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ABSTRACT 

 

While upper extremity training with haptic and visual feedback has been shown to 

assist in restoring function for individuals with stroke and related brain injuries (Teasell, 

Foley, Bhogal, & Speechley, 2003), outcomes vary greatly amongst individuals. Recent 

studies have found that manipulating error signals during training can stimulate learning. 

In order to improve current methods, we believe that it is necessary to customize haptic 

and visual interactions to address individual motor impairments. We can customize 

training using the statistics of errors, intervening only on the most commonly occurring 

errors. In addition to rehabilitation, this technique can be applied to situations where error 

feedback is needed, such as learning new skills.  

The primary goal of this thesis is to develop better training interventions to facilitate 

motor learning. Addressing the need for training tools for both skill learning and therapy, 

we explore strategies for improving upon current training paradigms.  In the first study 

we show how force adaptation can cause participants to reach with the errors that are 

necessary for moving in a visually rotated scene. In the second study, we determine the 

best domain to represent error tendencies during learning. In the third study, we test how 

error statistics can enhance learning of a novel visual transformation. In the fourth study, 

we conduct a preliminary investigation using error statistics to customize training 

interventions for stroke survivors. Our results will contribute a basic understanding on 

how we can use error statistics to improve training environments and effect functional 

recovery.  
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I. INTRODUCTION 
 

In everyday life we learn from experiencing mistakes. For example, in bowling if we 

miss a few pins we can adjust where we stand. While we have natural processes that 

allow us to improve based on our mistakes, the requirements could be burdensome for 

learning complex skills. This process can be further challenged when there is sustained 

brain injury following a stroke and individuals cannot correct their movement errors on 

their own. Scientists have devised interactive gaming environments to study this learning 

process. They have found that by manipulating how mistakes or errors are perceived, 

participants are able to learn new skills faster. The goal of this work is to explore error-

based methods in which we might enhance motor learning. The following introduction 

details the state of the art for error-based learning and robotic training interventions for 

reaching impairments.  

 

1. Error-based learning  

Error-based learning is a basic principle used to acquire or refine motor skills, such as 

bowling. When we make mistakes, the motor system uses this information to improve 

performance.  Scientists have suggested that ability to predict the outcomes of these 

movements relies on internal models, or neural representations of the environment 

(Mitsuo Kawato, 1990). When the movement does not match the desired goal, as in the 

case when we experience a new environment, error occurs. These errors are used to refine 

the internal model and adjust subsequent motor commands (Ghez, 1991; Miall & 

Wolpert, 1996; D. M. Wolpert, Ghahramani, & Jordan, 1995). This learning process has 
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been extensively studied by introducing participants to novel environments such as a 

visual rotation, viscous curl field or inertial load. In these studies, participants initially 

demonstrate large movement errors but are able to recover their typical reaching patterns 

with practice (Lackner & Dizio, 1994; Sainburg, Ghez, & Kalakanis, 1999; Reza 

Shadmehr & F. A. Mussa-Ivaldi, 1994). There, however, is debate over which variables 

are used by the nervous system to learn such novel environments. Conditt et al. suggested 

that force adaptation is based on an internal representation of the states and not 

memorization of a temporal sequence of forces (Conditt, Gandolfo, & Mussa-Ivaldi, 

1997). Hudson and Landy suggest that movement representations consist of state and 

time dependent coding, where each one uses different aspects of sensory feedback 

(Hudson & Landy, 2012). Regardless of the structure of the internal representations, by 

studying errors we can develop ways to support the learning process. 

1.1. What is error? 

The human motor system relies on multiple types of error information to adapt. 

Reaching error can be further distinguished into two categories: within trial error 

corrections made during the movement and trial-to-trial error corrections, which 

researchers speculate reflect a discrete process of updating the internal model (R. D. 

Seidler, Kwak, Fling, & Bernard, 2013). Computational methods have explained across 

trial error learning as a Bayesian updating process (Ernst & Banks, 2002; K. Kording & 

D. M. Wolpert, 2004; K. Wei & K. Kording, 2009; Daniel M Wolpert, Diedrichsen, & 

Flanagan, 2011).  The central nervous system integrates error observations over time to 

achieve a neural representation which best approximates the motor plan. Even when the 

error signal is consistently noisy, such as when force perturbations changed from trial to 
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trial, participants formed an approximation of the internal model based on the mean of 

the experienced forces (Scheidt, Dingwell, & Mussa-Ivaldi, 2001). Many of the 

aforementioned studies can explain how the central nervous system utilizes across trial 

errors; however, the process of using real-time errors within a trial might have additional 

benefit to learning.  

1.2. Adaptation  

While adaptation (learning) can only be inferred, there are several well-known 

methods for detecting clues of its existence. The aforementioned studies support the 

notion that an internal model is learned during repetitive practice; however, the best 

evidence of adaptation is when the distorted environment is removed. For example, 

consider the paradigm where participants experience forces initially perturbing them to 

the right. Over time, they recover straight-line reaching patterns. However, when the 

forces are suddenly removed, trajectories veer to the left. This phenomenon, called an 

aftereffect, is used to show evidence of the internal model acquired in response to the 

distorted condition (Held, 1962; Lackner & Dizio, 1994; Reza Shadmehr & F. A. Mussa-

Ivaldi, 1994). Aftereffects are usually reflections of the initial perturbations. It has even 

been shown that such aftereffects can transfer to new regions in the workspace after 

training, highlighting the nervous system’s ability to generalize its learning to other 

domains (Shadmehr & Mussa-Ivaldi, 1994). Under certain conditions, aftereffects can 

persist for hundreds of trials after the training considition is removed (J. L. Patton & F. A. 

Mussa-Ivaldi, 2004). Moreover, the structure of an aftereffect is based on the training 

conditions, so studies have also demonstrated the ability to design training conditions to 

obtain specific aftereffects (J. L. Patton & F. A. Mussa-Ivaldi, 2004; Yejun Wei & 
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Patton, 2004). Aftereffects, therefore, can be useful tools to either understand the amount 

of learning or to “trick” the nervous system into learning a new task. 

1.3. Dynamic vs. kinematic adaptation  

Exploration of the formation of internal models has led to the debate of whether 

kinematic and dynamic (haptic) adaptation utilizes the same processes. Krakauer et al. 

suggested that these processes are independent since adaptation to a kinematic distortion 

(a 30° visuomotor rotation) did not interfere with simultaneous adaptation to a dynamic 

perturbation (an inertial load) (J. W. Krakauer, Ghilardi, & Ghez, 1999). Further, 

Flanagan et al. showed that adaptation to a combined kinematic and dynamic perturbation 

resulted in participants having smaller errors when subsequently experiencing the 

kinematic perturbation (J. Randall Flanagan et al., 1999). On the other hand, when 

participants first adapted to a visual rotation and then a force field that were both position 

dependent, Tong and colleagues found that learning was impaired (Tong, Wolpert, & 

Flanagan, 2002). Thus, they concluded that these two adaptation mechanisms interfered 

with each other when the involved the same domain variables. These studies suggest that 

kinematic and dynamic adaptation some common neural resources, and hence reveal a 

new opportunity to facilitate learning — where adaptation in one environment can impact 

performance in another. Preliminary work has suggested that adaptation to a force field 

can facilitate performance in a visual rotation (Yejun Wei & Patton, 2004). However, this 

study lacked a control group and did not test the lasting effect of the training. Further 

investigation of how these mechanisms can be interchanged will be discussed in Chapter 

II. 
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1.4. Tools to facilitate learning 

Interactive virtual displays and robots offer methods to further facilitate motor 

learning. One promising line of research involves improving training by amplifying 

feedback errors. This technique, called error augmentation (EA), is achieved via robot-

generated forces or visual feedback gains that are proportional to the participant’s error 

signal. Error augmentation studies using novel forces or visual transformations have 

demonstrated positive training effects for healthy participants (Mussa-Ivaldi & Patton, 

2000; J. L. Patton & F. A. Mussa-Ivaldi, 2004) and stroke survivor subjects with reaching 

impairments (Abdollahi et al., 2014; Patton, Kovic, & Mussa-Ivaldi, 2006). In a study 

comparing error amplification to haptic guidance (forces reduced trajectory error), Milot 

found that EA training led to significantly greater learning than haptic guidance on a 

timing-based tapping task for skilled participants, but haptic guidance was beneficial for 

unskilled participants (Milot, Marchal-Crespo, Green, Cramer, & Reinkensmeyer, 2010). 

Thus, the added challenge of an EA paradigm was only beneficial for the participants 

appropriate skill level. In order for EA to be successful, researchers believe the 

amplification of feedback must still be believable (J. L. Patton, Y. J. Wei, P. Bajaj, & R. 

A. Scheidt, 2013; Y Wei, Patton, Bajaj, & Scheidt, 2005). They found that participants 

training with an offset error performed better than those training with EA gains of 2 and 

3.1. Shirzad and Van der Loos found that training with low gains of visual and haptic EA 

together was the most beneficial to learning and had the highest subject satisfaction 

(Shirzad & Van der Loos, 2012). These studies suggest that for each person there exists a 

certain level of error amplification that is optimal for learning. This belief that the 

participant’s skill level should dictate the difficulty of this task is consistent with a 
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participant’s “challenge point” (Guadagnoli & Lee, 2004). Our goal is thereby to create 

ideal practice conditions that consider participants’ skill level and aptitude for learning. 

1.5. Neural substrates involved in learning 

While this thesis describes how error is observed and used externally, it is possible 

that our training interventions can be better informed by the underlying biological 

processes involved in error-based learning. Many studies have shown that the formation 

of internal models and the adaptive responses depends on the cerebellum (Blakemore, 

Frith, & Wolpert, 2001; Masao Ito, 2002; Tseng, Diedrichsen, Krakauer, Shadmehr, & 

Bastian, 2007; Daniel M Wolpert, Miall, & Kawato, 1998) and the motor cortex (Doyon 

et al., 1997). Studies with cerebellar disorders have revealed reduced performance in 

adaptation to both kinematic and dynamic adaptation tasks (Rabe et al., 2009), however, 

there are no definitive findings that suggest different neural substrates are utilized for 

kinematic and dynamic adaptation (Diedrichsen, Hashambhoy, Rane, & Shadmehr, 2005; 

John W Krakauer et al., 2004). Other aspects of learning, such as within trial error 

corrections, have been shown to depend on the posterior parietal cortex and basal ganglia 

(Desmurget et al., 1999; Frank, 2011; Makoto Ito & Doya, 2011). Further studies have 

shown that the anterior cingulate cortex (ACC) plays a crucial role in monitoring 

performance (Berns, Cohen, & Mintun, 1997; Ridderinkhof, Ullsperger, Crone, & 

Nieuwenhuis, 2004). Following a stroke, lesions in the motor cortex and basal ganglia 

can lead to impaired error processing (Dancause, Ptito, & Levin, 2002; Scheidt & 

Stoeckmann, 2007). Further, the lesion location can have a variety of implications on 

patients’ specific motor impairments where survivors can exhibit large direction and 

timing errors, weakness, and spasticity—each at various levels of severity (Bushnell, 
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Johnston, & Goldstein, 2001; Kalaska, Caminiti, & Georgopoulos, 1983; Lazarus, 1992; 

Mercier, Bertrand, & Bourbonnais, 2004).  Beer et al. demonstrated that following a 

stroke, survivors have abnormal synergies in their affected arm that vary based on how 

the arm is positioned in the workspace (Beer, Dewald, Dawson, & Rymer, 2004). While 

it is difficult for us to directly accommodate the variety of affected brain areas, we are 

able to characterize differences in movement errors.  

2. Application for stroke rehabilitation 

2.1 Robotic therapy 

Following a stroke, more than two-thirds of survivors have reduced arm function 

(Jorgensen, Nakayama, Raaschou, & Olsen, 1999) and only about half of patients with 

arm paresis recover useful function (Wade, Langton-Hewer, Wood, Skilbeck, & Ismail, 

1983). To date, the most effective approaches to restoring arm and hand function have 

been task-specific, high-intensity treatments that involve active, repetitive movements 

(Barreca, Wolf, Fasoli, & Bohannon, 2003; Vliet, Carey, & Nilsson, 2012). Robotic 

devices have advantages for therapy since they can provide high-intensity repetitions and 

precise control of movement. Several modes of robotic therapy have emerged including 

passive, resistive, bi-manual, and active-assistance. Active-assistance has been the most 

commonly tested, and offers a similar approach to that of a therapist: if a patient cannot 

complete the task, the therapist will provide support (usually in the form of gravity 

assistance) to guide the arm (Reinkensmeyer, Emken, & Cramer, 2004). Several recent 

studies have had preliminary success with adaptive control algorithms that can assist the 

patient as needed or gradually reduce assistance (Casadio, Morasso, Sanguineti, & 
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Giannoni, 2009). While these algorithms provide support to counteract movement deficits 

often seen in the affected limb, they do not enforce attention on relearning coordination 

patterns needed for reaching movement. Error augmentation techniques, where visual or 

haptic feedback magnifies systematic errors, have been successful in several 

rehabilitation studies (Abdollahi et al., 2014; Cesqui et al., 2008; Patton, Kovic, et al., 

2006; Patton, Stoykov, Kovic, & Mussa-Ivaldi, 2006; Reisman, Wityk, Silver, & Bastian, 

2009). EA training even showed clinical improvements beyond repetitive practice or 

robotic assistance. Though the mechanisms behind EA are unknown, we believe one 

possible explanation is that EA elevates the error signal to a level that triggers a response 

from the nervous system. A critical aspect, therefore, would be to have the EA algorithm 

focus on each individual’s specific error signal, customizing the intervention for the 

patient. 

2.2 Current customization approaches 

Despite the range of robotic therapy approaches, many current techniques are not 

flexible enough to address an individual’s specific needs and deficits. The variation in 

abilities between stroke survivors presents a challenge to optimizing therapy. However, 

robotic devices are infinitely programmable and hence can provide rich set of 

opportunities to customize therapy. The implementation of Guadagnoli and Lee’s 

Challenge Point Framework (CPF), where task difficulty is based on skill level, has been 

successful in rehabilitation interventions for Parkinson’s and stroke (Onla-or & Winstein, 

2008; Pollock, Boyd, Hunt, & Garland, 2014). Shirzad and Van der Loos have recently 

employed a CPF paradigm to optimize task engagement by determining subjects’ desired 

difficulty (Shirzad & Van der Loos, 2015). However, in addition to adapting to desired 
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difficulty, the optimal intervention also requires an understanding of the participant’s 

impairment. Sundaram et al. proposed a computational framework to characterize 

different motor control strategies based on several kinematic variables (Sundaram, Chen, 

& Rikakis, 2011). Recent work from our group has shown that there are statistical 

tendencies during motor exploration that are unique to each stroke survivor (Felix C.  

Huang & James L. Patton, 2013). These statistical profiles can also be used to generate 

forces to perturb participants from their likely motor tendencies (Wright, Patton, Huang, 

& Lazzaro, 2015). Likewise, during reaching movements, there are statistical profiles of 

the error that can be modeled using simple probability density functions (M. E. Fisher, F. 

C. Huang, Z. Wright, & J. L. Patton, 2014). These error profiles not only can be used to 

identify participant-specific motor deficits but also to customize therapeutic 

interventions.   

3. Description of the thesis 

Accordingly, this thesis seeks to address how motor learning can be improved by 

manipulating the feedback of error to customize training. Having demonstrated the need 

for robotic training tools for both skill learning and therapy, I explore strategies for 

improving upon current training paradigms. These customized training techniques 

involve algorithms that use participants’ own movement tendencies during goal-directed 

movements to 1) learn an ideal trajectory, 2) learn a visual transformation and 3) reduce 

errors caused by stroke. These studies, outlined in the following four chapters, have either 

been submitted or are in submission to academic journals. In the first study (Chapter II), I 

show how force field adaptation can present the necessary errors to teach participants to 

move in the presence of a visually rotated scene. This demonstrates the ability to use one 



 

 

 

 

10

set of error signals (caused by forces) to train another (caused by a visual distortion) — or 

“sensory crossover.” In the second study (Chapter III), I seek to determine what is the 

best ordinate domain to define error during learning in order to model observed error 

tendencies. In the third study (Chapter IV), I test the benefit of customizing error 

augmentation based on error statistics to learn a novel visual transformation—error fields. 

In the fourth study (Chapter V), I conduct a preliminary investigation on the viability of 

such error fields for restoring reaching ability to stroke survivors. The results of these 

studies establish the benefits and limitations of using error statistics to create successful 

training interventions. 
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II. FORCES THAT SUPPLEMENT VISUOMOTOR 

LEARNING: A “SENSORY CROSSVER” EXPERIMENT 
 

Moria F. Bittmann, James L. Patton 

 

 

Previous studies on reaching movements have shown that people can adapt to either 

visuomotor (e.g., prism glasses) or mechanical distortions (e.g., force fields) through 

repetitive practice. Recent work has shown that adaptation to one type of distortion might 

have implications on learning the other type, suggesting that neural resources are 

common to both kinematic and kinetic adaptation. This study investigated whether 

training with a novel force field might benefit the learning of a visual distortion – 

specifically, when forces were designed to produce aftereffects that aligned with the ideal 

trajectory for a visual rotation. Participants training with these forces (Force Group) were 

tested on a visual rotation.  We found surprisingly good performance after training with 

this novel field, comparable to a group that trained on the visual rotation directly. A third 

group tested the rate of learning with intermittent catch trials, where we zeroed the forces 

and switched to the visual rotation, and found a significantly faster learning rate than the 

group that trained directly on the visual rotation. Interestingly, these abilities continued to 

significantly improve one day later, whereas the direct training showed no such effect. 

All participants were able to generalize what they learned to unpracticed movement 

directions. We speculate that when forces are used in training, haptic sensors have a 

powerful influence on learning. Such methods can impact any situation where one might 

add robotic forces to the training process. 
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1. Introduction 

 In the fields of haptics, telerobotics, and rehabilitation, sensory-motor information is 

often challenged or distorted, creating demand for training methods to improve 

performance. Many studies have demonstrated our ability to adapt to visual distortions 

such as prisms, visual feedback rotations and stretches (Imamizu et al., 2000; J. W. 

Krakauer, Pine, Ghilardi, & Ghez, 2000) as well as haptic disturbances such as robot-

applied force fields (Huang, Pugh, Patton, & Mussa-Ivaldi, 2010; Patton, Kovic, et al., 

2006; Reza Shadmehr & Ferdinando A. Mussa-ivaldi, 1994). Following adaptation, if 

visual or haptic distortions are unexpectedly removed, evidence of learning is seen in the 

form of aftereffects, where trajectories are reflective of the distorted condition (Lackner 

& Dizio, 1994; Reza Shadmehr & F. A. Mussa-Ivaldi, 1994). One prospect of these 

phenomena is there may be ways to exploit them to enhance or otherwise alter learning. 

While it is generally agreed that adaptation is due to the formation and updating of 

internal models in the CNS, there has been a long-standing debate whether the neural 

resources for adapting to visual and haptic distortions are the same. Several studies have 

tested possible interference effects caused by adapting to multiple novel environments 

simultaneously. Brashers-Krug, Shadmehr, & Bizzi (1996) showed evidence of 

retrograde interference where learning of one force field disrupted the retention of a 

previously learned force field (Brashers-Krug, Shadmehr, & Bizzi, 1996). Krakauer et al. 

(1999) suggested that tasks should only interfere if they compete for the same neural 

resources; hence, kinematic and dynamic movement errors were stored and processed 

separately in working memory.  They found that participants learning a visual rotation 

were not affected by simultaneously learning an inertial load (J. W. Krakauer et al., 
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1999). Flanagan et al. (1999) showed that when participants adapt to a visuomotor 

rotation and viscous curl field separately, they had greater performance in a combined 

transformation, but only saw transfer effects subsequently on the visuomotor rotation 

condition (J. Randall Flanagan et al., 1999). They suggested that the lack of interference 

between conditions was due to the formation of two distinct internal models.  Tong et al. 

(2002) later argued interference only occurs when both distortions are based on the same 

state, hence, interference was observed when both the force field and the visuomotor 

rotation depended on position (Tong et al., 2002). Sing and Smith (2010) found that 

participants that trained with a velocity-dependent force field and then a field of opposite 

direction had decreased performance (slower learning rate) with the second task (Sing & 

Smith, 2010). These results, though not in congruence, suggest that adaptation to kinetic 

and kinematic distortions occupy similar neural resources in working motor memory. 

While many of these previous studies show how mechanisms of adaptation associated 

with visual and haptic distortions might interfere with one another, we propose that our 

knowledge about such shared neural resources can also be used constructively to 

facilitate training. Furthermore, we hypothesize that it is possible to capitalize on the 

phenomenon of aftereffects and create positive interference where aftereffects from force 

field adaptation cause subjects to perform better with a visual rotation. In a previous 

study, it was shown that aftereffects could be manipulated with specific training; Patton 

& Mussa-Ivaldi (2004) were able to “teach” subjects how to move in a curved trajectory 

by determining the magnitude of force needed to perturb subjects from a straight-line    

(J. L. Patton & F. A. Mussa-Ivaldi, 2004). Although training with forces to learn a visual 

distortion appears to be an indirect way of learning, we propose that by adding forces to 



 

 

 

 

14

the training procedure, we can capitalize on more sensory inputs (e.g., the cutaneous 

pressure sensors of the hand, combined with the proprioceptive force and stretch sensors 

in the muscles) and improve adaptation. Previous work from our lab has shown 

promising results when testing this idea of “sensory crossover,” where adaptation to a 

specialized force field improved the learning of a visual rotation (Yejun Wei & Patton, 

2004).  

This paper presents a multi-day experiment that further tested how force field training 

could facilitate the learning of a visual rotation. Through iteration, forces were specially 

designed to result in aftereffects that aligned with the “desired” trajectory of the hand for 

a 30° visual rotation. Three groups of subjects were tested; one group of subjects trained 

directly on a visual rotation (Visual Rotation Group), one group trained with a 

customized force field (Force Group), and the third group of subjects trained with a 

customized force field with intermittent visual rotation trials (Mixed Group).   

2. Methodology 

 

2.1. Apparatus 

The planar robotic manipulandum (Figure 1A) used for the experiment consisted of 

two brushed DC torque motors (PMI model JR24M4CH, Kolmorgen Motion 

Technologies, NY, USA) that control forces at a handle via a 4 bar linkage. Rotational 

digital encoders (model 25/045-NB17-TA-PPA-QAR1S, Teledyne-Gurley, Troy, NY, 

USA) reported absolute angular position, and a 6-axis force/torque sensor (Assurance 

Technologies, Inc., TI F/T Gamma 30/10, and Apex, NC, USA) reported the interface 

kinetics. A personal computer (PC) acquired the signals and controlled torques. Force and 
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position data were collected and controlled at 100 Hz. A calibrated LCD projector was 

used to display the position of the robot handle and targets on a horizontal plane in front 

of the subject, which obscured the view of the actual limb and robot. A passive 

lightweight arm support under the elbow moved freely and supported the weight of the 

arm.  

 

Figure 1: Experimental Setup. (A) Subject moves a robot handle with a horizontal feedback display.  

(B) Target locations shown on visual display. Center out reaching towards black targets, blue targets 

represent the desired handle position when visual feedback is rotated 30˚ in the counterclockwise direction. 

(C) Visualization of trajectory error calculation based on subject handle position (black line), where forces 

(red arrows) are adjusted during the Robot-Learning Phase such that participants reach along a desired 

trajectory (black dashed line).  

2.2. Subjects 

 Thirty healthy right-handed participants (14 females) with a mean age of 25  (±3) and 

no history of neural or arm injury were recruited and tested at the Rehabilitation Institute 
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of Chicago (RIC). All participants were consented using approved IRB and University 

guidelines for protection of human participants and confidentiality protection of personal 

health information. 

2.3. Experimental Protocol 

Participants moved the manipulandum handle on a horizontal plane at shoulder level 

from a central starting point to one of three possible targets in the plane 10 centimeters 

away. A new target was presented after the subjects moved the handle inside the starting 

point for 0.5 seconds; targets were presented in a random order so that the subjects could 

not predict the subsequent target. Participants were instructed to make center-out 

movements to the target and velocity feedback was given at the completion of each 

movement. The color of the target indicated if the movement was too fast (red), too slow 

(yellow), or just right (green, between 0.3 and 0.4 meters/second). Subjects were allowed 

to rest before initiating any movement after they had terminated at the target. For 

movements with visual rotation, the entire visual scene was rotated 30° about the starting 

point, so that the cursor only truthfully matched the actual position at the origin of each 

reach (Figure 1B). The experimental phases were:  

1. Baseline: 30 movements without force or visual distortion (null field) for subjects to 

get familiar with the movements.  

2. Robot-learning:  300 movements with the robot-learning algorithm applying forces 

one in every four movements. Forces iteratively “grew” until the desired trajectory 

was achieved following the previously developed algorithm (J. L. Patton & F. A. 

Mussa-Ivaldi, 2004), described in more detail in the following section.  
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3. Intermittent Exposure to the Visual Rotation: 240 movements, with a 30º visual 

feedback rotation intermittently introduced once every seven movements randomly. 

These movements assessed the initial errors in response to the visual distortion. The 

latter 120 movements were tested on a new target set (“generalization” targets).  

4. Training:  

• Force Group: 240 movements with force field determined during adaptive-

learning phase. Catch trials of null field were randomly distributed 1 in 7 trials. 

• Visual Rotation Group: 240 movements with a 30º visual rotation. Catch trials in 

a null field condition were randomly distributed 1 in 7 trials. 

• Mixed Group: 240 movements with force field determined during the adaptive-

learning phase. Catch trials of a 30º visual rotation were randomly distributed 1 in 

7 trials. 

5. Visual Rotation Test: 30 movements to test how subjects responded to visual 

rotation in the training directions after training. For the Visual Rotation Group, this 

phase is just a redundant training phase. However, for the Force and Mixed Group, 

this phase tested the continuity of the learning of visual distortion when switched 

from force field training. The latter 15 movements were on the generalization target 

directions.  

6. Visual Rotation Test – Day 2: 30 movements to test how subjects responded to 

visual rotation 24 hours after training. The latter 15 movements were on the 

unpracticed target directions to test for the subjects’ ability to transfer (or generalize) 

their learning to unpracticed directions. 

7. Washout – Day 2: 30 movements without force or visual distortion (null field). 
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These 7 phases totaled 900 movements for all subjects. Note that Phase 4 was the only 

phase that differed amongst the three subject groups. 

2.4. Robot-learning – adaptive force field design 

 During the robot-learning phase of the experiment, training forces were custom 

designed to shift a subject’s movement, ����, to align with the ultimate trajectory we 

sought (rotated 30º),	�����. These training forces, initially set to 0 N, were applied 

intermittently (average of once every 4 movements, randomly presented) and adjusted 

based on the subject’s responses.  Specifically, for each trial iteration, i, a force ������ 

was applied to the robot handle in the first 200 milliseconds of the movement using the 

rule previously developed (J. L. Patton & F. A. Mussa-Ivaldi, 2004; Yejun Wei & Patton, 

2004): 

������ = ���
���� + ����� − �������  (1) 

 

where the learning rate, µ, functioned in the range of 10-30 N/m. When the value of µ  

was large, forces became unstable and were impossible to learn, whereas a small 

µ requires a lengthy adaptive-learning phase.  We heuristically determined µ to be 26 

N/m. The force field determined at the end of the robot-learning phase were inverted and 

applied during training for the Force and Mixed Group (example in Figure 1C). Hence, as 

this phase progressed, subjects’ reaches shifted closer to a trajectory 30º from their 

baseline reach (Figure 2, “robot-learning” phase), however characteristic hooks appeared 

towards the end of these actions. 
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2.6. Data Analysis 

Our chosen measure of error was the initial direction error, commonly used in motor 

adaptation studies. It was defined as the angle between the cursor and start position to the 

straight-line path to the target measured 100 milliseconds after movement onset. We 

defined positive error to correspond to a counter-clockwise rotation from the actual 

trajectory to the desired trajectory. 

To test our hypothesis that learning would be enhanced for subjects in the Mixed 

Group (experiencing “sensory crossover”) as compared to the Visual Rotation 

Group, a best-fit exponential model determined the amount and rate of learning:  

�� = ���
�
� + �  (2) 

where E is the trajectory error for the trial i during training, A is the amount of learning, B 

is the time constant indicating the number of trials for the error to decrease 67% of the way 

to asymptote, and C is the asymptotic (steady-state) error value. The exponential regression 

was performed on the catch trials of the Mixed Group in the visual rotation condition and 

corresponding trials for the Visual Rotation Group.  

    To test how well force field learning transferred to the visual rotation, catch trials of the 

Mixed Group (null field) were compared to the corresponding trials for the Visual Group. 

Separate regressions were also performed to determine if results depended on movement 

direction. 

Three statistical tests across groups evaluated rate of learning, amount of 

learning, and transfer to unpracticed targets (generalization). A repeated measures 

ANOVA tested group differences, and post-hoc pairwise comparisons evaluated 
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pairwise differences corrected using the Bonferroni-Holm method.  Significance was 

declared at the alpha level of 0.05.  

 

Figure 2: Handle trajectories and resulting initial direction errors across all trials for representative subjects 

from the Force Group (top), Mixed Group (middle), and Visual Rotation Group (bottom). All subjects 

experienced the same conditions except for during the training phase, where the Force Group trained with 

forces and null field probe trials, the Mixed Group trained with forces and visual rotation probe trials, and 

the Visual Rotation Group trained with visual rotation and null field probe trials. Exponential regressions 

were fit to probe trials (black dashed line) during training for the Mixed and Visual Rotation Groups to 

determine learning rate.  
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3. Results 

 All subjects showed evidence of constructive learning the visual rotation despite 

the type of training. Initial values of error did not significantly differ across groups.  Most 

interestingly, however, was that force training led to both faster and more error reduction.  

Similar to what was previously found in Wei and Patton (2004), the Mixed Group had 

smaller time constants of error reduction during training-- 10±4 trials, compared to 18±8 

trials (p=0.0352; Figure 3). Following training, the Force and Visual Rotation Groups had 

comparable change in error from intermittent exposure (∆=-16.6±16.6and ∆=-18±1.9 

degrees respectively, see Figure 4A), while the Mixed Group decreased error by -

13.7±3.7 (p=0.008). Final error was significantly greater for the Mixed Group compared 

to the Visual Rotation Group   (p < 0.001; Figure 4A).   

 
Figure 3: Force field learning appeared to be faster. Trajectory errors from the visual rotation catch trials of 

the Mixed Group during training were fit with an exponential regression to measure the rate of error decay 

for each subject. Corresponding trials were used from the Visual Rotation Group to compare the time 

course of learning a visual rotation. While variable, the numbers of trials were lower for the Mixed Group 

(10±4 trials) compared to the Visual Rotation Group (18±8 trials), (p=0.0352); Error bars show 95% 

confidence intervals for each group.   
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These effects were preserved and may have gotten better overnight (Figure 4A). The 

follow-up evaluation on Day 2 showed additional benefit to training, where the Force and 

Mixed Groups showed significant change from the previous day (∆=4.9 ±4.0 and          

∆=-7.4±2.9 degrees). The Visual Group did not change between days (∆=0.5±1.2), and 

 

 

Figure 4: Change in initial direction error following training and 24 hours post training (day 2) for (A) 

practiced targets and (B) unpracticed (generalization) targets. Each participant’s mean error and change 

between is shown with transparent circles and lines. The mean error and mean change are denoted with 

solid diamonds and bars respectively, where negative values indicate reduction in error.  Error bars show 

the 95% confidence intervals across subjects. Following training, there the Visual Rotation Group had 

significantly lower error then the Visual Rotation Group (p<0.001) and change between from pre- to post-

training was larger for the Visual Rotation Group than the Mixed Group. Between Day 1 and Day 2, the 

Mixed and Force Group shown additional improvement beyond the Visual Rotation Group (p=0.01 and 

p=0.001 respectively). Training had a similar effect on unpracticed targets. The Mixed Group had larger 

error than the Force Group immediately following training and on Day 2 (p=0.01). 
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some participants even showed increased error. However, group differences were 

significant between the Force and Visual Rotation Groups (p=0.01) and the Mixed and 

Visual Rotation Groups (p=0.001). 

All groups showed similar improvement on the unpracticed (generalization) target 

directions: ∆ error =-14.7±1.9 degrees for the Force Group, ∆ error=-15.9±2.0 for the 

Visual Rotation Group, and ∆ error=-11.3±4.0 degrees for the Mixed Group (Figure 4B). 

Change on Day 2 was also similar across groups: ∆ error=-5.4±1.0 degrees for the Force 

Group, ∆ error=-4.0±3.9 degrees for the Visual Rotation Group, and ∆ error=-4.2±3.9 

degrees for the Mixed Group. Final errors on Day 2 differed between the Force and 

Mixed Group (p=0.01).  

 

Figure 5: Catch trial performance predicts transfer to the visual rotation condition for the Force Group 

subjects. (A) Catch trials (gray lines) during training (Phase 5) from a Force Group subject show how after-

effects begin to align with the ideal trajectory for a visual rotation (black dashed line). Test trials in the 

visually rotated condition (Phase 6) are shown in blue. (B) Subjects with lower catch trial error performed 

better in the visual rotation test condition (r=0.423, p=0.015). Each triangle represents one target direction 

for subjects in the Force Group.  

 
There also was evidence that force field training relied on feedforward learning. 

Feedforward learning is generally associated with the size of aftereffects observed after 
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force learning, when forces are unexpectedly turned off. Catch trials for the Force Group 

during learning revealed that error magnitudes were correlated with the final error in the 

visual rotation condition (Figure 5), where r=0.423 and p=0.015. 

 

4. Discussion 

This study demonstrated how training with forces might be used to facilitate learning 

of a purely kinematic transformation – a visual rotation. This was accomplished by 

specially designing training forces so that the resulting aftereffects aligned with the ideal 

trajectory for the visually rotated condition. These results reveal a new strategy for 

robotic training where alternative sensory modalities can contribute to learning, which we 

term sensory crossover. Trajectory errors during training decreased for all groups, 

however, when comparing catch trials during training we found that the Mixed Group 

reduced error more quickly than the control that practiced the visual rotation directly 

(Visual Rotation Group). While we expected the aftereffects of learning with forces to be 

beneficial for a visual rotation, it was surprising that it resulted in a larger error reduction 

over the same amount of trials for the Force Group. A second aspect of learning often 

associated with this paradigm, transfer (or generalization) to unpracticed motion 

directions, was found to be comparable across groups (i.e., no significant difference in 

the ability of subjects to transfer (or generalize) their learning to rotated targets). Finally, 

we were able to see that the amount of force field learning directly contributed to transfer 

for the visually rotated condition – after-effects correlated with errors in the visually 

rotated condition. 

Similar to what was previously found in Wei & Patton (2004), force training led to 

improvements in performance beyond repetitive practice of the visual rotation for both 
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subjects in the Force Group and the Mixed Group. We saw that when subjects in the 

Force and Mixed Group returned 24 hours after testing, they continued to improve, 

indicating that the full benefits of training might not be evident immediately after 

training. Previous studies have shown that retention of a force field persists and can even 

be successfully recalled up to five months later (Brashers-Krug et al., 1996).  While error 

continued to decrease on the second day, the final error for all three groups still did not 

reach baseline levels, indicating that training was incomplete. Future iterations of this 

experiment might use catch trials to test if adaptation is complete (as indicated by the 

evidence in Figure 5), and adjust the length of training accordingly. This test would be 

performed either using null field catch trials as was done with the Force Group or catch 

trials using the visual rotation, as was done with the Mixed Group.  

This adaptive training study further demonstrates the ability to design aftereffects, and 

shows how such aftereffects can persist when they are suddenly perceived as appropriate 

for a new task (operating in the presence of a visual distortion). Previous studies have 

shown that aftereffects can persist for around 385 trials if visual feedback is removed (J. 

L. Patton & F. A. Mussa-Ivaldi, 2004).  Our results indicated that it is possible to retain 

an aftereffect if subjects found their performance to be successful – perhaps if they saw 

their large movement errors immediately after training they would quickly washout to 

their original straight-line reaching patterns. In this case de-adaptation (i.e., washout) 

from the learned force field may have been influenced by visual distortions. This 

persistence of the aftereffects is an important question in the areas of robotic teaching and 

robotic neurorehabilitation.     
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 This study explored the idea of sensory crossover, where haptic forces were used to 

learn a kinetic transformation, as a technique to improve learning. Tong and colleagues 

(Tong et al., 2002) originally argued that adaptation to kinetic and kinematic visuomotor 

rotations interfere with the ability to learn since they occupy common neural resources in 

motor working memory. We tested their hypothesis with adaptation tasks that are 

complementary, demonstrating a constructive facilitation of learning. The Mixed Group 

in our study was able to switch from one context (force) to the other (visual rotation) 

without any observable loss of performance or sudden spikes in trajectory error. Similar 

to Tong et al., we tested subjects 24 hours later, i.e. when an aftereffect was no longer 

expected to be present but after motor memory consolidation is presumed to have been 

complete (Brashers-Krug et al., 1996; Shadmehr & Brashers-Krug, 1997; Shadmehr & 

Holcomb, 1997). While Tong et al. observed interference a day later, we were still able to 

see a positive effect a day after training, when the immediate benefits of aftereffects have 

long-since decayed away. This suggests that the learning process, not the motor learning 

consolidation process, was shared for both kinematic and kinetic adaptations. 

 Essentially, this constructive interference is an example of “priming,” where subjects 

unknowingly perform better in a new environment. Our analysis of catch trails during 

force field training (Figure 5) provided further evidence that force field training primed 

the participant to perform better in a visual rotation condition. Catch trials during training 

that were more aligned with the ideal trajectory for the visually rotated condition were 

predictive of lower final errors in the visual rotation condition following training. 

Response priming, when exposure to one experience influences the responses under other 

conditions, has been shown to be quite useful in a number of applications of human 
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performance and learning (Güldenpenning, Braun, Machlitt, & Schack, 2015; Schacter & 

Buckner, 1998) and retraining of human ability after brain injury (Stoykov & Madhavan, 

2015). By “tricking” the nervous system into performing correctly, participants had 

comparable performance, retention, and ability to generalize to unpracticed directions.  

Our results may also be due in part to a shifting of sensory modalities. Some 

researchers have shown that different movement features are learned at different rates 

(i.e., time constants) (Flament, Shaprio, Kempf, & Corcos, 1999; Smeets, van den 

Dobbelsteen, de Grave, van Beers, & Brenner, 2006; Smith, Ghazizadeh, & Shadmehr, 

2006). For example, time-related features such as movement duration changed faster 

during learning than magnitude-related features such as peak velocity. The altered 

learning environment presented to the subjects in this study may cause them to shift their 

attention or notice errors more easily, resulting in the observed improvement in learning 

rate for the Mixed Group. The more quickly learned features become more critical to the 

task so that learning is accelerated. The seamless transition from one sensory training 

mode to another means that there appears to be another interesting tool to add to the 

arsenal of possible robotic training techniques. 

Regardless of the underlying mechanisms, this work demonstrates certain prospects 

for motor training (and retraining). Further tests are needed, but one can imagine the 

utility of custom designed forces for providing a new way to teach transformations in 

areas such as sports performance, pilot training, surgical maneuvers, musical acts, and 

neurorehabilitation.  However, it remains to be seen whether such work can also be 

effective in full body actions, in fine motor skills, in three-dimensional activities, or in 

the recovery from neuropathologies. In any case, such sensory crossover methods appear 
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to be a viable method for either supplementing or completely replacing the training in 

some contexts.  
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III. DISTRIBUTIONS IN THE ERROR SPACE: GOAL-

DIRECTED MOVEMENTS DESCRIBED IN TIME AND 

STATE-SPACE REPRESENTATIONS 
 

Moria E. Fisher, Felix C. Huang, Zachary A. Wright, and James L. Patton 

 

 
Manipulation of error feedback has been of great interest to recent studies in motor 

control and rehabilitation. Typically, motor adaptation is shown as a change in 

performance with a single scalar metric for each trial, yet such an approach might 

overlook details about how error evolves through the movement. We believe that 

statistical distributions of movement error through the extent of the trajectory can reveal 

unique patterns of adaptation and possibly reveal clues to how the motor system 

processes information about error. This paper describes different possible ordinate 

domains, focusing on representations in time and state-space, used to quantify reaching 

errors. We hypothesized that the domain with the lowest amount of variability would lead 

to a predictive model of reaching error with the highest accuracy. Here we showed that 

errors represented in a time domain demonstrate the least variance and allow for the 

highest predictive model of reaching errors. These predictive models will give rise to 

more specialized methods of robotic feedback and improve previous techniques of error 

augmentation. This chapter was published in (M. E. Fisher et al., 2014).  

1. Introduction 

 
Error feedback is critical for supporting motor adaptation in rehabilitation, sports, 

piloting, and skilled manual tasks (Ishikawa & Sakaguchi, 2013; Shadmehr, Smith, & 

Krakauer, 2010). During goal-directed movements, predictions of sensory outcomes are 
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compared with feedback errors in order to updated subsequent motor plans. Researchers 

have proposed that in order to compensate for a visual-motor rotation, an internal model 

is used to compare the desired goal with a motor plan. Error is calculated by comparing 

the goal trajectory and motor output, allowing for either online or trial-to-trial corrections 

(J. Randall Flanagan et al., 1999; Hinder, Riek, Tresilian, de Rugy, & Carson, 2010; J. L. 

Patton et al., 2013). This process involves many areas of the brain including the 

cerebellum, anterior cingulate cortex, and basal ganglia (R. D. Seidler et al., 2013). While 

error information in the human nervous system is clearly essential, little is known about 

their statistical properties or how they might be related to the learning process. 

During motor adaptation, feedback errors are commonly classified into three 

categories: absolute error (the absolute deviation from a target), constant error 

(movement bias of the subject), and variable error (movement variability) (Lee, 2011). 

To measure performance change of a subject across trials, many studies use a scalar 

metric to represent the absolute error from each trajectory (e.g., maximum perpendicular 

error or initial offset angle). While such metrics effectively indicate changes in absolute 

error or any subject-specific constant error, they do not fully characterize variable errors. 

We believe that the variability in error, i.e. those occurring throughout the entire 

trajectory can reveal additional insight as to how the executed motor plan varies from 

trial to trial. Recent work by Wu et al. also suggests that movement variability is a key 

marker in the ability of the subject to learn, where there is greater learning as a result of a 

larger extent of exploration in the error space (Wu, Miyamoto, Gonzalez Castro, 

Olveczky, & Smith, 2014).  
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Many studies have demonstrated the occurrence of error- based learning, yet it is 

unclear what representation of error is most relevant to the motor system. Conditt et al. 

suggests that adaptation to a dynamic force environment involves an internal 

representation of the structure of the field (Conditt, Gandolfo, & Mussa-Ivaldi, 1997). 

Hudson and Landy suggest that movement representations consist of both position and 

vector coding, where each one uses different aspects of sensory feedback (Hudson & 

Landy, 2012). Generalization studies can also provide some insight as to how these errors 

our processed, where subjects experience a variation of a learned skill at new target 

locations, different speeds, or hand configurations. Goodbody and Wolpert found that 

generalization of learning a novel dynamically environment (such as a force field) was 

best when the force field was represented in state-space (Goodbody & Wolpert, 1998). 

What is not yet known is how to best describe error, particularly which domain, or metric 

representation, should be used to most reliably predict error tendencies. 

Recent work by Huang and Patton showed how distribution analysis during free 

exploration can be used to identify patterns of deficit for stroke survivor subjects that 

might not be explained with analyzing velocity or hand- position alone (Felix C.  Huang 

& James L. Patton, 2013). This approach provides a subject- specific picture of 

individual movement tendencies. One obvious speculation is whether individuals also 

produce unique profiles in the space of errors. Here, we performed a similar distribution 

analysis on error in targeted reaching movements. We focused on whether the error 

distributions were best characterized in either position or time domains. While there 

might be infinite possible coding mechanisms of error, we entertained versions of those 

most commonly used such as time or state-space (path length, distance along x- axis, 
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distance to origin, and distance to target). As a first attempt at characterizing how the 

variability in error is represented across an entire trajectory, we compared the mean and 

standard deviations of perpendicular error across each ordinate domain. We hypothesized 

that errors represented in time would be the least variable and allow for the best 

predictive models of error distributions. 

2. Methodology 

2.1. Human subjects 

Subject data was analyzed from a previous experiment in which 9 healthy subjects 

were intermittently exposed to a 30° visual feedback rotation while holding a planar 

manipulandum with a horizontal display (Figure 1A). Subjects were instructed to reach 

from the center position to 6 target directions (Figure 6A) and received feedback (colored 

targets) pertaining to their movement speed once they hit the target where yellow was too 

slow, red was too fast, and green was within the ideal velocity range. During the 

intermittent exposure phase, subjects experienced rotated visual feedback 1 in 7 trials, 

during the learning phase subjects  

 

Figure 6: Experimental Setup. (A) Six target directions (green circles) and (B) Representative trajectories 

showing perpendicular error.  
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experienced rotated visual feedback continuously with catch trials (brief removal of the 

distortion) every 1 in 7 trials. All participants provided informed consent in accordance 

with the Northwestern University Institutional Review Board. Participants were aged 21-

40 (mean age of 25 ± 3). Position of the robot cursor and handle were recorded at 500 Hz. 

 

Figure 7: Change in variance of error during learning. Examples of trajectories of perpendicular error from 

a typical subject’s center-out reaching movements during intermittent exposure (left), beginning of learning 

(center) and late in learning (right) were computed in terms of several ordinates, shown here with respect to 

path length. While the mean errors (magenta) exhibit evidence of learning across trials, the standard 

deviation (blue lines) successfully captures the trial-to-trial variation of error. 

 

2.2. Ordinate domains 

Ordinate domains were defined to be the dependent measure for the sequence of error 

calculations. Since we were unsure what type of space ordinate to use, we further divided 

space into two candidate representations: Path length was determined as the Euclidian 

distance between the current and previous sample (representative of the distance along 

the actual trajectory). To calculate distance along x- axis, trajectories were rotated to the 

horizontal axis (representative of the distance along the intended trajectory). 

2.3. Mean and variability of movement error 

For each trajectory, perpendicular error was measured as the distance from cursor 

position to the corresponding point along the ideal straight-line path (Figure 6B). 
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Perpendicular errors were then graphed with respect to time, path length, and distance 

along x-axis. The mean and standard deviation of perpendicular error were determined at 

each sample and fit with a 5th
 
order polynomial to produce a smooth, continuous 

representation of error across the trajectory for each ordinate (Figure 7). Confidence 

intervals were calculated across subjects for all proposed ordinate domains using a 

significance level of 0.05 (Figure 8).  

 
Figure 8: Error magnitude and variance change during learning. (A) Mean and (B) standard deviation of 

perpendicular error for each subject during intermittent exposure (left), early (center) and late learning 

(right) during center-out reaching movements. Mean error trajectories exhibit similar magnitudes in terms 

of time (plotted in milliseconds), path length, and distance (plotted as distance), but with differences peak 

location. In contrast, the variability of error in terms of time is markedly lower than the other ordinate 

descriptions during intermittent exposure and late learning.  In addition, the peak of error variability in time 

occurs within a lower percentage of task completion compared to the ordinates associated with state space. 

Shaded region represents the 95% confidence interval for 9 subjects. 

2.4. Predictive model of error 

A Gaussian distribution was used to represent the magnitude and range of 

perpendicular error (e) at each sample, calculated with time (t) or path length (d), using 

Eq. 3 and Eq. 4 respectively, with continuous functions of mean () and standard 
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deviation of error (�). The Gaussian function was scaled by a value, a, such that the 

integral of each Gaussian in time and space was equal to 1; likewise, the sum of the 

frequency of error occurring at each point in time and space was equal to 1. 

���, ������������ = �
� ���∗√#∗$

∙ �

&���
�'���(

#

#∗�� ����#     (3) 

��), ������������ = �
� �)�∗√#∗$

∙ �

&���
�'�)�(

#

#∗�� �)��#   (4) 

Histograms showing the density of perpendicular error vs. time and perpendicular error 

vs. path length were calculated using a 50 x 50 grid. A model predicting the probability 

of error was constructed for each subject as a function of time and distance from origin 

spanning the same range as the raw data, shown in Figure 9. 

2.5. Model goodness of fit 

The coefficient of determination (R
2
) was calculated to test how well the prediction 

of reaching errors (modeled using a Gaussian distribution for at each ordinate sample) 

explained the experimental data for a given reach. We performed two-way within-subject 

repeated measures ANOVA with factors being the ordinate domain and phase. 

3. Results 

 

Variability in Error 

Changes in mean perpendicular error and standard deviation of perpendicular error 

were detected between intermittent exposure, early learning and late learning (Figure 7) 

for the three proposed ordinates—time, path length, and distance along x-axis. 
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Figure 9: Comparison of histograms to model predictions. Histogram shows distribution of perpendicular 

errors during a reaching movement (left) and model predictions of error (right) during intermittent exposure 

to a visual rotation based on ordinates of A) time, B) distance along x-axis, and C) path length for a typical 

subject.  

A 
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The distribution of mean perpendicular error across subjects (Figure 8A) showed 

significantly different locations of peak error, where peak occurred at 33±3% of task 

completion for time, and 59±3% and 57±4% for path length and distance along x-axis 

respectively. These trends were consistent across all experimental phases tested. 

The peak location of standard deviation of perpendicular error across subjects (Figure 

8B) was significantly different between time, path length, and distance along x-axis 

during intermittent exposure, early learning, and late learning. The overall variability was 

less for time as compared to path length (p=0.0105) and distance along x-axis (p=0.0018) 

during intermittent exposure. We found no significant difference in overall variability 

between ordinates during early learning and late learning. 

Predictability of error 

We calculated the coefficient of determination (R
2

) between the probabilistic error 

model and the experimental data (Figure 9, Figure 10) for three proposed ordinate 

domains. Using a 2-factor within subject repeated measures ANOVA, we found 

significant differences between the three proposed ordain across phases (p=0.0458) and 

between ordinates (p=0.0042). Further post-hoc analysis using paired t-tests (with 

Bonferroni corrections for 9 possible comparisons) showed significantly different R
2  

values between ordinates of time and distance along x-axis during intermittent exposure 

and early learning (p=0.0057, p=0.0468) and significantly different R
2 

values between 

ordinates of path length and distance-along x-axis during intermittent exposure and early 

learning (p= 2.28 e-04, p=0.0291). 
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Figure 10:  Coefficient of determination (R
2

) values indicate the goodness of fit between the proposed error 

distribution model and experimental data for three possible ordinate domains during intermittent exposure 

(left), early learning (center) and late learning (right). Colored points denote individual subjects for each 

domain type, boxes denote subject means. Red bars indicate significant difference between pairs after post-

hoc corrections. 

4. Discussion 

The purpose of this study was to test how variability in movement errors was 

reflected in different ordinate domains. We analyzed data from a previous experiment in 

which healthy subjects performed center-out reaching while experiencing a 30°rotated 

feedback condition. We examined how the distribution of perpendicular error varies 

based on the proposed ordinate domain, primarily focusing on time and state-space based 

ordinates. 
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We found that the average perpendicular errors across subjects exhibit the same 

magnitude regardless of ordinate domain, though there were differences in peak location. 

The similarity of the maximum values of perpendicular error across domains 

demonstrates how the use of trajectory norms is a justified tool for tracking learning in 

motor control studies. However, the difference in peak location further motivates the 

need to investigate in what other ways the ordinate domains may differ. It is possible that 

the differences in peak location might be attributed to direct relationships between 

variables, for example between position, time, and velocity. However, the trial-to-trial 

variation is not be constrained by such dynamic relationships, allowing for peak velocity 

to occur at any point in time. 

During intermittent exposure, we found that the overall variability of error across 

subjects was lowest for the time domain than the two candidate ordinates based in state-

space. This trend was also true, though not significant, during late learning. During 

intermittent exposure, where there is high error and low variability, time is the least noisy 

of the proposed ordinates. In phases of high variability, such as in early learning, it is 

difficult to discern differences in ordinates domain. Further, the variability of error during 

intermittent exposure and late learning appear to be scaled versions of each other, 

possibly suggesting that patterns of variability are unique to each phase of learning. 

To demonstrate the effect of how variability in each ordinate domain contributes to 

the predictability of motor error distributions, we constructed a simple predictive model 

(Figure 9) using Gaussian distributions across each ordinate domain with the mean and 

standard deviation of perpendicular error (with continuous polynomials for each ordinate 

domain). This modeling approach was able to explain approximately 40% of 
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experimental data for each phase. The time ordinate domain showed the highest result 

during intermittent exposure. Possible iterations of this predictive model would allow for 

multiple Gaussian distributions at each sampling point or use a different distribution that 

does not enforce normality. Since the first half of movement has the highest probability, 

there is also possibility that such a model would better describe the experimental data if 

we broke up the trajectory into the ballistic phase and subsequent corrective phases. 

It remains uncertain whether multiple domains are used to update feedback in order to 

adapt to a visual-motor discrepancy. It is possible that the central nervous system could 

use multiple ordinate frames (including the ones we proposed) to update the motor plan 

or none of them. When observing the goodness of fit across phases, the ordinate of 

distance along the x-axis had an upward improvement from intermittent exposure to late 

learning (Figure 10). We believe that this ordinate is the most aligned to a state-

representation and this improvement corresponds to previous evidence that a state space 

representation takes over once learning has plateaued (Conditt et al., 1997; Hudson & 

Landy, 2012). 

Our findings that time offers the best ordinate domain for representing errors is in 

agreement with known constraints in sensory-motor control. Because sensory feedback is 

time- delayed, the motor system cannot react instantaneously to the state of the limb. 

Accordingly, our results suggest (Figure 8) that during the ballistic phase of goal-directed 

reaching movements errors align in time. If we only consider the feed- forward motor 

plan it is also possible that a spatial path is generated but is variable in time, Nashner and 

Berthoz showed that movement latencies associated with visual feedback is 
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approximately 100 milliseconds, where peak error is shown to be with respect to the time 

domain (Nashner & Berthoz, 1978). 

We conclude time to be the most substantive basis for a predictive model of 

performance error, since time-based errors demonstrated the least variance (Figure 8) and 

led to the best fit using our simple modeling approach (Figure 10). The ability to predict 

movement errors using the variability of subjects gives rise to better training techniques 

that are motivated by subjects’ reaching errors, such as error augmentation.  
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IV.  CUSTOMIZATION OF ERROR AUGMENTATION 

BENEFITS LEARNING A NOVEL VISUAL 

TRANSFORMATION 
 

Moria F. Bittmann, Felix C. Huang, Verena Klamroth-Marganska, Robert Riener,    

James L. Patton 

 

 
Recent motor control studies using interactive practice experiences that augment error 

have demonstrated promising results for enhancing the learning process. Despite this, the 

best method of error augmentation remains unclear.  Here we evaluate how individual 

error tendencies can be customized for each participant, focusing the effort on the more 

probable errors and ignoring more random mistakes. We hypothesized that by using such 

customized forces – called error fields, participants would adapt to a novel visual 

transformation faster and have a larger change in error. We tested the ability of twenty-

one subjects to adapt to a novel visual transformation while augmenting error either with 

a constant gain or with error fields training. We found indeed that error field participants 

adapted the fastest, and had the largest reduction in error. Furthermore, a predictable shift 

in error for this group suggested that the intervention directly addressed their individual 

error tendencies. These promising results support the need for customized interventions 

that consider the statistics of error tendencies to improve training experiences.    

1. Introduction 

 
The human motor system uses error feedback to correct for differences between 

intended and actual movements. Error feedback is also essential to certain mechanisms of 

motor learning (M. Kawato, 1990), in which existing motor plans are continually 

updated.  It is believed that errors from previous movements are integrated statistically 
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during the learning process (K. P. Kording & D. M. Wolpert, 2004; van Beers, 2009, 

2012). Rehabilitation researchers have taken advantage of such movement errors by 

amplifying them to enhance the learning process, a technique known as error 

augmentation (EA). Benefits from using error augmentation techniques have been seen 

with a variety of tasks, such as goal-directed reaching, walking, and stepping (Marchal-

Crespo, Lopez-Oloriz, Jaeger, & Riener, 2014; Milot et al., 2010; James L. Patton & 

Ferdinando a Mussa-Ivaldi, 2004; Reisman et al., 2009; Y Wei et al., 2005). By making 

errors more noticeable with visual or haptic error augmentation interventions, there can 

be heightened motivation and attention, improving the rate and amount of motor learning 

(Alleva & Santucci, 2001).  

The success of any particular training intervention has been suggested to rely on the 

skill level of the participants This concept, referred to as the Challenge Point Framework, 

suggests that the performance benefit can only be enhanced if the task is at the 

appropriate difficulty for the participant (Guadagnoli & Lee, 2004). Thus, each 

individual’s unique capabilities should help determine best practices. In rehabilitation 

applications, there is further need to adapt and customize in order to target individual 

motor deficits. Recent studies using robots for rehabilitation have shown success by 

increasing intensity incrementally (Choi, Gordon, Park, & Schweighofer, 2011) or 

allowing participants to choose therapy models (Klamroth-Marganska et al., 2014). 

Customized algorithms can tune interventions to variations in skill and ability. Rather 

than determining a universal gain for error augmentation, an optimal approach might be 

to customize error augmentation gains that focus on each individual’s regions of highest 

error and probability. Using straightforward statistical models, we previously 
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demonstrated we could effectively characterize such error probabilities of participants’ 

original movement errors during goal-directed reaching (M. Fisher, F. C. Huang, Z. A. 

Wright, & J. L. Patton, 2014). 

The best practices for implementing error augmentation, however, are still 

unclear. Marchal-Crespo et al. found that the effects of haptic error augmentation were 

dependent on initial skill level, where positive training outcomes were only seen with 

skilled participants (Marchal-Crespo et al., 2014). Other studies testing different error 

augmentation gains suggest that not only is there an ideal scale magnification, but also 

that augmenting error outside of an appropriate range might be detrimental to learning 

(James L. Patton, Yejun John Wei, Preeti Bajaj, & Robert a Scheidt, 2013; Y Wei et al., 

2005). Further studies that focused on using error throughout the learning process, have 

shown that excessively large or spurious errors diminish the adaptive response (Y. Wei & 

K. P. Kording, 2009).  Recent work by our research group has made use of the statistical 

nature of movements by identifying individual deficits in range of motion, velocities, and 

accelerations during a free exploration task (Felix C. Huang & James L. Patton, 2013; 

Wright, Fisher, Huang, & Patton, 2014). Similarly, distributions are also observed in 

reaching errors, so error augmentation methods might focus on the more likely errors of 

the participant, ignoring errors that are spurious and not repeatable. 

In this study, we evaluate a new form of error augmentation that is customized 

according to each individual’s specific error tendencies. Statistical profiles from 

participants’ movements inform the design of a haptic intervention. The algorithm first 

identifies regions of error tendencies. Then, training forces focus on amplifying these 

error prone regions while ignoring spurious errors. To test this error augmentation 
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technique, participants learned to make straight-line reaches in a visually distorted space 

controlled by joint angles of the shoulder and elbow (similarly to that of (J. R. Flanagan 

& Rao, 1995)). We added an additional challenge by requiring participants to reach with 

a minimum angular jerk trajectory (Nakano et al., 1999). This required participants to 

improve both spatial and extent (timing) errors during reaching. We hypothesized that 

this new error fields treatment (EF), where forces are applied based on the statistical 

tendencies of error during goal directed reaching, would provide faster learning and 

greater final performance. Finally, we investigated how subjects’ shifts in error 

distributions using this error field treatment could be predicted by the original 

distributions of error. 

 

2. Methods 

2.1. Human subject experiment 

This experiment utilized a seven degree-of-freedom robotic arm exoskeleton device, 

the ARMin, located at the Sensory-Motor Systems Lab at ETH Zurich (Zurich, 

Switzerland) (Tobias Nef, Guidali, & Riener, 2009; T. Nef, Mihelj, & Riener, 2007). 

Twenty-one right-handed participants (10 female) performed the experiment, with 7 

participants per group. All participants consented in accordance with the Ethics Board of 

the Canton Zurich. These methods were previously described in (M. Fisher, F. C. Huang, 

V. Klamroth-Marganska, R. Riener, & J. L. Patton, 2015). 

2.2. Experimental protocol 

Participants were asked to move the robotic exoskeleton with their right (dominant) 

arm along a straight-line path between two targets fifteen centimeters apart as shown on a 
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vertical display (Figure 11A). Their elbow and shoulder joint controlled the X and Y 

cursor position on the screen. A proportional plus derivative (PD) controller was used to 

orient the robot in a planar reaching position such that only shoulder rotation (*+) and 

elbow flexion/extension (*,) were possible. Friction, gravity, and viscosity compensation 

were applied to counter the effects of moving an exoskeleton device.  

 

 

Figure 11: Experimental Setup. Participants performed a planar reaching task using the ARMin exoskeleton 

device. (A) Overhead view of the experimental setup with ARMin device locked in a planer position with 

vertical display, (B) Visual feedback of novel task condition where the cursor is controlled by joint angles, 

targets as they appeared on the visual display, (C) Schematic diagram of ARMin device, (D) Representative 

trajectories of participants initially exposed to novel joint-controlled task. 
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Participants were asked to reach in a straight line to the target. As soon as the target 

(blue sphere) appeared on the screen, participants could begin the reach. Participants 

were allowed to rest in the target before initiating the next reach. After completing a 

reach, the participant received feedback of movement time based on the color of the 

target. An ideal reach duration of 1.5 seconds would result in the target turning green 

upon completion of the trial. This time constraint was determined from pilot data where 

fast baseline reaching movements with feedback provided in a Cartesian space averaged 

around 1.5 seconds. The experimental task was to reach in a straight line in joint space 

coordinate system, where the position of the target was defined by angles of the shoulder 

and elbow (Figure 11B). Flanagan and Rao previously demonstrated that participants 

experienced errors initially, but could adapt to this nonlinear visual transformation after 

training (J. R. Flanagan & Rao, 1995). Conversely, in a Cartesian coordinate system, 

healthy participants would exhibit only negligible errors after they have become 

familiarized with the robotic device; thus, we chose this task to test how our training 

could improve learning for healthy subjects experiencing a novel task.  

During the Baseline Phase, participants first became familiarized with the device by 

receiving real-time visual feedback of their endpoint position in a Cartesian reference 

frame on a vertical display (Unity 3D, Unity Technologies, San Francisco, CA). During 

the Intermittent Exposure Phase, participants were irregularly exposed to a joint-space 

coordinate system every one in seven trials. This was to test how participants first 

responded to the novel task without having the opportunity to adapt. During the first half 

of the Intermittent Exposure Phase, participants practiced with the same target set later 
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used for training. The second half of the baseline phase involved a new set of targets that 

were later used to test generalization of training.  

Table 1: Experimental Protocol 

Phase # Name  Condition # of Trials Catch Trials Forces 

1 Baseline Cartesian 10 -- No 

2 Initial 

Exposure 

Cartesian  120 1:7 (Joint angle 

transformation) 

No 

3 Training Joint Angle 

Transformation 

70 -- Yes for Error Fields 

and EA Groups 

4 Test Joint Angle 

Transformation 

23 -- No 

 
 

Figure 12: Experimental protocol (top), and representative errors across phases (bottom) for a subject from 

the EF Group where blue circles are for baseline reaching and red circles when reaching in joint-angle 

transformation. During training, the black dotted line represents the trials used to measure the time constant 

of error decay (Eq. 8). 

Errors occurring during the intermittent exposure trials were characterized so that 

each participant had a unique profile of error’s probability throughout the trajectory, 

otherwise known as their error field. All participants experienced a short pause prior to 

commencing training. Participants then trained for seventy trials (Training Phase) where 

the Error Field (EF) Group and Error Augmentation (EA) Group received forces and the 

Control Group received only visual feedback. Following training, participants were tested 

(Test Phase) on their ability to control the cursor with joint angles on the target set used 
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during training and to unpracticed targets. The protocol is illustrated in Figure 12 and 

summarized in Table 1. 

2.3. Subject customization 

In order to customize a force field intervention, the distribution of movement error 

was calculated from reaches in which participants were intermittently exposed to a novel 

visual transformation requiring them to control the cursor with their joint-angles (Figure 

11C). The nature of the task led to participants deviating both leftward and rightward 

from the straight-line path to the target (as shown in Figure 13).   

 
Figure 13: Errors differ across healthy subjects. Individuals have different error biases with reference to 

straight-line path (blue dashed line) to target. Dark lines indicate the mean trajectory and gray lines indicate 

95% confidence intervals for participants in the Error Fields Group experiencing intermittent exposure to a 

joint-space configuration. 

Error distributions were calculated for two measures of error: perpendicular (errperp) 

and extent error (errext). At each time sample, a single Gaussian distribution was fit to the 

data, resulting in a time-based function that is continuous across the space of possible 

errors. The following steps denotes the characterization technique (illustrated in Figure 

14): 

1. Mean (µ) and standard deviation (σ) of joint-angle errors (errext, errperp) were 

calculated across the trajectory from intermittent exposure trials in Phase 2. 

2. Seventh order polynomials were used to fit the mean -.���, and standard deviation 

-/���, across the first 1.5 seconds of the trajectory for both dimensions of error. 
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3. A single Gaussian distribution was created at every time sample to describe the 

probability, p, of different errors occurring. The continuous functions of mean and 

standard deviation were used to describe the single Gaussians at each location of time 

and error as shown in Eq. 5: 

0��, 122�������� = 3
45�6�∗√+∗7

∙ 1

&899
:;�<�(

=

=∗�:5�<��=   (5) 

2.4. Force Intervention 

During training, the Error Fields (EF) and Error Augmentation (EA) Groups received 

perturbing forces that were based on their real-time perpendicular and extent errors. The 

amount of force was based on a scalar magnification of the error, represented by	>, such 

that the maximum torque applied would be 15 Newton-meters, well below the robot’s 

safety limits. This factor was determined for each participant the EA and EF groups so 

that the 80% confidence interval of the theoretical forces would range from 5-15 Newton-

meters. For the EA Group, the forces were generated based on the real time error:  

�?@������� = > ∙ 122�������			   (6) 

 

The forces applied for the EF Group were additionally based on the error probability 

(defined in Eq. 5):   

�?A���������� = > ∙ 122������� ∙ 0(�, 122�������)     (7) 

The forces occurred only during the first 1500 milliseconds of movement so that 

participants were able to reach the target and complete the movement. Forces applied to 

the EA group were also turned off after 1500 milliseconds.  
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Figure 14: Process of customizing force training based on reaching errors. (A) Perpendicular and extent 

error are measured from intermittent exposure to joint angle control in Phase 1; (B) Mean (blue dots) and 

standard deviation (not pictured) are calculated across the trajectory; (C) Mean and standard deviation are 

fit with 7th order polynomials, allowing for Gaussian distributions to be created at each sample in time; (D) 

The probability of error dictates the amount of force (indicated by red arrows). 

 

2.5. Error Analysis 

We used two measures of error for assessing how participants learn. First, 

perpendicular error is the perpendicular deviation of the trajectory from the straight-line 

path, as shown in Figure 14A. If the ideal path between the origin and target is set as 

straight line along the horizontal axis, (BCD6E = 0�, then the perpendicular error,	122CGHC, 

is the distance from the cursor to the ideal path. Secondly, we measured the extent error 

as the distance away from the ideal movement path measured by a minimum jerk model 

�'��� = IJ�J + IK�K +⋯+ I�� + I 

� ��� = IJ�J + IK�K +⋯+ I�� 
M��� = N ∙ ����������� ∙ ���, ������������ 
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(Flash & Hogan, 1985), also shown in Figure 14A, given an ideal reach time of 1.5 

seconds.  Individual and group error analyses were performed using each error measure 

separately. Errors from a representative participant throughout the experimental protocol 

are shown in Figure 12.  

Change in Performance: To measure the effect of the interventation, or change in error, 

we took the average maximum extent and average maximum perpendicular error from 

initial exposure and final test trails (i.e. post-training). We subtracted the initial average 

error from the final average errors to determine the change.  

Time Constant of Error Decay: The maximum extent and perpendicular errors occurring 

during the training phase (example in Figure 12) were fit as a function of trial number 

using a using nonlinear Nelder-Mead regression:  

 

122� = O1�/Q + R  (8) 

where 122� is the trajectory error for trial i within the training phase, A is the amount of 

learning (change in error due to training), B is the time constant indicating the number of 

trials for the error to decrease 67% of the way to the asymptote, and C is the asymptotic 

(steady-state) error value (previously described in (James L. Patton et al., 2013; Y Wei et 

al., 2005). 

2.6. Prediction of final error distributions 

To test the effect the intervention had on reducing errors, we wanted to evaluate how 

the final error magnitude and probability changed across the trajectory. Since the 

intervention is based on the initial distribution, we tested how the final error distribution 

changes with respect to the initial error distribution. We investigated three general cases 
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of where the finals errors might occur, which would correspond to levels of force felt by 

the subject: 1) standard deviation = 0, mean error stays the same (participants would 

experience the maximum perturbations), 2) mean + 1 standard deviation, 67% of the data 

has shifted (participants would feel a small amount of force), and 3) mean + 2 standard 

deviations, 99% of the data has shifted (participants would feel zero forces). The exact 

amount of force felt at each of these levels varied by participant and the consistency of 

their initial error profiles.  

If the intervention worked as planned, the location of final errors throughout the 

trajectory should be predicted by the initial error distribution. We determined the 

coefficient of determination for between the initial and final error for the three cases 

described above (n=0, 1, and 2): 

S+ = 1 − ∑ �V�W�<�XY�4�W�<�XY�=�
∑ �V�W�<�XY�VZ�=�

   (9) 

 

where B�[�6�D\ = �[�6�D\ − ] ∙ ��[�6�D\	, -�[�6�D\ = 4�[D\ + ] ∙ �4�[D\, and  BZ =
3

3^__∑ B�[�6�D\3^__
3 .  

 
Using the results of the model, we calculated the mean distance, d, between the locations 

of the initial and final error distributions using Eq. 10 below to verify the model 

prediction.  

`��� = a�[�6�D\��� − ��[�6�D\���� − �4�[D\��� + �4�[D\�����a   (10) 

2.7. Statistics 

The significance for performance analysis was assessed first using repeated measured 

analysis of variance (ANOVA) and followed with paired t-tests to test the difference 
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between groups. We used Bonferroni-Holm corrections for post hoc pair-wise 

comparisons. 

3. Results 

The EF Group received force field training that was augmented based on the 

probability of a particular error occurring. We compared the effect of the intervention to 

the EA Group, who received forces scaled to their errors, and a Control Group that 

trained with a null field (no force). Initial errors for all subjects were tested to determine 

initial skill levels and no difference was found between groups.  

Differences in training forces: We compared the average forces received by each group 

during the start of training to ensure that the EF forces were initially scaled to match the 

magnitude of the EA forces. During the first five trials, peak force was similar for both 

the EA and EF Groups (8.7±1.7 N and 8.2±1.8 N respectively), but differed in location 

during the trajectory (570±330 ms and 192±90 ms respectively).  

Change in Error: We measured the change in maximum perpendicular error and 

maximum extent error between the initial exposure to joint angle control and the final test 

(Figure 15C, Figure 15D). We found the decrease in error for the EF Group to be 32±10 

degrees for extent and 19±18 degrees for perpendicular error. The change in error for the 

EA Group was 23±12 degrees for extent and 16±4 degrees for perpendicular while the 

change for the Control Group was 16±10 degrees for extent and 15±5 degrees for 

perpendicular error.  These improvements in performance led to a significant change in 

both extent and perpendicular error between the EF and Control Group (p=0.0098 and 

p=0.042 respectively).  The EF Group was significantly different than EA, with post-hoc 

corrections for only perpendicular error (p=0.0392).  
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Figure 15: Group differences in learning rate and error change. The time required to learn (indicated by the 

time constant) was lower for Error Fields Group. This was measured on two components of error: (A) 

maximum extent error and (B) maximum perpendicular error of each trial.  The change in error across 

practice, from initial exposure to final test phase, was largest for EF Group in both extent (C) and 

perpendicular errors (D). 
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Time Constant of Error Decay: In terms of extent error, the amount of trials required 

for error to decay by 67% was 12±6 for the EF Group; lower than the 32±16 trials for 

the EA Group and 36±15 for the Control Group. This led to a significance of p=0.0178 

across groups (0.0141 between EF and EA, and 0.0406 between EF and Control when 

corrected) as shown in Figure 15A. For perpendicular error, the amount of trials required  

for error to decay by 67% was 57	±13 for the EF Group, 84±43 for the EA Group, and 

106±43 for the Control Group, illustrated in Figure 15B. There was a significant 

difference between the EF Group and Control (p=0.044), but no other effect was seen 

between groups.  

Generalization of Training to Unpracticed Targets: We measured the change in error 

reaching to unpracticed targets between intermittent exposure and post-training. All 

participants had lower reaching errors, but we found no statistical difference between 

groups.  

Prediction of Final Errors: To determine the relationship between initial and final 

errors we measured the coefficient of determination (R2) between the initial and final 

error distributions. We entertained theoretical models that were based on the standard 

deviation of the mean error across the entire trajectory. We found that the best fit (in 

terms of R2 values) occurred when comparing one standard deviation below the mean 

initial error to one standard deviation above the mean final error. The EF Group had 

larger R2 values for all three tested cases (where the final predicted errors are 0, 1, and 2 

standard deviations of the mean) than the EA and Control Groups.  

To test the model we measured the average distance between the initial error and 

prediction of final errors for the best performing case (mean plus 1 standard deviation).  
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Figure 16: Results of model predictions for error change. A) Cartoon depiction of initial (green) and final 

(purple) distribution of error, where final errors were nonzero. B) Example subject showing the correlation 

between errors located 1 standard deviation from the mean with an ideal model line, and C) the model 

prediction Coefficient of Determination (R2) values across groups; D) Distance between predicted and 

actual errors averaged across the trajectory and compared between groups.  
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We found the difference in extent error to be an average of 6 degrees less for the EF 

Group than the EA Group (p=0.009) and 10 degrees less for the EF Group than the 

Control Group (p=0.032), and no statistically significant difference between the EA and 

Control Group. For perpendicular error, we found the error for the EF Group to be 6 

degrees less for the Control Group (p=0.0262), and no detectable significance between 

the EF and the EA Groups and between the EA and the Control Groups. 

4. Discussion 

In this study, we investigated a technique to customize error augmentation training 

based on distributions of error. Previous error augmentation (EA) studies have tested the 

optimal gain to amplify error during training (James L. Patton et al., 2013; Y Wei et al., 

2005). Here we tested a method that varied gains across the trajectory according to the 

error probability.  This error field approach involved scaling the amount of force applied 

by the robot based on the probabilities of reaching errors, such that unlikely errors led to 

weaker perturbing forces than frequently repeated errors. We found that participants 

receiving error field training had a greater improvement in performance. In addition, their 

errors decayed at a greater rate than the groups that received standard error augmentation 

or null field training. 

Our primary result was a greater change in error for the EF Group for both 

perpendicular and extent error (Figure 15C & Figure 15D).  Previously, studies from our 

group have shown the success of error augmentation over repetitive practice (Patton, 

Kovic, et al., 2006; James L. Patton et al., 2013; Y Wei et al., 2005). Here the EF Group 

demonstrated significant improvement over the EA Group for extent error, but no 

significant differences in perpendicular error. The fact that error reduced differently by 
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direction might be explained by the so-called uncontrolled manifold (UCM) hypothesis, 

where some variables are stabilized at the cost of others (Latash, Scholz, & Schoner, 

2002). In this task, extent errors are less devastating to task success than perpendicular 

errors. Extent errors are essentially timing errors that do little to change the task outcome, 

and hence might be given less priority in the learning process. However, we believe that 

the added benefit of our treatment focused attention onto extent errors, allowing 

participants in the EF Group to selectively decrease a distinct aspect of error that would 

not otherwise have been possible. In other words, the EF approach might be used to bias 

learning tendencies away from what is predicted by typical processes, such as the UCM.  

The error field group learned the fastest (Figure 15A & Figure 15B), providing 

further support for the benefit of the error fields approach. According to our design, at the 

beginning of training, the errors that were most consistent with those observed during 

characterization received the largest forces. One possibility for this rapid decay in error is 

that participants responded to forces as if it there were a virtual wall in attempt to avoid 

force field interactions. Thus, participants received the greatest perturbing forces when 

they maintained their original systematic errors and thereby moved to regions of low 

probability faster in order to receive smaller augmenting forces. While participants in the 

EA Group also experienced low forces at regions of lower error, they still receive 

significant perturbing forces as they shifted from their original movement patterns (the 

EA approach does not “forgive” high errors with low probability). A secondary 

explanation is that the EF Forces provided more relevant sensory cues. By only 

exaggerating original movement patterns, participants were able to rapidly converge on a 

solution.  
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One possible explanation for the improved performance of the EF Group over the EA 

Group was that they received lower forces, however, the magnitude of forces were scaled 

such that they would be equal if participants maintained the same errors during training as 

they did during intermittent exposure. The subsequent changes in force level are thereby 

reflective of the divergent learning strategies between the EF and EA Groups. A secondary 

explanation could be that participants learned the optimal impendence needed to resist the 

forces, as previously shown by Burdet et al. (Burdet, Osu, Franklin, Milner, & Kawato, 

2001). However, once participants in the EF Group began to shift away from their initial 

error profiles, they received lower forces--preventing the need for them to co-contract in 

order to reach.  

While we established group differences in learning, we wanted to know whether the 

structure of error field training specifically influenced the participants’ learning. We 

developed a model prediction based on the formula for the forces used in the intervention 

(a single Gaussian) to test if learning is observed throughout the trajectory or if our 

approach simply caused general learning effects (Figure 16A). When comparing the 

mean initial errors to the final errors, we found that the upper 33% of final error 

distributions were aligned with the lower 33% of the initial error across all participants 

(Figure 16B), suggesting that errors along the trajectory scale statistically following 

training. We saw this correlation of initial and final distributions was significant for the 

EF Group, but random for both the EA and Control group (Figure 16C). Using this model 

prediction, we could see that the structure of the intervention was evident in the final 

distributions for the EF Group, where the final distributions overlapped the initial 

distributions by the lowest amount (Figure 16D). Therefore, this technique was able to 
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drive a predictable and specific change in behavior, giving us insight to the value of 

customization in training.  

Although the error field treatment may have been the most beneficial for this 

experiment, it did not completely eliminate errors (Figure 16A). We believe that this is 

because the customization was based only on the initial characterization phase and does 

not capture new error patterns that emerge during training. To truly capture the 

“challenge point” required for optimal learning and correct new errors, we would need to 

increase task difficulty as the training progresses (Guadagnoli & Lee, 2004). Future 

implementation of this technique might thereby include repetitive re-characterization of 

error fields as the training progresses, which would ensure that smaller distributions of 

error that occur later in training will also be ushered closer to zero error. Such re-

characterization techniques have been successful both with adaptive resistance training 

(Grimby, 1985) and adaptive assistance training (Klamroth-Marganska et al., 2014). 

These results build upon previous studies on error augmentation techniques to enhance 

motor learning (Marchal-Crespo et al., 2014; Milot et al., 2010; James L. Patton & 

Ferdinando a Mussa-Ivaldi, 2004; Reisman et al., 2009; Y Wei et al., 2005). Our two 

most striking findings were (1) error fields improved on previous methods (Y Wei et al., 

2005), and (2) error fields’ subject-specific training conditions addressed each person’s 

unique error profiles (Figure 13). This result was true in spite of widely differing initial 

errors in our subjects. It is also important to mention that error fields accommodated 

differences across the trajectory as well as movement direction. This indicates a detailed 

level of customization, more than simply adapting to each subject.  It is possible that in 

some scenarios error probabilities are common across individuals, in which case, error 
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fields might not have needed such customization. Furthermore, there may be some tasks 

where probability distributions are indistinguishable for certain directions, and error 

fields can be consolidated. These findings reveal the ability of an intervention to take 

advantage of movement statistics to facilitate training. Emphasizing useful information 

during motor learning is believed to be already a natural process used by the nervous 

system (D. J. Herzfeld & Shadmehr, 2014; Y. Wei & K. P. Kording, 2009). In such 

Bayesian learning models, relevant movement errors drive adaptation while spurious 

errors are discarded. We believe that our intervention promotes this process by 

emphasizing the most useful information (in this case, frequent reaching errors).  Recent 

work by Herzfeld et al. (David J Herzfeld, Vaswani, Marko, & Shadmehr, 2014) further 

showed that prior experience of error governs the amount of learning. In our current 

paradigm, we are ensuring that only the task-relevant errors are amplified during training. 

In the case of the EF Group, change in error was observed only in regions where errors 

were familiar through previous experience. Furthermore, these changes align with recent 

findings from Takiyama et al. who showed that people learn most when they can expect 

the errors (Takiyama, Hirashima, & Nozaki, 2015). Through our modeling efforts (Fig. 

5), we were able to show that enhancing likely movement errors resulted in the greatest 

learning payoff. Many studies of goal-directed movements focus on models of adaptation 

based on trial-to-trial error.  We suggest that a more comprehensive approach would be to 

consider how probabilities of error throughout the trajectory change during learning.  

This paper represents an important next step in advancing error augmentation 

methodology for motor skills training. The approach we used in this study can easily be 

adapted for customized therapy to accommodate wide differences in movement errors 



 

 

 

 

63

across patients, even when the neurophysiological sources of error are unknown. We 

believe that this strategy of focusing the intervention on error probabilities is applicable 

to any training situation where error can be measured and characterized. Beyond 

enhancing training, our findings support the idea that the nervous system relies on 

statistical error information for learning. Understanding the mechanisms of learning 

could then provide both the inspiration and the mathematical framework for better forms 

of intervention.  
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V. CUSTOMIZED THERAPY USING DISTRIBUTIONS 

OF REACHING ERRORS 
 

Moria Fisher Bittmann, Felix C. Huang, James L.Patton 

  

 

 

While there have been recent success with robotic therapy approaches, differences in 

motor impairments across stroke survivors motivate the need for customized therapy. Our 

latest work with healthy participants used the likelihood of one’s error to construct an 

individualized force field training environment we termed an error field.  Likewise, we 

believe these error statistics could characterize individual motor impairments for stroke 

survivors. Here in a pilot study, we investigated this technique in rehabilitation therapy 

following stroke. We tracked three stroke survivors across multiple days using error field 

training, and found that individuals’ errors reduced for all target directions across 

sessions. We also found evidence of improvement that reflected the effect of the training 

forces. These results provide encouraging preliminary evidence that error field training 

can be valuable for both characterizing deficits and custom-tailoring therapy. 

 

1. Introduction 

 
Following a stroke, more than two-thirds of survivors have reduced arm function 

(Jorgensen et al., 1999). There are large range of motor deficits that occur following a 

stroke, and the severity of such impairments can vary quite widely (Bushnell et al., 2001; 

Kalaska et al., 1983; Lazarus, 1992; Mercier et al., 2004). Stroke survivors can develop 

abnormal contraction coupling, or “synergies,” that are based on the arm’s orientation 

(Beer et al., 2004). Robotic therapy can offer many modes to training beyond 

conventional therapy such as high repetition, applying assistance-as-needed or gradually 
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increasing intensity (Brewer, McDowell, & Worthen-Chaudhari, 2007; Jorgensen et al., 

1999; Reinkensmeyer et al., 2004). Several studies have used adaptive control algorithms 

to account for individual differences where they adapt assistance for an individual on an 

as-needed basis, similar to a therapist (Vergaro et al., 2010; Wolbrecht, Chan, 

Reinkensmeyer, & Bobrow, 2008). However, there have been limitations to their success 

to generalize or lead to long-term functional improvements (G Kwakkel, Kollen, & 

Krebs, 2008; Mehrholz, Hädrich, Platz, Kugler, & Pohl, 2012). While these approaches 

ensure participants are able to complete the task, they do not address the individual 

impairments. 

Recent studies have shown training benefits using error augmentation (EA), where 

error is magnified via haptic or visual feedback. Error augmentation techniques have led 

to improved clinical measures and reduced errors in tasks ranging from reaching, 

walking, and stepping (Abdollahi et al., 2014; Milot et al., 2010; Patton, Stoykov, et al., 

2006; Reisman et al., 2009). Researchers believe that by drawing more attention to errors, 

participants are more likely to pay attention to and correct their mistakes. The optimal 

method for applying EA, however, remains unknown. Studies suggest that the 

appropriate gain might differ based on individual abilities (Milot et al., 2010; Shirzad & 

Van der Loos, 2012). In a recent study focusing on distributions of movements during 

motor exploration, Huang and Patton found that certain motor deficits were unique to 

each stroke survivor (Felix C.  Huang & James L. Patton, 2013).  Likewise, we believe 

there exists distributions of error during goal-directed movements that are unique to each 

participant. 
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Our previous work with healthy participants has shown that force field training based 

on participants’ unique error statistics, or error fields, improved performance in a novel 

visual transformation (M. E. Fisher, F. C. Huang, V. Klamroth-Marganska, R. Riener, & 

J. L. Patton, 2015).  Building upon traditional EA approaches, we used each participant’s 

error likelihood to dictate the magnitude of augmented forces applied during training. 

This ensured that the intervention focused on errors made most frequently, and ignored 

spurious or random errors. We believe that such statistics of movement errors can also be 

used to customize the “motor relearning” of therapy for stroke survivors so that training 

can focus on the unique regions where frequent movement errors occur. 

This study investigated how such error-defined customization of robotic therapy 

might reduce reaching error in the chronic stroke subject. We hypothesized that this error 

fields technique might not only characterize error tendencies of each subject, but also 

restore reaching ability across days of training. In this test case study, we evaluated three 

participants over five sessions of error field training, where training forces each day were 

updated on their baseline reaching movements. Prior to receiving training forces, 

participants trained with repetitive practice in a null field. We hypothesized that error 

field training could reduce reaching errors better than practice alone. 

 

2. Methodology 

2.1. Human subject experiment 

Three stroke survivor subjects participated in this study at the Rehabilitation Institute 

of Chicago (Chicago, IL). The main inclusion criteria were 1) chronic stroke (8+ months 

post-stroke), 2) hemiparesis with moderate to severe arm impairment measured by the 



 

 

 

 

67

Fugl-Meyer Assessment UE (FMA-UE score of 15-50, (Fugl-Meyer, Jaasko, Leyman, 

Olsson, & Steglind, 1975) , 3) primary cortex involvement. The exclusion criteria included 

1) severe sensory deficits in the limb using the Two-Point Discrimination Test (Callahan, 

1990), 2) severe spasticity (Modified Ashworth of 4 preventing movement (Ashworth, 

1964)) and, 3) aphasia, cognitive impairment or visual deficits that would influence their 

ability to perform the experiment tasks. All participants provided informed consent in 

accordance with Northwestern University Institutional Review Board. Participant 

information is summarized in the table below, where clinical measures listed are from the 

affected arm.  

Table 2: Summary of stroke survivor participants  

Participan

t 

Age 

(years

) 

Years 

past 

stroke 

Lesion Type Affecte

d hand 

AMFM ARAT BBT 

Pre Post Pre Post Pre 
Pos

t 

1 62 8 
Hemorrhagi

c 
R 22 23 17 17 6 8 

2 60 10 Ischemic R 21 22 16 16 7 8 

3 60 2.5 Ischemic L 19 19 20 20 10 8 

2.2. Experimental conditions 

Participants were asked to move a planar force feedback device, also called a 

manipulandum, as described in previous work (Scheidt, Reinkensmeyer, Conditt, & 

Mussa-Ivaldi, 2000), see Figure 1A. Real-time feedback of the handle position was 

provided to subjects using a large video display orientated upside-down and projected 

onto a mirror above the participant’s hand. The mirror height was positioned such that the 

visual feedback appeared to be co-incident with the hand. Participants were seated such 

that the shoulder of their affected arm was centered in the workspace, approximately 38 

centimeters away from the robot. The wrist was secured in a brace connected to the robot 

handle so that only movement of the elbow and shoulder was possible. The brace was 



 

 

 

 

68

supported with a planar arm support. The robot control and instrumentation was mediated 

with a Simulink-based XPC Target computer, with a basic rate of 1 kHz.  Data was 

collected at 200 Hz.  The robot generated torques that compensated for some of inertial 

effects of the robot arm during all experiment phases.  

Goal-directed reaching: Participants reached to ten target locations arranged in a 

pentagram pattern 18 cm apart (Figure 17A). After completing the reach, they received 

feedback of their movement time, where color indicated if the movement was too slow 

(yellow), too fast (red), or within the desired range (green). The ideal movement time was 

set at 750 milliseconds.  

 

Figure 17: Overhead view of experimental conditions performed with planar manipulandum and arm 

support: (A) Participants performed goal-directed movements to 10 targets (each target represents two 

directions) and (B) freely explored the workspace during motor exploration trials. 

Motor exploration: Participants were instructed to move the robot handle to various 

positions, speeds, and movement directions within the robot workspace (0.6 meters x 0.4 

y 

x 

10 cm 

y 

x 

A B
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meters). They received continuous feedback of their cursor with real-time velocity 

represented as a “tail” trailing the cursor. A trial consisted of two cumulative minutes of 

movement with a speed greater than 0.04 meters/second. Following the trial, participants 

received a score that reflected the variety of movement patterns as previously described 

in (Felix C.  Huang & James L. Patton, 2013; Wright et al., 2015). 

2.3. Experimental protocol 

 At the beginning of each session, participants were asked to make goal-directed 

movements in a null field (6 trials in each direction) with interspersed epochs of motor 

exploration (1 in every 10 trials, 6 total per session). Training sessions were spaced every 

other day from each other, while initial assessments were spaced one week prior and one 

week post training. Participants trained in a null field (Session 2), prior to force field 

training (Session 3-7). Following characterization on Session 3-7, participants 

experienced Error Field training -- perturbing forces based on the most common errors 

exhibited during baseline. See Figure 18 for a full description of the protocol and Table 3 

for the error field training schedule.  

 
Figure 18: Experimental protocol across sessions 

 

Before interacting with the robot on Session 1, 2, and 8, a physical therapist evaluated 

each participant. The evaluation including the following stroke assessments: Fugl-Meyer 
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Assessment (FMA),  Action Research Arm Test (ARAT), Box and Blocks Test (BBT) 

and the Intrinsic Motivation Inventory (IMI) questionnaire. 

Table 3: Force training session protocol (Session 3-7) 

Phase Name Number of trials Condition 

1 Baseline 
60, 6 motor exploration 

trials 
Null field 

Characterization 

2 Training 200 
Error field 

(forces) 

3 Test 60 Null field 

 

 
Figure 19: Initial error trajectories during characterization (session 1) for each participant. Characteristic 

movement errors vary with target direction and are not the same in participant.  Note we have re-aligned 

the origins of all reaches for illustration purposes. 

2.4. Force field customization 

Baseline reaches at the beginning of each training day served as the basis for the 

design of the customized forces used for that session (see Figure 19). Distributions of 

error were calculated using the perpendicular distance from the straight-line path (err) 

with respect to the distance, d, along the path. In contrast to the previous study with 

healthy participants (M. E. Fisher et al., 2015), we chose path distance as the ordinate to 

parameterize error. Path distance was used instead of time because we discovered that 

stroke subjects initiated and timed their movements inconsistently. This path-dependent 

approach was nearly as accurate and avoided the potentially unwieldy forces associated 

with misaligned time-dependent forces. 

Participant 1 Participant 2 Participant 3
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The process for determining the error field is described below, for every target 

direction independently (see Figure 20 for example):  

a) The mean and standard deviation of error across the trajectory were fit with 

seventh order polynomials, creating functions -.�`� and -/�`� for the mean and 

standard deviation respectively.  

b) The probability of the error occurring at each distance, d, along the trajectory was 

calculated in real-time by using a single Gaussian distribution:   

��), ������������ = �
� �)�∗√#∗$

∙ �

&���
�'���(

#

#∗�� �)��#   (11) 

c) A scaling factor, >, was determined using the 80% confidence interval bounds of 

the error and finding the value such that the maximum force does not exceed 15 N.  

d) Forces were applied based on the error probability and real-time measured error:  

M�M���������)� = N ∙ ����������� ∙ �(), �����������).  (12)  

Forces did not begin until participants left the origin and ramped down to zero when 

participants were within 1 centimeter of the target.  
 

 

2.5. Data analysis  

 
Performance error 

We used the initial characterization phase at the beginning of each session to measure 

the change in error either due to null field training or error field training. We also 

measured the movement time and peak velocity for each movement.  
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Figure 20: Customization of forces. Error field training is customized using each day’s initial baseline 

errors (Phase 1). Top row shows the error trajectories across day for Participant 1, Target Direction 2. 

Bottom row shows the respective error distributions and resulting force field (red arrows) for the five error 

field training sessions.  

Prediction of error change 

 We further explored the effect of the intervention on the change in error throughout 

the trajectory, previously described in Chapter IV. We entertained three possible models 

that would describe the location of the final distributions (in this case, we used the initial 

error of the following session to avoid any post-training fatigue effects) based on the 

initial mean, � and standard deviation, ��, outlined in Table 4. These models are based 

design of the error field, where one standard deviation (�) from the mean () would 

equate to a low amount of force.  

Table 4: Models for Error Change 

Model # Final Error Predication 

1 � − ��  
2 �  
3 � − ���) 

 

We determined the coefficient of determination between the prediction, -�[�6�D\, and 

final error, B�[�6�D\, for the three model candidates to measure the change between  

Error Field Training Session 
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session 2 and session 3 (change due to null field training) and session 3 to session 4 

(change due to Error Field training).  

S+ = 1 − ∑ �V�W�<�XY�4�W�<�XY�=�
∑ �V�W�<�XY�VZ�=�

   (13) 

Using Model 1, we evaluated the success for all possible combinations across sessions to 

test the uniqueness of the model to predict errors beyond the following session.  

Generalization to motor exploration 

 To test the transfer of training to participants’ performance during the motor 

exploration condition, we calculated the change in velocity distribution across sessions 

(method is previously described in (Wright et al., 2015)). To gauge the expansion of 

reaching ability, we first calculated the 50th percentile contour of 2-D velocity and then 

found the coverage of data within the contour boundary. This value represents the 

estimated area of movement tendencies in the velocity domain. 

Statistics 

 We performed a 2-way ANOVA for each participant using factors of target and 

session. Post-hoc t-tests were used to perform pairwise comparisons between sessions 

and corrected using the Bonferroni-Holm method.  All analyses were considered 

significant at an alpha level of 0.05. 

3. Results 

 
The initial error magnitude depended on target direction 

 Our ANOVA results indicated that target direction and subject were significant 

factors on error across sessions (p<0.001). Further analysis of within subject target effects 

revealed that participants’ reaching errors in the first (baseline) session varied across 

target directions (1-way ANOVA on target direction; p<0.001 for Participant 1, p<0.001 
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for Participant 2, p=0.016 for Participant 3) – see initial trajectory errors in Figure 19.  

Each participant appeared to be unique in the manner in which these initial errors varied 

across direction. At the end of training, targets were significantly different for Participant 

1 (p < 0.001) and Participant 3 (p<0.001). These subject- and direction-specific errors 

reduced across training. In fact, errors no longer differed across movement direction by 

the end (session 8) for Participant 2 (ANOVA session – target interaction, p>0.05).  

Performance improved across training 

We found that all subjects significantly improved (decreased reaching error) between 

the initial baseline reaching on session 2 (start of training) to the final evaluation session 

on session 8 (see Figure 21). The error decreased an average of 2.8 cm for Participant 1 

(40% error reduction, p=0.0152), 1.3 cm for Participant 2 (35% error reduction, p=0.0074), 

and 0.9 cm for Participant 3 (18% error reduction, p=0.0486).  

 
Figure 21: Error change across sessions. Mean initial error from the characterization phase of each training 

session, error bars represent the 95% confidence intervals for error change across all target directions. Gray 

bars represent the change in error between subsequent sessions. Significant overall change in session-to-

session error is designated with a red asterisk. 
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While this preliminary study did not have a control group, we were able to compare 

sessions with to sessions without intervention. We compared the change in error due to one 

session of null field training (session 2 to 3) with that of one session of error field training 

(session 3 to 4) to see if one type of training had a greater effect. We found all subjects 

significant reduced error for both these training conditions (p=0.001, p=0.027, p=0.043 for 

session 2-3 and p=0.001, p=0.037, p=0.025 for session 3-4), but there were no detectable 

differences in error drop between these two conditions (p>0.05). 

We also analyzed changes in movement time and peak velocity (Figure 22) in order 

to understand these error changes in the context of a well-understood motor control 

principle –the speed-accuracy trade-off (Fitts, 1954). We expected that as error 

decreased, participants would reduce movement time and increase peak velocity. 

Participant 1 showed no change in movement time, but had an average change in peak 

velocity of 0.1 m/s (p< 0.001). Participant 2 showed significant session-to-session 

interactions for movement time, but no overall change. There was a significant decrease 

in peak velocity of 0.2 m/s (p<0.001).  For Participant 3, movement time changed from 

session 1 to session 8 by 150 ms  (p<0.001), while peak velocity increased by 0.1 m/s 

(p<0.001).  

Generalization to free exploration was positive  

 We used trials where participants freely explored the workspace (motor exploration) 

to test if error reduction had an effect on velocity distributions. Participants began at the 

same initial velocity coverage ( 1±0.5 m/s). We detected no change in velocity coverage 

following training (measured at session 8) for Participant 1, but found a significant 

increase of 1 m/s for Participant 2 (p=0.006) and an increase of 3.7 m/s for Participant 3 

(p<0.001).  
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Figure 22: Change in movement time (green) and peak velocity (red) across sessions. Participant 1 and 

Participant 2 showed no overall change in movement time but decreased peak velocity (∆=-0.1 m/s, 

p<0.001 and ∆=-0.2 m/s, p<0.001). Participant 3 decreased movement time by an average of 150 ms 

(p<0.001) and peak velocity increased by 0.1 m/s (p<0.001).  

 

Prediction of error from initial distribution 

Our modeling analysis revealed the best predictions of error change for the case that is 

based on the structure of training forces (Model 1). When we compared model 

predictions for all three models (Figure 23), we found only positive R2 values for all three 

participants for the Model 1’s prediction of change due to error field training (mean 

R2=0.39±0.17, 0.64±0.21, 0.30±0.27). Model 2 showed limited success in predicting the 

change in error following error field training for Participants 1 and 2 for error field 

training (R2=0.09±0.7, 0.11±0.9). See Table 5.  

 

Figure 23: Depiction of model predictions (black line) where the initial distribution is used to predict the 

mean error from the following session (red dotted line). Model predictions were performed for error 

following one session of repetitive practice and error following one session of error field training.  
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Table 5: Model prediction values. The mean and standard deviation of model predictions values (R2) shown 

are calculated across 10 target directions. For control comparison, we provide how well the model 

performed in predicting change due to null field training. Shaded boxes designate positive R2 values. 

R2  Model 1 Model 2 Model 3 

 Error field 

Session 1 

Null field 

training 

Error field 

Session 1 

Null field 

training 

Error field 

Session 1 

Null field 

training 

Participant 

1 

0.39 

±0.17 

-0.53 

±1.4 
0.09 ±0.7 -2.0±1.9 -0.45 ±1.1 -5.5±12 

Participant 

2 

0.64 

±0.21 
-4.8±4.7 0.11 ±0.9 -3.4±5.4 -0.26 ±1.4 -14.3±15 

Participant 

3 

0.30 

±0.27 
-3.0±3.0 -3.0 ±6.6 -0.6±1.4 -2.9 ±3.5 -1.3±1.4 

 

Model predictions across all possible sessions revealed no predicative power (average 

R2 across target directions was negative). Model predictions were only observed (positive 

R2) for measuring error in sessions immediately following training (Figure 24).  

Figure 24: Average R2 for model predictions (Model 1) across targets shown for all combinations of 

sessions. The model predicts the following session’s error distribution based on the mean and standard 

deviation. Colored squares indicate positive R2 values. Note that the prediction is only specific to the 

following session and that model predictions are no longer positive after session 6.  

Clinical Measures 

 Given the short duration of our intervention, we did not anticipate changes from our 

short training invention. Accordingly, we found very limited evidence of improvement, see 

Table 2.  

4. Discussion 

This study examined whether error statistics during reaching can improve 

customization of force training for stroke survivor participants. We tested three stroke 
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survivor participants across five training sessions where they received error field 

training—forces that augmented feedback based on error likelihood. We found that 

overall error significantly decreased for all participants from both error field and null 

field training. Our most important finding, however, was the evidence that error field 

training caused predictable changes in error, where the initial distribution was able to 

predict final errors. We saw that the errors following error field training were aligned 

with one standard deviation from initial error,  where forces vanished during training. 

We found that errors significantly differed based on target directions, which 

motivated the need to adapt training to 1) each participant and 2) each target direction. 

Previous research has suggested that such differences in movement errors are due to 

abnormal synergies following stroke and that velocity profiles can be location specific 

(Beer et al., 2004). Here we show possible manifestations of such synergies leading to 

large variations in locations of error. Not only were errors different in magnitude and 

variance with and between participants, but also they varied daily, suggesting the need 

for therapy interventions that change with the user. 

Our results here showed that error fields could reduce perpendicular error beyond 

repetitive practice (Figure 21). Although the amount of reduction in error varied based on 

the magnitude of initial error (not surprisingly, participants with higher error had larger 

changes), participants averaged a 30% reduction in error.  While null field training did 

decrease performance error for two participants, only error field training showed 

significant differences from the initial errors for all target directions. Even for 

participants beginning training with relatively low reaching errors (Participant 3), we 

were able to see a significant decrease in reaching errors.  
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We found that changes in error trajectories exhibited patterns that closely paralleled 

the structure of training forces (Figure 23). Given that the magnitude of training forces is 

governed by the participant’s proximity to their errors, we found evidence that 

participants moved one standard deviation from the mean (resulting in relatively low 

forces). In our previous study of healthy subjects training with error fields, we also found 

that subjects similarly changed their error patterns to align with one standard deviation 

away from their initial mean, corresponding to the location where forces would reduce to 

zero (M. E. Fisher et al., 2015). Here we provide further evidence of learning that appears 

to “structured” due to the error field intervention, where the error distribution predicted 

the mean error observed at the start of the next session. We entertained the same model 

predictions for null field training and found no such effect (see Table 5).  

Thus, while error did change due to null field training, it did not do so in a 

systematized manner. Exploration of model predictions for alternate sessions indicated 

that the predictive power is only unique to the following session’s error profile (Figure 

24). Further, as training progressed and errors are closer to zero, the model results were 

no longer positive across all targets. This ability to predict error changes could be a 

valuable tool in assessing the performance of a participant during training. 

While we were able to show evidence that error field training promoted learning 

according to their intended design, such results did not necessarily translate into large 

performance gains when we compare one session of null field training to one session of 

error field training (Figure 21). Since we began error field training immediately after, it is 

unclear if improvements from null field training would be retained. Further we did not 
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find differences in clinical measures (Table 2), suggesting that we might need to provide 

additional training sessions until we are confident the error field method has plateaued.  

 In contrast, we believe the true benefit of error field training is to cause participants to 

move from their original pattern. We were successful in demonstrating how participants 

changed based on their variance, reaching errors with high probability and low variance 

only incrementally decreased by one standard deviation. This result is consistent with 

recent findings by others who have shown that high motor variability promotes learning 

(D. J. Herzfeld & Shadmehr, 2014; Wu et al., 2014).   

This study revealed the need for therapy to adapt to the variation of errors seen in 

stroke survivor subjects. In our current approach, the error field is based on baseline trials 

characterized at the start of each session. While we believe this shows accountability to 

the needs of the stroke survivor, this also poses a limitation to our analysis abilities since 

the force field changes daily. To truly operate under the “challenge point framework” 

(Guadagnoli & Lee, 2004), where the greatest amount of learning is achieving by 

adjusting the task difficulty with the participant’s skill level, we would need to re-

characterize during each training session.  

In contrast to traditional clinical measures that evaluate task completion, here we 

showed a novel approach to leverage the high frequency error patterns employed by 

stroke survivors to customize therapy. This method ensured that training intervened on 

only the most relevant errors and adjusts to any day-to-day variation often seen in stroke 

survivors. Beyond the benefits of therapy for upper-extremity rehabilitation this approach 

could serve as a basis for a wide range of therapeutic approaches. 
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VI. GENERAL DISCUSSION AND FUTURE DIRECTIONS 
 

The body of work described in this dissertation describes how to improve training 

interventions using error statistics. This project also addresses practical applications of 

such interventions for skill learning, cross-modal training, and rehabilitation while 

providing insight to larger scientific questions surrounding motor control. The 

aforementioned studies increase our understanding of the complex neural process of 

error-based learning and adaptation.  

1. Contributions to motor learning 

1.1. Crossover ability of adaptation 

Our work provides evidence of successful transfer of force field learning to 

visuomotor adaptation. Prior to this work, several studies have suggested that visuomotor 

and force field adaptation share neural resources (Bays, Flanagan, & Wolpert, 2005; J. 

Randall Flanagan et al., 1999; Tong et al., 2002). Such studies involve scenarios in which 

adaptation to forces and visuomotor perturbations are detrimental to each other, a concept 

referred to as interference. Here we expand upon the notion of “constructive” 

interference, first introduced by Wei and Patton, where one field type can help to learn 

another field (Yejun Wei & Patton, 2004).  Our results showed that participants were 

capable of generalizing an aftereffect based on force field adaptation to improve 

performance in a visual rotation task (Chapter II). Even without having trained with the 

test condition, participants’ performance resulted in lower error. This finding not only 

supports the hypothesis that adaptation mechanisms are shared but also presents an 

alternative framework: Instead of force adaptation interfering with visuomotor 

adaptation, it can be a viable substitute for training. Further, we saw that learning 
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continued to improve on the day following training even after aftereffects would have 

degraded (Figure 4). We believe that the aftereffects caused by adaptation to customized 

forces, however, provided participants an implicit understanding of the trajectory needed 

for a visually rotated condition. This relates to a concept frequently referred to in 

psychology as “priming,” where a prior stimulus can influence the response to another 

condition (Schacter & Buckner, 1998). By priming participants with an understanding of 

the task demand (in this case the hand path for the visually rotated condition), they were 

able to use mechanisms one of type of adaptation to learn another. This resonates with 

previous studies that have shown how visual feedback showing the dynamics of an arm in 

an isometric condition can be used facilitate force field adaptation (Melendez-Calderon, 

Masia, Gassert, Sandini, & Burdet, 2011). Here we used the effects of force field 

adaptation (i.e., aftereffects) to train a visual rotation, demonstrating how adaptation 

mechanisms can be powerful training tools for learning new skills. 

1.2. Characterization of individual learning strategies 

In this work, we present evidence that neurologically intact participants can exhibit 

variations in movement distributions for some visuomotor tasks (Chapter II, Chapter IV). 

While many studies assume that healthy subjects exhibit similar error patterns during 

learning, only a few studies have acknowledged individual differences in learning based 

on information processing abilities (Ackerman, 1987) or level of skill (Guadagnoli & 

Lee, 2004). We found that such systematic differences in error also varied by target 

direction, further supporting the need for customized training interventions. Using simple 

statistical measures such as mean and standard deviation, we were able to characterize 
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reaching errors by 40% (Chapter III). This work provides a clear, simple approach to 

tailor interventions to account for individual differences throughout learning. 

1.3. Predicting how error changes across the trajectory 

 We developed a modeling approach that successfully revealed whether or not training 

forces had promoted the intended error changes. Recent studies have established other 

predictors of motor learning, such as motor variability, neural activity, and cognitive 

memory (Anguera, Reuter-Lorenz, Willingham, & Seidler, 2010; Rachael D Seidler, 

Mulavara, Bloomberg, & Peters, 2015; Wu et al., 2014). These approaches have 

demonstrated success in predicting the overall learning rate or the aptitude of an 

individual to learn. In order to improve upon robotic training interventions, however, it is 

also necessary to understand how participants change their reaching strategies during 

learning. In Chapter IV, we show evidence that the error field intervention caused 

subjects to shift error tendencies based on the structure of the force field (more 

specifically, by a standard deviation of the mean error). We found we could predict final 

across-trial errors for participants in the Error Field group. However, we were unable to 

predict final error distributions for participants training with error augmentation or 

repetitive practice, suggesting that the other training interventions caused random training 

effects. We also found we could predict changes in error distributions for stroke survivor 

subjects based on their performance in the previous session (Chapter V). Through this 

approach, we can measure the impact of our intervention and also predict how error 

distributions will change. Such predictions further allow us to measure the success of 

therapy and form a more detailed expectation of what participants are capable of learning.  
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1.4. Improving error augmentation interventions 

 This work presents a new approach to error augmentation (EA) techniques in which 

force feedback is magnified by both the real time error and the probability of the error.  

In its application, this technique amplified large, repeatable reaching errors and ignored 

random errors or errors close to zero. We found this to benefit training for healthy 

participants learning a novel visual transformation (Chapter IV) and reduce reaching 

errors exhibited by stroke survivor subjects (Chapter V). In contrast to recent work 

exploring the “optimal” EA gain (J. L. Patton et al., 2013), we show that changing the 

gain with respect to probability can improve training beyond traditional EA (Chapter IV, 

Figure 15). We believe that by allowing the amount of EA to vary we can operate with 

the challenge point framework (CPF), so that the task is appropriately challenging for 

each participant. Instead of determining a single number to augment error for each 

participant or subject group, feedback gains can be altered to address the most important 

errors.   

2. Contributions to rehabilitation 

2.1. Differences in error tendencies for stroke survivors 

 Our approach to customization revealed that error distributions were unique to each 

stroke survivor participant. Even though we only tested a small sample, we showed that 

stroke survivor subjects even with the same relative level of impairment (as tested 

through clinical assessments) have large differences in which target directions they 

demonstrated error, varying both by participant and target direction (Figure 19).  In 

contrast, previous studies have described that deficits following stroke should be 
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predictable based on the location of injury and time since stroke (Gert Kwakkel, Kollen, 

& Lindeman, 2004; Gert Kwakkel, Kollen, van der Grond, & Prevo, 2003). Our findings 

support a previous study by Beer et al., where they observed that the effects of abnormal 

muscle synergies following stroke varied throughout the workspace (Beer et al., 2004). 

Our results, therefore, establish the effect of abnormal coupling in terms of end-points 

errors, where a single participant can reach straight in one direction but deviate almost 15 

cm when reaching to a different direction. Such differences also resonate with the unique 

distributions that Huang and Patton found between participants during self-directed motor 

exploration (Felix C.  Huang & James L. Patton, 2013). Thus, there is need for therapy to 

quantify errors that are unique to each individual. Such characterization tools can provide 

better predictions of functional recovery and therapy outcomes.  

2.2. Error-based customization 

This work establishes a method to individualize therapy and also maintain a 

challenging environment. There is currently a large distinction between customization 

approaches in manual therapy and using robotics for stroke therapy. During manual 

therapy, clinicians are able to provide assistance when necessary and adapt tasks to the 

patient’s appropriate skill level.  Many robotic training studies exist that utilize assist-as-

needed algorithms so that the stroke survivor receives robotic assistance to complete the 

task. However, there have been limited approaches that also increase the intensity of the 

training environment on an individual basis (Klamroth-Marganska et al., 2014; Shirzad & 

Van der Loos, 2015). In our application of error fields training (Chapter V), participants 

were perturbed away from their initial reaching patterns and had to adjust their reaching 

strategies to complete the task. Even with only a short duration of practice (five force 
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training sessions that each averaged around 45 minutes) we were able to see reduction in 

error and positive transfer to motor exploration. By using error statistics, we determined 

which reaching patterns were repeatable and which were random, allowing us to focus 

training on regions where they exhibited systematic errors. While we chose to focus on 

perpendicular errors so that participants would eventually move straighter, our method is 

flexible and could be further customized to many definitions of error. 

3. Limitations of this work and potential improvements 

3.1. Optimal ordinate domains 

In our efforts to effectively utilize error distributions for training interventions, we 

made several decisions as to what domain error should be defined. In Chapter III, we 

analyzed several possible ordinate domains and found that the variance of error changes 

based on the ordinate domain. For that particular data set, in which participants learned a 

visual rotation, we found that errors best aligned when defined with respect to time 

(Figure 10). This result served as the basis for implementing error field training in 

Chapter IV using time-dependent forces. In our intervention with stroke survivor subjects 

(Chapter V), we chose to use a position-dependent field to ensure that we could 

accurately quantify the states that led to high error. It remains unclear if time or position 

would serve as optimal ordinate for stroke therapy or how such analysis or ordinate 

domains extrapolates to other tasks. 

3.2. Model predictions 

To determine the effect of the error field (Chapters IV and V), we evaluated 

predictive models that were based on the structure of the intervention. Although we found 
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success with the model that was the most synonymous with the design of the forces 

(mean – standard deviation), it is possible other models exist that could better explain 

how errors change following training. Further, recent motor control studies have shown 

how variability in error is important to learning (Wu et al., 2014). Our model analysis 

establishes that variability in error during the movement can be a predictor of change 

(Chapter IV and V), while our analysis of ordinate domains (Chapter III) showed that 

variability changes during learning. Further work needs to be done to understand the 

conditions where errors are more consistent and if variability can be used to measure if 

learning is stable. 

3.3. Subject population and dosage 

 
 We found that performance gains from error field training with stroke survivor 

participants were modest (Chapter V). To better understand the impacts of training on 

rehabilitation, we need to collect additional subjects and compare them to participants 

experiencing only null field training. Furthermore, more clinically meaningful effect sizes 

might be obtained with higher dosage or duration. It remains uncertain what is the 

optimal number of training sessions. We saw that following error field training, error still 

remained for all participants (Figure 21) suggesting there were still opportunities to 

improve. Additionally, we saw improvements in peak velocity and movement time and 

transfer effects to motor exploration trials that had not yet plateaued. 

3.4. Characterization algorithms 

The characterization algorithm used for error field training considers that individuals 

have a central reaching strategy for each target direction. In designing the error field 

(Chapter III), we utilize a simple approach using the mean and standard deviation of 



 

 

 

 

89

error. This method of averaging assumes one reaching strategy for any given target -- 

either leftward or rightward of the straight-line path. For both the healthy (Chapter IV) 

and stroke survivor (Chapter V) studies, we found that participants maintained systematic 

errors in one direction. However, if participants had strategies that varied in direction, our 

approach using a single Gaussian distribution would not be able to adequately determine 

the error probability. To allow for more robust characterization opportunities, future 

iterations should use more advanced statistical averaging such as kernel density 

estimation or multivariate Gaussian distributions.  

3.5. Intervention design 

To best use error statistics to inform training, it is important that the characterization 

uses the most recent errors. Our modeling results from Chapter IV and Chapter V showed 

that during training participants moved to a lower region of error but did not continue o 

reduce errors to zero. Once participants moved away from their initial distributions of 

error during training, they minimized force exposure, which we believe caused training 

effects to plateau. To prevent this from occurring training could be divided up into 

smaller blocks so that errors could be resampled and update the error field. This would 

make certain that we focus on the most recent error patterns. Alternatively, to ensure 

what the error field was not simply shifting daily between two strategies, it could be 

beneficial to add a second term to the error field calculation based on the participant’s 

average error patterns. This would ensure that even if there are day-to-day fluctuations, 

participants do not devolve into old patterns that have already been corrected.  
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4. Broad implications 

This work detailed several scenarios where learning was enhanced with customized 

 
force training environments both in learning new visuomotor transformations and 

reducing reaching errors for stroke survivors. We showed that using statistics of errors, 

we were able to train participants to improve performance on a task without previous 

experience, a process we call sensory crossover. This surprising result provided the basis 

for cross modal training opportunities in which learning from the wrong environment can 

make us better learners at a task we have not practiced. This establishes possibilities for 

new training environments using combinations of sensory cues to enhance motor 

learning.  We also demonstrated how the statistics of errors can be used to focus training 

on the most commonly occurring errors and discard errors that might be distracting to the 

learning process. In a world of emerging technology that gives us feedback on our 

performance, knowing how often we make errors can help us move smarter, faster, and 

more accurately. We can now offer more informative coaching and therapy that is truly 

customized to individual needs. 
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