
Automating Lung Cancer Identification in PET/CT Imaging

BY

ELEONORA D’ARNESE
B.S, Politecnico di Milano, Milan, Italy, 2016

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in BioEngineering

in the Graduate College of the
University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:

Tanya Berger-Wolf, Chair and Advisor

Robert V. Kenyon

Marco D. Santambrogio, Politecnico di Milano



ACKNOWLEDGMENTS

This work has been made possible thanks to several people that thanks to their time, sup-

port and patience have helped me throughout this period. Firstly, I want to thank Marco

Domenico Santambrogio, who helped and encouraged me in the last years; who with his guid-

ance this thesis has been possible. A thank you also goes to Emanuele Del Sozzo for his time

and the help that he gave me in this project. Thank you also to all the people working in

the NECSTLab at Politecnico di Milano, that created a friendly, stimulating and challenging

environment sharing expertise and suggestions. Thanks to Tanya Berger-Wolf and to all the

members of the CompPopBio Lab for the time spent together and the knowledge that they

have shared. A great thank you to the PoliMi-UIC students of Fall 2017 who shared with me

this magnificent experience during all these months. Last but not least, I want to express my

appreciation and affection to my parents for the support, encouragement and the chance they

gave me to live this experience.

ED

ii



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . . 1
1.1 Thesis goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Respiratory apparatus anatomy . . . . . . . . . . . . . . . . . . 6
2.2 Investigated pathology . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Imaging techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Positron Emission Tomography . . . . . . . . . . . . . . . . . . 13

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Invasive vs non-invasive assessment techniques . . . . . . . . . 17
3.2 Segmentation methods . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Watershed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Graph-based approach . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Morphologic and filtering approach . . . . . . . . . . . . . . . . 23
3.3 Data availability and evaluation challenges . . . . . . . . . . . 23
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 PROBLEM STATEMENT AND GOALS . . . . . . . . . . . . . . . . 26
4.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Proposed pipeline overview . . . . . . . . . . . . . . . . . . . . . 30
5.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 CT preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Lungs segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 PET processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 CT and PET fusion . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Dataset structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 CT preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.4 CT analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 PET analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 Cancer lesion identification . . . . . . . . . . . . . . . . . . . . . 58

7 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . 64
7.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 CONCLUSIONS AND FUTURE WORKS . . . . . . . . . . . . . . . 70

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



LIST OF TABLES

TABLE PAGE
I RELEVANT DETAILS ABOUT THE DATASET ANALYZED . 48

v



LIST OF FIGURES

FIGURE PAGE
1 Diagram of lobes of the human lungs . . . . . . . . . . . . . . . . . . . 7
2 Representation of cancer cells spreading through healthy tissue . . . 8
3 Basic scheme of Computed Tomography . . . . . . . . . . . . . . . . . 13
4 Basic scheme of Positron Emission Tomography . . . . . . . . . . . . 15
5 Scheme of the implemented pipeline . . . . . . . . . . . . . . . . . . . 31
6 8-connectivity representation . . . . . . . . . . . . . . . . . . . . . . . . 39
7 4-connectivity representation . . . . . . . . . . . . . . . . . . . . . . . . 45
8 Dataset composition divided by acquisition method and cancer type,

where STD=standard acquisition, HEL=helical acquisition, SQC=
squamous lung cancer and ADK=adenocarcinoma lung cancer . . . 49

9 Contrast adjustment with linear gamma correction . . . . . . . . . . 50
10 Sobel vs Canny edge detection approaches . . . . . . . . . . . . . . . . 51
11 Creation of the mask that will be employed for the removal of the

gantry artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12 Identification of the largest connected component based on the 8-

connectivity filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13 From the input to the background and thorax removal within the

lungs identification process . . . . . . . . . . . . . . . . . . . . . . . . . 55
14 Morphological closure with different constructing element radius; the

green one is the selected one . . . . . . . . . . . . . . . . . . . . . . . . 56
15 Identification of the Region of Interest within the CT processing

pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
16 Removal of PET centroid based on the CT corresponding values . . 59
17 Identification of the valid centroid inside the Region of Interest . . . 61
18 Final identification of the contour of the lungs cancer lesion . . . . . 62
19 Execution time on different dataset dimensions . . . . . . . . . . . . . 65
20 Accuracy obtained for each patient considering the number of ana-

lyzed images (the number of images is reported above each bar) . . 67
21 Number of correctly classified vs misclassified patients . . . . . . . . 68

vi



List of Algorithms

1 Pseudocode of the CT acquisition method . . . . . . . . . . . . . . . . . . 35

2 Pseudocode for the Otsu’s method . . . . . . . . . . . . . . . . . . . . . . 37

3 Pseudocode for removing the blobs outside the ROI on labeled PET image 60

vii



LIST OF ABBREVIATIONS

PET Positron Emission Tomography

CT Computed Tomography

NSCLC Non Small Cell Lung Cancer

SCLC Small Cell Lung Cancer

FDG F-Fluoro-Deoxy-Glucose

ROI Region of Interest

ACS American Cancer Society

NCI National Cancer Institute

WHO World Health Organization

CAD Computer-Aided Detection

CHT Circular Hought Transform

ISO International Organization for Standardization

viii



SUMMARY

Early and accurate diagnosis of lung cancer is one of the most investigated open challenges

in the last decades. The diagnosis for this cancer type is usually lethal if not detected in

early stages. For these reasons it is clear the need of creating an automated diagnostic tool

that requires less time for the identification and do not require a cross-validation of the results

by different radiologists, being in this way cheaper and less error prone. The aim of this

work is to implement a completely automated pipeline that starting from the current imaging

technologies, such as Computed Tomography (CT) and Positron Emission Tomography (PET),

it will identify lung cancers to be employed for the staging; moreover, it will be a suitable

starting point for a machine learning based classification procedure. In particular, this project

proposes both a methodology and the related software tool that taking as input Digital Imaging

and COmmunications in Medicine (DICOM®) files of chest PET and CT and by exploiting the

characteristic of both of them is capable of automatically identify the lungs and the eventually

presence of tumor lesions.

Going deeper into the topic and analyzing the literature it is possible to notice as very

different solutions have been proposed in literature for an accurate and fast identification of

lung cancer. Often such solutions start from CT and PT but generally they are semiautomatic

tools that still require the intervention of a physician in charge of indicating which is the Region

of Interest (ROI). On the other side, when fully automatic approaches has been proposed, they

are closed source with not available datasets, so it is pretty impossible a comparison, as first, and

ix



SUMMARY (continued)

to use their results to move forward machine learning based approaches. For this reason, this

work proposes a methodology and its technical implementation that aim at being a reference

point for future work into the field. As it will be possible to see, the thesis main contribution is

about the proposition of a fully automated identification of the Region of Interest in the medical

images, a fully automated segmentation procedure able to find lung cancer lesion inside the ROI

and a technique for combine information obtained from both CT and PET.

A validation of the pipeline will be also discussed, measuring both the execution time and

the obtained accuracy. Moreover, some consideration about future developments of this project

will be proposed.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The importance of early and accurate diagnosis of cancer is one of the most investigated

open challenges in the last decades. For this reason, a high attention has been given to the

creation of tools that can help physicians in this sense. In addition, among cancer types, lung

cancer is the second leading death cause between both male and female after prostate and breast

cancers [1], respectively. The diagnosis of this cancer type is usually lethal if not detected in

early stages.

Cancer is a term that indicates a disease characterized by the uncontrolled division of

abnormal cells that not only invade the tissues nearby, but also spread in term of metastases to

other districts of the body through both blood and lymph systems [2]. Cancer can be classified

with different names considering the starting location of the development and usually it is also

described by a cardinal number that indicates the stage of progress of the disease [3]. The

staging of lung cancer goes from one to four where one is an early stage cancer, while four is a

terminal stage.

Considering that the 5-year survival rate for subjects with stage one lung cancer varies

between 80-90%, while a late detection of this pathology can reduce the 5-year survival rate to

less than 10% (stage four) it is crucial an early detection for increasing the possibility of survival.

Within this context it is clear the need of creating an automatic diagnostic tool that requires

1
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less time for the identification (compared to a physician) and does not require a cross-validation

of the results by different radiologists, being in this way cheaper and less error prone.

Starting from the current imaging technologies, such as Computed Tomography (CT) and

Positron Emission Tomography (PET), very different solutions have been proposed in literature

for an accurate and fast identification of lung cancer. Most of them are based on a semi-

automated protocol where the radiologist manually draws the Region Of Interest (ROI) and,

after that, a program inside the decided ROI segments the tumor masses [4]. Such a choice

can be useful in terms of reduction of diagnostic time, allowing the clinician to perform a first

selection of the interesting part of the images, having then an identification made by a multi-

step algorithm. The result can be further corrected by the physician if a over-segmentation or

under-segmentation is performed by the semiautomatic tool. Semiautomatic tools are a starting

point for speeding up the analysis process and a first step forward in the standardization of

the obtained results due to the fact that they do not rely on human subjects for the entire

procedure. On the other hand, they still require the intervention of the radiologist, who should

manually select the Region of Interest slice by slice.

Following this trend, in the last years, some new fully automated identification tools have

been proposed for the identification of cancer lesions in the lungs. Such tools rely on different

characteristic of the medical images: for instance, some of them use approaches based on dif-

ferent stages of filtering and morphological operations [1], others on neural networks such as [5]

and [6], some employ watershed techniques [7], and others prefer a graph based technique [8]

and [9]. All these approaches can provide interesting possibilities in order to reduce the time
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necessary for the identification of lesions, and most of the works affirm to reach a comparable

accuracy considering as gold standard a cross-validated segmentation made by expert radiol-

ogists. In addition, a fully automated pipeline provides a standardization of the procedure

reducing the interpersonal subjectivity between different physicians.

A further step for the reduction of the mortality rate due to lung cancer can be seen in

machine leaning approaches which, exploiting the information obtained from the segmentation,

are able to provide information regarding the tumor. In fact, in recent years, attention has

been given to these techniques for the classification of tumors. This type of analysis might be

an interesting approach but, in order to produce reliable results, it needs a huge amount of

data about physical and radiomic characteristics of the tumor masses [10]. For the collection

of the aforementioned parameters it is necessary a standard segmentation method, otherwise

the produced classification can be biased by the different calculation procedures [11]. Taking

into account the necessity of congruence in the features extraction, an automated pipeline for

the segmentation and the subsequently evaluation of the characteristics of interest proves to be

a valid choice. As a matter of fact, it does not require the intervention of physicians assuring

in this way the same method for the computation of the data for each analysis, overcoming in

this way the problem of the human subjectivity. Moreover, considering the dimensions of the

dataset, an automatic procedure will decrease the analysis time leaving to the radiologists more

time for the treatment decision steps.
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1.1 Thesis goal

For the aforementioned reasons the aim of this work is to implement a completely automated

pipeline that aims at becoming the reference standard with the following goals: at first, it will

identify lung cancer, secondly it will be employed for the clinical follow up; finally, it will be a

suitable starting point for a machine learning based classification procedure.

For achieving these three objectives, this thesis proposes both a methodology and the related

software tool that taking as input Digital Imaging and COmmunications in Medicine (DICOM)

files of chest PET and CT and, by exploiting the characteristic of both of them, is capable of

automatically identify the lungs and the possible presence of tumor lesions.

The proposed methodology lies on three main pillars:

1. An automated identification of the Region of Interest in the medical images;

2. An automated segmentation procedure able to find lung cancer lesion inside the ROI;

3. A techniques for combine information obtained from both CT and PET.

A validation of the pipeline will be done by computing the execution time, the reached accuracy

and the visual results of the segmentation. The obtained accuracy varies between 89-97% on

the analyzed dataset with a significant reduction of the analysis time.

1.2 Outline

Going next, Chapter 2 will give some useful knowledges to the reader about the physiological

case study and about the imaging techniques employed for the data collection; Chapter 3 will

discuss the state of the art, while Chapter 4 will states the faced problem and the goals of the
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project. Continuing in Chapter 5 the details about the choices made for the data analysis will

be presented. Chapter 6 depicts the details of the single stages of the pipeline; Chapter 7, then,

will present the obtained experimental results and the comparison to the gold standard. Finally,

Chapter 8 will draw the conclusions and possible future works starting from the achieved results.



CHAPTER 2

BACKGROUND

This Chapter presents to the reader some theoretical pillars in order to facilitate the un-

derstanding of the faced problematics and the proposed solutions. Section 2.1 presents a brief

description of the anatomy of the respiratory system, while Section 2.2 describes the investi-

gated pathology focusing on Non Small Cell Lung Caner (NSCLC). Then, in Section 2.3 and all

its subsections the imaging techniques employed for the data acquisition and their noteworthy

characteristics are explained.

2.1 Respiratory apparatus anatomy

The respiratory system is a set of organs and structures that allows the gas exchanges

between the alveoli and the outside environment. For the purpose of this work, particular

attention is given to the lungs, which are the primary organs in the apparatus. The supportive

tissue that composes the lungs is the parenchyma, which is made of elastic fibers. The lungs

are positioned close to the backbone and on both side of the heart. As reported in [12], the

space that divides the lungs containing the heart and other structures, such as trachea and

esophagus, is called mediastinum. Moreover, the lungs differ one from the other for shape and

size. In fact, the left one has two parts called lobes, as shown in Figure 1, and is smaller due

to the presence of the heart, while the right one has three lobes and it is bigger.

6
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Superior 
lobe

Inferior 
lobe

Superior 
lobe

Inferior 
lobe

Middle 
lobe

Left lungRight lung

Figure 1: Diagram of lobes of the human lungs*

* Credits to Patrick J. Lynch; illustrator; C. Carl Jaffe; MD; cardiologist

Lungs have two main functions: ventilation and respiration. The former consists in the

movement of air from inside the body to the external ambient and vice versa. The latter is

essential for the wellbeing of humans and allows the gas exchanges [13].

The main task of the lungs is to supply oxygen to the body and to eliminate the produced

wastes from the bloodstream. For doing so the lungs receive blood that contains very low

concentration of oxygen from the tissues by the heart, while, through the pulmonary circulation,

they eliminate the carbon dioxide produced by the body metabolism and provide oxygen to the

blood, which then goes to the whole body [14].

Considering the fundamental functions of the lungs, it is clear that it is necessary a correct

functionality of the system; however, some diseases can compromise them. In fact, lungs tissue



8

Figure 2: Representation of cancer cells spreading through healthy tissue*

* Credits to Cancer Research UK / Wikimedia Commons

may be affected by multiple pathologies such as pneumonia, chronic bronchitis and cancer [15].

Some of these diseases can be related or caused by smoking, inhalation of harmful particles or

bacterias. In the specific case of this work the attention goes to lung cancer.

2.2 Investigated pathology

This Section will draw some trends and details about cancer and specially lung cancer in

order to allow the reader to understand the importance of an early and correct detection of this

disease.

As reported in [16], cancer is a pathology that is caused by an abnormal growth and division

of malignant cells that create tumor masses, as shown in Figure 2. Moreover, some of these

cells could spread into different body districts through the blood and lymph systems invading

different tissues.
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In a normal condition, cells follow a precise life cycle that is composed by different stages

in which a newborn cell grows, duplicates and, at a certain point of its life, dies. The last step

is called apoptosis and was firstly introduced by Kerr, Wyllie and Currie in [17]. Moreover, as

reported in [18] it is part of the normal turnover of cells in fact, the old ones are replaced by

new cells. On the other hand, when cancer appears, the normal life cycle fails in favor of an

abnormal behavior where cells do not die when they should with a multiplication that is faster

than normal. Within this context, humans affected by cancer show solid masses called tumor

[19]. Tumors are classified as malignant or benign: benign tumors are masses that can reach

huge dimensions but they do not move to different districts and, once removed, do not grow

back again. On the other side, malignant ones can invade different tissues and potentially they

can grow back once removed.

Lung cancer can be classified into two categories: Non Small Cell Lung Cancer (NSCLC)

and Small Cell Lung Cancer (SCLC); the former is the most common one, while the latter is

less common, consisting in around the 10-15% of the cases according to the American Cancer

Society (ACS) [20]. In this work attention will be given to the NSCLC that can be further

divided into subtypes such as adenocarcinoma which starts from the the glands and squamous

cell carcinoma which starts from the skin that composes the airways [21].

Lung cancer is one of the leading causes of death in the world, even if it was quite rare at

the beginning of the 20th century. Some suggests that increasing consumption of cigarettes is

one of the reasons why this disease is more and more present. For century in the world, as

said in [22], tobacco has been commonly used, but, in the present, cigarettes contain not only
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tobacco, but also chemical additives and other potential harmful substances. During the 20th

century, the rate of incidence of lung cancer has constantly increased from the 30’s till reaching

the maximum in the 50’s when it has become the leading cause of death in men [23].

In addition to smoking some others are the identified causes of this increase in the occurrence

of the pathology such as the air pollution, the diet and genetic inclination. In fact, as highlighted

in [24] according to projection for the 2018 more than 1,700,000 new cases and more than half a

million cancer deaths will occur in the United States. In the past decade according to the data

collected by the American Cancer Society, the incidence rate of cancer was stable in women

and was reduced by nearly 2% per year in men. More in detail, focusing only on lung cancer,

the estimated number of new cases in the US will be around 230,000 cases nearly equally

divided between male and female, while the projection about the deaths are around 150,000.

Nowadays some step forwards have been done for reducing the death mortality rate. Prevention,

treatments and early diagnosis, which is the scope of this thesis, have given the possibility to

reach such great results.

Considering the general five year (2007-2013) relative survival rate for lung cancer at all

stages in the US was around 18% according to [24], so taking into account the aforementioned

data it is quite clear the necessity to an early and accurate identification of tumor lesions. The

possibility of an early diagnosis can provide the opportunity to choose the most appropriate

therapy increasing the survival rate.
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2.3 Imaging techniques

In the medical field the identification of pathologies in the early stages is a crucial open prob-

lem that is at the base of a correct diagnosis and a subsequent decision of the most appropriate

therapy. An invasive method for lung cancer detection is the employment of biopsy, which is an

extraction of a tissue sample from the living patient [25]. It is clear that this approach is painful

for the subject since it involves surgery. In order to avoid or reduce the employment of this

dangerous technique some alternatives have been proposed, such as imaging based assessment.

For example, in the past, one of the most used technologies was the X-rays imaging [26], while

in recent years it has been used the F-fluoro-deoxy-glucose Positron Emission Tomography/

Computed Tomography imaging method, known also as FDG PET/CT. This examination al-

lows the fusion of information from multiple sources giving, in this way, a more precise and

accurate reproduction of the inside of the human body. Next Sections describe more in detail

both the CT and the PET.

2.3.1 Computed Tomography

The Computed Tomography (CT) is a clinical imaging technique that exploits a X-rays beam

in order to acquire signals, that after being elaborated by a computer, generate images generally

called slices. The images are spatial representation of the attenuation coefficient of the rays in a

section of the scanned object and can be considered as tomographic reconstructions of the body

that contain more information compared to the traditional X-rays. The obtained images can also

be stacked in order to form a 3-D reconstruction of the body district investigated, facilitating

the visualization and the identification of organs or abnormal structures by a specialist [27].
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The main difference between the conventional X-rays and the CT is that the first one uses a

fixed source, while the CT has multiple sources that rotate around the patient inside a circular

structure called gantry. A CT scan is a clinical examination that consists of a collection of

multiple contiguous images of a specific part of the body in accordance to the area of interest

of the clinician, as shown in Figure 3. During the acquisition, the patient lies supine on a table,

that can be moved in or out of the gantry while the X-rays sources rotate around the subject

[28]. The sources constantly release beams of X-rays that, passing through the human body

and reaching digital detectors, which are positioned opposite to the sources, are able to create

the images.

The creation of a single 2-D slice is possible only after a complete rotation of the sources.

In fact, in order to reconstruct the image, it is necessary to apply to the signals collected a

mathematical procedure called back-projection reconstruction [29]. This step is done trough

the Radon transform, which, considering the angle of acquisition of each signal, is capable of

mixing them in the most suitable way for reducing the creation of artifacts. This procedure is

repeated for each movement of the table so that the entire region of interest is covered. The

thickness of each slice can be decided by the physician, but it usually varies between 1 to 10

millimeters and the dimensions of each pixel are around few millimeters, allowing a very good

spatial resolution [30]. Due to this intrinsic geometric characteristics, the CT is often preferred

to the X-rays and has become a common tool for the identification of lesions and tumors in

the abdomen, lungs, head and also for inspection of the heart [31]. Consisting in the same

technology of the X-ray, the CT can easily discriminate between hard and soft tissues due to
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Detectors

CT 
scanner

X-ray 
tube

Figure 3: Basic scheme of Computed Tomography

the fact that structures such as bones stop the rays creating light spot in the image, while soft

organs result in darker shape in the reconstructed image. For the aforementioned reasons, the

CT is a good standard for structural investigation; however, Positron Emission Tomography,

which gives details about the metabolic active structures, allows a more precise identification

of tumors.

2.3.2 Positron Emission Tomography

The Positron Emission Tomography (PET) is an imaging technology used in nuclear medicine

that allows the assessment of structures functionalities employing radioactive substances. The
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PET creates 3-D images using radio-pharmaceuticals as tracers, which decay releasing positrons,

which are then used for the creation of the images [32]. Positrons are particles that have similar

mass to the one of electrons but with opposite charge, so passing through the human body they

combine with the electrons and annihilate one another. This chemical reaction releases energy

and two photons which produce two γ rays that, as shown in Figure 4, are shot in opposite di-

rection and by colliding with the detectors are employed for the creation of the acquired images

[33]. The main limitation of the PET is that it has an intrinsic low spatial resolution mainly

due to the physical width of the detectors in combination with the decoding of the signal and

the penetration. In fact, as highlighted in [34], if the γ rays are not perfectly perpendicular

incident onto the detectors, they can interact with more than one detector so the signal can be

associated to the wrong one degrading the resolution of the final image.

The tracers used for a PET scan are formed by carrier molecules bonded to radioactive

atoms and usually are administrated to the patient by injection, inhalation or ingestion [35].

The total amount of the tracer is so low that it does not influence the normal function of the

system: for these reasons the PET is defined as physiologic tomography. This methodology

is based on the emission of positrons β+ from the decay of the isotopes, which have a very

short life, so, after a short path, (for example in lungs where there is the lowest tissue density),

these positrons can reach maximum few millimeters. In the tissues, positrons annihilate with a

negative electron generating in this way two γ rays of 511 KeV (Kilo electron Volt) emitted in

opposite directions (180◦) [33]. Positioning a couple of detectors is possible to exactly identify

the line along which positrons have been emitted, shown in Figure 4. In addition, if two logic



15

Detectors

PET 
scanner

Annihilation

180°

Neutrino

Positron

Electron

511 KeV 
γ ray

511 KeV 
γ ray

Figure 4: Basic scheme of Positron Emission Tomography

impulses are super imposed in time, the system recognizes an annihilation and records also the

integral value of the line joining the two activated crystals, which is then coded in the image.

The aim of PET imaging technique is to identify cancer, monitor it and verify the efficiency of

treatments, in addition to the detection of metastases. As tracer is usually used glucose because

cells or tissues that have a high metabolic activity, such as dividing cancer cells, request a huge

amount of energy, which means an increase in the glucose consumption. In fact, the more the

cancer is aggressive, the more rapidly it will utilize glucose. For these motivation radiolabeled

glucose is employed as tracer for the detection of cancer and metastases spread in the body

[36]. In the proposed work the tracer used for the PET acquisition is F-fluoro-deoxy-glucose

(FDG).
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Summarizing what has been said above it is possible to conclude that the CT provides

images with a good spatial resolution giving interesting details about geometry and mechanical

properties of the internal structures. On the other hand, the PET, which lacks in spatial

resolution, is able to highlight the metabolic active areas allowing the identification of the

structures that are requesting a considerable amount of blood such as the heart or tumors. As

confirmed by [37] scanning the same body district with both in one examination (PET/CT

imaging) has become a highly employed tool for the identification and the staging of cancer

all around the world thanks to the combination of anatomical (CT) and functional (PET)

information. For the aforementioned reason, this thesis employs data acquired by the FDG-

PET/CT, in this way, the proposed pipeline is able not only to analyze the selected dataset,

but also other dataset acquired with this widespread technology.



CHAPTER 3

RELATED WORK

As described in the previous Chapters, the detection of lung cancer is a challenging process

and it can be faced in different ways, so this Chapter presents a review of the State of the

Art of the employed methodologies. The currently available approaches can be divided into

two main groups: the first one uses surgical and invasive tests, such as biopsy, while the other

includes all the non invasive techniques based on the medical imaging. A further classification

inside the second group can be done on the basis of the chosen method for the identification of

the tumor masses. Following this separation, Section 3.1 will explain the differences between

an invasive and a non-invasive technique for the assessment of the pathology. Subsequently,

focusing only on the imaging, Section 3.2 will describe the details about the possible choices

to be done for segmenting the cancer lesions, while Section 3.3 will present the difficulties to

obtain open sources datasets (due to privacy constraints) for validating the works proposed in

the State of the Art.

3.1 Invasive vs non-invasive assessment techniques

The gold standard for lung cancer identification through the decades have been changed

several time according to the step forward done in the technology development, moving from

more invasive tests to non-invasive approaches based on imaging techniques.

17
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In the past, for lung cancer detection, chest radiography and sputum cytology were employed

as reported by Hirsch et al. [38] due to a trial sponsored by the National Cancer Institute

(NCI) that in the 70’s was held at the John Hopkins University, the Mayo Clinic and the

Memorial Sloan-Kettering Cancer Center [39], [40] and [41]. As confirmed by the authors,

this trial however failed to demonstrate the decrease of the mortality rate by employing the

aforementioned exams. A further step was done according to the World Health Organization

(WHO) employing light microscopy with hematoxylin and eosin on a sample of tissue [42]. This

procedure is invasive due to the necessity of a specimen of the possible tumor. Then in the

WHO classification of 1999 was introduced the immunochemistry and, until 2004, it was used

only for a small class of cancers types due to it invasiveness. Nowadays, biopsy is still used in

the medical practice but, usually, after a first screening done by a non-invasive technique and

as a post surgery assessment on the removed masses for extracting useful information about

the characteristic of the tumor.

One of the first non-invasive tests employed in the clinical field for the screening, identi-

fication and staging of the lung cancer was the X-ray imaging. This procedure is considered

non-invasive, even though the patient is subjected to a beam of rays that passes through the

body (usually low dose less that 10 milliGray) [43], compared to collection of a sample of tissue,

it greatly reduces the discomfort and the risks for the patient. X-rays, as defined by [26], are a

radiation that can be employed both as an imaging technique in diagnosis and as a treatment

for cancer. From the X-rays, the technology has moved forward in order to overcome some

limitations of them, such as the impossibility to obtain a 3-D reconstruction of the area of
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interest of the human body; indeed, since the acquisition is done from a single angle, it is not

possible to generate a 3-D reconstruction. The X-rays produce a 2-D image representing the

coefficient of attenuation of the beam passing through different types of tissues, for instance

bones and soft tissues. The differences in the mechanical properties of the biological tissues are

reflected in the pixel intensity in the final image corresponding to that particular tissue.

As a result of the technological progress, Computed Tomography (CT) and Positron Emis-

sion Tomography (PET) are nowadays within the most employed imaging techniques for the

screening and the identification of multiple pathologies, including lung cancer. As previously

explained in Section 2.3, medical imaging is a field in continuous development to increase the

employment of non-invasive techniques in diagnosis. For the screenings or detection of tumor

masses, the use of these techniques can reduce the stress for the patient avoiding a surgical

intervention and its risks. Moreover, imaging can be used as a preclinical tool for the decision-

making process for the most suitable treatment without the necessity of directly intervene in

an invasive way.

CT and PET can be used separately but more and more frequently are jointed to combine

information both from a structural and a functional point of view. In fact, as previewed in

Section 2.3.1, the CT has a good spatial resolution giving the possibility to highlight the details

of the inside of the body district investigated. The good resolution allows a discrimination

between the bones, the air inside the body and soft tissues; this classification is done exploiting

the density of each structure, where a dense one appears lighter on the resulting image, while

a hollow results as black. Considering the aforementioned characteristics the CT can be used
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for obtaining anatomical details that are useful for the identification of multiple diseases but

cannot be enough when detailed functional information are needed. PET, on the other hand, as

said in Section 2.3.2, thanks to the used radio-tracers, provides information about the metabolic

activity of tissues. In fact, more active is the structure, more metabolic request it has and more

blood containing the tracer it beckons resulting in a bright spot on the image.

3.2 Segmentation methods

From previous works, non-invasive techniques seem to be the most promising approaches

for the study of lung cancer and the FDG-PET/CT, as chosen imaging technique, exploited for

the image acquisition, it is now possible to present the different techniques for the identification

of the cancer lesions.

A first discrimination can be done between semi-automatic and fully-automatic approaches:

the first one requires the intervention of a human being at least for the decision making step,

which consists in the identification of the Region of Interest (i.e. part inside the lungs containing

the possible tumor); the second one, starting from the input dataset, is able to automatically

identify the tumors without any additional information or manual intervention. Being the aim of

this work to implement a fully automatic pipeline, all the works which present a semiautomatic

implementation will be not considered.

3.2.1 Neural Networks

Nowadays, more and more image processing methods for the recognition of tumors are

based on Neural Networks (NN), a computing system able to learn from an input dataset how

to recognize patterns or structures on the one side, or to classify the images on the other. The
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learning process consists in the elaboration of a training dataset that must have considerable

dimensions in order to generate an accurate network [44]. The output of the training phase is a

trained network that can therefore be employed for the recognition of objects within the image

or for their classification.

Unfortunately, due to the necessity of a training dataset with high cardinality, this kind of

approach is hard to be implemented for the classification of lung cancer, since, generally, on

the one side, open source datasets have limited dimensions and, on the other, the creation of a

useful dataset with a sufficient number of patients is expensive both in terms of time and costs.

Moreover, working in medical field, there are privacy issues that can slow down the creation of

such datasets.

However, Neural Networks are widely used in non-medical fields for image processing pur-

poses, due to their accuracy in the classification when correctly trained. Currently, biomedical

research is moving toward the usage of such methods in diagnostic field exploiting the knowl-

edge already acquired in other research fields to obtain advancements on medical applications

[5]. Generally, state of the art works such as [45] tend to validate the proposed methodology

on synthetic images or by performing a data augmentation (i.e., the generation of new data

from existing ones using synthetic techniques like image rotation, filtering, etc...) in order to

create a sufficiently big dataset [46]. However, even if a testing on synthetic data might be a

good starting point, it is still necessary a validation on a real case study in order to employ the

obtained network on the actual medical field.
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3.2.2 Watershed algorithm

A second approach proposed in literature is the employment of watershed segmentation

methods that are are used to identify the contours of regions containing local minimums [47],

[48]: however, as reported by the authors, in order to reach a good efficacy, some object markers

(starting point positioned in specific position on the image) are needed. Unfortunately, the

decision of their correct position on the image, depends on some a-priori knowledge like the

number of objects, some specific feature or the object locations [49]. Such requirement leads

to the impossibility of the usage of such method for an automatic segmentation: in fact, the

necessity to have as input these data is strictly related to the intervention of a human being.

Moreover, also a low image contrast can bias the result obtained by watershed approaches. In

fact, such method is based on the water basins division theories born within the geological field.

Based on this theory, the image segmentation is done by considering light spots as hills and

the dark ones as valleys, and thanks to a virtually flooding of the image the separation of the

different regions may be done [50]. At this point, the water flows from the hill to the valley till,

reaching the minimum: the segmented areas are the one containing the water flooded till the

minimum (basins). It is then clear that a wrong image contrast can lead to wrong results.

3.2.3 Graph-based approach

Also a graph-based approach can be employed for the segmentation of the tumors, as ex-

plained in [51]. In fact, it is possible to start from a random walk procedure to attribute a

specific label to unknown nodes [52], both on connected (for each couple of nodes there is at

least one connecting edge) and undirected (all the edges are bidirectional) graphs. The sub-
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sequent segmentation is done thanks to the cut edge technique that has proven to produce

good results as in [51]. However, such approach lacks of scalability since it rapidly increases in

memory usage during the computing process with respect to the increment of the image size

[53].

3.2.4 Morphologic and filtering approach

Last but not least, due to their low budget development, the most commonly used ap-

proaches are based on morphological information and on the filtering of the obtained images

[54]. Such approaches are generally convenient since they exploit characteristic of the images

themselves, without requiring any wide dataset for the training process, thus reducing costs [4].

For the aforementioned reasons, in the last decades, the image processing approaches based on

filtering and morphological operations have been employed and widely developed in multiple

research field. This widespread employment has allowed a rapid and efficient development of

multiple techniques that combined together have proven to be a valid and low cost method for

image processing and segmentation [55].

3.3 Data availability and evaluation challenges

This Section will draw some considerations about the data availability and, more details,

about the evaluation approaches available in literature for the segmentation results will be

explained.

The first important step to start an image processing project is the image retrieval: here,

some difficulties can be faced since, on the one hand, there are huge privacy issues (anonymous

image should be employed), while, on the other, being the image taken from human subjects,
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rarely the datasets employed in the literature are available and open source. Moreover, also

when such datasets are accessible, they do not contain the annotation done by an expert

radiologist, making them not usable during the validation part of a new discovered method.

For these reasons, the majority of the works employ private datasets created by specialist

research institutes where the radiologist can manually analyze the images and compare the

obtained segmentation with the one obtained automatically.

An additional problem, which is reflected in the lack of standardization in the obtained

results, is that only few works propose a quantitative analysis of the results, while most of

them graphically compare the automatic results with the manually segmented region. Moreover,

results are generally about the tumor classification, while it is hard to find results about the

segmentation, since it is done at the first step of the processing pipeline.

3.4 Summary

Within this Section a brief summary of the decisions made for the development of this

project will be proposed focusing on the identification method and the validation of the final

results.

For which concern the cancer identification, the proposed tool will rely on morphological

and filter-based algorithms to obtain an accurate pipeline that can produce standard results

for different types of acquisition techniques and a low dataset cardinality. Differently from the

State of the Art solution, the proposed work aims at being a reference point providing all the

possible data to experimentally replicate the solution. Moreover, differently from the existing
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works, this thesis proposes a fully automatic and systematic approach to analyze both the PET

and CT together in order to find complex tumor masses.

Considering the validation step, it is complex to validate the obtained results for two main

reasons: on the one hand, if the description of the algorithm is detailed, generally the dataset

is not available; on the other hand, if the employed dataset is open source, the details about

the employed pipeline is not reproducible. For these reasons, the most commonly employed

validation is the one based on a comparison with the manual segmentation. Moreover, there

are only few works that provide quantitative statistics on the obtained results and the source

code of the implemented pipeline. Both these two factors make impossible a direct comparison

of the obtained results. Considering what has been said, it is easy to understand that there

is the need to standardize both the procedure of the dataset creation and more important the

results evaluation. This is what this work aims at providing: a first attempt to give comparable

results for other future studies.



CHAPTER 4

PROBLEM STATEMENT AND GOALS

The aim of the following Chapter is to describe the decision making process behind the

choice of the faced problem and to explain which are the goals of the proposed work in relation

to the field of application. For this reason, Section 4.1 describes the motivations which led

to the formulation of the proposed project, which has been conceived in collaboration with a

medical research group who shared their real life experiences. Starting from their inputs and

knowledge, a systematic analysis of the currently employed technique has been done in addition

to the study of the existing approaches in literature (see Chapter 3). Then, the goals of the

proposed work have been set to fulfill the requests of the physicians: Section 4.2 explains these

objectives in detail.

4.1 Problem definition

This Section presents the assessed problematics that have been chosen thanks to a discussion

done with a medical research group that is working for the creation of a standard and accurate

methodology for the identification and the classification of lung cancer. The most important

problems that have been highlighted are:

1. the necessity to identify the cancer lesions in an automatic way to obtain a reduction of

the diagnostic time allowing radiologists to interpret the final results, instead of analyzing

each image and drawing manually the contour of the tumors.
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2. the necessity to produce a tool that can be a reliable starting point for further analysis,

such as the extraction of geometric and radiomic features that can be later on employed

for a classification procedure.

The discussion had with the medical research group are supported also by some works

already present in literature; in fact, even though imaging approaches to the problem of early

lung cancer identification are relatively new, some works have been proposed in the last ten

years. As said before (Section 3.1), considering only the non-invasive approaches as starting

point for the data collection, some elderly works based their identification of cancer lesions only

on the CT images; however, even if this can be a good starting point, they have many issues in

the computation of the segmentation since they do not take into account any metabolic activity.

For this reason, as already introduced, the data that will be employed in the proposed thesis

are obtained by two subsequently acquisitions: CT and PET.

Summarizing, it is possible to say that the presented work will stay within the trend of

providing a computer based approach for the study of lung cancer since this can lead to make

steps forward into the study of the pathology for early diagnosis and to obtain more effective

therapies.

4.2 Thesis objective

In order to fulfill the request done by the physicians and to move forward an accurate

detection of lung cancer in early stages, the aim of this work is to propose a methodology and

the correlated software tool that, exploiting the data obtained by one of the most common

clinical exams in this field (FDG-PET/CT), is able to properly identify the contour of the
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tumor lesion, limiting the possible false negative (lung cancer patients identified as healthy)

and reducing the total diagnostic time. It is important to consider that the employment of that

specific type of images is done considering the spreading of this imaging technique within the

cancer detection field [56].

Within this context, the objective of this thesis is to create a tool able to load images

obtained from the machinery and thanks to multiple filtering steps and the exploitation of

morphological features of the images themselves (later explained in Chapter 5 and Chapter 6),

needs to be able to select the contour of the tumors and to provide as a result the input image

where the identified boundaries are drawn in white. Radiologists and physician expressed the

request to have a tool able to perform a visual rendering, since it is easier for them to perform

further analysis. For this reason, an important goal is to keep the same data format of the

input images as output.

Another request coming from the medical research group was the possibility to have a

completely automatic tool: this request relies on the needs of speeding up the computation

while assuring also the same accuracy and execution time for each single image analyzed. In

fact, on the contrary, the performance of a radiologist can vary with respect to the number

of worked hours and multiple external conditions (i.e. tiredness, distractions, etc.). For these

reasons, as explained also by the authors in [57], the employment of Computer-Aided Detection

(CAD) tools is really important in the medical research field.

A final goal of the proposed work is to has the objective of providing an accurate and easy to

use tool that will also facilitate the creation of a standard procedure for the early identification
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of lung cancer allowing a further extraction of features for a subsequently classification done by

machine learning approaches.



CHAPTER 5

METHODOLOGY

This Chapter gives a detailed description of the proposed methodology to the reader to

better understand the choices that have been done for each of the preprocessing and processing

steps. In Section 5.1 a brief introduction to the entire work-flow is described; Section 5.2

gives the composition of the dataset highlighting the differences between the images taken

from the CT and the ones taken from the PET. Continuing in Section 5.3 the description of

the preprocessing steps is provided, while Section 5.4 presents the procedure employed for the

segmentation of the ROI on the CT images. Then, Section 5.5 explains the analysis of the PET

images. Finally, Section 5.6 shows the union of the data obtained from both sources and the

final identification of the tumor contour.

5.1 Proposed pipeline overview

In order to explain the single processing steps implemented for obtaining the most accurate

segmentation possible, it is useful to start from a description of the overall methodology, allowing

the reader to have comprehensive idea. Figure 5 shows the overall work-flow scheme highlighting

how can be divided into two different parts: one related to the CT and one to the PET. The

results of the two calculation is then merged for achieving the wanted segmentation.

The CT branch is composed by a preprocessing phase and a processing one. The former

aims at deleting the possible artifacts given by the gantry (cylinder shaped scanner employed
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Figure 5: Scheme of the implemented pipeline

for medical imaging [58]), while the latter, starting from the identification of the lungs, is then

able to highlight the details such as tumors and small bronchioles. This step is fundamental for

selecting the areas where the tumors can be present reducing, in this way, the false positives

(i.e. parts identified as tumors when they are not).
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The PET phase, on the other hand, is able to select the areas that are active which coincide

with the lighter spots in the image. By finding the centroid of these structures, it is possible

to identify their location in a reference system that can be further used for reporting them on

the CT.

In the end, as anticipated before the locations of the active spots in the PET are reported on

the CT, where the centroids outside the lungs are discarded, while the ones inside the lungs and

overlapped to an interesting areas (e.g. bronchioles or tumors) in the CT are kept. The points

that have passed this test are used as seeds for the identification of the areas that contain them,

finding in this way the contour of the tumors, which are usually round shaped and metabolic

active if compared to the linear and not active shape of the bronchioles.

5.2 Dataset description

As already introduced in Section 2.3 the employed images are: CT and PET; both of

them are Digital Imaging and COmmunications in Medicine (DICOM) format, which is the

one usually employed as a standard in the medical imaging field [59]. For each patient, the

number of images can vary according to the dimensions of the acquired anatomical district.

This variable is decided by the radiologist and can be influenced by the height of the patient.

In fact, a taller patient needs more slices to cover the entire lungs if compared to a shorter one.

Moreover, the dimensions of the lungs can vary between genders. For these reasons the total

number of images cannot be standardized but depends on different factors. Within this work,

for all the patients both the CT and the PET stacks start from the nape until the pelvis. In

addition, the acquisition can be standard or helical. The former is a step by step acquisition
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where the machinery scans one portion of the body before moving forward to scan the adjacent

one without any overlapping areas. On the other side, the latter has a continuous scanning

all over the body thanks to a helical movement of the gantry. As a consequence, an overlap

between adjacent slices appears.

The thickness of the slice can vary between the standard and the helical mode. Moreover,

for the helical images the overlap between subsequent slices is generally around 13% leading to

an higher number of collected slices if compared to the standard acquisition. The decision of

the acquisition protocol is done by the physician according to the model and the brand of the

machinery. In this work, both the options are considered and handled in order not to limit the

use of this methodology with respect to the features of the medical device.

For what concerns the PET images, in accordance to what has been said for the CT, the

acquisition can be as well standard or helical, but, in this case, the difference is not only related

to the thickness of each slice and the overlap, but it is also related to the dimensions of the

single image. In fact, if the acquisition is standard, the image will be smaller if compared to the

helical one. Moreover, as said before, the thickness of the slice varies from the two protocols.

The standard acquisition of the PET has a thickness of half of the thickness of the standard

CT, while the helical one has the same thickness of the CT. Also this difference of dimensions

and thickness, will be taken into account for the mapping of the PET information on the CT

mask, in order not to introduce distortion in the information during this process.
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5.3 CT preprocessing

The first step in every image processing work is the preprocessing; such step has the scope

of normalizing the input and modifying some details to allow a better extraction of the wanted

details. In this Section the focus will be on the steps employed for the preparation of the CT.

Since the dataset is composed of two different categories of images (standard and helical, see

Section 5.2), there are some normalizations to be performed. In fact, the helical acquisition

produces the gantry artifact on the image, resulting in the presence on the image of a circular

shadow around the patient’s body. This is due to the shape of the cylinder where the patient

is inserted and, if it is not removed, it causes a wrong segmentation of the lungs.

For the removal of this artifact, two different strategies can be employed: the first one

exploits the meta-data that are available within the DICOM images, while the second one

works directly on the image itself. The decision of the more suitable approach is subjected to

the comprehension of the differences between them and to the kinds of information that are

needed by both of them. The approach based on the meta-data can be useful because it does

not require any additional image computation to detect the gantry artifacts; however, it is not

always applicable, since it depends on the presence of the field of the “ScanOptions” in the

meta-data structure, as shown in Algorithm 1. If the field is reported in the meta-data it is

necessary to read if the acquisition mode is helical, if this condition is verified it is possible

to start with the preprocessing steps, while if it is not helical it is necessary to skip all these

steps starting directly with the segmentation of the lungs procedure. On the other hand, if the

meta-data are not considered, it is still possible to identify and remove the artifact.
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Data: input CT image
Result: acquisition method
info ← CT meta-data;
option ← isfield(info, ‘ScanOptions’);
if option then

helical acquisition;
else

not helical acquisition;
end

Algorithm 1: Pseudocode of the CT acquisition method

In order to handle a more generic scenario, in the proposed work, the second approach has

been implemented, due to the fact that sometimes the “ScanOptions” field in the meta-data

can be omitted. The first step of the preprocessing consists of an adjustment of the acquired

image in order to increase the contrast. This step is done in order to make the circular shadow

more visible facilitating in this way the subsequent identification and removal. The adjustment

has been done by a linear gamma correction algorithm (γ = 1), which maps the gray values

of the input image into new ones in the output image and it saturates both the top and the

bottom 1% of all pixel values.

Thanks to the contrast enhancement, the second step can be performed: an edge detection.

Given the input image, it creates a binary image where a value of 1 corresponds to an edge,

while the remaining parts are all zeros. The chosen method for the edge detection is the So-

bel algorithm [60], which identifies as belonging to an edge those pixels where the gradient of

the input image is maximum. This edge detection algorithm therefore implements the Sobel

approximation of the derivative function with a 3x3 kernel. The formal representation of the
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kernels are report below in Equation 5.1, while Equation 5.2 and Equation 5.3 report respec-

tively the formula of the magnitude and the direction of the gradient.

Sx =


1 0 −1

2 0 −2

1 0 −1

 Sy =


1 2 1

0 0 0

−1 −2 −1

 (5.1)

G =
√
G2

x +G2
y where Gx = Sx ∗ Im and Gy = Sy ∗ Im (5.2)

Θ = atan

(
Gy

Gx

)
(5.3)

Another fundamental step for the removal of the artifact is the binarization of the original

CT image: a new image where what is contained in the circular shadow is set to white (while

the outside background is set to black) is obtained. The binarization is based on the global

threshold using the Otsu’s method [61]. As reported in Algorithm 2, the optimal threshold

value is selected and then used for binarizing the image. This method computes the threshold

based on the minimization of the intraclass variance (combined spread) of white and black

pixels; such threshold is then compared with the value of each pixel of the input image and, if

the pixel value is higher than the threshold, it is set to white, otherwise is set to black.

Having binarized the CT image it is now possible to identify the circumference presence

by employing the Circular Hought Transform (CHT). This transform is a features extraction
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Data: input CT image
Result: binarization threshold
histogram and probabilities of intensity levels;
ωi(0) ← initial probability;
µi(0) ← initial standard deviation;
for t=1,...,max intensity do

ωi ← update probability;
µi ← update standard deviation;
σ2(t) ← computed variance;

end
T ← threshold correspond to max of σ2(t)

Algorithm 2: Pseudocode for the Otsu’s method

procedure that is able to detect circumferences inside an image; in other words, it is able to

finds circles in the image that have a radius in a certain range.

Given the circumference expression in Equation 5.4 where (a,b) is the location of the center

of the circle and r the radius, as said in [62], it is possible to find the center if a (x,y) pixel is

fixed and the radius is known. However, if the radius is not known but, as in the considered

case, it is contained in a certain fixed range, the computation should be iterated through all

possible radii.

(x− a)2 + (y − b)2 = r2 (5.4)

Obtained the contour of the original CT thanks to the employment of the edge detection

algorithm and of the binarization, it is now possible to perform the absolute difference between

them. This step is performed to obtain the mask that will be used for filtering the CT and
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removing the gantry artifact. The value assigned to each pixel of the output image is given

by the difference between the corresponding pixels in both the result of the edge detection

procedure and the binarized image.

Finally, the original CT image is filtered with the previously created mask, allowing the

elimination of the circular shadow and leaving unmodified the remaining objects in the image.

This procedure consists in a multiplication element by element of the CT with the mask.

5.4 Lungs segmentation

After the preprocessing on the CT images, it is now possible to focus on the segmentation

task, thanks to which it will be possible to preserve only the lungs structure and removing

all the other parts such as the table where the patient lies, the arms, and the ribcage. As

introduced in Section 5.3, the starting point for the segmentation can be either the original CT,

if the gantry artifact was not present, or the preprocessed one. For the segmentation purposes

the applied steps are the same in both conditions and will be described shortly.

The first step of the segmentation procedure consists of the image binarization with the

threshold chosen with the Otsu’s method previously explained in Section 5.3. After that, it is

necessary to remove the table where the patient lies, because in further steps the presence of

the table will prevent the identification of the lungs. A simple approach can be chosen for this

purpose: setting as background (black) the lower part of the image, interrupting the continuity

of the table borders. By having interrupted the contour of the object, it assures the fact that

in a further processing step it will not be recognized as a structure of interest.
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Figure 6: 8-connectivity representation

In fact, on the binarized image is then possible to remove the table and the patient’s arms

by keeping only the biggest connected components. For doing so it is necessary to decide the

connectivity value that, in the faced case, is equal to eight, as suggested in [63], which means

that, to decide if a certain pixel is part of the connected components, the eight pixels adjacent

are considered, as shown in Figure 6.

After the attribution of every pixel of the image to a structure (labeling process), a certain

number of components will be found and, in order to keep only the thorax, which is the one

containing the lungs, is necessary to sort the found objects based on the area dimension. By

selecting the biggest one, the arms and the table are removed, obtaining as result an output

binary image where the inside of the lungs is black as the background, while only the shape

of the thorax is white. In order to extract not only the shape of the lungs but also the detail

of the structures that they contain, such as the bronchioles and possible tumors, further steps

should be implemented.
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Keeping in mind that the region of interest should be identified as foreground and, from the

previous step, the lungs were set as background, it is necessary to complement the previously

obtained image. By doing so the white pixels become black and vice versa, so that the output

is an image where what was the background and the inside of the lungs are light, while the

ribcage has been set as background.

In order to create the mask that will be used for segmenting the lungs and their inside, the

image should have only the shape of the lungs white with all the rest set to black. In order to

do so, there is the need to reset the background from white to black thanks to an algorithm

that allows the clearing of the borders. In this way, it is possible to suppress structures that

are connected to the image border and that are lighter, if compared to the adjacent pixels.

The explained approach is able to remove all the white pixels outside the thorax of the patient,

which is considered as the border of the ROI to be segmented. At this point, the output image

is close to the one that will be employed for the filtering, but there are still small unwanted

black details inside the lungs, which should be removed to preserve, in further processing steps,

the investigated details.

In order to remove the small objects inside the lungs in the created mask, a morphological

close operation has been applied. This procedure is composed by two steps that are a dilation

followed by an erosion, and both of them are performed by the employment of the same structur-

ing element. In the analyzed case, the structuring element is a 2-D binary valued neighborhood,

where the true pixels are used for the morphological computation, while the false ones are not.

The employed structuring element is a round shaped neighborhood that, for speeding up the
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computation, has been approximated with structuring lines (polygon approximation). As said,

the first step is the dilation, which uses the selected structuring element for probing the input

image and expanding the objects in it contained [64]. Finally, the erosion is performed; this

operation is the dual of the dilation process and, for this reason, it can be seen as a shrinkage

process that, using the structuring element, probes the input image and reduces the objects in

it contained [65]. At this point, all the small details inside the lungs are removed leaving as the

only white object in the mask the empty shape of the lungs.

Having obtained the mask it is now possible to filter the the CT and segment in this way

the lungs maintaining all the information inside of them. The masking, as said in the last step

of Section 5.3, is a multiplication element by element between the CT and the mask. At this

point the desired result has been reached and can be saved and employed for the fusion of the

data after the processing of the PET.

5.5 PET processing

Within this Section will be presented the details of the processing steps applied to the PET

images, in order to select the most metabolic active spots. These parts are the one of interest

because they can be organs, such as the heart or tumor; in fact, as explained in Section 2.2,

such areas are masses highly active since they require a considerable amount of blood.

The first step is to rescale the PET images to the dimension of the CT to have comparable

results that can be later on merged. Keeping in mind what has been said in Section 5.2, the

dimensions of the PET can vary between the helical acquisition and the standard one. In both

cases, the resizing of the PET is performed with the nearest-neighbor interpolation method,
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where the value of the output pixel is assigned considering only the value of the pixel the point

falls within. Thanks to this technique, the information contained in the original image are not

altered by the rescaling process. Considering now the helical acquisition, the rescaling has been

done by reading in the PET meta-data x or y dimension and the corresponding one on the CT.

By dividing the latter for the former it is possible to obtain the ratio needed for the rescale of

the PET. On the other hand, this approach cannot be used for the standard acquisition because

the PET contains a wider border with respect to the CT.

Giving the PET information about the activity of a certain area, it is possible to identify

different levels of activation. This identification is based on a threshold that, for the considered

case, has been chosen experimentally in relation to the maximum value present in the image.

In this way, it is possible to keep only the highly active regions that correspond to the tumors

and disregarding the less informative parts. After this step, the image is composed of a certain

number of separated blobs, which correspond to the active spots in the body, so they can be

employed for the location of these parts in the merging process.

Having defined the connected blobs that are above the threshold, it is now possible to label

them in order to count them and obtain information about their dimension. This process is

done by giving a label starting from 1 to N , where N is the number of blobs present in the

image. In this way the output image background is set to zero and the pixels belonging to the

nth blob have all the value of n. Also this procedure is based on the connected components

algorithm and, in this case, the chosen connectivity is 8, as shown in Figure 6.
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Having labeled the blobs in the image, it is now possible to obtain information about their

geometric properties such as the area and the position of the centroid for each of them. Both

of these parameters will be used in the merging process: in fact, the position of the centroid

will be used for identifying on the CT the position of the tumor and the border of that specific

structure. Moreover, the value of the blob area will be used as parameter for a further step in

the fusion of the data: in fact, this value will be employed in the active contouring phase.

5.6 CT and PET fusion

This Section introduces the implemented steps to finally identify the tumor contour on the

CT and, being the CT intrinsically more spatially accurate if compared to the PET, to obtain

a more accurate identification. As explained in Section 5.5, the position of the blob centroids

have been identified, so now it is possible to map those coordinates on the corresponding CT.

Considering that on the PET there was no restrictions for the position of the blobs, some

centroid can be on structures such as the heart or other organs that are not useful, since they

are out of the scope of this project. For this reason, it is necessary to remove the centroids

that are positioned outside the lungs. This procedure can be done by verifying that the value

of the pixel correspondent to each identified centroid differs from black within the CT. To do

so, there is the need to round the position value of the centroids, because being a geometric

characteristic, it can differ from an integer, while the pixels can have only integer indexes of

coordinates.

For the aforementioned reasons, if the value of the centroid on the CT is equal to 0 it means

that the correspondent blob on the PET is not significant and should be deleted. To remove a
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selected blob from the PET mask it can be used its label. In fact, as previously explained, the

labeling of the image assigns to all the pixels belonging to a certain blob the same value. Such

value can be changed to 0 to cancel the blob from the mask.

To explain the final step that will lead to the identification of the cancer contour, can

be useful to resume what have been done so far and which are the input employed for this

procedure. The algorithm employed will use as input:

1. the segmented CT in which are visible only the lungs;

2. the details inside them;

3. the mask obtained from the processing of the PET where the non informative blobs have

been removed.

These images are used for an iterative computation that, using the centroid position as a

seed on the segmented CT, expands at each iteration the dimension of the selected area until it

reaches the border of the structure on the CT. This active contouring procedure is based on the

Chan-Vese algorithm, which is based on curve evolution techniques that allows the detection

of objects boundaries even if they are not defined by gradient [66].

This approach stops when it reaches the convergence, which can be reached through a maxi-

mum number of iterations or by another parameter that can be chosen between the contraction

bias or the expansion bias (both of them are not dependent on the gradient of the image). In the

implemented pipeline the chosen parameter for limiting the expansion is the contraction bias

value, which is chosen in relation to the area dimension of the employed blob on the PET. The
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Figure 7: 4-connectivity representation

output image is a binary image where the only white details are the shape of the tumors, which

will be later mapped as a contour on the initial CT allowing both a clear visualization of the

results from the physician and a further computation for a possible feature extraction, allowing

the creation of the standard dataset that can be useful in a machine learning classification of

the tumors.

To conclude the pipeline, it is necessary to obtain the contour of the tumor in order to

highlight it on the input CT. The border of the previously obtained blob is done by a function

that identifies the perimeter of an object in a binary image. The contour is so defined as a pixel

that divides a light region from a dark one. In particular, a pixel belonging to the perimeter

should be non-zero and it should be connected to at least a zero-valued pixel. The chosen

connectivity considered for the decision making process is 4, as proposed in [63], so only the

pixel in the main orthogonal directions are taken into account as shown in Figure 7.
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Having identified the contour, it can be superimposed to the CT resulting in a white border

around the selected tumor. It is important to underline that the image will exploit the details

given by the good spatial resolution of the CT and provide to the physician a well known and

understandable representation of the information obtained by the pipeline.



CHAPTER 6

IMPLEMENTATION

Within this Chapter the implementation details of the image processing pipeline are pro-

posed. Following the structure of Chapter 5, a more precise description of the input and output

datatypes is given and the value of some relevant parameters are validated. For the aforemen-

tioned reasons the outline of the Chapter will trace the one of Chapter 5 starting in Section 6.1

with a description of the technical details of the dataset. Section 6.2 shows the dataset struc-

ture; then, Section 6.3 and Section 6.4 present the preprocessing and the processing steps of the

CT, highlighting the important peculiarities. Finally, Section 6.5 and Section 6.6 respectively,

deepen the description of the PET processing and the conclusive steps of the pipeline.

6.1 Technical details

The current Section gives all the technical details regarding the employed dataset in addition

to the information related to the machinery employed for the images acquisition.

Both the CT and the PET images are in the DICOM® file format (Digital Imaging and

Communications in Medicine), respecting the standard employed in all the medical field appli-

cations.

As explained in Section 5.2, the number of acquired images for each patient is not a fixed

parameter but depends on the patient height and the physician. Also the thickness of the slices

can vary, with respect to the acquisition modality (standard or helical). The standard produces

47
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TABLE I: RELEVANT DETAILS ABOUT THE DATASET ANALYZED

Features
Standard Helical

CT PET CT PET

Slice thickness [mm] 4 2 3.75 3.75
Matrix dimensions in pixels 512x512 128x128 512x512 256x256
Overlap % 0 0 ∼13 ∼13

PET images have a thickness half of the one of the CT; in fact the PET thickness is 2 mm,

while the CT has a thickness of 4 mm. The helical has identical thickness for both the PET

and the CT (3.75 mm). Moreover it is important to notice another difference between the two

acquisition modalities: the standard one acquires a slice before moving to the adjacent region

avoiding any overlap, while the helical one presents some overlap between two subsequent slices

(the overlap is 0.48 mm, nearly the 13% of the image thickness).

The image size varies from CT and PET and also from the standard to the helical acquisition

type: CTs are grayscale 512x512 pixels regardless the acquisition method, while the PET

are graysale 256x256 pixels on helical acquisitions or 128x128 pixels on the standard one. A

summary of the underlined differences is reported in Table I.

Going more in detail about what as been said in Section 5.2, the decision of the acquisition

method is strictly correlated with the type and the model of the employed machinery; for this

study has been employed a GE Medical System Discovery 690 [67] and a Siemens Biograph 6

[68]. The former is the one employed for the helical acquisition, while the latter is used for the

standard one.
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Figure 8: Dataset composition divided by acquisition method and cancer type, where
STD=standard acquisition, HEL=helical acquisition, SQC= squamous lung cancer and
ADK=adenocarcinoma lung cancer

6.2 Dataset structure

For a better understanding of the implemented methodology some considerations should

be done on the dataset and on the datatype of the employed images. Both CT and PET are

DICOM®, which is a standard format for medical images and their related information, which

allows the storage and the exchange of the data with the required quality for clinical purposes

[59]. Moreover, it is recognized as ISO 12052 (International Organization for Standardization)

[69] and it is implemented in the majority of the medical imaging devices. For this reason

the creation of a pipeline able to manage this file structure is essential for the creation of a

diagnostic tool exploitable in the medical field.
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Figure 9: Contrast adjustment with linear gamma correction

The dataset is composed by twenty patients divided, as shown in Figure 8, by acquisition

method (standard and helical) and by lung cancer type (squamous and adenocarcinoma). The

employed images are composed by the raw image, which is a matrix that, considering both

the CT and the PET, is stored as grayscale images with a bit depth of 16 for each pixel.

Additionally, the DICOM® provides the meta-data structure in which some information are

stored such as the dimensions of the matrix containing the acquired image, the image type and

the position of each slice based on the integral reference system to the table of the machinery.

Considering all these data, each DICOM® image is around 520 KB for the CT and 40 KB for

the PET, reflecting the different dimensions of the matrices, as reported in Section 6.1.

Meta-data are not reliable information since they can be customized by the different man-

ufacturer. For this reason the created pipeline will rely, when possible, on the image itself

instead of such meta-data. Being the aim of this work not only to help the physician in the

identification of the cancer lesions but also the creation of a tool able to standardize the creation
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Figure 10: Sobel vs Canny edge detection approaches

of datasets for machine learning approaches, it is clear the need to limit as much as possible

the employment of variable characteristics.

6.3 CT preprocessing

Throughout this Section the preprocessing steps applied to the CT images in order to remove

the gantry artifact, are explained, with a special focus on the parameters chosen.



52

As already introduced in Section 5.3 not all the CT images present the gantry artifact which

has been defined as the circular shadow around the patient that prevents the correct working of

the processing pipeline. In order to identify it presence and the subsequent elimination, as first

step an adjustment of the contrast has been performed using a gamma correction algorithm.

As visible in Figure 9, starting from a grayscale image the output is still a grayscale image

where the top and bottom 1% of all the pixel values are saturated.

On the obtained adjusted image it is now possible to apply the edge detection using the Sobel

kernel which, if compared to the Canny [70] one, is able to identify in a more precise way the

contour of the patient’s torso and the gantry border. As shown in Figure 10, the Canny based

approach detects more details if compared to Sobel, but for the purpose of the subsequent step,

so many contours limit the wanted result. In fact, the result of the edge detection algorithm

will be subtracted to the output of the binarization done with Otsu’s method to create the

mask employed for the removal of the gantry artifact, as reported in Figure 11.

6.4 CT analysis

In this Section all the relevant details regarding the lungs segmentation are reported, starting

from the binarization of the previously preprocessed CT until the final selection of the Region

of Interest (ROI).

As already explained in Section 5.4, the binarization has been performed exploiting the

iterative Otsu’s procedure for the selection of the optimal threshold. On the binarized image,

a selection of the biggest connected component has been done using a connectivity equal to 8
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Figure 11: Creation of the mask that will be employed for the removal of the gantry artifact

(see Figure 6) obtaining the body of the patient and some of the internal details of the lungs,

as visible in Figure 12.

For the creation of the mask that will be later used for segmenting the lungs it is necessary

to obtain a binary image where only the lungs should appear as white spots; moreover, all the

small details inside of them, still visible in Figure 12, should be deleted. In order to obtain
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Figure 12: Identification of the largest connected component based on the 8-connectivity filter

the aforementioned mask there is the need to generate the complementary and to modify the

background in order to keep it black (Figure 13).

As said in Section 5.4, this approach is based on the suppression of structures that are

connected to the image border and that result lighter if compared to their eight adjacent pixels.

So considering that all the pixels outside the thorax are white they certainly are lighter compared

to it. Moreover, they are all connected to the image perimeter according to the definition of

8-connectivity. Satisfying both the conditions all the pixels outside the thorax can be set to

black (background).

Having correctly selected the contour of the lungs, there is now the need of creating a

mask, where all the small linear structures inside the lungs are removed in order to make them

identifiable later on during the merging of the data coming from both the PET and the CT. In

fact, all the details inside the lungs should be preserved on the original CT after the filtering

with the created mask, since they can be possible tumors. The applied technique for the removal
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Figure 13: From the input to the background and thorax removal within the lungs identification
process

of the linear structures is a morphological closure of the image, which, as explained in Section

5.4, is a procedure composed of two sequential steps: a dilation followed by an erosion. These

algorithms require the employment of a constructing element, which is used to probe the pixels

surrounding the one selected and to decide if that specific element is part of a structure similar

to the shape of the probe. The dilation process fills the possible holes present in the image in

order to better fit the shape of the constructing element, while the erosion has the opposite

effect.

Applying the dilation followed by the erosion allows the preservation of those shapes that

match the chosen probe and the filling of possible white isolated pixels inside those regions.

Taking into account what have been said, in order to remove the linear ramification departing

from the central structure, it has employed a round structuring element for preserving only the

circular shaped region. At this point it is necessary to chose the radius of the probing circular

element.
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Figure 14: Morphological closure with different constructing element radius; the green one is
the selected one

Figure 14 shows some attempts with different radii: experimentally it has been found that

a good trade off is a radius equal to 12, which is the one not only able to remove all the linear

structures but also to preserve the main circular shaped regions.

Now that the mask has been obtained, the last step of the CT processing pipeline is the

filtering of the preprocessed image with the morphological closed image. In this way the seg-

mented ROI corresponding to the lungs contour and their inside details is obtained (Figure 15).

6.5 PET analysis

Having reached the aim of the CT processing it is now useful to introduce more details

about what has been performed in order to extract the necessary information from the PET

acquisition. Throughout the Section a deeper explanation of some implemented algorithms will

be given.
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Figure 15: Identification of the Region of Interest within the CT processing pipeline

As said CT and PET have different image sizes, so a rescaling step is required for the next

steps of the processing pipeline (1:1 mapping needed). In order to do not lose information by

reducing the CT to the smaller dimensions of the PET and to provide results that can be more

easily seen on a larger image, it is better to upscale the PET to the CT dimensions. For the

aforementioned reasons, it has been used the metadata for reading the dimension values of the
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CT and then employ them as parameters for the scaling of the PET using the nearest neighbor

algorithm.

Having now comparable images in terms of dimension, it is possible to begin with the real

processing steps. The first one consists in thresholding the PET based on the maximum value

in it. Experimental studies showed that good results can been achieved by using as decision

value the 80% of the maximum. Using a higher or lower threshold leads to respectively an

under or over identification of the active spots, falsifying the final result.

Obtained the informative regions, it is necessary to label each blob in order to compute the

position of the centroid and the area. The procedure gives to the pixel belonging to a certain

blob the same value on the base of the 8-connectivity definition. The final result of the PET

analysis is therefore a mask where, for each active spots, are computed the area and the position

(xc, yc) of the centroid, as reported in Equation 6.1. In such Equation, N is the total number of

pixels composing the blob; xi and yi are the x, y positions of the N pixels respectively. Finally,

the area value is the algebraic sum of the pixels belong to the blob.

xc =
1

N

N∑
i=1

xi, yc =
1

N

N∑
i=1

yi (6.1)

6.6 Cancer lesion identification

Considering now the concluding part of the pipeline, more details will be presented for

clarifying how the contour identification is performed and which information are exploited from

both sources.
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Figure 16: Removal of PET centroid based on the CT corresponding values

First of all, the segmented CT is used as delimitation to distinguish between interesting

centroids that are inside the lungs region and centroids that are positioned in non informative

areas, such as the heart or the ribcage. In fact, the centroid identification on the PET is done

on the base of the intensity and not on the base of the position inside the patient’s body:

consequently a merge of the information is essential.

For eliminating the centroid that are obtained from blobs that are located outside the

Region of Interest, as said in Section 5.6, a check has been done on the value of the CT pixel

corresponding to the centroid position on the PET (Figure 16): if the CT value is equal to

zero, that centroid is positioned in a region that is not part of the Region of Interest and, for

this reason, it will be eliminated from the PET mask. On the other hand, if the pixel value

on the CT differs from zero, it means that the centroid is inside the lungs and will be then

considered for the identification of the contour of the tumor. The implemented steps used for

this procedure are reported in Algorithm 3
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Data: input labeled PET image
Data: input segmented CT image
Result: Blob centroids inside ROI
stats[n blob] ← position of blob centroids in input image;
blob[n blob] ← labeled blob in the input image;
for i=1,...,n blob do

if CT(stats[n blob])==0 then
blob[n blob]=0;

end

end
Algorithm 3: Pseudocode for removing the blobs outside the ROI on labeled PET image

Having stored only the position of the useful blobs, it is now possible to employ them as

seed for the identification of the contour of the tumor on the CT as seen in Figure 17.

The algorithm employed for the definition of the contour is an iterative procedure that,

staring from a pixel (identified centroid) at each iteration, expands the seed of a certain number

of pixels, until the contour of the structure containing the starting pixel is reached. In order to

limit the expansion of the area over the real border of the tumor, there is the necessity to have

a termination condition of the iterative algorithm. This can be done considering a maximum

number of iterations or using a parameter that, if positive, bias the contour to shrink inwards,

limiting in this way the excessive expansion. Considering the specific case, the limitation method

that has been applied is the one based on the contraction bias; the contraction parameter has

been set to a value obtained in Equation 6.2

contraction =
Area

100
− 0.18 (6.2)
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Figure 17: Identification of the valid centroid inside the Region of Interest

The algorithm used for the active contour approach is the Chan-Vese: this algorithm does

not employ edges for the identification of the perimeter of the image, but exploits information

about energy, being capable of identifying objects whose contours are not defined by the gradient

[66]. This approach relies on the minimization of a energy function, which reaches its minimum

value when it matches the contour of the object, while, if the curve is inside or outside the

object, it will be respectively lesser or grater of zero. For this reason, this approach is able to
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Figure 18: Final identification of the contour of the lungs cancer lesion

detect not only objects with clear boundaries, but also structure with smooth of discontinuous

edges, being suitable for the identification of tumors, even if they are surrounded by tissues

with similar properties. In the analyzed case study, the starting position of the contour is given

by the perimeter of the blobs that has been identified from the PET. By using that profile as

starting point, the minimization of the energy function has been done then on the segmented

CT.
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The output obtained by the contour algorithm is a binary image where it is possible to see

white regions corresponding to the areas on the CT, where a tumor should be found. Starting

from these data, it is then possible to keep only the perimeter of those structures (the entire

blob), by keeping only those pixels that are part of the structure and are connected to other

pixels of the object and separate a dark region from a light one.

Finally, to obtain an easily readable result, the contour of the identified tumors is mapped

on the original CT, allowing the physician to detect the presence of a cancer lesion thanks to

white contour around it (Figure 18). The reason behind this choice is to do not modify the

routine employed in this field for the diagnosis, which consists in the examination of CT or PET

images. Moreover, by reporting the contour on the input image the information in it contained

is not modified both in terms of dimensions and spatial resolution, obtaining an image already

usable by a radiologist.



CHAPTER 7

EXPERIMENTAL EVALUATION

This Chapter presents the approached used for the validation of the pipeline and the ob-

tained results both in term of execution time and accuracy compared to the semi-automatic

segmentation method employed by the radiologists. In detail, Section 7.1 describes the experi-

mental setup in terms of language and framework used, and target device; Section 7.2 presents

the results obtained in terms of execution time. Finally, Section 7.3 provides the information

about the accuracy obtained by the implemented pipeline.

First of all, remembering what was said in Section 3.3, it is impossible to directly compare

the obtained results with the ones in literature due to the lack of reproducibility of the works; for

this reason, within this work, the validation will be done considering the information provided

by the physicians who have collected the data.

7.1 Experimental setup

The developed pipeline has been implemented in Matlab R2017b® (a MathWorks® prod-

uct), which is a language created for technical computing [71] and an environment that allows

the data analysis, algorithm development and data visualization. Matlab® has been chosen as

development tool since it is employed in multiple field such as biotechnology, finance, industry

and research. All the computation has been performed on a MacBook Pro with a 3.1 GHz Intel

Core i5 with a 16 GB 2133MHz LPDDR3 RAM memory.

64
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Figure 19: Execution time on different dataset dimensions

7.2 Execution time

Considering the execution time, an expert radiologist usually employs between five and

ten minutes to analyze a patient acquisition; this time may further increase if the physician

is distracted by external factors or if he/she is working from too many hours. Looking at

Figure 19 and keeping in mind that generally a single acquisition is composed by 200-300

images, the proposed tool is able to analyze the same number of images in less than three

minutes. Figure 19 reports the execution time measured on different dataset dimension (from
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100 images to 1000 images). The experimental results show that the computation time goes

from 52.89 seconds for 100 images to 540.65 second for 1000 images. Figure 19 does not

shows the standard deviation since it is not significant: however it ranges between 0.02 and

0.04. Moreover, as it is possible to notice from the same Figure, considering only the pure

computation time without the image loading from the disk, execution time is reduced by 20%.

In addition, increasing the number of images, the execution time grows pretty much linearly,

while, on the contrary, a physician will decrease the performance in terms of analysis time with

the increase of the number of images analyzed due to his/her tiredness. It is important to

notice that it is possible also to further reduce the total execution time of the proposed tool

since it is possible to make some optimizations: as an example, thanks to a statistical analysis,

it is possible to discharge a percentage of the acquired slices, which are the ones covering the

abdominal region, which is out of the Region of Interest.

7.3 Accuracy

Moving on to the assessment of the accuracy some quantitative statistics have been com-

puted and are listed below:

• True Positive (TP) or number of images containing a lesion correctly identified;

• True Negative (TN) or number of images not containing a lesion correctly identified;

• False Positive (FP) or number of images not containing a lesion incorrectly identified;

• False Negative (FN) or number of images containing a lesion incorrectly identified.
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Figure 20: Accuracy obtained for each patient considering the number of analyzed images (the
number of images is reported above each bar)

From these parameters it is possible to compute the sensitivity SE (Equation 7.1), the

specificity SP (Equation 7.2), and the accuracy ACC (Equation 7.3) with the following formulas.

SE =
TP

TP + FN
(7.1)

SP =
TN

TN + FP
(7.2)

ACC =
TN + TN

TP + FN + TN + FP
(7.3)



68

Tabella 1

Corretti 19

Sbagliati 1

Classification of the patients

1

19

True Positive
False Negative

�1

Figure 21: Number of correctly classified vs misclassified patients

For each patient these statistics have been computed using as ground truth the classification

done by the radiologist. Figure 20 shows the obtained accuracy for each analyzed patient; it is

possible to see that the accuracy varies between 88-97% with a mean value of 93.82%. Moreover,

for each patient it is reported the total number of slices acquired during the examination, which

varies from a minimum of 215 and a maximum of 429. As reported in Equation Equation 7.3,

the accuracy depends on all the correctly identified slices both the TN and the TP; for this

reason, in some cases some slices which do not contain the lungs are misclassified as containing a

tumor (false positives); in order to increase the accuracy, it can be useful to remove a percentage

of images (abdominal and legs areas) decreasing the possibility to create false positive in areas
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that are certainly not lungs. This kind of optimization is left as future work. Moreover even if

a patient is correctly identified as affected by lung cancer, the first and the last slices containing

the tumor are difficult to segment due to the low activity in this terminal part of the tumor.

In addition, considering the obtained results, only one patient with tumor has been mis-

classified as a sane patient (false negative) (Figure 21). This is generally a bad result, so it is

important to investigate the causes of this classification error for future improvements of the

methodology. In this case, in fact, even if an abnormal structure is visible on the CT, the ROI

identified by the radiologist on the PET is poorly active, leading the algorithm to discharge

that part of the image as not informative. This problem, is the same one found in the ter-

minal area of the tumors in the other patients. For this reason later on some studies can be

done to overcome this issue. A possible solution left as future work is use information among

consecutive slices instead of reasoning on one slice at at time: the idea here is to exploit a 3D

connected components algorithm [72].



CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

This thesis work is about the early and accurate diagnosis of lung cancer, one of the most

investigated open challenges in the last decades. High attention has been given to the creation

of tools that can help physicians in this sense and this project works toward this direction.

Since lung cancer is the second leading death cause between both male and female after

prostate and breast cancers [1] it is usually lethal if not detected in early stages, it is crucial an

early identification for increasing the possibility of survival of patients with cancer. Therefore

this thesis has proposed an automatic diagnostic tool that requires less time for the identification

(compared to a physician) and does not require a cross-validation of the results by different

radiologists, being in this way cheaper and less error prone.

A deep analysis of the related works has been performed: starting from the current imaging

technologies, such as Computed Tomography (CT) and Positron Emission Tomography (PET),

very different solutions have been proposed in literature for an accurate and fast identification

of lung cancer. However, the found solutions are generally based on semi-automated protocol

where the radiologist manually draws the Region Of Interest (ROI) and, after that, a program

inside the decided ROI segments the tumor masses. This approach can be useful but it is not

enough. In fact, in the last years, some new fully automated identification tools have been

proposed but they do not show how their algorithms have been implemented in details.

70
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Given the aforementioned context, this work output tries to make a step forwarding into the

field having proposed a completely automated pipeline able to be a reference standard able to

identify lung cancer, that can be employed for the clinical follow up and that can be a suitable

starting point for a machine learning based classification procedure.

Being more precise, this thesis proposed both a methodology and the related software tool

that taking as input Digital Imaging and COmmunications in Medicine (DICOM) files of chest

PET and CT and, by exploiting the characteristics of both of them, is capable of automatically

identifying the lungs and the possible presence of tumor lesions.

A validation of the pipeline has been done by computing the execution time and the accuracy

of the processing pipeline. With respect to the execution time, the computation time goes from

52.89 seconds for 100 images to 540.65 seconds for 1.000 images. This is a considerable result

since an expert radiologist usually employs between five and ten minutes to analyze a patient

acquisition. With respect to the accuracy it varies between 89-97% on the analyzed dataset.

Future Works

The experimental results shown as the obtained accuracy varies between 88-97%. In some

cases some slices which do not contain the lungs have been misclassified as containing a tumor

(false positives); in order to increase the accuracy, as future work it is possible to automatically

remove a percentage of images (abdominal and legs areas) decreasing the possibility to create

false positive in areas that are certainly not lungs. Moreover, in one case, an affected patient

has been classified as healthy (false negative): analysis on that patient showed that the ROI

identified by the radiologist on the PET was poorly active, leading the algorithm to discharge
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that part of the image as not informative. To solve this kind of issues it is possible to use

information among consecutive slices instead of reasoning on one slice at at time. This is

possible for instance by using 3D connected components algorithm able to reconstruct a volume

among consecutive 2D projections.

As said, a further step for the reduction of the mortality rate due to lung cancer can be

seen in machine learning approaches which, exploiting the information obtained from the many

segmentation, are able to provide information regarding the tumor. Therefore, a possible next

step for this project is to implement new classification algorithms based on machine learning

which exploit the data generated from the proposed pipeline. However, such kind of method-

ologies require huge dataset as inputs. This means that accelerating the proposed algorithms

on more powerful hardware can be a necessary step to make the creation of the dataset feasible:

working on GPUs platforms can be a good match, since they are designed to perform graphical

analysis.
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Appendix A

COPYRIGHT PERMISSION 1

This appendix include the terms under which is copyrighted Figure 1.

Images available through this page and commons.wikimedia.org/wiki/File:Lungsdiagram_

simple.svg are made available under Creative Commons CC BY 2.5 License 2006. Creative

Commons Attribution 2.5 License 2006 allows you to:

To Share: Copy, Distribute, and Transmit the work,

To Remix: To adapt the work.

To Remix: Create Derivative works of the material under these conditions: Attribution:

You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).
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Appendix B

COPYRIGHTS PERMISSION 2

This appendix include the terms under which is copyrighted Figure 2.

Images available through this page and https://commons.wikimedia.org/wiki/File:

Diagram_showing_how_cancer_cells_keep_on_reproducing_to_form_a_tumour_CRUK_127.

svg are made available under Creative Commons CC BY-SA 4.0 International license.. Creative

Commons Attribution-Share Alike 4.0 International license allows you to:

To Share: Copy, Distribute, and Transmit the work,

To Remix: To adapt the work.

To Remix: Create Derivative works of the material under these conditions: Attribution:

You must attribute the work in the manner specified by the author or licensor (but not in

any way that suggests that they endorse you or your use of the work). This image has been

released as part of an open knowledge project by Cancer Research UK. Share alike:If you

alter, transform, or build upon this work, you may distribute the resulting work only under the

same or similar license to this one.
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