a sparse matrix formulation. The resulting dynamic equations are solved 

using an explicit predictor-corrector numerical integration scheme that has a variable order and 

variable step size. The finite segments may be used to model specific phenomena that occur in 

railroad vehicle applications, including rail rotations and gage widening. The procedure used in 

this thesis to implement the FSM in a general purpose MBS computer program is described. Two 

simple models are presented in order to demonstrate the implementation of the FSM in MBS 

algorithms.  

 In order to examine in detail the applicability of using the FSM for modeling track 

flexibility, three methods suited to this  purpose are  presented while conclusions about their 

implementations and features are made. The first method is  based  on  the  floating  frame  of  
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SUMMARY (continued) 

reference (FFR) formulation which allows for the use of a detailed finite element (FE) mesh with 

the component mode synthesis technique in order to obtain a reduced order model. The second is 

the FSM in which the flexible rail is modeled as a finite number of rigid elements that are 

connected by springs and dampers. This method requires the use of rigid MBS formulations 

only. In the third method, the FFR formulation is used to obtain a model that is equivalent to the 

FSM model by assuming that the rail segments are very stiff; thereby allowing the exclusion of 

the high frequency modes associated with the rail deformations. This FFR/FSM model 

demonstrates that some rail movement scenarios, such as gage widening, can be captured using 

the FE/FFR formulation. The three procedures FFR, FSM, and FFR/FSM will be compared in 

order to establish differences among them and analyze the specific application of the FSM to 

modeling track flexibility. Convergence of the methods is analyzed. The three methods proposed 

in this thesis for modeling the movement of three-dimensional tracks are used in conjunction 

with ECF-A which predicts contact points on-line and allows for updating the creepages to 

account for the rail deformations. Several conclusions will be drawn in view of the results 

obtained. The limitations of using the finite segments approach for modeling the track structure 

and rail flexibility are also discussed. 

 While the modeling of the flexibility of bodies in contact is important for many models, 

contact between two rigid bodies can also be a fundamental  feature  in  a  variety  of  models, 

including those focused on railroad vehicles. Many procedures have been proposed to solve the 

rigid body contact problem, most of which belong to one of two categories: off-line and on-line 

contact search methods. This thesis will present the development of a contact surface geometry 

model for the rigid body contact problem in the case where an on-line three-dimensional non-  



 

xii 
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conformal contact evaluation procedure, such as ECF-A, is employed. It is shown that the 

contact surface must have continuity in the second order spatial derivatives when used in 

conjunction with ECF-A. Many of the existing contact surface models rely on direct linear 

interpolation of profile curves which leads to first order spatial derivative discontinuities. While 

these procedures may be well suited for use in the off-line approach, these procedures lead to 

erroneous spikes in the prediction of contact forces when an on-line approach such as ECF-A is 

employed. To this end, an ANCF thin plate surface model is developed in order to ensure second 

order spatial derivative continuity which satisfies the requirements of the contact formulation. A 

simple example of a railroad vehicle negotiating a turnout, which includes a variable cross-

section rail surface, is tested for the cases of the new ANCF thin plate element surface, an 

existing ANCF thin plate element surface with first order spatial derivative continuity, and the 

direct linear profile interpolation method. A comparison of the numerical results reveals the 

benefits of using the new ANCF surface geometry developed in this thesis. 
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CHAPTER 1 

INTRODUCTION 

In multibody system (MBS) dynamics, the contact between various bodies in the system is a 

fundamental feature for a variety of applications. One such application is the modeling of contact 

between the wheels of a vehicle and the rails in a railroad vehicle dynamics simulation. The 

interaction between the vehicle and the rails can have a significant impact on both the kinematics 

and kinetics of the system. One common assumption in these simulations is that the rails may be 

treated as rigid solids. In many cases this assumption causes no hindrance, however in some 

cases, such as that of broken or missing ties, this assumption leads to a poor model of the 

physical system. It is for this reason that an alternative method for modeling the flexibility of the 

track is one of the contributions of this thesis. As previously mentioned, there are many cases in 

which the flexibility of the track can be neglected without sacrificing the accuracy of the model. 

In a subset of these cases, the geometry of the rail can be of paramount importance for an 

accurate prediction of the systems dynamic response. In the majority of simulations, the vehicle 

is traveling along stock rail which has a constant surface profile along the length of the rail. 

However there are some cases, for example the case of special trackwork, such as turnouts, 

frogs, and crossing diamonds, in which the geometry of the rail varies along its longitudinal 

length. In this case the geometry of the track can have a significant impact on the motion of the 

vehicle, and as a consequence, the geometry must be accurately modeled in order to correctly 

simulate the motion of the vehicle. For certain contact evaluation procedures implemented in 

MBS programs, there are criteria related to the position and spatial derivatives of the surfaces 

which must be taken into account for an accurate prediction of the contact forces. Many of the 

existing contact surface representation techniques do not meet these criteria for certain contact 



 

2 

evaluation procedures. As such, it is one of the contributions of this thesis to develop a contact 

surface representation that satisfies these requirements. 

 

1.1 Background 

In MBS dynamics, the transient motion of a collection of bodies connected via elastic force 

elements and various joint types is analyzed. Analytically, this results in a set differential and 

algebraic equations (DAEs) which must be solved as is described in the literature (Huston and 

Liu, 2001; Roberson and Schwertassek, 1988; Shabana, 2005; Shabana, 2010; Shabana 2012). 

The non-linear algebraic equations generally result from the kinematic constraints imposed upon 

the motion of the bodies in the system. As is described in the literature (Huston and Liu, 2001; 

Roberson and Schwertassek, 1988; Shabana, 2005; Shabana, 2010), these equations can be used 

to represent a wide variety of joint types ranging from simple revolute joints to universal joints. 

Additionally, these equations can be used to define the conditions for contact between two 

bodies as is described by (Kalker, 1979; Kalker, 1990;Shabana et al., 2008).  

 The bodies contained in a MBS may be considered as either rigid or flexible as described 

by Shabana (Shabana, 2005; Shabana, 2012). In the physical world, an arbitrary body is 

considered to be flexible as it can undergo deformation provided sufficient force is applied. In 

the context of MBS applications, the amount of deformation many bodies undergo is too small to 

impact the bulk motion of the system and are therefore considered to be rigid and are 

numerically incapable of deformation. Other bodies, such as those considered to be flexible in 

the MBS context, are modeled with additional coordinates which represent the elastic 

characteristics of the bodies which allow them to undergo deformation. This is typically 

accomplished through either the floating frame of reference (FFR) formulation (Canavin and 

Likins, 1977; Shabana and Schwertassek, 1997; Shabana, 2005; Shabana, 2012) for the case 
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where the deformations are small or through the absolute nodal coordinate formulation (ANCF) 

(Shabana, 1997; Shabana, 1998; Shabana, 2005; Shabana, 2012) for the case where the 

deformations are large.  

 The finite element method (FEM) can be combined with the FFR formulation to develop 

a detailed FE mesh; the dimension of which can be significantly reduced through component 

mode synthesis techniques. In an alternative approach, called the finite segment method (FSM), 

flexible solids are modeled as a series of rigid bodies connected with spring-damper elements. 

The FSM was developed, as an alternative to the FEM, to model MBS applications including 

robotics and spatial systems. Several authors have worked on developing this method and have 

obtained high quality results for some applications. Different FSM variations and some examples 

can be found in the literature (Connelly and Huston, 1994a; Connelly and Huston, 1994b; 

Huston, 1981; Wang and Huston, 1994; Wittbrodt and Wojciech, 1995; Wittbrodt et al., 2006). 

In these studies, several variations of the FSM are proposed; for example, the number of degrees 

of freedom between finite segments (Wang and Huston, 1994; Wittbrodt et al., 2006), the choice 

of parameters for the spring-damper elements (Huston, 1981; Wittbrodt et al., 2006), as well as 

linearization in transformation matrices (Huston, 1981; Wittbrodt and Wojciech, 1995) have 

been the subject of discussion. 

 The set of DAEs governing multibody systems may be highly nonlinear due to the 

application of constraint equations and certain flexible body material models. Due to these non-

linearities, closed form solutions are often not available and the set of DAEs must be solved 

numerically. Typically a numerical integration scheme, such as the explicit Adams-Bashforth 

procedure (Shampine and Gordon, 1975), is employed. The result is an approximation to the 

transient evolution of the position, velocity, acceleration, and forces associated with the MBS. In 
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this thesis, the differential and algebraic equations of motion are solved in all numerical 

examples using the general purpose multibody code SAMS/2000 (Shabana, 2010). 

 An example of one such MBS is a railroad vehicle traveling along a track with variable 

geometry. The accuracy of the dynamic analysis of railroad vehicles depends on the accuracy of 

the wheel/rail contact model, the representation of the vehicle components and its suspension 

elements, the description of the track geometry, and the track elasticity model. This thesis 

focuses on methods which improve upon existing procedures for modeling the track elasticity 

and geometry. This is accomplished by introducing two new methods. In the first method, a 

simplified approach to modeling the flexibility of the track using the FSM is introduced. In the 

second method, a detailed approach to modeling the geometry of rails with variable profiles, 

such as turnouts, is presented. The later approach may also be extended to general rigid body 

contact problems. 

 

1.2 FSM Rail Modeling 

 In this thesis, the FSM is used to model both track structure and rail flexibility. With this 

approach, the rail is modeled as a set of moveable rigid bodies connected by elastic force 

elements. Each moveable rail segment will be referred to as a finite segment (FS) which is 

assumed to have known length and inertia properties. A FS may represent a section of either 

tangent or curved track. In the case of unconstrained motion, the FS will have six degrees of 

freedom including three translations and three rotations. The motion of a FS is affected by the 

forces resulting from both the contact with the wheel and the constraints applied to the FS. For 

generality, the track geometry is rigidly attached to the corresponding FS at its boundaries as 

defined by the longitudinal rail arc length parameter. The track geometry is developed using a 
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pre-processor computer program that is described in the literature (Shabana et al., 2008). The 

pre-processor output provides the geometry data required to predict the location of the contact 

point between the wheel and the finite segment or rail on-line. The three-dimensional wheel/rail 

contact model used in this thesis requires the evaluation of the spatial derivatives at the point of 

contact with respect to the wheel and rail surface parameters. In order to accurately evaluate 

these derivatives, three-dimensional fully parameterized ANCF 3D beam elements are employed 

(Shabana, 2005; Shabana, 2012). The ANCF description provides a position vector field which 

can be used to accurately define the derivatives that are required in the formulation and solution 

of the nonlinear contact conditions.   

 Modeling the deformation of the structural elements of railroad tracks is necessary in 

order to be able to develop detailed models that address different issues related to railroad 

vehicles performance, dynamics, and stability. Studies related to passenger comfort, damages in 

the track, and/or noise generation, require nonlinear formulations of the vehicle/track system in 

which the deformation of the track components play a key role. This fact makes it fundamental 

to develop methods that describe such deformation. The effect of the track structure (sleepers, 

ballast, subgrade, etc.) was the focus of several previous investigations (Goicolea and Antolín, 

2011; Wanming and Xiang, 2008; Zhai et al., 2004). Several approaches have been employed to 

model the track structure and rail flexibility. Some researchers proposed the use of a simplified 

beam on elastic foundation to model rail flexibility and track structure (Cai and Raymond, 1994; 

Duffy, 1990; Grassie and Cox, 1982; Ilias and Muller, 1994; Ishida et al., 1997). Recently, 

Shabana et al. proposed the use of FFR and FEM to model rail flexibility and track structure 

(Shabana et al., 2007). The integration of the FFR formulation and the FEM generally leads to a 

non-linear MBS approach in which component modes can be used to systematically reduce the 
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number of the deformation modes. The FFR formulation was also validated as a rail flexibility 

analysis approach (Rathod et al., 2009).  

The use of the FSM to describe the deformation of the rail could offer an alternative to 

the use of the more general FEM in certain applications. In this thesis, the FSM and ANCF 

geometry are integrated in order to accurately describe the track geometry and deformation. In 

this model, the rigid finite segments are used to represent a flexible continuum material by 

connecting the segments with spring-damper elements similar to those proposed by Wittbrodt et 

al. (Wittbrodt et al., 2006). The method of Wittbrodt et al. leads to a system of rigid bodies, each 

of which has constant mass and inertia properties. One beneficial aspect of this procedure is that 

it may be contained entirely within a MBS program without the need for a third party FEM 

modeling package. In this thesis, the FFR formulation will serve as baseline for comparison with 

the proposed FSM rail model in order to demonstrate the positive aspects and limitations of these 

procedures. 

 

1.3 Contact Surface Modeling 

 The later portion of this thesis is concerned with modeling the geometry of surfaces for 

use in the solution of the rigid body contact problem. As previously mentioned, contact between 

two bodies is a fundamental feature in a variety of applications in MBS dynamics. For example, 

in the study of the wheel/rail contact in a railroad vehicle dynamics model, an accurate geometric 

model and a robust contact formulation are prerequisites for a realistic prediction of the 

wheel/rail interaction forces. To this end, many methods have been introduced which rely on 

curve geometry to represent the contact surfaces such as the curve network representation 

(Shabana et al., 2008). Here, a profile curve of the rail surface is swept along a space curve 
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which represents the centerline of the rail in order to define the contact surface of the rail. It has 

been shown that this method is viable in the case where the profile of the rail is constant; 

however it is insufficient for rail sections which have geometry that varies along the rail space 

curve. It is one of the contributions of this thesis to develop a new method with which a surface 

with variable geometry may be modeled more accurately for the rigid body contact problem. 

 Many procedures have been proposed to solve the rigid body contact problem, most of 

which belong to one of two categories: off-line and on-line contact search methods. In off-line 

contact search methods, a significant amount of work is performed at a pre-processing stage to 

determine the location of a contact point between two surfaces under a limited range of 

scenarios. This data is then compiled in tabular form as a function of a reduced set of parameters 

which are interpolated at run-time to determine the location of the contact point as well as other 

parameters required to determine the contact forces. Due to the complexity of the contact 

problem, these tables are often formed under the assumption that one of the two bodies is fully 

constrained to the ground. An example is the method applied by Kassa et al. in which a contact 

table is formed to solve the wheel/rail contact problem for the case of variable profile rail 

sections (Kassa et al., 2006). A similar approach is presented by Alfi and Bruni (Alfi and Bruni, 

2009). Sugiyama et al. presented a method in which the derivatives of the profile curve, which 

are described using a three-layer spline, are also computed via linear interpolation of the two 

adjacent profiles (Sugiyama et al., 2011; Sugiyama et al., 2012). Kassa et al. used the distance 

traveled along the rail and the lateral shift of the vehicle to define a set of tabular contact 

functions which contain the information necessary to define the location and forces associated 

with the wheel/rail contact. Linear interpolation between these contact functions is performed at 

run-time with some success as demonstrated by Kassa and Nielsen (Kassa and Nielsen, 2008) 
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where a series of tests were performed to compare measured and numerical results. It is 

important to note that many off-line tabular contact evaluation methods do not account for 

relative rotation between the two bodies. In many scenarios this approximation is sufficient, as is 

demonstrated by the validation presented in the literature (Kassa and Nielsen, 2008); however 

this assumption is only valid provided that the relative rotations remain small. 

 In on-line contact search methods, computational geometry (CG) methods are employed 

at run-time to determine the location of a contact point between two bodies. Additional 

parameters are often computed in order to determine the associated contact forces. To this end, 

the elastic contact formulation – algebraic equations (ECF-A), which requires the solution of a 

set of four nonlinear algebraic equations (Pombo and Ambrósio, 2003; Pombo et al, 2007; 

Shabana et al., 2008), is chosen to solve for the location contact points in this thesis. This 

formulation is based on four non-linear equations that are solved numerically using a Newton-

Raphson algorithm to determine the four surface parameters which define the geometry of the 

wheel and rail surfaces. The wheel and rail surface parameters are used to define the location of 

the contact points. The geometry at the contact point, the material properties, and the creepages 

are used to calculate the normal and creep forces at the point of contact. Several methods can be 

used to calculate the creep forces between two bodies in rolling contact (De Pater, 1988; Garg 

and Dukkipati, 1984; Kalker, 1979; Kalker 1990). However, this thesis employs Kalker’s 

USETAB program to determine these forces (Vollebregt, 2008). 

 Many authors have made use of curve geometry for the on-line contact problem with 

some success. For example, Schupp et al. presented a method in which linear interpolation 

between two adjacent profiles is used at run-time to determine an intermediate profile of the rail 

at the current location (Schupp et al., 2004). Wan et al. presented a method of reducing the three-
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dimensional problem to a two dimensional case where only the distance along the trajectory 

curve and vertical height of the rail profile are considered (Wan et al., 2013). The common 

feature of these approaches is the use of curve geometry to represent three-dimensional surfaces. 

As with the tabular approach, this method is successful over a range of scenarios but cannot 

capture the full range of features available in surface-based geometric methods. 

 Since the contact problem is highly non-linear, the off-line approach has an advantage in 

computation time needed for a simulation; however, this method is limited to the range of 

scenarios calculated at the pre-processing stage, giving the on-line approach an advantage in 

robustness. There also exists an additional limitation in the direct profile curve interpolation 

method presented by Schupp et al. (Schupp et al., 2004) when employed in conjunction with 

either the three-dimensional non-conformal elastic or constraint contact approaches (Shabana et 

al., 2008). As was discussed by Sinokrot et al. (Sinokrot et al., 2008), the elastic contact 

approach requires second order spatial derivative continuity (��) throughout the contact surface 

while the constraint contact approach requires third order spatial derivative continuity (��). A 

surface created via linear interpolation using more than two curves will have a discontinuity in 

the first order spatial derivatives at the location of each interior profile, thus the surface has only 

position level continuity (��). A direct consequence of this, as will be shown in the numerical 

results of a comparative example in this thesis, is a fictitious spike in the predicted contact forces 

at the location of the spatial derivative discontinuity. It is for this reason that a new technique is 

proposed in this thesis to model a variable profile surface without the need for direct 

interpolation between profile curves at run-time. 
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 Rather than using the curve based approach previously discussed, the new method 

developed in this thesis relies on the construction of a surface at a pre-processing stage using a 

mesh of ANCF thin plate elements (Dmitrochenko and Pogorelov, 2003; Shabana, 2012). The 

most direct approach to generating a surface composed of ANCF thin plate elements begins with 

the construction of a non-uniform rational B-spline (NURBS) surface which may be easily 

converted into a collection of ANCF thin plate elements using a technique discussed in a later 

chapter of this thesis. Note that ANCF elements are preferred to NURBS surfaces in this context 

as ANCF surfaces may easily be adapted for use in the modeling of contact with flexible 

surfaces. ANCF solid elements with similar surface continuity conditions may be developed in 

the future to model contact between flexible solids such as a wheel and rail. Due to the fact that 

NURBS surfaces may employ a very fine discretization, the conversion from NURBS to ANCF 

may also be applied by direct evaluation of the position and spatial derivatives of the NURBS 

surface to generate the ANCF nodal coordinates. This provides the option for the user to select a 

smaller subset of the potential ANCF nodes thereby producing a more coarse mesh than is 

generated by direct transformation from NURBS to ANCF. 

 Many methods are available for the construction of NURBS surfaces. This task is 

commonly divided into two categories based on the type of input: surface data points with 

regular or irregular spacing. Piegl and Tiller presented a series of surface reconstruction 

techniques which rely on regularly spaced data as input  (Piegl and Tiller, 1997). This is ideal in 

the case where a device which measures profile curves of a surface is used to generate the input 

data. Similar procedures are implemented in the open source NURBS package SISL (SINTEF 

ICT, 2005), which is used for NURBS surface reconstruction in this thesis. This category of 

methods is limited in accuracy by the spacing of the input profile curves as any surface features 
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between the profile curves are omitted from the reconstructed surface. More recently, three-

dimensional scanning technology has become commercially available and many authors have 

developed techniques for reconstructing NURBS surfaces from the scattered data produced by 

these devices. Gálvez and Iglesias presented an excellent survey of the current state of the art in 

scattered data surface reconstruction techniques as well as a new (and highly efficient) method 

for reconstructing NURBS surfaces using particle swarm optimization techniques (Gálvez and 

Iglesias, 2010). This method is an ideal choice for the generation of a NURBS surface as a 

highly accurate surface may be generated with a limited investment of time and resources. 

 Mikkola et al. presented an ANCF thin plate element which has first order derivative 

continuity (��) at the element boundaries in a surface mesh (Mikkola et al., 2012). This thin 

plate element was tested for use as a rigid contact surface model and was found to provide a 

significant improvement over the direct linear interpolation method. It still suffers, however, 

from the issue of second order spatial derivative discontinuities and the associated fictitious 

spikes in the contact forces. Additionally, it is shown that with the application of constraints, as 

proposed by Lan and Shabana (Lan and Shabana, 2010), �� continuity cannot be achieved for 

this element without the destruction of the element's intended geometry. To this end, a new 

ANCF thin plate element which has �� continuity at the element boundaries in a surface mesh is 

developed and tested in this thesis. A comparison between the three aforementioned methods is 

presented. 

 

1.4 Scope and Objectives of the Thesis 

Chapter 2 was first published in Acta Mechanica (Hamper et al., 2012a) and is reproduced in 

this thesis with permission which is provided in Appendix A. In this chapter, a discussion of 
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finite segment kinematics and the ANCF discretization used to define the rail geometry is 

presented. Both the position and velocity functions, which are required for use in the contact 

formulation and creepage evaluation, are presented. It is shown that these discrete rail segments 

may be employed without distortion of the rail geometry in the case in which they are stationary.  

The contact conditions used in the on-line prediction of the wheel/rail contact points in the case 

where the FSM is employed are discussed. The equations of motion in which the FSM rail 

description is used are presented. Additionally, the geometric formulation chosen to represent 

curved track is discussed. Subsequently, two numerical examples are presented which 

demonstrate the ability of finite segments in modeling both stationary and moving rail sections. 

 Chapter 3 was first published in the ASME Journal of Computational and Nonlinear 

Dynamics (Hamper et al., 2012b) and is reproduced in this thesis with permission which is 

provided in Appendix B. In this chapter, the modeling of rail flexibility using FSM and FFR is 

discussed. The method with which the stiffness and damping properties which define the 

connectivity between finite segments is presented. A brief summary of the FFR formulation 

which is used to develop the detailed track model is provided. An alternative approach which 

explains how to use the FFR formulation with component mode synthesis methods to obtain a 

model that is equivalent to the FS model is developed. This is achieved by developing a FE mesh 

for the model in which the rail finite elements can experience only rigid body displacements. The 

on-line contact formulation for both the cases of FSM and FFR rail are presented. A simple 

railroad example that serves to validate the new methods applied and comment on the 

approaches used is provided. This railroad example allows for highlighting the differences 

between the methods. 
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 Chapter 4 was first published in the ASME Journal of Computational and Nonlinear 

Dynamics (Hamper et al., 2014) and is reproduced in this thesis with permission which is 

provided in Appendix B. In this chapter, the development of a new contact surface geometry 

model is presented. First, the existing curve network geometry procedure is provided in order to 

shed light on the problems of discontinuities in the spatial derivatives and how this problem 

negatively impacts the contact force prediction. Following this, ANCF thin plate surface 

geometry is discussed beginning with the existing �� plate element available in the literature 

(Mikkola et al, 2012). The associated spatial derivative continuity constraints are also discussed. 

This leads to the development of a new ANCF thin plate element which has �� continuity. This 

element is presented along with the conditions necessary to maintain  �� continuity. A set of 

guidelines which may be used in the construction of a surface mesh composed of ANCF thin 

plate elements is discussed. It is also shown that this new ANCF thin plate element may be 

converted to an equivalent Bezier patch and vice-versa. The three-dimensional non-conformal 

contact formulation for the case of generic rigid bodies is presented. A brief discussion of the 

equations of motion used in the case of rigid body contact is provided. Finally, a numerical 

example comparing the results of the three different methods employed to model contact 

surfaces is presented to illuminate the negative impact of using contact surface models with 

insufficient spatial derivative continuity in conjunction with on-line approaches such as ECF-A. 

It is shown that the new ANCF plate element presented alleviates these issues. 
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CHAPTER 2 

FINITE SEGMENT RAIL MODELING 

In the finite segment method (FSM), the dynamics of a deformable body is described using a set 

of rigid bodies that are connected by elastic force elements. This approach can be adapted for 

use, as demonstrated in this chapter, in the simulation of some rail movements. In order to ensure 

that the rail geometry is not distorted as the result of the finite segment (FS) displacements, a new 

track model that consistently integrates the absolute nodal coordinate formulation (ANCF) 

geometry and the FSM is developed. ANCF finite elements define the track geometry in the 

reference configuration as well as the change in the geometry due to the movement of the finite 

segments of the track. Using ANCF geometry and the finite segment kinematics, the location of 

the wheel/rail contact point is predicted on-line and used to update the creepage expressions due 

to the FS displacements and rotations. The location of the wheel/rail contact point and the 

updated creepage expressions are used to evaluate the creep forces. The three-dimensional non-

conformal elastic contact formulation – algebraic equations  (ECF-A) that allows for wheel/rail 

separation is used. The rail displacement due to the applied loads is modeled by a set of rigid 

finite segments that are connected by spring-damper elements. Each rail FS is assumed to have 

six rigid body degrees of freedom. The equations of motion of the finite segments are integrated 

with the railroad vehicle system equations of motion in a sparse matrix formulation. The 

resulting dynamic equations are solved using an explicit predictor-corrector numerical 

integration scheme that has a variable order and step size. The finite segments may be used to 

model specific phenomena that occur in railroad vehicle applications, including rail rotations and 

gage widening. The procedure used in this chapter to implement the finite segment method in a 

general purpose multibody system (MBS) computer program is described. Two simple models are 
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presented in order to demonstrate the implementation of the FSM in MBS algorithms. The 

limitations of using the finite segment approach for modeling the track structure and rail 

flexibility are also discussed. 

 

2.1 Finite Segment Kinematics 

As the rail finite segments move due to the wheel/rail interaction forces, the geometry of the rail 

surface should not be distorted; that is, the rail surface geometry should remain invariant under 

an arbitrary FS rigid body displacement. Therefore, it is necessary to use a method, such as the 

ANCF representation, that preserves the geometry in the case of an arbitrary rigid body 

displacement. This section explains how the ANCF representation is used in conjunction with the 

FS rigid body kinematics to ensure that the rail geometry is not distorted during the movement of 

finite segments. The FS geometry is defined using ANCF finite elements, while the FS kinematic 

equations are expressed in terms of absolute Cartesian and orientation coordinates. The ANCF 

nodal coordinates have to be consistently updated in order to avoid shape distortion and at the 

same time account for the change of the FS configuration resulting from the wheel/rail 

interaction forces. 

In this chapter, the track geometry is described by nodes that define the track center line 

and rail space curve segments. The track pre-processor output defines the position of the nodes 

and the orientation of the profile frame at these nodes. The orientation of the profile frame at the 

nodes is defined using three Euler angles which can be utilized to define at each node three unit 

vectors which are required in the ANCF interpolation. The position of the nodes is defined with 

respect to a track coordinate system as shown in Fig. 1. The global position vector of an arbitrary 

track node is defined as follows: 



	
where subscript 
 refers to rail or track, 

���  defines the position of node �
in the track, and �� is a three-dimensional transformation matrix which defines the orientatio

the track frame with respect to the global frame. Using Eq. 2.1, the location of an arbitrary point 

on the rail space curve may be defined by interpolating between any two nodes using ANCF 

finite elements. If the track structure is assumed to be fixed

constant transformation. The track structure can be fixed, while the rail finite segments can 

experience rigid body displacements with respect to the track coordinate system. Because the 

geometry is initially defined in the track coordinate system, the relative displacement of the finite 

segments with respect to the track coordinate system must be evaluated in order to define the 

change of coordinates necessary to avoid a distortion of the geometry.

 In the FSM employed in this chapter, each segment is defined within a specified location 

along the rail space curve. In this case, the geometry

respect to the FS centroidal body coordinate system. In order 
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Figure 1 Track Model 

	� � �� � ����� , � � 1,2, … , �                                           

refers to rail or track, �� defines the position of the origin of the track frame, 

� with respect to the track frame, � is the total number of nodes 

dimensional transformation matrix which defines the orientatio

the track frame with respect to the global frame. Using Eq. 2.1, the location of an arbitrary point 

on the rail space curve may be defined by interpolating between any two nodes using ANCF 

finite elements. If the track structure is assumed to be fixed, �� is a constant vector and 

constant transformation. The track structure can be fixed, while the rail finite segments can 

experience rigid body displacements with respect to the track coordinate system. Because the 

ed in the track coordinate system, the relative displacement of the finite 

segments with respect to the track coordinate system must be evaluated in order to define the 

change of coordinates necessary to avoid a distortion of the geometry. 

oyed in this chapter, each segment is defined within a specified location 

along the rail space curve. In this case, the geometry of the rail surface must be defined with 

respect to the FS centroidal body coordinate system. In order  to simplify the equations

 

 

                    (2.1) 

defines the position of the origin of the track frame, 

is the total number of nodes 

dimensional transformation matrix which defines the orientation of 

the track frame with respect to the global frame. Using Eq. 2.1, the location of an arbitrary point 

on the rail space curve may be defined by interpolating between any two nodes using ANCF 

is a constant vector and �� is a 

constant transformation. The track structure can be fixed, while the rail finite segments can 

experience rigid body displacements with respect to the track coordinate system. Because the 

ed in the track coordinate system, the relative displacement of the finite 

segments with respect to the track coordinate system must be evaluated in order to define the 

oyed in this chapter, each segment is defined within a specified location 

of the rail surface must be defined with 

equations defining  



Figure 2 Contact Point on a Finite Segment

the wheel/rail or wheel/FS contact, 

Fig. 2. Using this profile coordinate system, the global position vector at the point of conta

between the wheel and the finite se

	
where ���	defines the position of the finite segment body coordinate system with respect to the

global coordinate system, ���
 defines the orientation of the finite segment with respect to the 

global coordinate system, ���� defines the location of the origin of the profile frame with respect 

to the finite segment, ��� defines the orientation of the rail profile frame with respect to the 

finite segment, and ���� defines the location of the contact point with respect to the profile frame. 

 The solution procedure used in this chapter for predicting the wheel/rail conta

line requires the evaluation of the tangent and normal vectors at the point of contact. ANCF 

geometry is used to determine a differentiable position vector field that can be used to determine 

the tangent and normal vectors as well as their spat

surface. The location of the origin of the profile frame may be defined using three

fully parameterized ANCF beam elements as (Shabana, 2005; Shabana, 2012)
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Figure 2 Contact Point on a Finite Segment 

wheel/rail or wheel/FS contact, the rail profile coordinate system is introduced as 

Fig. 2. Using this profile coordinate system, the global position vector at the point of conta

between the wheel and the finite segment can be written as follows 

	�� � ��� � �������� � ��������                                           
defines the position of the finite segment body coordinate system with respect to the

defines the orientation of the finite segment with respect to the 

� defines the location of the origin of the profile frame with respect 

defines the orientation of the rail profile frame with respect to the 

defines the location of the contact point with respect to the profile frame. 

The solution procedure used in this chapter for predicting the wheel/rail conta

requires the evaluation of the tangent and normal vectors at the point of contact. ANCF 

geometry is used to determine a differentiable position vector field that can be used to determine 

the tangent and normal vectors as well as their spatial derivatives at the contact point on the rail 

surface. The location of the origin of the profile frame may be defined using three

fully parameterized ANCF beam elements as (Shabana, 2005; Shabana, 2012) 

 

 

introduced as shown in 

Fig. 2. Using this profile coordinate system, the global position vector at the point of contact 

                    (2.2) 

defines the position of the finite segment body coordinate system with respect to the 

defines the orientation of the finite segment with respect to the 

defines the location of the origin of the profile frame with respect 

defines the orientation of the rail profile frame with respect to the 

defines the location of the contact point with respect to the profile frame.  

The solution procedure used in this chapter for predicting the wheel/rail contact point on-

requires the evaluation of the tangent and normal vectors at the point of contact. ANCF 

geometry is used to determine a differentiable position vector field that can be used to determine 

ial derivatives at the contact point on the rail 

surface. The location of the origin of the profile frame may be defined using three-dimensional 
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����� ��, !��, "��, #� � $��� ��, !��, "���%���#�                               (2.3) 

where # is time;  ��,	!��, and "�� are the spatial coordinates; and $�� is the shape function 

matrix defined as 

$�� � &��' ��' ��' �(' �)' �*' �+' �,'-                             (2.4) 

In this shape function matrix, ' is a 3 × 3 identity matrix, and �0�1 � 1,2, … ,8� are the shape 

functions defined as 

3�� � 1 − 35� � 25�, �� � 6�5 − 35� � 5��, �� � 6�7 − 57�, �( � 6�8 − 58��) � 35� − 25�, �* � 6�5� − 5��, �+ � 657, �, � 658 9 (2.5) 

where 5 �  ��/6, 7 � !��/6, and 8 � "��/6, where 6 is the length of the element. In Eq. 2.3, %�� 
is the vector of time dependent nodal coordinates. This vector is assumed to depend on time 

since the finite segments are allowed to translate and rotate in order to be able to simulate the rail 

movements. If the contact point is assumed to lie between nodes 1 and 1 � 1 , the vector of nodal 

coordinates %�� may be defined as 

%�� � ;��0��< %=>,0��< %=?,0��< %=@,0��< ��0A���< %=>,0A���< %=?,0A���< %=@,0A���< B                 (2.6) 

where ���� defines the position of node � with respect to the finite segment body coordinate 

system, and %=C,��  
is the gradient vector taken at node � with respect to coordinate D �	D �

 ��, !��, "���. The Euler angles in the track pre-processor output define the orientation of the 

profile frames with respect to the track frame. In order to correctly define the geometry when the 

rail finite segments move, the vectors in Eq. 2.6 must be computed in the finite segment body 

system as shown in Fig. 3. This can be accomplished as follows 

���� � ���<��� � ����� − ����, %=C,�� � ���<��%=C,� , D �  , !, " � � 1, 1 � 1      (2.7) 

In this chapter, two parameters are used to describe the surface of the finite segment. The 

first is the longitudinal surface parameter  ���� and  the  second  is  the  lateral  surface  parameter  
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Figure 3 Reference, Body, and FS Coordinate Systems 

 

Figure 4 Wheel and Rail Surface Parameters (Shabana et al., 2008) 
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����as shown in Fig. 4. It is convenient to define ���� such that it lies entirely within the E��F�� 

plane. Assuming the rail has a constant predefined profile, ���� can be defined by the vector  

����G����H � I0 ���� KG����HLM.  Furthermore,  the  position  of  the  origin  of  the profile frame 

will be function of only the longitudinal surface parameter, that is ����G����, #H � $��G����H%���#�.  
 As will be discussed in the following section, the velocity creepage expressions used in 

this chapter are functions of the velocities of the wheel and rail finite segments at the point of 

contact. Because of the FS movement, the rail translational and angular velocities cannot be 

assumed to be zero when the creepages are calculated. The velocity of the finite segment at the 

contact point is defined as 

	N�� � �N �� �OP ������$��%�� � �������� � ���$��%N ��                          (2.8) 

where �N �� is the absolute velocity of the finite segment center of mass (reference point), %N �� is 

the time derivative of the vector of nodal coordinates defined as 

%N �� � ;��N 0��< %=N>,0��< %=N?,0��< %=N @,0��< ��N 0A���< %=N>,0A���< %=N?,0A���< %=N @,0A���< B                (2.9) 

where  

��N �� � ���<GOP ����� � ����� − ���� − �N ��H � � 1, 1 � 1                     (2.10) 

and 

%=NC,�� � ���<G��%=NC,� −OP ����%=C,� H D �  , !, " � � 1, 1 � 1                    (2.11) 

and OP ��
 is the skew symmetric matrix associated with the FS angular velocity vector O�� which 

may be written in terms of Euler parameters Q�� as O�� � 2R��QN ��, where 

R�� � S−T��� T��� −T��� T���−T��� T��� T��� −T���−T��� −T��� T��� T��� U , Q�� �
VW
WW
XT���T���T���T���YZ

ZZ
[
                         (2.12) 
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In Eqs. 2.10 and 2.11, the coordinate system of the track is assumed to be fixed. Because the 

Euler parameter axis-angle representation is difficult to visualize, Euler parameters are often 

converted to a three angle representation, such as the Euler Angles. The necessary formulae to 

convert Euler parameters to Euler angles may be found in the literature (Shabana, 2005).  

 

2.2 Finite Segment/Wheel Contact 

The FS approach can be integrated with any on-line wheel/rail contact model. However, in the 

case of the wheel/rail contact model that employs the constraint approach (Shabana et al., 2008), 

a constraint addition and deletion procedure is needed to switch between finite segments that are 

used to define the rail. For this reason, the FS model presented in this chapter is used in 

conjunction with the three-dimensional non-conformal wheel/rail elastic contact formulation 

ECF-A. In ECF-A, the wheel is assumed to have 6 degrees of freedom with respect to the rail 

and small penetration and separation between the wheel and rail are allowed. The point of 

contact is found in terms of the four surface parameters contained in the vector \ 

\ � I��] ��] ���� ����LM                                              (2.13) 

where the superscripts ^ and K� denote the wheel and finite segment bodies, and the subscripts 1 

and 2 denote first and second surface parameter of each body as shown in Fig. 4.  In the case of 

three-dimensional non-conformal wheel/rail elastic contact, two conditions must be satisfied at 

the contact point. The first condition requires that position vectors of the contact point on the two 

surfaces are the same. The second condition requires that the tangent planes of the two surfaces 

at this point be coplanar. These two conditions are satisfied by four non-linear algebraic 

equations R�\� � _ where the first two equations correspond to the first condition, and the later 
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two equations correspond to the second condition. The four equations can be written explicitly as 

follows (Shabana et al., 2008) 

R�\� � I`��� ∙ 	]�� `��� ∙ 	]�� `�] ∙ b�� `�] ∙ b��LM � _                     (2.14) 

where the ` and b are the tangent and normal vectors defined as (Kreysig, 1991) 

b�� � `��� × `���, `0�� � c	��c�0 , `0�� � c	]c�0 , 1 � 1,2 (2.15) 

where 	] is the global position vector of the contact point on the wheel, 	�� is the global 

position vector of the FS point of contact as defined by Eq. 2.2, and the vector 	]�� is defined as 

	]�� � 	] − 	��. It is important to note that Eq. 2.14 is applied only at the position level, and 

therefore, it is not considered as a set of kinematic constraint equations that introduce constraint 

forces and must be satisfied at the velocity and acceleration levels. The solution of the nonlinear 

algebraic equations contained in the vector R is found using Newton-Raphson algorithm. 

In case of elastic contact formulation, the normal contact force is determined by using a 

compliant force model. In this case, Hertzian contact is assumed in addition to the material 

damping. The normal contact force can be written as de � −�fg� �h − igN|g| where de is the 

normal force,  �f is the Hertzian constant (Johnson, 1985), i is a damping constant, and 	g  is the 

wheel/FS penetration defined as g � 	]�� ∙ b��. The penetration is used to determine if contact 

occurs at the point found by the numerical solution of Eq. 2.14. In the case that the penetration is 

greater than or equal to zero, the contact forces are not calculated. In the case where the 

penetration has a value less than zero, the normal contact force and subsequently the lateral and 

longitudinal creep forces as well as the creep spin moment at this point are evaluated. The creep 

forces are calculated using Kalker’s USETAB (Vollebregt, 2008) as a function of the 

longitudinal, lateral, and spin creepages. USETAB is a table based program that works under the 
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assumption that the contact area is in the form of a Hertzian ellipse. The longitudinal, lateral, and 

spin creepages are defined for the case of finite segment/wheel contact by 

8> � �k] − k���M `̂���m , 8? � �k] − k���M `̂���m , n � �O] −O���Mbo��m  (2.16) 

where k] and k�� are the global velocities of the points of contact on the wheel and finite 

segment or rail, respectively;  O] and O�� are the global absolute angular velocities of the wheel 

and FS or rail at the point of contact, `̂��� and `̂��� are the unit tangent vectors at the points of 

contact on the FS or rail, bo�� is the unit normal vector at the point of contact, and m is defined as 

the forward velocity of the center of the wheel. 

In the case of fully constrained rail, the rail has zero velocity and as a result the FS 

translational and angular velocity terms are zero in Eq. 2.16. However, when the point of contact 

lies within a moveable finite segment, the velocities at the point of contact need not be zero and 

the rail translational and angular velocity terms will be defined by Eqs. 2.8 and 2.12, 

respectively. Knowing the point of contact and the resulting contact forces and moments, the 

vector of generalized forces for the finite segment in the dynamic equations of motion can be 

determined. 

 

2.3 Finite Segment Equations of Motion 

In this section, a brief explanation is given to the equations of motion and the implementation in 

computational MBS algorithms that are designed to solve system of differential and algebraic 

equations (DAEs). The differential equations arise from the equations of motion, while the 

algebraic equations arise from the kinematic constraints imposed on the motion of the system 

when the method of Lagrange multipliers is employed. The algebraic constraint equations at the 
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acceleration level can be written as pqqr � st (Roberson and Schwertassek, 1988; Shabana, 

2005), where pq is the constraint Jacobian matrix obtained by differentiating the system 

constraint equations p with respect to the system coordinates q, and st is the vector of terms 

resulting from this differentiation that are quadratic in the velocities. The principle of virtual 

work in dynamics for the constrained system can be written as gqMGuqr � pqMv − swH � _, 

where 	u  is the system mass matrix,	gq is the virtual change in the system coordinates, v  is the 

vector of Lagrange multipliers, and sw is the vector of generalized external forces. The normal 

contact and creep forces between the wheel and the finite segment are contained within sw. 

Using these definitions, the equations of motion are given in the augmented form as (Shabana, 

2005) 

x	u pqMpq _ 	y xqr	v	y � x sw	st	y                                                (2.17) 

Assuming the initial coordinates and velocities are known, this set of algebraic equations is 

solved for the accelerations and the vector of Lagrange multipliers. Once the accelerations are 

obtained, the independent accelerations can be identified and integrated forward in time to 

determine the independent coordinates and velocities at the next time step. The explicit Adams-

Bashforth predictor-corrector numerical integration scheme is employed to find the independent 

coordinates and velocities (Shampine and Gordon, 1975). The dependent coordinates and 

velocities are then determined using the constraint equations at the position and velocity levels. 

With all the coordinates and velocities determined, Eq. 2.17 is solved again and this process is 

repeated until the specified end time of the simulation is reached. 
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Figure 5 Relationship Between the Space Curve � and its Projection � (Shabana et al., 2008) 

2.4 Curved Track 

In order to solve the equations of motion presented in the preceding section, the initial 

coordinates and velocities of the FS bodies must be provided. The initial FS configuration must 

be accurately defined when these finite segments are used to model the movements of tangent 

and curved tracks. The algorithm used allows the finite segments to be located on a curved track 

section. In this case, the geometry of the curved track must be used in order to define the correct 

FS position and orientation. The position of the track nodes and the three Euler angles that define 

the orientation of the profile frame can also be used to define the FS position and orientation. In 

the case of curved track, the position of an arbitrary point, designated ���� in Section 2.1, can be 

written in terms of the rail longitudinal tangent as  

���� � ������ � z{i|�}i|�T�1�}i|�T�1�T ~ ���
��

 (2.18) 

The  projection of the space curve arc length � on the �E plane is referred to as �, as is shown in 

Fig. 5. Knowing that the horizontal curvature �f is equivalent to 1 �f⁄ , where �f is the radius of 
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curvature, the relationship �} � �� �f⁄ � �f�� can be obtained. Upon integration one has the 

following 

}��� � }�� � z �f������
����

�� (2.19) 

The relationship between the projected arc length and the arc length is defined as �� � i|�T��, 

which is integrated to yield the following expression at node � 

� � ��� � z i|�T����
����

 (2.20) 

Substituting Eq. 2.20 into Eq. 2.18 yields 

���� � VWW
WX ����
!����
"���� YZZ

Z[ �
VWW
WX� i|�}������������ �1�}������������ �1�T����������� YZZ

Z[
                                       (2.21) 

Equation 2.21 implies that in order to determine the position coordinates at each node, the 

orientation, arc length, and projected arc length at each node must also be calculated. Equation 

2.21 can be used to determine the position of the nodes that define the FS longitudinal 

boundaries. The position vector in Eq. 2.21 can be evaluated if proper definitions of the angles } 

and T in terms of � and �, respectively, are obtained. 

 One of the inputs to the track pre-processor is the horizontal curvature �f. Within the 

track segments, the horizontal curvature is assumed to vary linearly. Knowing the horizontal 

curvature at the two ends of a track segment, the horizontal curvature can be written as a function 

of � as 

�f��� � ���� − ��� − ���� − ����� − ��  (2.22) 
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where ��,	��, �� and �� are the values of the curvature and the projected arc length at the two end 

points of the segment, respectively. Using this expression for �f, the angle } can be defined as a 

function of the projected arc length � as    

} � }� � 1�� − �� ���2 �� − ���� − ��2 �� − ����� � ��2 ��� − ��� (2.23) 

Note that the first two elements of the vector ���� in Eq. 2.21 are expressed in terms of the angle 

}. Using the relationship �T � ���� and assuming that the vertical curvature �� varies linearly 

with respect to T, one obtains 

T��� � T� � ���� − ���                                                (2.24) 

A similar linearity assumption can be used for the bank angle n, leading to  

n � n��� − ��� − n��� − ����� − ��  (2.25) 

The projected arc length � can also be expressed in terms of the actual arc length � as follows 

(Shabana et al., 2008) 

���� � ��� � 1�� �1�GT���H − 1�� �1��T�� 1K	�� ≠ 0�� � �� − ���i|�T 1K	�� � 03 (2.26) 

Knowing the nodal positions and Euler angles at the nodes that define the boundaries of the FS, 

simple rigid body kinematic equations can be used to define the position of the FS center of mass 

of mass as well as the FS orientation. 
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Figure 6 Components of the Truck 

2.5 Numerical Examples 

In this section, two examples are provided to demonstrate the capabilities and limitations of the 

finite segment approach. The first example demonstrates the ability to switch the contact 

between a FS and rail online. The second model will demonstrate the ability of the FS model to 

transfer contact from one moving segment to another. All simulation results presented in this 

section were obtained using the general purpose MBS program SAMS/2000 (Shabana, 2010). 

2.5.1 Curved Track 

In this example, a single vehicle model based on a generic material handling car that uses a 

typical GSI truck shown in Fig. 6 is used. The geometric and dynamic properties of the model 

are given in Table 1, while the properties of the connections between different bodies are given 

in Tables 2 and 3. The track used in this example consists of the following sections: 60.96 m (200 

ft)  tangent  section;  152.4 m  (500 ft)  spiral section;  91.44 m  (300 ft)  3-degree  with   4-inch  
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Table 1. Vehicle Body Properties 

Body Mass (Kg) xxI (kg·m
2
) yyI (kg·m

2
) zzI  (kg·m

2
) 

Wheelset 2091 1098 191 1098 

Equalizer Beam 469 6.46 255 252 

Truck Frame 3214 1030 1054 2003 

Bolster 1107 498 20.4 459 

Car Body 24,170 30,000 687,231 687,231 

Table 2. Individual Truck Connection Properties 

Description Connected Bodies 
Stiffness 

(N/m) 
Damping 

(N·s/m) 

Primary Suspension Vertical Equalizer Beam & Truck Frame 1.68·10
6
 0 

Primary Suspension Lateral Equalizer Beam & Truck Frame 1.10·10
6
 0 

Primary Suspension Longitudinal Equalizer Beam & Truck Frame 1.10·10
6
 0 

Bearing Friction Vertical/Lateral Bearing Block & Truck Frame 8.75·10
6
 8.75·10

3
 

Table 3. Vehicle Connection Properties 

Description Connected Bodies 
Stiffness 

(N/m) 
Damping 

(N·s/m) 

Secondary Suspension Vertical Car Body & Bolster 1.97·10
6
 0 

Secondary Suspension Lateral Car Body & Bolster 1.28·10
6
 0 

Secondary Suspension Longitudinal Car Body & Bolster 1.10·10
6
 0 

Lateral Body Damper  Car Body & Bolster 0 5.96·10
5
 

Longitudinal Body Anchor Car Body & Bolster 6.17·10
6
 4.83·10

3
 

Vertical Snubber Car Body & Bolster 0 Non- Linear 

super-elevation left hand curve; 304.8 m (1000 ft) spiral section; 91.44 m (300 ft) 3-degree with 

4 inch super-elevation right hand curve; 152.4 m (500 ft) spiral section; and 121.92 m (400 ft) 

tangent section. The right rail is modeled as two bodies (finite segments). The first body is used 

to represent the right rail from the beginning to 199.79 m (655.48 ft), before the end of the first 

spiral section. The second segment is used from the end of the first segment to the end of the 

right rail as shown in Fig. 7. Both segments are assumed to be fully constrained. This model is 

presented only to demonstrate that the implementation allows for a smooth change of the contact 

between two segments without adversely affecting the quality of the results. As expected, Fig. 8 

shows the predicted vertical forces of the right wheel of the axle of the lead truck. The predicted  
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Figure 7 Arrangement of the Segments of the Right Rail 

(  First Segment, Second Segment) 

 
Figure 8 Vertical Contact Force of the Right Wheel of the Lead Axle of the Lead Truck 

(  Tread - Regular,  Flange - Regular,  Tread - FS,  Flange - FS) 
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Figure 9 Local Longitudinal Position of the Tread Contact of the Right Wheel of the Lead Axle 

of the Lead Truck 

(  Tread Contact - Regular, Tread Contact - FS) 

tread and flange contact forces, using the finite segment model, agree with the predicted  forces 

using the right rail as a single body  (referred to in the figure caption as regular rail). The results 

presented in Fig. 8 show that the method proposed in this thesis to switch the contact between 

bodies on-line does not negatively impact the quality of the results. Figure 9 shows a comparison 

between the predicted local longitudinal position of the tread contact using the regular rail and 

the rail composed of two segments. Clearly, when the right rail is modeled by using two 

segments, the local position of the contact starts from zero when the contact switches to the 

second segment, which is relative to the second segment reference point used in this model. 

Here, the reference point for each segment corresponds to the location at the beginning of the 

segment. While this location does not correspond to the physical center of gravity, it was chosen 

to more easily identify the point at which the transition between the rail and the finite segments 
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Table 4. Stiffness and Damping Values for the FS 

Translational Rotational 

xk (kN/m·10
5
) 2.71 kθ (kN·m/rad) 781.16 

yk (kN/m·10
5
) 1.04 kϕ (kN·m/rad) 656.10 

zk (kN/m·10
5
) 1.04 kψ (kN·m/rad) 103.03 

xc (kN·s/m) 91.29 cθ (kN·s m/rad) 4.83 

yc (kN·s/m) 56.69 cϕ (kN·s m/rad) 4.49 

zc (kN·s/m) 56.69 cψ (kN·s m/rad) 1.78 

 
Figure 10 Arrangement of the Right Rail for Single Wheelset Example 

occur. As the finite segments in this example are fully constrained, the location of the reference 

point has no impact on the results. Meanwhile, if the regular model is used, the local longitudinal 

tread contact position continues to increase as the wheel travels along the rail. 

2.5.2 Transition Between Moving Segments 

In this second example, the transition of the location of the contact between two moving finite 

segments is demonstrated. A model of a single wheelset travelling on a tangent track with a 

speed equal to 4.4704 m/s (10 mph) is used. The right rail is assumed to consist of three 

segments. The first segment of the right rail is fully constrained. The second and third segments 

are 5 m long. The second segment is connected to the first segment by a revolute joint that 
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allows a relative pitch rotation which is restricted using a torsional spring. Similarly, the second 

and third segments are connected by a revolute joint that allows a relative pitch rotation 

restricted by a torsional spring as shown in Fig. 10. The two ends of each finite segment are 

connected to the ground by vertical spring-damper element as shown in Fig. 10. The 

characteristics of the spring and damper coefficients are given in Table 4. The wheelset mass is 

1568 kg and the mass moments of inertia are 656, 168 and 656 kg m
2
 about its YX , and Z axes, 

respectively. The wheelset has a static vertical applied load equal to 88964.43 N to simulate the 

vehicle weight. The mass of the second and third segments of the right rail is 341.78 kg, and 

their mass moments of inertia are 1.84, 713.63, and 712.29 kg m
2
 about the YX , and Z axes, 

respectively.  

 Figure 11 shows the predicted vertical contact force of the right and left wheels. Clearly, 

as the wheelset entered the second segment of the right rail, a change in the vertical contact force 

is predicted. This is caused by the change in the characteristics of the rail support from a fully 

constrained segment to a segment that is supported by a spring-damper element. As the wheelset 

moves forward, the segments begin to respond to the applied vertical load. The static applied 

load led to a change in the vertical location and pitch rotation of the second and third segments as 

shown in Figs. 12 and 13. As the wheelset entered the third segment, it encountered a sudden 

change in the pitch orientation of the rail space curve. This caused the sudden change in the 

predicted vertical force shown in Fig. 11.  The change in the local longitudinal contact location 

with respect to the segments is shown in Fig. 14.  
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Figure 11 Vertical Contact Force 

(  Left Wheel,  Right Wheel) 

 

 
Figure 12 Vertical Displacement of the Second and Third Right Rail Segments 

(  Right Rail – Second Segment,  Right Rail – Third Segment) 



 

35 

 

Figure 13 Pitch Rotation of the Second and Third Right Rail Segments 

(  Right Rail – Second Segment,  Right Rail – Third Segment) 

 
Figure 14 Local Longitudinal Contact Position of the Right Wheel 



 

36 

2.6 Concluding Remarks 

This chapter proposes a computational method based on the FSM that can be used to model the 

track structure and rail movements in the MBS simulation of railroad  vehicle  dynamics.  In 

order to avoid distortion of the geometry during the rail movements, ANCF finite elements are 

used to interpolate the rail space curve geometric properties. It is shown that a systematic method 

can be developed in which this FS model can be created with limited user input. It is clear from 

the presented numerical results that this approach is capable of modeling some simulation 

scenarios. The FS approach outlined in this chapter may be used to study the phenomena of gage 

widening and rail rollover. The FS approach can also be applied to more complex models 

pertaining to the study of broken rails, analysis of the effect of missing ties, and excitation due to 

bridge or seismic motion, provided the appropriate constraints and external forces are applied 

and an adequate number of finite segments are used.  

Using the rigid body assumption to simulate the finite segment can introduce some 

discontinuities in the rail surface that cause spikes in the predicted contact force. This problem 

can be avoided if the finite element method is used in place of the FSM, as will be demonstrated 

in the following chapter. A second limitation of the proposed FS method is the failure to capture 

the change in the longitudinal rail arc length as the result of the FS longitudinal motion. A third 

limitation of the FS method is the need to use several small finite segments in order to capture 

the rail deformation. As will be shown in the following chapter, this can lead to a significant 

increase in the problem dimension.  
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CHAPTER 3 

FSM AND FEM MODELING OF RAIL FLEXIBILITY 

This chapter will present three methods suited for the study of flexible track models while 

conclusions about their implementations and features are made. The first method is based on the 

floating frame of reference (FFR) formulation which allows for the use of a detailed finite 

element (FE) mesh with the component mode synthesis technique in order to obtain a reduced 

order model. In the second method, which was introduced in the preceding chapter, the flexible 

body is modeled as a finite number of rigid elements that are connected by springs and dampers. 

This method, called the finite segment method (FSM) or rigid finite element method, requires the 

use of rigid multibody systems (MBS) formulations only. In the third method, the FFR 

formulation is used to obtain a model that is equivalent to the FSM model by assuming that the 

rail segments are very stiff; thereby allowing the exclusion of the high frequency modes 

associated with the rail deformations. This FFR/FSM model demonstrates that some rail 

movement scenarios such as gage widening can be captured using the finite element FFR 

formulation. The three procedures FFR, FSM, and FFR/FSM will be compared in order to 

establish differences among them and analyze the specific application of the FSM geometry 

developed in the previous chapter to modeling track flexibility. Convergence of the methods is 

analyzed. The three methods proposed in this chapter for modeling the movement of three-

dimensional tracks are used in conjunction with a three-dimensional elastic wheel/rail contact 

formulation that predicts contact points on-line and allows for updating the creepages to account 

for the rail deformations. Several conclusions will be drawn in view of the results obtained in 

this chapter. 
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Figure 15 Finite Segment Connectivity 

3.1 Finite Segment Connectivity 

The FSM has been used in the literature to model flexible bodies  by  assuming  that  the  flexible  

body consists of a collection of rigid bodies, with each referred to as a finite segment (FS), 

connected by spring-damper elements that define the bodies' elastic and visco-elastic 

characteristics. The selection of the spring and damper coefficients is a major issue when the 

FSM is utilized to model flexible bodies. There exist in the literature several methods for 

defining the FS spring stiffness coefficients (Huston, 1981; Wittbrodt et al., 2006). Some 

methods consider coupling between stresses leading to a non-diagonal stiffness matrix, while 

others do not consider such a coupling leading to a diagonal stiffness matrix. The latter 

description will be used in this chapter as a special case of the bushing element implemented in 

many general purpose MBS codes. A bushing element is assumed to connect two bodies using 

6 6×  stiffness and damping matrices; this allows for adding stiffness and damping forces 

associated with the 6 degrees of freedom that represent the relative motion between the two 

bodies connected by the bushing element. In the special case of diagonal stiffness and damping 

matrices, a single bushing element may be used in place of 3 linear and 3 torsional spring-

damper elements. 
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In the FSM, the relative rotational and translational displacements at the ends of the finite 

segments define the deformation of the continuum. The stiffness of the continuum is described in 

this chapter by a diagonal stiffness matrix � that defines the connection forces between the finite 

segments as shown in Fig. 15. The elements of the diagonal stiffness matrix used in this chapter 

are defined as 

3�> � ��∆6 , �? = ��∆6 , �@ = ��∆6�� = ��∆6 , �� = ��?∆6 , �� = ��@∆6 � 

(3.1) 

 

where � is the modulus of elasticity, � is the shear modulus, � is the polar moment of inertia, �0 is 

the second moment of inertia along the axis 1 =  , !, ", � is the cross-sectional area of the FS, ∆6 
is the length of the FS, and n, T, and } represent rotations about the �,	E, and F  axes 

respectively. The stiffness matrix used in this chapter can also be modified to account more 

precisely for shear deformation (Hutchinson, 2001; MacNeal, 1978) and/or coupling between 

deformations. 

 A similar procedure can be used to define the coefficients of the damping matrix that 

specifies the visco-elastic characteristics of the bodies modeled with the finite segments. The 

diagonal damping matrix � can be defined using the following coefficients: 

i0 = 25��0�, 1 =  , !, "; iC = 25��C�C , D = n, T, }                        (3.2) 

where 5 is the damping factor, which is assumed in this chapter to be 3%, � is the part of the FS 

mass that corresponds to the node at which the finite segments are connected; and �C is the mass 

moment of inertia associated with a simple rotation described by angle D.  
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3.2 Floating Frame of Reference Formulation  

The analysis presented in the preceding material clearly shows that the FSM suffers from three 

serious limitations, particularly when bodies with complex geometries are considered. First, there 

is no systematic way to choose the number and distribution of the rigid finite segments that are 

used to model the flexible body. Second, the determination of the stiffness and damping 

coefficients, number and points of application, and direction of the forces of the discrete spring-

damper elements can be a problem. Third, as the segments become small, the magnitude of the 

components of the stiffness matrix increase; this in turn may lead to a stiff system which can 

cause stability issues with explicit integration schemes such as the Adams-Bashforth approach 

(Shampine and Gordon, 1975). While the use of the finite element method (FEM) addresses these 

major issues, it is important when the FEM is used to correctly update the rail and track 

geometry as the result of the deformation. 

A FEM for modeling railroad track flexibility has recently been developed and validated 

(Shabana et al., 2007; Rathod et al., 2009). The change in the geometry of the rails due to the 

elastic track deformation can be considered using the FFR formulation. This method accounts for 

the effect of the track flexibility with regard to the position of the contact points and creepages as 

well as the normal and creep forces. The points of contact between the wheels and rails are 

calculated on-line using a three-dimensional contact formulation that utilizes a two-dimensional 

parameterization of the wheel and rail surfaces. The FFR approach employed uses the 

component modes of the track to account for the deformation due to the dynamic loading 

conditions resulting from wheel/rail contact. The geometry of each rail in the undeformed or 

reference configuration is defined by a collection of three-dimensional absolute nodal coordinate 

formulation (ANCF) 3D beam elements. This reference geometry must be updated continuously 
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in order to account for the flexibility of the rail and allow for an accurate prediction of the 

contact point and the associated spatial derivatives required to evaluate the wheel/rail contact 

forces. 

When the FFR approach is employed to model rail flexibility, the global position of any 

point on a given finite element D of rail 1 can be written as follows (Shabana et al, 2007) 

	0C = �0 + �0G���0C + ���0CH, D = 1,2, … , �w                                    (3.3) 

where �0 is the global position vector which defines the location of the coordinate system of rail 

1, �0 is a transformation matrix which defines the orientation of the rail coordinate system with 

respect to the global coordinate system, �w is number of finite elements used to describe rail 1, 
���0C is a local position vector of the point in the undeformed configuration, and ���0C defines the 

elastic deformation of the point in the current or deformed configuration. The aforementioned 

vectors are defined as (Shabana et al, 2007) 

���0C = $�0C�t0C%��0 , ���0C = $�0C�t0C��0%�0                                         (3.4) 

In these equations, $�0C is the matrix of shape functions which define the interpolation within 

element D, �t0C is a binary matrix which is used to describe the element connectivity conditions, 

%��0  
is the vector of nodal coordinates which defines the shape of the undeformed configuration 

of rail 1, ��0  is a binary matrix which is used to enforce a set of reference conditions which allows 

for a unique displacement field to be defined, and %�0  
is the vector of nodal coordinates which 

defines the elastic deformation of rail 1. This vector contains linearization of the angles that 

describe finite element nodal rotations. The track structural flexibility may be defined in terms of 

a selected set of the component modes of vibration. To this end, the nodal coordinates which 

define the elastic deformation may be written in terms of the modal coordinates corresponding to 
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the selected modes of vibration using the following relationship %�0 = � 0 q�0 , where � 0  
is a 

matrix in which each column defines one of the selected modes of vibration, and q�0  
is the vector 

of modal coordinates which define the elastic deformation. Substituting this relationship into Eq. 

3.4 allows for the modal coordinates, rather than the nodal coordinates, to define the elastic 

deformation vector as: 

���0C = $�0C�t0C��0� 0 q�0                                                      (3.5) 

This relationship, along with Eqs. 3.4 and 3.5, allows for the global position of any point on a 

finite element to be written explicitly in terms of the modal, rather than nodal, coordinates. The 

modal coordinates are used as the system generalized coordinates thus greatly reducing the 

number of system degrees of freedom. Knowing these modal coordinates from the solution of the 

system nonlinear dynamic equations of motion, the deformation of the track geometry nodes can 

be determined. These deformations can be used to update the position coordinates and rotations 

at the track geometry nodes. The updated rotations are used to define the ANCF gradient vectors. 

The updated nodal position and gradient coordinates are used to define the position field required 

for the finite element ANCF interpolation of the rail space curves.  

 As previously mentioned, a systematic procedure can be used to update the position, 

tangent, and normal vectors as well as their derivatives once the deformations are determined 

using the FFR formulation. As an acceptable approximation, the shape function $��C  associated 

with element D of a rail 
 can be written in terms of the two surface parameters ��� and ��� as 

$��C = $��C ¡���C , ��� , K�����¢. In this equation, ���C is a parameter that defines the longitudinal 

distance of the contact point from the origin of the coordinate system of the finite element D. It is 

further assumed that c$��C c���h = c$��C c���Ch . The third argument K����� of the shape function 
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$��C can be determined using a cubic interpolation routine once the surface parameter ��� that 

defines the location of the contact point on the profile is determined. The deformation predicted 

using the FFR formulation can be used to define the two tangent vectors as 

`��C = c	�Cc��� = �� £`̅���C + c����Cc��� ¥ , `��C = c	�Cc��� = �� £`̅���C + c����Cc��� ¥ (3.6) 

In this equation, `̅���C  and `̅���C  are the two tangent vectors in the undeformed state defined in the 

rail body coordinate system. Note also that c����C c���h  must include the effect of the derivative of 

the function K����� with respect to ���. The preceding equation can be used to define the normal of 

the rail surface at the contact point as b�C = `��C × `��C. This normal accounts for the effect of the 

deformation since this effect is included when the tangent vectors are evaluated. Higher order 

derivatives of the tangent and normal vectors can then be systematically evaluated and used in 

the wheel/rail contact formulations as previously described in the literature (Shabana et al., 

2008). 

The implementation of this geometry updating procedure requires the use of two data sets as 

previously described in the literature (Shabana et al., 2007). One set includes a description of the 

geometry in the undeformed state in terms of segments and nodes, while the other set has a 

description of the finite element model used in the FFR formulation. The rail segment used to 

define the geometry is referred to as the geometry segment, and each node used to define the 

geometry is referred to as the geometry node. The nodes used in the finite element FFR 

formulation are called the finite element nodes. In the contact formulations used in this thesis, the 

locations of the wheel/rail contact points are predicted on-line. These contact points can be 

arbitrary points on the rail surface. The location of the contact point on the rail surface can be 

defined since all contact formulations can be used to solve for ��� and ���. Using the location of 
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the contact point, one can identify the finite element D to which the contact point corresponds. 

Knowing from the finite element data set the locations of the finite element nodes, one can 

determine the parameter ���C. Having identified the finite element to which the contact point 

corresponds, the nodal deformation coordinates of the finite elements can be identified and used 

to evaluate the vector ����C. One can differentiate ����C with respect to the surface parameters to 

determine the change in the tangent vectors due to the deformation. The tangent vectors can then 

be used to determine the normal vectors. Using the expressions for the tangent and normal 

vectors, higher order derivatives can be systematically evaluated. 

 

3.3 FE/FS Approach 

The FFR formulation described briefly in the preceding section can be used to develop a model 

that is equivalent to the FSM model previously discussed in this chapter. In this model, the rail 

sections are considered as rigid bodies by neglecting their modes of deformation. It has been 

demonstrated that the use of the FSM can lead to a good approximation of the dynamic behavior 

of a beam in some applications (Wang and Huston, 1994). Using this fact, the third FFR/FS 

approach is proposed in this chapter to model the track and rail displacements. In this approach, a 

FE mesh is developed for the track. This FE mesh is used to determine the deformation modes 

using a standard eigenvalue analysis. If sections or segments of the track are assumed to be rigid, 

the modes associated with the deformations of these sections are not included in the dynamic 

model; thereby allowing these sections to move as rigid bodies that are connected by discrete 

elastic elements. This FFR and component mode synthesis approach leads to a model similar to 

the FSM model previously discussed in this chapter. In developing this FSM model using the 

FFR formulation and component mode synthesis method, the mode shapes are extracted using a 
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model that employs diagonal stiffness and damping matrices based on the coefficients defined in 

Eqs. 3.1 and 3.2. In the actual implementation, the beam elements used to model the rigid 

segments are assumed to have very high modulus of elasticity. Using very high stiffness for these 

beam elements, the modes associated with their deformations correspond to very high 

frequencies. Such high frequency modes can be neglected, and therefore, the determination of 

these modes is not necessary, leading to a more efficient procedure for the solution of the 

eigenvalue problem.  

 The results obtained using this third approach (FFR/FS) will be compared with the results 

obtained using the FSM and the FFR formulation. The convergence of the modeling methods 

described in this chapter will be examined in order to shed light on the advantages and 

drawbacks of the FSM in the modeling of track flexibility. 

 

3.4 Nonlinear MBS Constrained Equations of Motion 

As previously mentioned, three different approaches are used in this chapter to account for the 

flexibility of the rail. If the FSM is used, the coordinates that define the flexible body 

deformation are the six degrees of freedom of each finite segment. The geometric updating of the 

flexible body is thus performed using the variables that represent the three translations and the 

three rotations of each rigid segment. In the FFR approach, modal coordinates are used to define 

the deformation of the body with respect to the body coordinate system. The rail geometry is 

updated on-line and the deformation and deformation rate of the flexible track are used in the 

definition of the wheel/rail contact and interaction forces. Therefore, in all the three methods that 

will be used in this chapter, wheel/rail contact parameters and forces are updated in order to 

account for the track movements.  
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 In the case of the FSM, the differential equations of motion and the nonlinear algebraic 

constraint equations presented in Chapter 2 are solved to find the time domain response of the 

system. These equations can be written as (Shabana, 2005) 

xu pqMpq _ y xqrvy = xswsty                                                     (3.7) 

where u is the system mass matrix, 	pq is the Jacobian constraint matrix obtained by 

differentiating the system constraint equations �p�q, #� = _� with respect to the generalized 

coordinates, v is the vector of Lagrange multipliers, qr  is the vector of the system absolute 

Cartesian accelerations, 	st is the vector that contains quadratic velocity terms resulting from the 

differentiation of the constraint equations, and sw is the vector of generalized forces which 

include the forces of the bushing elements which connect the finite segments.  

In the case of the FFR formulation and component mode synthesis method, the 

differential equations of motion are defined as (Shabana, 2005) 

x¦�� ¦��¦�� ¦��y xqr �qr �y = x�sw���sw��y + x�s����s���y − xpq§Mpq¨M y v − x _©��q�y                    (3.8) 

where q = Iq�M q�MLM is the vector of system generalized coordinates, q� is the vector 

coordinates which define the rigid body motion of the track, q� is the vector of modal 

coordinates which describes the elastic deformation of the track, ¦�� 
is the inertia matrix related 

to the rigid body motion of the rails, ¦�� and ¦�� 
are the inertia matrices which define the 

coupling between the rigid and flexible motion of the body, ¦�� 
is the inertia matrix related to 

the elastic deformation of the body, pq§ and pq¨ are the matrices which define the Jacobian of 

the constraint  equations with respect to the rigid and elastic coordinates, v is the vector of 

Lagrange multipliers associated with the imposed constraints, �sw�� and �sw�� are the vectors of 
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generalized applied forces, �s��� and �s��� are the vectors which contain the contributions of 

the Coriolis and gyroscopic inertia forces, and ©�� is the stiffness matrix which defines the 

elasticity of the track.  

 

3.5 Wheel/Rail Elastic Contact Formulation  

In this chapter the three-dimensional elastic contact formulation that allows for wheel/rail 

penetration and separation, which was presented in Chapter 2, is reviewed for the case of 

wheel/rail, wheel/FS, and wheel/FFR rail contact. This formulation, called ECF-A (Shabana et 

al., 2008), does not reduce the number of degrees of freedom between a wheel/rail pair. The 

following four non-linear algebraic equations are solved on-line in order to determine the surface 

parameters which define the location of the contact point between a wheel/rail pair 

R�\� = &`�� ∙ 	]� `�� ∙ 	]� `�] ∙ b� `�] ∙ b�-M = _                            (3.9) 

where the subscript denotes to the surface parameter, the superscript w denotes the wheel body, 

the superscript r denotes the wheel rail body, while ` and b are tangent and normal vectors to the 

surfaces at the contact point, 	]� is the vector that defines the relative position of the contact 

point on the wheel with respect to the point on the rail surface, and \ is the vector of surface 

parameters defined as \ = &��] ��] ��� ���-M. Following the solution for the location of the 

contact point, the normal contact force and normalized creepage velocities can be calculated.  

The normal contact force defined as N
F  may be calculated using the equation  de =

−�fg� �h − igN|g|, where �f is the Hertzian constant (Johnson, 1985), i is the damping constant, 

and 	g  is the wheel/rail penetration defined as g = 	]� ∙ b�, and gN is the first time derivative of 

the wheel/rail penetration. The dimensions of the Hertzian contact ellipse may be computed once 



 

48 

the value of the penetration is known. The Hertzian contact ellipse is then used to compute the 

tangential creep forces and creep spin moment via Kalker’s non-linear creep theory.  

In the case where the rail is considered flexible, the effect of the elastic deformation must 

be included in the computation of the contact location and associated forces. To this end, the 

appropriate rail finite element in which the contact point resides must first be found. The 

appropriate element is found as a function of the longitudinal rail surface parameter. With the 

correct element found, the contact force is applied to the flexible track model and the rail 

geometry is updated to account for the predicted elastic deformation. The deformed geometry of 

the rail is used in the iterative process employed to determine the location and velocity of the 

contact point on the rail. 

3.5.1 Creepage Definition  

After determining the position and velocity of the contact points on the wheel and rail,  

the tangential and spin creepages are computed as follows (Shabana et al., 2008) 

8> = �k] − k��M `̂��m , 8? = �k] − k��M `̂��m , n = �O] −O��Mbo�m  (3.10) 

In these equations, k] and k� are absolute velocity vectors of the wheel and rail, O] and O� are 

absolute angular velocity vectors of the wheel and rail, `̂��and `̂��  are the unit vectors which define 

the directions of the longitudinal and lateral tangents of the rail surface at the location of the 

contact point, bo� is the unit vector which defines the direction of the normal of the rail surface at 

the location of the contact point, and m is defined as the forward velocity of the wheelset 

centroid. Following this, the longitudinal and lateral creep forces as well as the creep spin 

moment are computed using Kalker's non-linear creep theory. 
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3.5.2 Wheel/FS Contact 

In the case of contact with a FS, the body coordinates and velocities of the FS can be used to 

determine the coordinates and velocities of the contact point on the rail surface via Eqs. 2.2 and 

2.8. The FS orientation coordinates can also be used to determine the FS angular velocity via Eq. 

2.12. Therefore, the absolute velocity of the contact point and the absolute angular velocity of the 

rail that enter into the formulation of the creepage expressions in Eq. 3.10 can easily be 

computed. The flexible links between finite segments allow for changes in the relative 

displacement and orientation along the three axes. Since each FS possesses its own dynamical 

state, the rail velocity at the interface between segments can experience a sudden change which 

can lead to some excitations in the predicted contact forces. 

3.5.3 Wheel/FFR Rail Contact 

In the case of contact when the FFR formulation and component mode synthesis are used to 

model the rail, the effect of the deformation of the rail on the rail tangent and normal vector is 

accounted for at run-time by iteratively updating the deformed rail geometry. The absolute 

velocity of the rail at the contact point, including the effect of the rail elastic deformation 

required in the computation of the creepages, is computed using the following equation 

kt� = �N � +Ot� × ��G��t�� + ��t�� H + ����N t��                                    (3.11) 

where ��t��  
is defines the location of the contact point in the undeformed configuration of the rail 

and ��t��  
is defines the elastic deformation of the rail at the contact point. This equation 

demonstrates that both the elastic deformation and the elastic deformation velocity vector 

contribute to the computation of the velocity of the rail at the contact point when the FFR 

formulation is employed. The definition of the rail angular velocity at the location of the contact  

 



 

50 

 
Figure 16 Suspended Wheelset Model 

 

point must also be updated to account for the effect of the elastic deformation. The rail angular 

velocity vector at the contact point may be defined as:  

Ot� = O� +Ot��                                                        (3.12) 

where O� is defined as the angular velocity vector of the rail, and Ot��  is defined as the angular 

velocity of the contact frame with respect to the rail due to the elastic deformation. In the case 

where rail is considered to be both rigid and stationary, the vectors �N � and O� in Eqs. 3.11 and 

3.12 are identically zero. 

 

3.6 Numerical Example 

In this section, simple railroad models are used to compare between the three different modeling 

procedures described in this chapter (FS, FFR, and FFR/FS). This numerical comparative study 

will be used to illustrate the advantages and drawbacks of the FSM.  

3.6.1 Wheelset Model 

Figure 16 shows the suspended wheelset model, which is composed of a frame suspended over a 

wheelset by means of lateral and longitudinal spring-damper elements, that is used in this 
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example. The wheelset mass is assumed to be 1568 kg while the mass moments of inertia 

associated with roll, pitch, and yaw rotations are assumed to be 656, 168 and 656 kg·m
2
. The 

mass of the frame is assumed to be 3875 kg, its roll and pitch mass moments of inertia are 

assumed to be 1799 kg·m
2
, and its yaw  mass  moment  of  inertia  is  assumed  to  be  2450 

kg·m
2
.  The stiffness and damping parameters of the spring-damper elements which connect the 

frame to the wheelset are assumed to be iª� = iª� = 1 kN·s/m, i«� = i«� = 1 kN·s/m,	�ª� =�ª� = 13.5 kN/m, and �«� = �«� = 25 kN/m. The frame is assumed to have a constant forward 

velocity of 15 m/s, while constraints are imposed to restrict lateral and vertical translations and 

all rotations. To account for the effect of the weight of the car body on the wheelset, a 38 kN 

load is applied to the wheelset in the vertical direction. 

3.6.2 Track Model 

In the track model used in this chapter, the left rail is assumed to be a rigid solid while the right 

rail is assumed to consist of three stretches. The stretch in the middle is assumed to be a flexible 

body modeled by a clamped-clamped beam, while the other two stretches are treated as rigid 

bodies. The first rigid stretch permits the algorithm to reach steady state values before the vehicle 

reaches the flexible section. Similarly, the clamped end conditions ensure a smooth transition 

between the rigid and the flexible parts. The dimensions and the coordinate system used are 

shown in Fig. 17 while the track model properties are presented in Table 5. In this model the 

effect of the rail weight (gravity force) is neglected. This track model has been implemented 

using the three procedures previously discussed in this thesis. The most relevant details of each 

procedure will be briefly discussed. In this section, the simulations have been carried out using 

the general purpose MBS program SAMS/2000 (Shabana, 2010) in which the FFR and FSM 

track models are implemented. 
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Table 5. Track properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 17 Flexible Track Model  

3.6.3 FS Track Model 

When the FSM is used, the flexible rail is comprised of a number of rigid finite segments of 

equal length and cross-section dimensions. Therefore, the coefficients used for the stiffness, 

damping, and inertia properties are the same for each segment. The inertia properties of the finite 

segments must be calculated by treating each segment as an independent rigid body.  At the ends 

of the section modeled by finite segments; the stiffness coefficients are doubled since these ends 

Description Value 

Length of the track (m) 40 

Beginning of the flexible part (m) 25 

Length of the flexible part (m) 5 

Rail area (cm
2
) 88.18 

Rail second moment of inertia, yyI  (cm
4
) 4050 

Rail second moment of inertia, zzI  (cm
4
) 636 

Polar moment of inertia, J (cm
4
) 4686 

Rail density (kg/m
3
) 7840 

Rail modulus of elasticity E  (N/m
2
) 210 

Rail modulus of rigidity G  (N/m
2
) 81 
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are assumed to be connected to a ground section that is stationary throughout the simulation 

(Wang and Huston, 1994). Five FS models with different numbers of finite segments are 

considered in the numerical study presented in this section. These models are used to analyze the 

rate of convergence of the FSM in the simulations as well as for comparison with FFR 

formulation.  Due to the fact that six degrees of freedom between finite segments are considered, 

a discontinuity in the position is introduced between segments where shear and axial deformation 

occur. This discontinuity makes it difficult to obtain good results from the contact formulation 

that requires a higher degree of continuity. For this reason, comparisons among models with 

different number of elements will be made, and a new model in which only bending and torsional 

deformation are considered will be presented. 

3.6.4 FFR/FS Track Model    

A FS model can be developed using the FFR formulation and component mode synthesis 

technique (see Section 3.3). In this model, each finite segment is described by a beam element 

that is allowed to experience rigid body displacement only. As mentioned in Section 3.3, one way 

to achieve this is to assume a very high modulus of elasticity for the beam elements such that all 

their modes of deformation are associated with very high frequencies, and therefore, there is no 

need to evaluate these modes. The stiffness properties of such a model are concentrated at the 

interface of the finite elements, as discussed in Section 3.1. The nodes of two elements at the 

interface are assumed to have a physical separation of 1mm. This is required due to a geometric 

limitation introduced in the FFR rail model used in this work which does not allow two different 

nodes to occupy the same point in space. A modal analysis can be carried out to obtain the mode 

shapes and the frequencies of the track. However, these modes will possess specific features that 

characterize this new FS model:  the deformation is concentrated at the interface  between the 
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Table 6. Natural Frequencies of the Mode Shapes in FSM (in Hz)  

Mode No. 
1 2 3 

Freq. Error (%) Freq. Error (%) Freq. Error (%) 

5 finite 

seg. 

Lateral 17.045 13.71 40.010 26.3 64.070 39.6 

Vertical. 42.716 13.46 100.03 25.4 160.57 37.8 

16 finite 

seg. 

Lateral 19.451 1.54 52.523 3.29 100.28 5.47 

Vertical. 48.63 1.49 129.98 3.12 245.41 5.01 

25 finite 

seg. 

Lateral 19.634 0.61 53.589 1.32 103.73 2.22 

Vertical. 49.069 0.60 132.48 1.26 253.12 2.03 

50 finite 

seg. 

Lateral 19.729 0.12 54.165 0.26 105.61 0.45 

Vertical. 49.304 0.12 133.83 0.25 257.29 0.41 

100 finite 

seg. 

Lateral 19.754 - 54.307 - 106.09 - 

Vertical. 49.364 - 134.17 - 258.36 - 

 

 

Table 7. Natural Frequencies of the Mode Shapes in FEM (in Hz) 

Mode No. 
1 2 3 

Freq. Error (%) Freq. Error (%) Freq. Error (%) 

5 finite 

el. 

Lateral 19.744 0.11 53.721 1.21 99.383 6.54 

Vertical. 49.385 0.14 132.78 1.42 241.77 7.04 

16 finite 

el. 

Lateral 19.766 0.00 54.376 0.01 106.30 0.04 

Vertical. 49.452 0.00 134.66 0.03 259.79 0.11 

25 finite 

el. 

Lateral 19.766 0.00 54.379 0.00 106.33 0.01 

Vertical. 49.454 0.00 134.69 0.01 259.98 0.04 

50 finite 

el. 

Lateral 19.766 0.00 54.380 0.00 106.34 0.00 

Vertical. 49.454 0.00 134.70 0.00 260.06 0.01 

100 finite 

el. 

Lateral 19.765 - 54.380 - 106.34 - 

Vertical. 49.454 - 134.70 - 260.08 - 

 

finite segments and the finite segments behave as rigid bodies. Fourteen modes of vibration have 

been selected to describe the deformation of the rail. The first 14 modes are bending modes, 5 of 

which describe deformation in the z direction; while the rest define lateral deformation. The first 

three natural frequencies for the lateral and vertical mode shapes using the FFR/FS model are 

presented in Table 6. The reference used to measure the error in Tables 6 and 7 are the results 

given by the 100-element models. 
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3.6.5 FFR Track Model 

A FE track model, that includes the deformation modes due to the distributed elasticity and 

inertia, can also be developed and integrated with the FFR formulation. The results obtained 

using this model will be compared with the FSM and FFR/FS models. The left rail and the first 

and third stretches of the right rail in the FE model used in this section are assumed to be rigid. 

This can be conveniently achieved in the FE model by using one clamped-clamped finite element 

that has six coordinates at each of its nodes to represent each rigid section. The clamped end 

conditions will eliminate all the element degrees of freedom. The flexible stretch is modeled 

using a number of beam elements that account for shear deformation. The flexible stretch in this 

method is modeled with clamped-clamped boundary conditions at the rigid/flexible track 

interface to ensure a smooth transition between the rigid and flexible stretches. The results 

obtained by performing a modal analysis on these models are shown in Table 7. It can be 

observed that the rate of convergence of the FEM is much higher than the FS model. Two models 

that have different numbers of modes are used in this chapter. The first model contains 14 mode 

shapes, 5 of which are vertical and 9 of which are lateral. The second model contains 30 modes 

shapes, 12 of which are vertical modes and 16 of which are lateral. In all cases when using FFR 

approach, 100 elements are used and modal damping has been selected as 3% for all modes. 

3.6.6 Simulation Results 

In this section, unless otherwise mentioned, 50 finite elements or finite segments are used in the 

comparative study. When using the FFR approach, 14 mode shapes will be used to describe the 

rail deformation. The first lateral mode shape is shown in Fig. 18. A good agreement between the 

models of the FFR/FS and FEM is obtained in frequencies, shown in Tables 6 and 7, and 

deformation shown in Fig. 18. However it is possible to see the negative effect of concentrating 
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the deformation at the interface between rigid segments and the linear interpolation of the 

geometry within these rigid segments. The convergence of the FSM model can be examined 

using the results presented in Figs. 19 and 20. Figure 19 shows better convergence results for the 

vertical displacement as compared to the lateral displacement shown in Fig. 20. This is attributed 

to the fact that the static load on the wheelset is largely responsible for the vertical force at the 

point of contact while the lateral forces are more heavily influenced by dynamic forces. This fact 

can be seen in Fig. 20 where a large number of finite segments is required to achieve 

convergence.  The three methods discussed in this chapter are used to obtain the results of Figs. 

21 and 22. A good agreement in vertical and lateral displacements may be observed in these two 

figures although several factors must be taken into consideration: 

1) Inertia, elastic, and damping properties are differently distributed in each one of the 

models. 

2) The geometry of the rail deformed centerline is also different among the three methods. 

This fact alters the dynamics of the entire system since such difference in geometry can 

significantly influence the calculation of the contact forces. 

3) Mode shapes are only used in the two methods that employ the FFR formulation. 

Although one advantage of the FSM is its simplicity and straightforward implementation, in 

some cases, this method leads to poor descriptions of the deformation, thereby limiting its 

application. When 5 vertical modes of vibrations are used, the two procedures involving the FFR 

formulation offer a similar shape which, if Fig. 23 is observed in detail, is different from the 

shape obtained by applying the FSM. However, if one increases the number of vertical modes of 

vibration to 12, which  corresponds  to  the  model  with  30 mode shapes,  the FFR solution 

converges to the FSM solution. The displacement of the middle point of the beam as function of  
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 Figure 18 First Lateral Mode Shape Using FSM and FEM Models 

( FS,  FE) 

 

 
Figure 19 Vertical Displacement at Centroid of Each FS at 27.5m 

( 5 FS ,  16 FS, 50 FS) 
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Figure 20 Lateral Displacement at Centroid of Each FS at 27.5m 

( 5 FS ,  16 FS, 50 FS) 

 

 
Figure 21 Vertical Displacements at Contact Location 27.5m 

( FS,  FFR (FS),  FFR (FE)) 



 

59 

 
Figure 22 Lateral Displacements at Contact Location 27.5m 

( FS,  FFR (FS),  FFR (FE)) 

 

 
Figure 23 Vertical Displacements at Contact Location 25.5m 

( FS,  FFR (FS),  FFR (FE, 14 Modes),  FFR (FE, 30 Modes)) 
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Figure 24 Temporal Evolution of the Vertical Displacement at 27.5m 

( FS,  FFR (FS),  FFR (FE)) 

 

time is plotted in Fig. 24. In general terms, all models give similar results. However, FSM 

discretization leads to vibrations with different frequency contents. 

The convergence of the FSM can be clearly examined using the results presented in Fig. 

25. An increase in the number of finite segments makes the discontinuities in deformation 

between finite segments smaller. This fact is observed in the normal contact force: when more 

elements are used, the results are not as erratic. Furthermore, it can be easily observed how the 

model with 5 finite segments introduces an unrealistic oscillatory normal force. In Fig. 26, it is 

shown that the smooth results that the combined use of FEM and FFR generates cannot be 

achieved by using either the FSM or the FFR/FS method. The explanation comes from the fact 

that the mode shapes generated by applying the FSM are not smooth themselves. The 

smoothness of the rail surface is modified due to the concentration of the deformation at  the  
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Figure 25 Normal Force Using the Three FS Models 

( 5 FS,  16 FS,  50 FS) 

 
Figure 26 Normal Force Using the Three Methods 

( FS, FFR (FS),  FFR (FE)) 
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interface of the finite segments, in such a way that this method also introduces geometric 

irregularities. Despite these drawbacks, the average results of the contact forces of the 

procedures involving the FSM match with the smooth results from FFR formulation. 

 As expected, the lateral and longitudinal creepages experience jumps and oscillations in 

the case of the FSM that are not present when the FFR formulation is used. For clarity, 16 finite 

segments are used for comparison in the following discussion. In Figs. 27 and 28 it can be seen 

how the FSM introduces forces of high magnitude due to the geometric description of the rail. 

Figures 29 and 30 show the lateral and longitudinal contact force, respectively, on the right 

wheel. Again, the discontinuity at the interfaces between finite segments leads to unrealistic 

spikes in the contact forces at the interfaces of the finite segments. In a more complex model, 

these non-realistic forces may excite high frequency modes of the system, leading to results 

which diverge further from the results obtained using the FFR formulation or the FFR/FS 

approach even when the average of the FSM contact force is observed.  

 In view of the contact force results, one may suggest removing the relative translational 

degrees of freedom between the finite segments. Since the deformation of the beam is dominated  

by bending deformation, one can create FS models in which the finite segments are linked by 3 

torsional springs and spherical joints.  By using these models, with the same parameters as 

previously discussed, one circumvents the negative effect of the step between two finite 

segments even though discontinuities in the spatial derivatives will still be present in the surface 

due to the relative rotations. As will be discussed in Chapter 4, discontinuities in the spatial 

derivatives of contact surfaces can lead to inaccurate contact force predictions when ECF-A is 

chosen.  Figures 31 and 32 present the results  obtained using this simplified model.  Smoother  
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Figure 27 Lateral Creepage in the Flexible Stretch 

( FS (16 FS),  FFR (FE)) 

 
Figure 28 Longitudinal Creepage in the Flexible Stretch 

( FS (16 FS),  FFR (FE)) 



 

64 

 
Figure 29 Lateral Contact Force in the Flexible Stretch 

( FS (16 FS),  FFR (FE)) 

 
Figure 30 Longitudinal Contact Force in the Flexible Stretch 

( FS (16 FS),  FFR (FE)) 
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Figure 31 Normal Contact Force Using Spherical Joints 

 ( FS (16 FS),  FS (16 FS, Spher.) ,  FE)  

 
 Figure 32 Wheelset Velocity Using Spherical Joints  

( FS (16 FS),  FS (16 FS, Spher.) ,  FE) 
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contact force results are achieved; however, oscillations in the aforementioned force lead to a 

rough prediction of the dynamical state of the wheelset, as can be seen in Fig. 32. 

 

3.7 Concluding Remarks 

This chapter is concerned with the evaluation of the FSM as a tool for modeling track flexibility. 

In order to evaluate the performance of the FSM, several procedures which aim to deal with 

flexible railroad tracks have been applied to a simple track model in which only one stretch in 

one rail is considered flexible. In addition to the FSM which does not employ component modes, 

two other procedure are used in the numerical comparative study presented in this chapter. The 

first is the FFR formulation and the second is the combined FFR/FS method. The latter allows 

for developing a track model which consists of rigid segments using a FE pre-processor. 

Remarkable agreement among the three methods used has been found in terms of deformation 

and the dynamic performance of the model.   

 The geometry description of the FSM represents the major drawback of this approach in 

contact applications. Removing the discontinuities between finite segments due to shear 

deformation is not enough to ensure smooth results in the contact forces as continuity of the 

spatial derivatives of contact surface is necessary for a correct application of the elastic contact 

formulation (Sinokrot et al., 2008), as will be discussed in the following chapter. In other words, 

concentrating the deformation of the beam as in the FSM jeopardizes the effectiveness of the 

contact method used. This issue is partially solved by using a large number of finite segments; 

however this may cause an additional shortcoming of the method by introducing fictitious 

excitations to the system that may negatively impact the accuracy of the results. Due to these 

limitations, it is recommended that the use of the FSM be limited to simple simulation scenarios 
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or to studies concerned with gage widening, rail segment movements, and deformation analysis 

as discussed in the precious chapter. This is due to the fact that the forces predicted by the FS 

method are somewhat lacking in accuracy.  
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CHAPTER 4 

ANCF MODELING OF VARIABLE PROFILE SURFACES 

In the analysis of multibody system (MBS) dynamics, contact between two rigid bodies is a 

fundamental feature in a variety of models. Many procedures have been proposed to solve the 

rigid body contact problem, most of which belong to one of two categories: off-line and on-line 

contact search methods. This chapter will focus on the development of a contact surface 

geometry model for the rigid body contact problem in the case where an on-line three-

dimensional non-conformal contact evaluation procedure, such as the elastic contact formulation 

- algebraic equations (ECF-A), is employed. It is shown that the contact surface must have 

continuity in the second order spatial derivatives when used in conjunction with ECF-A. Many 

of the existing surface models rely on direct linear interpolation of profile curves which leads to 

first order spatial derivative discontinuities. This, in turn, leads to erroneous spikes in the 

predicted contact forces when ECF-A is used. To this end, an absolute nodal coordinate 

formulation (ANCF) thin plate surface model is developed in order to ensure second order spatial 

derivative continuity which satisfies the requirements of the contact formulation. A simple 

example of a railroad vehicle negotiating a turnout, which includes variable cross-section rail, is 

tested for the cases of the new ANCF thin plate element surface, an existing ANCF thin plate 

element surface with first order spatial derivative continuity, and the direct linear profile 

interpolation method. A comparison of the numerical results reveals the benefits of using the 

ANCF surface geometry developed in this chapter. 
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4.1 Contributions and Scope of this Chapter 

The objective of this chapter is to develop a new finite element-based procedure for representing 

surface geometry in MBS contact problems. This procedure ensures an appropriate degree of 

continuity at the element interface, thereby allowing for more accurate predictions of kinetic 

results that include the contact forces.  Specifically, the main contributions of this chapter can be 

summarized as follows: 

1. This chapter clearly identifies and explains the limitations of using curve representations 

in the description of surface geometry. It also identifies and explains the limitations of 

using low order interpolations with contact formulations that demand a higher degree of 

spatial derivative continuity. These two geometric approaches for modeling surfaces can 

lead to fundamental kinematic and kinetic problems that cannot be ignored in the analysis 

of important engineering applications such as railroad vehicle systems. To this end, this 

chapter provides in Section 4.3 a clear explanation of the potential loss of accuracy when 

continuity conditions are imposed in the case in which lower order interpolation is used. 

2. This chapter proposes a new finite element-based surface geometry that ensures a higher 

degree of continuity at the element interface. The new geometry, which is based on 

ANCF finite element geometry, is proposed in order to address the fundamental problems 

associated with the use of the curve representation or the use of lower order interpolation. 

A bi-quintic interpolation is employed in order to address the kinetic problems that result 

from the use of lower order geometric descriptions. 

3. This chapter presents a comparative analysis, both qualitative and quantitative, to 

demonstrate the value of using the proposed geometric approach. To this end, three 

different approaches are compared analytically and numerically. These three approaches  
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Figure 33 Swept Surface 

are the curve network representation of the surface, the lower order surface interpolation, 

and the proposed higher order surface interpolation techniques. The results of this 

comparative analysis demonstrate that the  use  of  higher  order  surface  interpolation  is 

feasible in many challenging problems. 

4. Lastly, a numerical example of a rail vehicle negotiating a turnout is used to demonstrate 

the feasibility of using a rail computer-aided design (CAD) geometry model that can be 

systematically integrated with complex MBS models. The example presented in this 

chapter clearly demonstrates the need for the use of the new geometric approach to model 

important technological applications. The results also clearly demonstrate the limitations 

of other existing approaches. 
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Figure 34 Linear Interpolation Lofted Surface 

4.2 Curve Network Representation 

In the MBS analysis of contact problems, it is important to accurately describe the surfaces of the 

bodies in contact. The correct description of the surfaces is crucial for an accurate evaluation of 

the contact forces, which have a significant effect on the system dynamics.  The assumption of  a 

constant profile swept along a curve, as shown in Fig. 33, is implemented in many cases to 

simplify the geometric problem and, for many common scenarios, such as the idealized 

wheel/rail contact problem in railroad vehicle simulations, this swept surface description is a 

prudent choice. However, there are many scenarios for which this assumption does not provide 

an accurate model of the contact surface. For instance, a varying rail profile is a necessity in the 

cases of modeling turnouts, frogs, worn rails, etc. It is the goal of this section to describe a way 

in which the surface description proposed by (Rathod, et al., 2009) may be generalized to allow 

for the varying profiles of surfaces such as these by making use of a direct linear interpolation 
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scheme. The result is referred to as a lofted surface, such as that shown in Fig. 34. Additionally, 

it will be explained why this method is a poor choice when used in combination with the on-line 

elastic or constraint contact formulations outlined in Section 4.7. 

  It is convenient in numerical simulation to define the contact surfaces as unique functions 

of two surface parameters. The contact surface of body 1 is defined in terms of the longitudinal 

arc length surface parameter, ��0 , which follows the space curve the profile is swept along and the 

lateral surface parameter, ��0 , which defines the profile of the surface as a function KG��0H. As was 

described by Rathod et al., an arbitrary point on a swept surface may be described using the 

following equation (Rathod et al., 2009) 

	0 = �0 + �0��0                                                          (4.1) 

where 	0 is the global position of the arbitrary point on the surface of body 1, �0
 is the global 

position of the local coordinate system of body 1, �0
 is the transformation matrix which defines 

the orientation of the coordinate system of body 1 with respect to the global coordinate system, 

and ��0 is the local position of an arbitrary point within the coordinate system of body 1. In 

previous studies (Rathod et al., 2009), ��0 was defined for a constant profile using ANCF 

geometry to discretize the space curve and spline geometry to define the surface along the space 

curve as 

��0 = $®5G��0H, 7G��0H, 8 ¡KG��0H¢¯ %                                          (4.2) 

where $ is the matrix of shape functions for the three-dimensional beam element (Shabana, 

2012), %  is the vector of nodal coordinates including the position and gradient vectors at the 

two nodes of element �, and the local element coordinates are defined as 5 = G��0 −  �H 6⁄ , 

7 = G��0 − !�H 6⁄ , and 8 = GKG��0H − "�H 6⁄  where the superscript 
 designates the number of the 
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first node of element �, and 6 is defined by the distance between nodes 
 and 
 + 1 in the 

parametric domain. Using these formulae, any point on the swept surface may be found using the 

ANCF geometric interpolation between the nodes of the space curve. Equation 4.1 may be 

generalized to allow for varying profiles of the surface by modifying the definition of the local 

coordinate 8 as (Sinokrot, 2009) 8 = GℎG��0 , ��0H − "�H 6⁄  which allows the height of the surface 

with respect to the space curve to vary as a function of both the lateral and longitudinal surface 

parameters. With this new definition for 8, Eq. 4.1 can be modified to define a lofted surface. 

 In a MBS code, a lofted surface may be created by providing profile curves which define 

the relationship between ��0  and	KG��0H. These profile curves may then be interpolated to define 

the surface of body 1 in the interval between the two neighboring profile curves. Provided the 

intervals are small, a series of linear interpolations may be used to determine the value of 

ℎG��0 , ��0H for any values of ��0  and ��0  on the surface. Nonetheless, according to (Sinokrot et al., 

2008), continuity in the spatial derivatives of the surface up to the second order in both the lateral 

and longitudinal directions is required for the elastic contact formulation described in Section 

4.7. Clearly the use of linear interpolation will result in discontinuities in some of these 

derivatives. To overcome this, one may use higher order direct interpolation methods on-line in a 

similar procedure as described above. According to (Shikin and Plis, 1995), this results in either 

an interpolating or smoothing surface. In the former, the surface passes through all of the data 

points provided but may result in fictitious oscillations in the surface geometry. In the latter, the 

surface need not pass through the provided data points but it is generally smooth and relatively 

free of the fictitious oscillations. With either choice, a sacrifice in accuracy or smoothness of the 

surface must be made. Neither choice is ideal for an on-line surface interpolation scheme as the 

user will be unable to determine the extent of the distortion  in the surface  geometry until  the  
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Figure 35 ANCF Thin Plate Element in Parametric (left) and Physical (Right) Domains 

simulation is complete. For this reason, an alternative surface description, which provides an 

acceptable level of both accuracy and smoothness, and which may be easily viewed prior to 

simulation, is developed using ANCF surface geometry as described in the following sections. 

 

4.3 Lower Order ANCF Surface Geometry 

The �� continuous third order ANCF thin plate element was introduced by (Mikkola et al., 

2012). This element is a four node quadrilateral that has four coordinate vectors at each node 

which results in a total of 48 degrees of freedom for the element. As with other ANCF thin plate 

elements presented in the literature (Dmitrochenko and Pogorelov, 2003; Shabana, 2005; 

Shabana, 2012), the position of an arbitrary point in the element may be computed by mapping 

an undeformed rectangular reference configuration to the deformed physical configuration, as 

shown in Fig. 35. A multiplicative decomposition of the spatial and temporal coordinates yields 

	 = $�5, 7�% �#�                                                        (4.3) 
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Figure 36 Two Element ANCF Thin Plate Mesh 

where $ is the matrix of shape functions, which is provided in Appendix C, 5 and 7 are the 

element coordinates defined in the natural coordinate system and are related to the reference 

configuration through the relationship 5 =  �⁄  and 7 = ! ±⁄  where � and ± define the element 

width and height reference configuration, and %  is the vector of nodal coordinates for 

element	� which are defined as %  = &%�M %�M %�M %(M-M where the coordinates at node � are  

%² = x	²M c	²Mc c	²Mc! c�	²Mc c!yM (4.4) 

where 	² 
is the position in the physical domain of node �. Note that in the case of a rigid ANCF 

surface, %  has no temporal dependence as no deformation of the surface may occur. 

  It can be shown that this element has �� continuity by evaluating the first spatial 

derivatives of two elements at the element interface. For example, consider a two element mesh 

in which the elements share a boundary with a common � coordinate as shown in Fig. 36. In this 

mesh, the element coordinate vectors may be defined as %� = &%�M %�M %�M %(M-M and %� =
&%�M %)M %*M %�M-M. The �� continuity conditions at this interface may be defined as 

�c$ c ⁄ ��5 = 1, 7�%� = �c$ c ⁄ ��5 = 0, 7�%�, and �c$ c!⁄ ��5 = 1, 7�%� = �c$ c!⁄ ��5 =
0, 7�%�. These two conditions are satisfied in the case in which the two elements share a 
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common dimension ±, which implies that the two elements have the same height in the reference 

configuration. Similarly, it can be shown that for a two-element mesh in which the elements 

share a common E boundary that the �� continuity conditions are satisfied for the case in which 

the two elements have a common dimension �. This implies that the two elements must have the 

same width. Therefore, in the case of a mesh which forms a rectangular grid in the undeformed 

configuration, the third order plate satisfies the �� continuity conditions throughout the entire 

surface. 

 Using a similar procedure, it can be shown that this element does not satisfy continuity in 

the second order spatial derivatives at the element interface. In order to enforce such conditions, 

one may extend the procedure presented by Lan and Shabana  in which constraints are applied at 

the nodes on the element interface to increase the order of continuity between ANCF beam 

elements (Lan and Shabana, 2010). For the mesh shown in Fig. 36, it can be shown that the 

condition for the continuity in the second spatial derivative taken with respect to the E coordinate 

is satisfied provided the two elements have the same height. In other words, the condition 

�c�$ c!�⁄ ��5 = 1, 7�%� = �c�$ c!�⁄ ��5 = 0, 7�%� is satisfied. However, a similar condition 

applied to the second spatial derivative taken with respect to the � coordinate is not satisfied. In 

order to enforce continuity in the second spatial derivative taken with respect to the � coordinate, 

the following two constraints must be applied to both nodes at the element interface 

3 c�$c � �5 = 5²�, 7 = 7²��%� = c�$c � �5 = 5²�, 7 = 7²��%�c�$c �c! �5 = 5²�, 7 = 7²��%� = c�$c �c! �5 = 5²�, 7 = 7²��%�³́µ́
¶

 (4.5) 

where 5²  and 7²  are the natural coordinates of node � defined in element �. These two 

equations are linear in the nodal coordinate vectors contained in %� and %� which allows for a 
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simple procedure in which two vectors of coordinates at both nodes on the element interface are 

constrained. This eliminates 12 degrees of freedom from the elements at the interface. A similar 

set of constraint equations can be applied to two elements which share a boundary with a 

common E coordinate. Consequently, for each interface an element shares with another element, 

12 degrees of freedom must be constrained in order to ensure continuity in the second spatial 

derivative taken with respect to both the � and E coordinates. Thus, for an element that does not 

lie on the boundary of the mesh, e.g. an element which has an interface with four other elements, 

48 degrees of freedom would need to be constrained leaving the element with zero degrees of 

freedom. This implies that the constrained surface need not pass through the interior nodes the 

surface was originally constructed from. Clearly this does not represent an optimal choice for 

modeling a generic surface with second order spatial derivative continuity due to the substantial 

loss of geometric accuracy. For this reason, a higher order thin plate element with natural �� 

continuity was developed to maintain both higher order continuity and geometric accuracy. 

 

4.4 Higher Order ANCF Surface Geometry 

In order to ensure �� continuity of the new plate element, it is assumed that each element will 

employ bi-quintic interpolation and satisfy the nine conditions in terms of the position and spatial 

derivatives up to the second order in each direction at each internal node as prescribed by (Jones, 

1988). These nine conditions are required at each node which is shared by up to four elements; 

this implies that a rectangular grid of elements must be chosen for these conditions to apply. Of 

course, one may desire to use a non-rectangular element, such as a triangular element, for ease of 

mesh refinement, however Jones demonstrated that this task is significantly more complicated as 

the nine aforementioned conditions are not sufficient in the case of non-rectangular elements. 
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These nine conditions can be systematically satisfied by using these conditions to form nine 

coordinate vectors for each node. With the chosen coordinates in mind, the shape functions for 

the quintic ANCF thin plate element were derived from the basis functions of a fifth order Bezier 

patch using the linear transformation that will be described in Section 4.6. The nodal coordinate 

vector for the new element is defined as 

%² = x	²M c	²Mc c	²Mc! c�	²Mc � c�	²Mc c! c�	²Mc!� c�	²Mc �c! c�	²Mc c!� c(	²Mc �c!�yM (4.6) 

which demonstrates that this element has 108 degrees of freedom, while the matrix of shape 

functions is provided in Appendix C.  

 As in Section 4.3, a set of conditions may be checked to ensure that continuity in the 

second spatial derivatives taken with respect to the � and E coordinates at the element interfaces 

is guaranteed. For the configuration shown in Fig. 36, the following conditions can easily be 

verified in the case where the two elements share the same height ± 

c�$c � �5 = 1, 7�%� = c�$c � �5 = 0, 7�%�, c�$c!� �5 = 1, 7�%� = c�$c!� �5 = 0, 7�%� 

 

(4.7) 

It can be shown that similar conditions are satisfied for two elements which share a boundary 

with a common E coordinate provided that the two elements share a common width �. Thus, as 

explained by Jones, a rectangular grid of elements in the undeformed configuration is required in 

order to maintain the �� continuity conditions. 

 While this chapter is concerned with the case of a rigid contact surface, it is important to 

note that the new element presented in this section may be used to model a flexible surface using 

the same procedures employed to model other ANCF thin plate elements as flexible bodies in 

literature (Mikkola et al., 2012, Shabana, 2012). However, this new element has 108 degrees of 

freedom which can significantly penalize the computational time of the flexible body simulation 
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when compared to the 48 degree of freedom cubic plate element presented in Section 4.3. This 

large number of degrees of freedom per element may become prohibitive in the sequential 

computing paradigm. However, this large computational cost may be mitigated as demonstrated 

by (Melanz et al., 2012). The proposed method reported a speedup of 250x when compared to its 

serial programming counterpart by leveraging the parallel processing capabilities of modern 

computer hardware. A similar method could be employed in the case of the fifth order plate to 

reduce the prohibitive cost of the large number of degrees of freedom per element. 

 

4.5  ANCF Thin Plate Element Meshing Schemes 

In the design of an ANCF thin plate mesh which models an arbitrary surface, the choice of the 

reference configuration can represent a significant challenge. In the case of a rigid surface 

modeled with ANCF thin plate elements, the configuration of the body does not change with 

time and the body takes the so called deformed configuration at the initial time step. In this case, 

the reference configuration represents a parametric domain in which two surface parameters are 

defined to identify a specific point on the surface composed of a collection of elements which 

form the mesh. This lends itself easily to a contact formulation, such as that presented in Section 

4.7, in which the entire surface must exist in a single continuous parametric domain. To this end, 

each node in the mesh is provided with an additional two coordinates which correspond to the 

surface parameters �� and �� where � denotes the surface number. Consequently, one may use 

the equation 	 = $ ¡5G��H, 7G��H¢ %  to evaluate the position of a point G��, ��H on surface �.  

Recall that the reference configuration of an ANCF thin plate mesh using the elements presented  



Figure 37 Right Hand Turnout Diagram (Shabana et al., 2008)

in Sections 4.3 and 4.4 must maintain a rectangular shape to ensure optimum continuity. The 

resulting rectangular mesh formed from this collection of elements is referred to as a rectangular 

grid. This does not, however, imply that the deformed configuration or the shape of the surface 

in the physical domain be defined as a rectangular shape.  The  aforementioned  par

of the reference configuration allows for the following simple relationship between the surface

parameters �� and �� and the element natural coordinates to be created: 

and 7 = G�� − ��,�, H ± ⁄ , where 

on surface �, and the width and height of the element in the parametric configuration are defined 

as �  = ��,�,  − ��,�,  and ±  =
variety of surface shapes may easily be represented using ANCF thin plate elements of various 

orders of continuity. 

 The parameterization of the reference configuration presented in this section lends itself 

easily to the construction of surfaces which have continuous physical geometry. However, the 

physical geometry of a contact surface need not be continuous in the general case. Take for 

example a turnout in a railroad vehicle simulation. As is shown in Fig. 37, a turnout is composed 

of multiple rail segments which may
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Figure 37 Right Hand Turnout Diagram (Shabana et al., 2008) 

in Sections 4.3 and 4.4 must maintain a rectangular shape to ensure optimum continuity. The 

mesh formed from this collection of elements is referred to as a rectangular 

grid. This does not, however, imply that the deformed configuration or the shape of the surface 

in the physical domain be defined as a rectangular shape.  The  aforementioned  par

of the reference configuration allows for the following simple relationship between the surface

and the element natural coordinates to be created: 5 =
, where �ª,²,  is the surface parameter 6 stored for node 

, and the width and height of the element in the parametric configuration are defined 

= ��,�,  − ��,�, , respectively.  Using these relationships, a large 

variety of surface shapes may easily be represented using ANCF thin plate elements of various 

The parameterization of the reference configuration presented in this section lends itself 

f surfaces which have continuous physical geometry. However, the 

physical geometry of a contact surface need not be continuous in the general case. Take for 

example a turnout in a railroad vehicle simulation. As is shown in Fig. 37, a turnout is composed 

may  physical  discontinuities  between them.  These 

 

 

 

in Sections 4.3 and 4.4 must maintain a rectangular shape to ensure optimum continuity. The 

mesh formed from this collection of elements is referred to as a rectangular 

grid. This does not, however, imply that the deformed configuration or the shape of the surface 

in the physical domain be defined as a rectangular shape.  The  aforementioned  parameterization 

of the reference configuration allows for the following simple relationship between the surface 
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, and the width and height of the element in the parametric configuration are defined 
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The parameterization of the reference configuration presented in this section lends itself 

f surfaces which have continuous physical geometry. However, the 

physical geometry of a contact surface need not be continuous in the general case. Take for 

example a turnout in a railroad vehicle simulation. As is shown in Fig. 37, a turnout is composed 

These  physical  
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Figure 38 ANCF Thin Plate Mesh with ��� Boundary  

(Left: Parametric Domain, Right: Physical Domain) 

discontinuities are referred to as ��� continuity. Clearly it would be inappropriate to model the 

surface at the interface between two of these segments with �� continuity. To insert this ��� 

continuity into an otherwise �� mesh, the contact surface may be generated from two rectangular 

grids which are joined only in the parametric domain. In other words, the  two  rectangular  grids 

would share no nodes or elements in common, however the parametric domains of the two grids 

would share a common boundary in either the longitudinal or lateral surface parameter directions 

thus allowing a continuous description in the parametric domain. An example of this 

configuration is provided in Fig. 38 in which two grids have been combined in a single mesh 

with a common boundary along the lateral direction. Using this approach, one may generate a 

variety of surfaces which are composed of multiple consecutive rectangular grids which have 

either ��� or �� continuity at the boundaries in the physical domain while retaining at least �� 

continuity at the boundaries in the parametric domain.  
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4.6 Mapping Between ANCF Elements and Bezier Patches 

As has been shown in literature (Lan and Shabana, 2010; Mikkola et al., 2012), the geometric 

definition of ANCF curves and surfaces is compatible with that of Bezier curves and surfaces. In 

fact, a linear transformation may be used to convert certain ANCF curves and surfaces to 

equivalent Bezier curves or surfaces. This is particularly useful since, according to (Piegl and 

Tiller, 1997) any B-spline curve or surface may be converted to one or more Bezier curves or 

surfaces. In many CAD programs, B-spline geometry is used to represent many of the 

fundamental shapes. Thus, if one were to generate a complex geometric model of a surface in a 

B-spline based CAD system for use in a contact problem, it may be possible to convert this 

surface to an equivalent ANCF thin plate mesh without any geometric distortion. 

 Similar to ANCF thin plate elements, Bezier surface patches are generated via a 

multiplicative decomposition. The primary difference being that the coordinates of a Bezier 

surface patch, which are often referred to as control points, do not have clear physical meaning 

and some of which may not represent material points. On the other hand, the coordinates of an 

ANCF thin plate element have clear physical meaning such as the position or spatial derivative 

of the surface the element is used to represent. The surface of a Bezier patch of polynomial order 

� in the 5 direction and � in the 7 direction is defined as (Piegl and Tiller, 1997) 

	�5, 7� = ·· ¹̧,0 º̧,C»0,C 
C¼�

²
0¼�  (4.8) 

where »0,C is the 1, Dth control point of the Bezier patch, and ¹̧,0 and º̧,C are the Bernstein 

polynomial basis functions of the Bezier patch defined as 

½̧, = 6!�! �6 − 1�! ¿�1 − ¿�ª� (4.9) 

where � = 1 and 6 = � when ¿ = 5, and � = D and  6 = � when ¿ = 7.  
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Figure 39 Relationship Between Quintic Bezier Patch Control Points and ANCF Nodal 

Coordinates 

Assuming that one desires to convert the Bezier patch to an equivalent four node ANCF thin 

plate element, it is convenient to restructure Eq. 4.8 as a series of dot products between the basis 

functions and control points which influence the Bezier patch at each corner. A similar 

restructuring may be applied to the ANCF thin plate shape functions and coordinates at each 

node as follows 

	�5, 7� = ·Àe»e(
e¼� = ·$eRe(

e¼�  (4.10) 

where Àe, »e, $e, and Re corresponding to a quintic Bezier patch and the related ANCF thin 

plate element are provided in Appendix C. Figure 39 shows graphically which control points 

have influence on Eq. 4.10 at the corners of the Bezier patch. It follows logically from this that 

these groups of control points, which are stored in »e, will be the only set which influence the 

ANCF coordinates at a given node. Note that the vectors of ANCF nodal coordinates Re do not 

correspond exactly to the standard form of the vector of nodal coordinates provided for the 

quintic ANCF thin plate element presented in Section 4.4. This form was chosen such that the 
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same linear transformation may be used to determine the relationship between the ANCF nodal 

coordinates and the Bezier control points at all four nodes.  

 To determine the relationship between the control points and nodal coordinates, one may 

simply evaluate Eq. 4.10 and its derivatives in accordance with the chosen nodal coordinates at 

the corners of the Bezier patch. This leads to the construction of the linear transformation matrix 

� which relates the control points to the corresponding nodal coordinates through the following 

relationship 

Re = �»e                                                            (4.11) 

where the matrix � corresponding to a quintic Bezier patch is provided in Appendix C. It is 

worth noting that the matrix � is non-singular which allows the converse relationship to be 

written by inverting the linear transformation matrix �. 

 The shape functions for the fifth order ANCF thin plate element provided in Section 4.4 

may be derived directly from the quintic Bezier patch. This is accomplished by substituting Eq. 

4.11 into Eq. 4.10 at node ¸ and solving for the vector of shape functions which results in the 

following relationship 

$e = Àe���                                                          (4.12) 

Following a similar procedure, the shape functions for a �� continuous ANCF thin plate element 

may be derived from a seventh order Bezier patch, as per the requirements of the constraint 

contact approach (Sinokrot et al., 2008). In this case, the vector of ANCF nodal coordinates 

would be composed of the sixteen vectors corresponding to the position and spatial derivatives of 

up to the third order in each parameter. Using this new vector of nodal coordinates, one could 

easily develop the linear transformation matrix � and use Eqs. 4.11 and 4.12 to convert the 
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control points and basis functions of the seventh order Bezier patch to the shape functions and 

nodal coordinates of the corresponding ANCF thin plate element. 

 

4.7  Contact Formulations 

In this section, two contact formulations are discussed. The first is the elastic contact formulation 

- algebraic equations (ECF-A), and the second is the augmented constraint contact formulation 

(ACCF). Although ECF-A and ACCF are both three-dimensional non-conformal contact 

formulations, there are some fundamental differences between the two. Note that both of the 

contact formulations employed in this chapter are solved on-line. The contact equations of ECF-

A are not treated as constraint equations and need not be satisfied by the MBS code at the 

velocity and acceleration levels. In ACCF, the contact patch is treated as a rigid solid such that 

small penetrations and separations are not allowed. As the name suggests, the contact equations 

of ACCF are treated as constraint equations which must be satisfied at the velocity and 

acceleration levels. Another important difference, as discussed by (Sinokrot et al., 2008), is the 

different requirements imposed on the spatial derivatives of the surfaces used for the two 

methods as will be discussed in the following sections. 

4.7.1 Elastic Contact Formulation - Algebraic Equations (ECF-A) 

As mentioned in previous chapters, ECF-A is a three-dimensional non-conformal contact 

formulation which assumes that the rigid bodies in contact are elastic in the contact patch. To 

find the contact point, a set of four algebraic equations in terms of the four surface parameters 

which describe the surfaces of bodies 1 and D are solved. The non-generalized surface parameters 

are stored in vector form as \ = I��0 ��0 ��C ��CLM. The vector of equations R�\� which is used 

to find the contact point is defined as 
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R�\� = I`�C ∙ 	0C `�C ∙ 	0C `�0 ∙ bC `�0 ∙ bCLM = _                            (4.13) 

where 	0C is defined as 	0 − 	C, bCis the normal vector to the surface of body D at the point of 

contact, and `ª� is the tangent vector of the surface of body Á	�Á = 1, D� taken with respect to 

surface parameter 6	�6 = 1,2�. The normal and tangent vectors are calculated, respectively, with 

the formulae (Kreyszig, 1991) bC = `�C × `�C  and `ª� = c	� c�ª�⁄ . Equation 4.13 is solved using 

the iterative Newton-Raphson solution procedure to determine the location of the contact point in 

terms of the non-generalized surface parameters. When using ECF-A, the normal contact force is 

defined as a function of the penetration as has been discussed in literature (Shabana et al., 2008) 

and previous chapters. The penetration is defined as	g = 	0C ∙ bC, where bC is defined as the 

normal vector at the contact point defined on body D.  
 As discussed by Sinokrot et al., the use of this elastic contact solution procedure requires 

continuity in the spatial derivatives up to the second order taken with respect to both the lateral 

and longitudinal surface parameters (Sinokrot et al. 2008). Consequently, the �� quintic ANCF 

thin plate element described in Section 4.4 is the ideal choice for modeling a surface when using 

this contact formulation. Conversely, if a surface does not guarantee �� continuity, such as the 

direct linear interpolation method described in Section 4.2 or the third order plate described in 

Section 4.3, significant numerical noise which has no physical meaning can be introduced into 

the solution. This is most pronounced in the normal contact force as will be shown in numerical 

example in Section 4.9. 

4.7.2 Augmented Constraint Contact Formulation (ACCF) 

In ACCF, five constraint equations (four of which were used in ECF-A) are imposed to 

guarantee the existence of a single contact point between each pair of bodies. Unlike ECF-A, no 
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penetration or separation is allowed as this would cause a violation in the imposed constraint 

equations. The five constraint equations are defined as follows (Shabana et al., 2008) 

pGq0, q0, \H = I`�C ∙ 	0C `�C ∙ 	0C bC ∙ 	0C `�0 ∙ bC `�0 ∙ bCLM = _ (4.14) 

where q� is the vector of generalized coordinates of body Á, and the other parameters retain the 

same definition provided in the previous section. This equation is also solved using the iterative 

Newton-Raphson procedure at run-time. As will be shown in the following section, this solution 

is included in the augmented form of the equation of motion using the method of Lagrange 

multipliers. Due to the fact that there are five constraint equations and only four surface 

parameters, it can be shown that there is only one independent Lagrange multiplier (Shabana et 

al., 2008). This implies that there is only one independent constraint reaction force and it is this 

reaction force which is used to determine the normal contact force.  

 Since these constraint equations must be differentiated twice when coupled with the 

equations of motion as discussed by Sinokrot et al., a �� continuous surface is required in order 

to obtain a result free of fictitious numerical excitation (Sinokrot et al., 2008). Considering the 

fact that ECF-A has a continuity requirement one order lower than ACCF and allows for 

separation between the two bodies in contact, ECF-A is chosen in place of ACCF for the 

numerical investigation presented in Section 4.9. As discussed in Section 4.6, a higher order 

plate element with �� continuity could be developed following the procedure used to generate 

the fifth order plate element. This would, of course, require a much larger number of coordinates 

than the fifth order plate element. Consequently, ECF-A is preferred to ACCF in the case of 

contact surfaces with variable geometry. 
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4.7.3 Evaluation of the Contact Forces 

Once the normal contact force is determined, the tangential creep forces and spin moment must 

be evaluated. These forces are calculated using the same method for both contact formulations 

presented. First, the longitudinal, lateral and spin creepages are calculated as follows (Shabana et 

al., 2008) 

8> = �k0 − kC�M `̂�Cm , 8? = �k0 − kC�M `̂�Cm , n = �O0 −OC�MboCm  (4.15) 

where k0and kC are, respectively, the absolute velocity vectors of bodies 1 and D at the contact 

point, `̂�C  and `̂�C  are the longitudinal and lateral unit tangent vectors of body D at the contact point, 

m is defined as the forward velocity of the centroid of body 1, O0 and OC are the absolute angular 

velocity vectors of bodies 1 and D respectively, and boC is defined as the unit normal vector of 

body D at the point of contact. With the creepages found, the forces associated with them can be 

calculated using Kalker's non-linear creep theory with the use of Kalker's USETAB (Vollebregt, 

2008). This program takes the creepages and other pertinent quantities as input and provides the 

longitudinal and lateral creep forces as well as the creep spin moment as output. 

 

4.8  MBS Dynamic Equations 

In this section, two versions of the augmented form of the equations of motion are presented. 

When the elastic contact formulation is used, the non-generalized surface parameters are not 

included in the equation of motion while the generalized coordinates are included. However, 

when the constraint contact method is chosen, the non-generalized surface parameters must 

appear in the augmented form of the equations of motion or systematically eliminated using four 

of the contact constraint equations. Using the principle of virtual work, the following formula 

may be obtained for the elastic contact formulation (Shabana et al., 2008) gqMGuqr + pqMv −
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swH = 0, while for the constraint contact method, this equation is written as gqMGuqr + pqMv −
swH + g\Mp\Mv = 0, where u is the system mass matrix, q is the vector of generalized 

coordinates, \ is the vector of non-generalized surface parameters, pq and p\ are the Jacobian 

constraint matrices formed by the differentiation of the constraint equations with respect to q and 

\ respectively, sw is the generalized force vector, and v is the vector of Lagrange multipliers. 

The differentiation of the constraint equations twice with respect to time yields pqqr = st for the 

elastic contact formulation, and pqqr + p\\r = st for the constraint contact method where st is a 

quadratic velocity vector which results from this differentiation. Using the previous equations, 

the augmented form of the equation of motion for the elastic contact formulation may be written 

as (Roberson and Schwertassek, 1988, Shabana et al., 2008) 

xu pqMpq _ y xqrvy = xswsty                                                   (4.16) 

while written for the constraint contact formulation as 

Su _ pqM_ _ p\Mpq p\ _ U Sqr\rvU = Ssw_st
U                                               (4.17) 

These augmented forms of the equation of motion are solved for the generalized and, where 

applicable, the non-generalized accelerations as well as the Lagrange multipliers. In this chapter, 

the explicit Adams-Bashforth predictor-corrector numerical integration scheme (Shampine and 

Gordon, 1975) is used to find the independent coordinates and velocities. The dependent 

coordinates and velocities are computed using the Newton-Raphson algorithm.  
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Figure 40 Suspended Wheelset Model 

4.9  Numerical Example 

In this section, a simple example is presented to demonstrate the surface modeling techniques 

discussed in this chapter. A suspended wheelset traveling at a constant velocity over a partial left 

hand turnout is chosen as an idealized scenario in which a railroad vehicle may encounter a rail 

with a variable profile. The numerical simulations are carried out for three different scenarios 

that correspond to the three surface types (curve network representation, low order interpolation, 

and high order interpolation) discussed in throughout chapter. The results obtained using the 

three different surface types are compared. The simulations are carried out using the on-line non-

conformal elastic contact formulation (ECF-A) implemented in the general purpose multibody 

package SAMS/2000 (Shabana, 2010). 

 4.9.1 Simulation Parameters 

The suspended wheelset used in this example is composed of a single wheelset and a frame 

connected by linear spring-damper elements as is shown in Fig. 40. The stiffness and damping of 

the suspension components are defined as �ª� = �ª� = 13,499.36 N/m (925 lbf/ft), �«� = �«� =
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24,999.36 N/m (1713 lbf/ft), iª� = iª� = 999.68 N·s/m (68.5 lbf·s/ft), and i«� = i«� = 999.68  

N·s/m (68.5 lbf·s/ft). A constant velocity constraint is applied to the frame with a value of 4.4704 

m/s (10 mph) to simulate the vehicle motion while a load of 97,860.88 N (22,000 lbs) is applied 

to the wheelset to simulate the vehicle weight. The frame has a mass of 9,999.74 kg (685.2 slug), 

with roll, pitch, and yaw mass moments of inertia defined as 1,799.03, 1,799.03, and 2,499.96 

kg·m
2 

(1,326.9, 1,326.9, and 1,807.0 slug·ft
2
) respectively; while the wheelset has a mass of 

1,567.39 kg (107.4 slug), with roll, pitch, and yaw mass moments of inertia defined as 655.94, 

167.99, and 655.94 kg·m
2
 (483.8, 123.9, and 483.8 slug·ft

2
) respectively. The wheel profile used 

in the example is the AAR-1B-WF which is positioned such that a flange clearance of 7.391mm 

(0.291 inches) is maintained in the equilibrium position. 

 A partial turnout is considered for the track model; the components included are the left 

and right stock rails, the left tongue rail, and lead rail. For simplicity of the analysis, the guard, 

frog, and right tongue rail sections are not included in the model. Each of the three geometric 

models is created from the same set of rail profiles. The left rail is modeled using 36 profiles for 

the stock rail and 28 profiles for the tongue and lead rails while the right rail is modeled using 36 

profiles. These profiles, which are formed using between 400 and 500 discrete points, were 

developed based on CAD drawings provided by Cleveland Track Materials (CTM).  The stock 

profile of the rail used in this model is the 136 RE, while the tongue and lead rails belong to a 

No. 9 left hand turnout typically used in yards with a maximum speed rating of 6.67056 m/s (15 

mph). The rails are positioned such that the track gage is 1.4351 m (56.5 inches) and the tongue 

rail is located at 6.858 m (270 inches) along the left stock rail. 

 The linear interpolation surface is generated by direct interpolation of the aforementioned 

profiles. It is important to note that the profiles of the left stock and tongue rails are combined  
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Figure 41 ANCF Quintic Thin Plate Turnout 

into a single curve due to the inability of the direct linear interpolation method to capture the ��� 

boundary between the stock and tongue rails. The ANCF thin plate meshes were generated by 

extracting the nodal coordinates from a B-spline surface created by the NURBS package SISL 

(SINTEF ICT, 2005). A total of 12,500 thin plate elements are used to model the left rail, while 

10,000 are used to model the right rail. Note that fewer discrete nodal points are used in the 

ANCF models when compared with the direct interpolation method although more coordinates 

are used in the ANCF model considering that 8 spatial derivative vectors are required at each 

discrete nodal point in addition to the position vector. Each rail is modeled as a separate surface 

with a unique parametric domain. Additionally, the method presented in Section 4.5 was used  to  

insert  a  ��� boundary into the mesh of the left rail between the stock and tongue rails for both 

types of ANCF thin plate meshes. Figure 41 shows the geometry of the turnout as produced by 

the quintic ANCF thin plate mesh. 
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4.9.2 Numerical Results 

Among the three models, the fastest is the linear interpolation method which requires 5 minutes 

and 8 seconds of CPU time on a personal computer using serial computations, while the cubic 

ANCF method required 5 minutes and 27 seconds, and the quintic ANCF method required 6 

minutes and 22 seconds. While the linear interpolation method is faster, the improved accuracy 

of the quintic ANCF method far overweighs the additional CPU time it requires, as will be 

demonstrated by the numerical results. The best agreement  is found in the location of the contact 

point. In Fig. 42, it is shown that the difference in the computed lateral position of the contact 

point is negligible between the cubic and quintic ANCF thin plate models while the 

discrepancies are more pronounced when compared to  the  linear  profile  interpolation  method. 

Note that the large shift in the location of the contact point at 7.9502 m (313 inches) corresponds 

to the time at which the contact point switches from the stock rail to the tongue rail. A similar 

phenomenon can be seen in the plot of the vertical position of the contact point shown in Fig. 43. 

As the contact point transitions from the stock rail to the tongue rail there is a small vertical shift 

downward. Following this, the contact point shifts vertically by 6.35E-3 m (0.25 in) as per the 

design of the tongue rail which includes this elevation increase. It is also important to note here 

the linear nature of the change in the vertical position of the contact point in the case of the direct 

profile interpolation method. Recall that linear interpolation is used in the longitudinal 

interpolation between any 2 profiles, consequently this leads to a linear change in the height of 

the profile along the rail space curve. This phenomenon is less pronounced in the lateral shift as 

the individual profiles are described with cubic interpolation. Figure 44 shows the trace of the 

contact points along the left rail in the proximity of the tongue rail. Here the cause for the lateral  
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Figure 42 Y Coordinate of Contact Point on Left Rail 

 (  Linear Interpolation,  Cubic Plate,  Quintic Plate) 

 
Figure 43 Z Coordinate of Contact Point on Left Rail 

(  Linear Interpolation,  Cubic Plate,  Quintic Plate) 
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Figure 44 Trace of Contact Point Along Quintic ANCF Thin Plate Turnout 

shift is more pronounced: the contact point shifts laterally to follow the stock rail until such a 

time that the primary contact point transitions from the stock rail to the tongue rail.   

 The difference between  the  three  examples  is  more  pronounced  when  the  normal 

contact forces are compared. In Fig. 45, a comparison is shown for the normal contact force at 

the left wheel/rail interface between the direct linear interpolation method and the quintic ANCF 

thin plate mesh. Here it can be seen that the linear interpolation method produces fictitious spikes 

in the forces which is certainly an undesirable and unrealistic feature. However, the trend line of 

the linear interpolation method follows the same path as the quintic plate between these fictitious 

spikes. The contact forces are far more similar when the cubic and quintic plates are compared as 

is shown in Fig. 46. However, it is clear that some small fictitious force spikes are still predicted 

in the case of the cubic ANCF thin plate. Note the abrupt change in the normal force at 7.9052 m 

(313  in),  this is the location at which the contact shifts  from the stock rail to the  switch point. 
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Figure 45 Normal Force at Left Contact: Linear Interpolation Vs. ANCF Quintic Plate 

(  Linear Interpolation,  Quintic Plate) 

 
Figure 46 Normal Force at Left Contact: ANCF Cubic Plate Vs. ANCF Quintic Plate 

(  Cubic Plate,  Quintic Plate) 
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This transition does cause some physical disturbance in the wheel/rail interaction forces. Note 

that this change in the forces is small due to the idealized nature of the suspended wheelset 

model. 

 

4.10  Concluding Remarks 

In this chapter, three different methods that define variable profile surface geometry are 

presented. In the first method, a linear interpolation between two adjacent profiles is used to 

define the surface between the profiles. As a consequence, fictitious spikes in the contact forces 

are produced due to both first and second order spatial derivative discontinuities which are 

unavoidable with this method. In the second method, a surface mesh is produced using a 

collection of cubic ANCF thin plate elements. This method shows marked improvement over the 

direct profile interpolation method, however some small fictitious spikes in the contact forces are 

predicted due to second order spatial derivative discontinuities at the element boundaries. In the 

third method, a surface mesh is produced using a series of the newly developed quintic ANCF 

thin plate elements. This element has natural �� continuity and as a result does not produce the 

fictitious spikes in the contact forces that result from spatial derivative discontinuities when used 

in combination with the on-line ECF-A approach. It was shown that a linear transformation may 

be used to convert this quintic plate element to a quintic Bezier patch. This allows for a simple 

conversion from CAD geometry to the surface geometry used in the contact evaluation 

procedure. Since this quintic plate element does not rely on geometry lofted along a curve, a 

surface of arbitrary shape may easily be created using this element type. This would allow, for 

example, irregular terrain geometry for use in the simulation of contact for various types of 

vehicles to be easily developed. 
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 With regard to the simulation of railroad vehicles on variable profile rails, it was shown 

that the linear interpolation method produces reasonable accuracy in predicting the location of 

the contact point when combined with ECF-A. For such analyses that are not highly concerned 

with the contact forces, this method is ideal due to the simplicity of model creation. The cubic 

ANCF thin plate model produces nearly identical results at the position level when compared 

with the quintic ANCF thin plate model; the only discrepancy is related to some small fictitious 

spikes in the normal contact forces. Taking into consideration that model construction and 

implementation is nearly identical for the two types of ANCF thin plate elements and the small 

difference in the CPU time, it is advisable to choose the quintic plate in place of the cubic plate 

as the increased accuracy in the force prediction outweighs the slight increase in computational 

time required when the quintic ANCF thin plate surface is chosen. 
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CHAPTER 5 

CONCLUSIONS 

The main contributions of this thesis are focused on the development of alternative methods for 

modeling track elasticity and geometry. This was accomplished by introducing two new 

methods. In the first method, a simplified approach for modeling the flexibility of the track and 

moveable rail segments in railroad vehicle dynamics simulations was introduced. This simplified 

approach is not, however, without limitations as was discussed in Chapters 2 and 3. The second 

method introduced is a detailed approach to modeling the geometry of contact surfaces. This 

method was applied to the simulation of vehicle/track interaction during the negotiation of a 

simplified model of a turnout. While requiring more CPU time than existing methods, the 

improved accuracy in the prediction of the contact forces demonstrates that this method is a 

viable alternative to the existing procedures as was demonstrated in Chapter 4. 

 In Chapter 2 a computational method, based on the finite segment (FS) approach, which 

can be used to model track structure and rail movements in railroad vehicle dynamics was 

introduced. In order to avoid distortion of the geometry during the rail movements, absolute 

nodal coordinate formulation (ANCF) finite elements are used to interpolate the rail space curve 

geometric properties. It was shown that a systematic method can be developed in which this FS 

model can be created with limited user input. It is clear from the presented numerical results that 

this approach is capable of modeling some useful simulation scenarios such as gage widening 

and rail rollover. The FS approach can also be applied to more complex models pertaining to the 

study of broken rails, analysis of the effect of missing ties, and excitation due to bridge or 

seismic motion, provided the appropriate constraints and external forces are applied and an 

adequate number of finite segments are used.  
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The use of the finite segment rail model can introduce some discontinuities in the rail 

surface that cause erroneous spikes in the predicted contact forces. This problem can be avoided 

if the finite element method (FEM) is used in place of the FS method, as was demonstrated in 

Chapter 3. A second limitation of the proposed FS method is the failure to capture the change in 

the longitudinal rail arc length as the result of the FS longitudinal motion.  

 In Chapter 3, the FS approach presented in Chapter 2 was adapted to model track 

flexibility. In order to evaluate the performance of the finite segment method (FSM) in this 

context, several procedures which aim to deal with flexible railroad tracks have been applied to a 

simple track model in which only one stretch in one rail is considered flexible. In addition to the 

FSM which does not employ component modes, two other procedures are used in the 

comparative numerical study presented Chapter 3. The first is the floating frame of reference 

(FFR) formulation and the second is the combined FFR/FS method, the latter allows for 

developing a track model that consists of rigid segments using a finite element (FE) pre-

processor. Remarkable agreement among the three methods used has been found in terms of 

deformation and the dynamic performance of the models.   

 The geometric description of the FSM represents the major drawback of this approach in 

contact applications. Removing the spatial discontinuities between finite segments due to shear 

deformation is not enough to ensure smooth results in contact forces. Continuity in all second 

order spatial derivatives of the contact surface is necessary for a correct application of the on-line 

elastic contact formulation, was discussed in Chapter 4. In other words, concentrating the 

deformation as in the FSM jeopardizes the effectiveness of the contact method used. This issue is 

partially solved by using a large number of finite segments; however this may cause an 

additional shortcoming of the method by introducing fictitious excitations to the system that may 
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negatively impact the accuracy of the results. Due to these limitations, it is recommended that the 

use of the FSM be limited to simple simulation scenarios or to studies concerned with gage 

widening, rail segment movements, and deformation analysis. This is largely due to the fact that 

the forces predicted by the FS method are somewhat lacking in accuracy.  

 In Chapter 4, three different methods that define variable profile surface geometry for the 

three-dimensional non-conformal elastic contact formulation were presented. In the first method, 

a linear interpolation between two profiles is used to define the surface between the profiles. As a 

consequence, fictitious spikes in the contact forces are produced due to both first and second 

order spatial derivative discontinuities which are unavoidable with this method. In the second 

method, a FE mesh is produced to model the surface using a collection of cubic ANCF thin plate 

elements. This method shows marked improvement over the direct profile interpolation method, 

however some small fictitious spikes in the contact forces are predicted due to second order 

spatial derivative discontinuities at the element boundaries. In the third method, a FE mesh is 

produced to model the surface using a series of the newly developed quintic ANCF thin plate 

elements. This element has second order spatial derivative continuity and as a result does not 

produce fictitious spikes in the contact forces when used in combination with the elastic contact 

formulation – algebraic equations  (ECF-A). It was shown that a linear transformation may be 

used to convert this quintic plate element to a quintic Bezier patch. This allows for a simple 

conversion from computer-aided design (CAD) geometry to the surface geometry used in the 

contact evaluation procedure. Since this quintic plate element does not rely on geometry lofted 

along a curve, a surface of arbitrary shape may easily be created using this element type. This 

would allow, for example, irregular terrain geometry for use in the simulation of contact for 

various types of vehicles to be easily developed. 
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 With regard to the simulation of railroad vehicles in contact with variable profile rails, it 

was shown that the linear interpolation method produces reasonable accuracy in the prediction of 

the location of the contact point when combined with the on-line ECF-A approach. For such 

analyses that are not highly concerned with the contact forces, this method is ideal due to the 

simplicity of model creation and overall efficiency of the method. The cubic ANCF thin plate 

model produces nearly identical results at the position level when compared with the quintic 

ANCF thin plate model; the only discrepancy is related to some small fictitious spikes in the 

normal contact forces with the cubic ANCF thin plate model. Taking into consideration that 

model construction and implementation is nearly identical for the two types of ANCF thin plate 

elements, and the small difference in the computational efficiency, it is advisable to choose the 

quintic ANCF thin plate in place of the cubic ANCF thin plate as the increased accuracy in the 

force prediction outweighs the slight increase in the computational time required when the 

quintic ANCF thin plate surface is chosen. 
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APPENDIX C 

 

In this appendix, the shape functions of the ANCF finite plate elements considered in this thesis 

are presented. Also the ANCF/Bezier mapping matrices introduced in Section 4.6 are presented. 

 The shape function matrix of the third order ANCF plate element presented in Section 4.3 

is defined as (Mikkola et al., 2012) 

$ =&S�'3 S�' S�' S(' S)' S*' S+' S,'SÆ' S��' S��' S��' S��' S�(' S�)' 3S�*'-                        (A.1) 

 

where ' is a 3x3 identity matrix, 

 

3 S� = �¹��º� S� = �¹��º� S� = �¹��º� S( = �¹��º�S) = �¹��º� S* = �¹(�º� S+ = �¹��º� S, = �¹(�º�SÆ = �¹��º� S�� = �¹(�º� S�� = �¹��º( S�� = �¹(�º(S�� = �¹��º� S�( = �¹��º� S�) = �¹��º( S�* = �¹��º(³́µ́
¶

 

 

 

(A.2) 

 

and 

 

3SÈ� � 2χ� − 3χ� + 1 SÈ� = Ê�χ� − 2χ� + χ�SÈ� = −2χ� + 3χ� SÈ( = Ê�χ� − χ��Ê = �			K|
			χ = 5 Ê = ±			K|
			χ = 7 Ë 

 

 

(A.3) 

 

 The shape function of the fifth order ANCF plate element presented in Section 4.4 is 

defined as 

$ =&S�'3 S�' S�' S(' S)' S*' S+' S,' SÆ' S��' S��' S��'S��' S�(' S�)' S�*' S�+' S�,' S�Æ' S��' S��' S��' S��' S�('S�)' S�*' S�+' S�,' S�Æ' S��' S��' S��' S��' S�(' S�)' 3S�*'-   (A.4) 

 

where 

 

3
S� = �¹��º� S� = �¹��º� S� = �¹��º� S( = �¹��º� S) = �¹��º� S* = �¹��º�S+ = �¹��º� S, = �¹��º� SÆ = �¹��º� S�� = �¹(�º� 	S�� = �¹)�º� S�� = �¹(�º�S�� = �¹*�º� S�( = �¹)�º� S�) = �¹(�º� S�* = �¹*�º� S�+ = �¹)�º� S�, = �¹*�º�S�Æ = �¹(�º( S�� = �¹)�º( S�� = �¹(�º) S�� = �¹*�º( S�� = �¹)�º) S�( = �¹(�º*S�) = �¹*�º) S�* = �¹)�º* S�+ = �¹*�º* S�, = �¹��º( S�Æ = �¹��º( S�� = �¹��º)S�� = �¹��º( S�� = �¹��º) S�� = �¹��º* S�( = �¹��º) S�) = �¹��º* S�* = �¹��º*³́́

µ́
¶́
			(A.5) 
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and 

 

3�½� = �¿ − 1���6¿� + 3¿ + 1� �½� = Ê¿�¿ − 1���3¿ + 1� �½� = Ê�2 ¿��¿ − 1��
�½( = −¿��6¿� − 15¿ + 10� �½) = Ê¿��3¿� − 7¿ + 4� �½* = −Ê�2 ¿��¿ − 1��Ê = �			K|
			¿ = 5 Ê = ±			K|
			¿ = 7 ³́µ́

¶
 

 

 

(A.6) 

 

  

The ANCF/Bezier mapping matrices of Section 4.6 are 

 

3
»� = I»�,� 3 »�,� »�,� »�,� »�,� »�,� »�,� »�,� 3»�,�LÍ»� = I»),� 3 »),� »),� »(,� »(,� »(,� »�,� »�,� 3»�,�LÍ»� = I»),) 3 »),( »),� »(,) »(,( »(,� »�,) »�,( 3»�,�LÍ»( = I»�,) 3 »�,( »�,� »�,) »�,( »�,� »�,) »�,( 3»�,�LÍ³́µ́

¶
              (A.7) 
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                 (A.8) 
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   (A.9) 
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