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SUMMARY

Polynomial homotopy continuation is a symbolic-numerical method to compute all solutions

of a polynomial system. In recent years, Graphics Processing Units (GPU) offer much more

computing power than Central Processing Units (CPU). There are many strong demands for

parallel computing of polynomial homotopy continuation on GPU accelerators. Also, larger

dimension systems and higher degrees are likely to have worse numerical conditions, so we

expect to calculate with double double and quad double arithmetic to improve the quality.

In this thesis, an accelerated homotopy continuation method is designed on GPUs and

achieves good speedups in multiple precisions. In the first chapter, we implement polynomial

evaluation and differentiation of benchmark problems. A new tree mode is introduced for

monomial evaluation to reduce global memory access. In the second chapter, we design Newton’s

method on GPUs, which minimizes the communication between the CPU host and the GPU

device. In the third and fourth chapter, predictor-corrector algorithms are developed to track

single path and multiple paths.

For another contribution, a web interface is designed to solve polynomial systems in the

cloud. We want to classify polynomial systems and identify the polynomial systems we solved.

For this problem, we represent polynomial systems by a new type of graph. Via the canonical

form of this graph, a database is implemented for storing and searching polynomial systems.

x



CHAPTER 1

INTRODUCTION

Polynomial systems arise in many fields of science and engineering, like design of mecha-

nisms, equilibia of chemical reactions, Nash equilibia, etc. Polynomial homotopy continuation

is a symbolic-numerical method to compute all solutions of a polynomial system. As the num-

ber of solutions can grow exponentially in the degrees, the number of variables and equations,

the computational complexity of these problems is hard. Also, as the degrees and the number

of solutions increase, the numerical conditioning is likely to worsen as well. To improve the

quality, we calculate with double double and quad double arithmetic.

In recent years, Graphics Processing Unit (GPU) accelerators have achieved exponential

growth in both computing ability and memory bandwidth. Therefore, there is much interest

in parallel computing of polynomial homotopy continuation on GPU accelerators. GPU accel-

erators provide a promising technology to deliver significant speedups over Central Processing

Unit (CPU), but may require a complete overhaul of the algorithms in polynomial homotopy

continuation.

In this thesis, a parallel implementation is developed for acceleration of polynomial homo-

topy continuation on GPUs (58; 59; 60), to obtain both speedup and quality up. The software

package (57) is integrated into PHCpack (53) and phcpy (54). In addition, a web interface of

PHCpack is created to grant users easy access to solve polynomial systems. Also, a polynomial

database is built based on a canonical graph representation to classify polynomial systems (8).

1
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1.1 Background

A polynomial f(x) with n unknowns x = (x1, x2, . . . , xn) is defined as

f(x) =
∑
a∈A

cax
a, a = (a1, a2, . . . , an), ca ∈ C, ca 6= 0, (1.1)

where xa = xa1
1 x

a2
2 · · ·xan

n . The finite set A of exponent vectors a is called the support of the

polynomial f . ca is the nonzero coefficient for the monomial xa. By default, the coefficients of

the polynomials are complex numbers.

Given a polynomial system f(x) = 0 of N polynomials f = (f1, f2, . . . , fN ), this thesis

focuses on using homotopy continuation method to find all isolated solutions.

1.1.1 Polynomial homotopy continuation

To find all isolated solutions, we use polynomial homotopies (37; 49; 48). A homotopy

connects the target system we want to solve f(x) = 0 to a start system g(x) = 0. Solutions of

g(x) are easier to compute or given. A path from a known solution of g(x) = 0 to a solution

of f(x) = 0 is called a solution path.

A polynomial homotopy continuation method, as shown in Figure 1, consists of 5 stages:

1. We first construct a generic system g(x) = 0, which has the same Newton polytopes as

f(x) = 0, and use it in a homotopy, such as,

h(x, t) = γ(1− t)kg(x) + tkf(x) = 0, t ∈ [0, 1], (1.2)
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Figure 1: A diagram of the polynomial homotopy continuation method.

f(x)
1 parameter homotopy−−−−−−−−−−−−−−−→

Newton polytopes
g(x)

2 polyhedral homotopy−−−−−−−−−−−−−−−→
initial form

bi(x)

3 solve

ybinomial

{x}f(x)=0
4 path tracking←−−−−−−−−−−−

h(x,t)
{x}g(x)=0

5 path tracking←−−−−−−−−−−−
ĝi(x,t)

{x}bi(x)=0

Note: It includes 5 stages from f(x) to its solution set {x}f(x)=0. Each stage is labelled by its
index and method.

The coefficients g(x) and the constant γ are random numbers to ensure the regularity

of all solution paths. When t = 0, h(x, 0) is the start system g(x), multiplied by γ.

When t = 1, h(x, 1) = f(x), which is called the target system. Because a path might have

more complicate numerical condition near the start point and the end point, we introduce

a parameter k = 2 to increase the start range and the end range. For example, when

t = 0.1, the position on the path t2 is 0.01.

2. To solve g(x) = 0, we construct polyhedral homotopies (32) from a group of binomial

systems bi(x) to g(x), such as,

ĝi(x, t) =
∑
a∈Ai

c̄iat
θi(a)xa, (1.3)

where θi(a) are generated decimal exponents and 2 of them are 0’s for each equation.

When t = 0, ĝi(x, 0) is a binomial system bi(x). When t = 1, ĝi(x, 1) = g(x). These

binomial systems are constructed by initial forms of g(x).
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3. We solve these binomial systems bi(x) and get their solution sets {x}bi(x)=0.

4. From the solutions of bi(x) to the solutions of g(x), we apply path tracking methods to

approximate solution paths x(t) defined by ĝi(x, t) = 0. Path tracking methods are called

predictor-corrector methods. See Figure 2.

5. Similarly, from the solutions of g(x) to the solutions of f(x), we apply path tracking

methods to h(x(t), t) = 0.

Polynomial homotopy continuation is a symbolic-numerical method. The constructions of

the homotopies are symbolic from step 1 to 3, while path tracking is numerical in steps 4 and

5. The numerical part is more computational intensive and takes most of the solving time (48).

A solution path x(t) changes continuously as t increases. When t = 0, it is the start

solution. When t = 1, it is the target solution. From the start solution to the target solution,

the predictor-corrector method is used to track the path numerically.

1. Single path tracking

To track a single path, t increases gradually each time by a small amount of the step size

∆t. In each step, the predictor uses extrapolation of previous points to predict a point

x̄(t+∆t), which is close to the path solution x(t+∆t). Then the corrector uses Newton’s

method to get the local solution x(t+ ∆t).

The step size ∆t is controlled by the correction result. If the correction fails, i.e. Newton’s

method does not converge, the step size ∆t is shortened. If corrections success consec-
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Figure 2: Tracking one solution path in the view of one variable.

x-real
−0.5

0.0
0.5

1.0

x-imag

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

t

0.0

0.2

0.4

0.6

0.8

1.0

correct
predict
divergent

Note: Corrected points (marked by a star) are connected as they lie on the path. Points that
are not connected are predicted points (marked by a dot). Predicted points from where the
corrector diverged are marked by a circle.

utively for several times, the step size ∆t will be increased to make the path tracking

faster. See Figure 2.
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2. Muiltiple path tracking

In order to find all isolated solutions, we need to track multiple solution paths. Given a

polynomial system with multiple start solutions xi(0), all paths are tracked independently

to the target solutions xi(1). This is called multiple path tracking. See Figure 3.

Figure 3: Tracking multiple paths in the view of one variable.

x-rea
l

−0.4
−0.2

0.0
0.2

0.4

x-imag
−0.6

−0.4
−0.2

0.0
0.2

0.4
0.6

t

0.0

0.2

0.4

0.6

0.8

1.0

correct
start
target

Note: Corrected points are marked by a smaller ball without boundary. Start solutions are
marked by a bigger ball with boundary. Target solutions are marked by a star.
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1.1.2 Graphics Processing Unit

In this thesis, we choose NVIDIA’s CUDA(Compute Unified Device Architecture) as our

Graphics Processing Unit (GPU) computing platform. In recent years, GPUs grow much faster

than CPUs in terms of both peak computing performance and memory bandwidth. See Figure 4.

Figure 4: GPUs lead CPUs in peak double performance and memory bandwidth

Note: this chart is from the presentation (25)

The computational ability of the GPU comes from a large number of cores. For example,

NVIDIA Tesla K20c has 2496 CUDA cores. These cores are grouped by Streaming Multipro-

cessors(SM). K20c has 13 SMs, and each SM has 192 CUDA cores.
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For programming logical structure, a thread does a small job, a block has many threads

working together, and a grid has many blocks working independently. Single instruction, mul-

tiple thread (SIMT) is a typical execution model on GPUs. A kernel for the GPU works like a

function for the CPU. But a kernel launches for a grid, and it contains the same instructions

for all threads in all blocks of this grid. Several kernels work sequentially to finish the entire

problem. The CPU host controls the launches of these kernels and the sizes of their grids.

For GPU memory, there are three types, local memory, shared memory and global memory.

Compared with CPU memory structure, local memory is like register, shared memory is like

cache and global memory is like RAM. Modern CPU compilers can process these automatically,

but GPU memory needs to be managed manually to obtain higher speedups.

Each type of GPU memory is related to the logical structure with limited life span. Local

memory is used by the thread and disappears after the thread finished. Shared memory is used

by the block, i.e. all threads in the same block, and disappears after the block finished. Global

memory can be used by threads, blocks and grids, and disappears until the entire process is

finished. Also, CPU host can read and write to global memory. See Figure 5.

Figure 5: GPU programming logical structure and memory access

Relationship with others Cooperation with others Memory

Thread Parallel Within the same block Local, Shared, Global
Block Parallel No Shared, Global
Grid Sequential By sequential kernels Global
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From (28), in the CUDA execution model, there is a finer grouping of threads into warps.

The warp size of all current CUDA-capable GPUs is 32 threads. Multiprocessors on the GPU

execute instructions for each warp. From CUDA Toolkit Documentation (44), occupancy is

the ratio of the number of active warps per multiprocessor to the maximum number of possible

active warps. Low occupancy always interferes with the ability to hide memory latency, resulting

in performance degradation. Occupancy is determined by three main factors: the among of

registers (local memory) per thread, the size of shared memory per block and the number of

threads per block. Occupancy decrease with the first two factors and increase with the third.

GPU memory should be managed carefully to obtain computation ability and memory

bandwidth as much as possible. Here are some tips:

1. Local memory: each thread uses local memory as small as possible to increase occupancy.

2. Shared memory: each block uses shared memory as small as possible to increase occu-

pancy. From (44), shared memory is divided into equally sized memory modules (banks)

that can be accessed simultaneously. The warp size is 32 threads and the number of

banks is also 32, so bank conflicts can occur between any threads in the warp. Ideally, all

threads in a warp should read from different banks in the shared memory.

3. Global memory: from (28), the device coalesces global memory loads and stores issued

by threads of a warp into as few transactions as possible to minimize DRAM bandwidth.

Each warp is executed in SIMD (Single Instruction, Multiple Data) fashion. Ideally, all

threads in a warp should read from the consecutive part of memory together, to increase

memory coalescing.
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f

The computing ability and memory bandwidth are both the limits of GPUs’ kernel per-

formance. For K20c, memory bandwith is 208 GB/s, while its peak double float performance

is 1.3 TFLOPS. If applications are memory-bound, we use the efficient memory bandwidth

to measure our kernels. Another importance measurement in this thesis is speedups over one

single CPU core.

Finally, the bandwidth between the CPU host and the GPU device is limited by PCI Express

bus. For PCI Express 3.0, a 16-lane slot has only 15.754 GB/s, much less than GPU memory

bandwidth. So we should minimize the amount of communication between the CPU host and

the GPU device.

1.2 Problem Statement

Path tracking is a numerical computational intensive method, even more so in double double

and quad double arithmetic. Tracking one single path is sequential. It might take hundreds of

steps of predictions and corrections. Each correction, via Newton’s method, costs several times

of polynomial evaluation and differentiation (PED), and several times to solve linear system.

The linear solver we choose is Modified Gram-Schmidt (MGS). To sum up, path tracking

contains three major parts, Prediction, PED and MGS.

We combine these three computational intensive parts as the path tracker on GPUs. The

challenge is to design massively parallel algorithms for this sequential problem and fit the GPU

logical structure. The entire problem is split into several stages for grids. Then each stage is



11

divided into independent jobs for blocks, and a job is divided into cooperative tasks for threads

of a block.

With these three parts, the CPU host launches them in a dynamical sequence for unantic-

ipated path convergent condition. The CPU host uses the previous results from GPU device

to determine which is the next part. Also, the CPU host provides updated parameters to the

GPU device. These communications between host and device should be minimized, due to the

limited bandwidth.

1.3 Related work

Many software packages have been developed for polynomial homotopy continuation, e.g.:

Bertini (7), HOM4PS (20), HOM4PS-2.0 (35), HOM4PS-3 (11), PHoM (24), NAG4M2 (36),

HOMPACK (62; 63), PHCpack (53) and phcpy (54). Many of these packages are still under

active development. To the best of our knowledge, our code provides the first path tracker for

homotopy polynomial systems on GPUs.

To improve the quality, we calculate with double double and quad double arithmetic, using

the QD library (29) on the CPU host and its CUDA version (40) on GPUs device.

For monomial evaluation and differentiation, we use reverse mode (23), originated in example

of Speelpenning, to evaluate the derivative of monomials.

For GPU acceleration, the related work includes polynomial evaluation and differentia-

tion (55; 64) and modified Gram-Schmidt (56; 64). In the first paper, polynomial evaluation

and differentiation (PED) is implemented for randomly generated polynomial system. In the

random polynomial system, each monomial has a fixed number of variables and each equation
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has a fixed number of monomials. Also, the dimension of polynomial system is 32 to fit warp

size of GPU. In the second paper, modified Gram-Schmidt (MGS) is implemented for relatively

small square matrix. Max dimension for complex double is 256, complex double double is 128

and complex quad double is 85.

Related research in computer algebra concerns the implementation of polynomial operations

on GPUs. Reports on this research are (26) and (41). Computer algebra is geared towards exact

computations, often over finite number fields. Our approach is numerical and we improve the

accuracy of our results with double double and quad double arithmetic. This type of arithmetic

is described in the section of error-free transformations in (46). Interval arithmetic on CUDA

GPUs (14) is an alternative approach to improve the quality of numerical computations. Parallel

automatic differentiation techniques on GPUs are described in (22). The computation of the

Smith normal form as needed to solve large systems of binomials (that is: having exactly two

monomials in every equation) using the NVIDIA GTX 780 graphics card is reported in (12)

and in (13).

As for QR decomposition, many parallel implementations have been investigated by many

authors, see e.g. (4), (5). In (10), the performance of CPU and GPU implementations of the

Gram-Schmidt were compared. In (61), the left-looking scheme is dismissed because of its

limited inherent parallelism and as in (61) we also prefer the right-looking algorithm for more

thread-level parallelism. The application of extended precision to BLAS is described in (39),

see (17) for least squares solutions. The implementation of BLAS routines on GPUs in triple

precision (double + single float) is discussed in (43).
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1.4 Contributions

The contributions of this thesis include three parts: accelerated polynomial homotopy con-

tinuation, a web interface of PHCpack and a polynomial database.

1.4.1 Accelerated polynomial homotopy continuation

The contributions of this thesis focus on accelerating polynomial homotopy continuation

on GPUs for both single path (59) and multiple paths (60). In this process, Newton’s method

is implemented on GPUs (58). Also, previous work has been improved, including PED for

real polynomial systems, Modified Gram-Schmidt (MGS) for large dimension matrix, and gen-

eralization of both PED and MGS for multiple paths. All these work are done in multiple

precisions, including complex double, complex double double, complex quad double.

1. Accelerated polynomial homotopy continuation

Accelerated polynomial homotopy continuation is designed and achieves good speedup.

This is our major goal of all GPU implementations.

In the single path tracking (59), we join the work of predictor, PDE and MGS together

on GPUs. For predictor, we implement the Newton polynomial for different numbers of

interpolations points. For corrector, we combine PED and MGS to Newton’s method (58).

The main challenge is that it is a sequential dynamic process, and thus the CPU host

needs to control kernel launches according to the previous result from the GPU device.

Each control process is designed with communication of only one double float.
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The multiple path tracking (60) generalizes the predictor-corrector method for thousands

of independent paths. Because paths have different steps of predictor and corrector, we

need to unify them into the same schedule of kernels. After each step, paths with new

jobs are indexed. Predictor and corrector kernels use these indices to locate active jobs.

This indexing is accelerated by applying GPU prefix sum. The CPU host needs only one

integer from the GPU device, as the number of active jobs, to control kernel launches.

2. Improvement of Polynomial Evaluation and differentiation (PED)

PED is improved for real polynomial systems and the dimension can go up to hundreds

bounded by GPU’s global memory. The relative work in (55) only works for randomly

generated polynomial systems of dimension 32.

For monomial evaluation and differentiation, a parallel tree mode (58) is developed and

multiple threads can cooperate to evaluate the same monomial. See Figure 6.

Figure 6: Evaluate and differentiate of a monomial x0x1x2x3 by tree mode
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(b) Compute partial derivatives top down
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Compared with the reverse mode in the previous work, the tree mode can reduce the

amount of global memory access, and thus it works better for complex double, which is

bounded by memory bandwidth. But the tree mode limits the computation ability of all

threads. So for higher precision, which is bounded by computation ability, the reverse

mode fit better. Also, the reverse mode is redesigned to align the memory of instruction

and monomial workspace. This helps us to get more memory coalescing and achieve better

speed-up.

Multiple PEDs (60) is developed so that multiple paths can be computed simultaneously

following the same instruction. The data structure is reorganized vertically for all eval-

uations, so there is more memory coalescing in monomial and summation kernels. With

many PEDs, even for a small system like cylic-10, the speedup is better than that of a

single large dimension polynomial system.

3. Improvement of Modified Gram-Schmidt (MGS)

The block style of MGS is implemented on GPUs for large dimension matrices. The

reduction step of MGS costs most of computation. With block style, multiple normalized

columns can be used to reduce multiple unnormalized columns, and we can store multiple

columns into shared memory for faster access.

Multiple MGS is also implemented as different versions for small and large matrix. The

small matrix can fit into the shared memory and be computed within a single GPU block.

The large matrix is stored in different workspaces of the global memory. Multiple GPU

blocks locate its own matrix workspace by the 3rd dimension of grid.
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4. Software library

The free and open source library (57) is developed to track a single path or many paths

defined by a polynomial homotopy on GPUs. Built on NVIDIA graphics cards with

CUDA SDKs, our code is released under the GNU GPL license.

The main program that launches the accelerated path trackers starts with the definition of

the polynomial homotopy and initializes the solution(s) at the start of the path(s). With

PHClib, the C interface to PHCpack, the start system can be generated with its start

solutions. Also, PHCpack provides condition number estimators at multiple precisions.

These estimators can be applied to determine the precision required to reach a prescribed

accuracy. Besides, via PHClib, we can call our GPU library from Python.

Benchmarks on cyclic n-roots (52), Pieri (50; 38; 31), Nash (16; 42) indicate good speedup

and quality up.

1.4.2 PHC web interface

The high speed internet and various types of user devices, like tablets and phones, inspire

us to create cloud computing service for PHCpack. The advantages of PHC web interface for

users include:

1. No software installation is required for the user.

2. Faster computation is hosted by our computational workstation.

3. Any device from computers, cell phones to tablets has the unified account access.

4. Easy graphic user interface helps the user to solve and manage polynomial systems.
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Its current version exports the blackbox solver (phc -b) and path tracker for a homotopy in

one parameter (phc -p).

1.4.3 Polynomial database and search engine

A polynomial database is built based on a new type of polynomial graph. Each polynomial

system is represented by a unique graph and a unique string. No matter the order of monomials,

equations or different variable names, a polynomial systems always has a unique representation.

See Figure 7.

Via the canonical form of this graph, a database and search engine of polynomial systems

enables users to search by keywords of variable, monomial, equation or exact system.

Figure 7: The graph representation for a polynomial equation, 2.4 + 4x1 + x2x
2
1 + x21x

3.5
2 .

2.4

14 1

2 11 3.5 −→ Degree level

Variable level

Monomial level

Equation level

−→

−→

−→

Note: Type of nodes are represented as different shape: circle is for variable, diamond is for
degree, ellipse is for monomial, rectangle is for equation.
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1.5 Organization of this thesis

The major portion of this thesis is the accelerated polynomial homotopy continuation. We

start from Chapter 2 for polynomial evaluation and differentiation(PED). In Chapter 3, we

combine PED and modified Gram-Schmidt (MGS) as Newton’s method. In Chapter 4, we

develop the predictor and use Newton’s method as the corrector to accelerate the single path

tracking. Then we extend our implementation for the multiple path tracking in Chapter 5.

In Chapter 6, we develop a web interface of PHCpack for users to solve polynomial system

in the cloud. In Chapter 7, we present a graph representation for polynomial systems, and then

use its canonical form to design a database for polynomial systems.



CHAPTER 2

POLYNOMIAL EVALUATION AND DIFFERENTIATION ON GPUS

In this chapter, parallel algorithms are given for polynomial evaluation and differentiation

(PED) on GPUs. Homotopy polynomial systems are studied as special cases. The problem is

split into three parts: the evaluation of homotopy coefficients, the evaluation and differentia-

tion of monomials, and the summation to the Jacobian matrix. For monomial evaluation, a

new tree mode is developed and compared with reverse mode. For multiple evaluations of a

polynomial system, more memory coalescing is achieved by transposing memory structure of

multiple workspace, which leads to even better speedup. In this chapter, we group all ideas

specific for PED in (58; 59; 60).

2.1 Overview

A homotopy polynomial system, such as (Equation 1.2) or (Equation 1.3), is a special case

of the polynomial system like (Equation 1.1). A homotopy polynomial system has a starting

system f(x) and a target system g(x), which share similar supports. To save computation, we

join the starting system and the target system into one polynomial system, whose coefficients

changes with respects of t.

hi(x) =
∑

a∈Afi
∪Agi

pa(c
(fi)
a , c

(gi)
a , t)xa, (2.1)

19
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where cfia is the coefficient for the monomial xa in fi. c
gi
a is the coefficient for the monomial xa

in gi. A finite set Afi is the support of a polynomial fi. A finite set Agi is the support of a

polynomial gi. Meanwhile, pa is a function for homotopy parameters.

A polynomial system is a set of polynomials, and a polynomial is a set of monomials.

On CPUs, monomials of polynomials are handled sequentially. For each monomial, we follow

three steps: compute coefficient, evaluate the monomial and its derivatives, and then add these

values to the polynomials and to Jacobian matrix. On GPUs, these three steps are joint for all

monomials in all polynomials. In this way, threads on GPUs work in parallel under the same

instruction for each step. See Figure 8.

Figure 8: Compare pseudo code of the host and the device for PED.

Pseudo code on the CPU host:
for each polynomial do

for each monomial do
1. compute the coefficient c(t) for this monomial;
2. evaluate the monomial and its derivative;
3. add the values to the polynomials and to the Jacobian matrix.

Pseudo code on the GPU device:
1. compute the coefficient c(t)

for all monomials in all polynomials;
2. evaluate the monomial and its derivatives

for all monomials in all polynomials;
3. add to the value of the polynomial and to the Jacobian matrix

for all monomials in all polynomials.
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In the process of computing a homotopy, there are a lot of variables and parameters. To

manage memory more easily, we group all elements into instructions(Inst), workspaces(W )

and parameters(P ). Inst includes all static instructions, like coefficients of the start and target

systems, positions and degrees of monomials, summation index, etc. W includes all interme-

diate and final results, like variable’s value x, coefficients of the homotopy system, values and

derivatives of monomials, Jacobian matrix, etc. P includes all parameters for Newton’s method

and path tracking, which are discussed in the next chapters.

Algorithm 1 indicates the upper level structure of PED. The details of the algorithm are

discussed in the following sections.

Algorithm 1 Polynomial evaluation and differentiation on GPU

1: procedure GPU PED(Inst,W )
2: launch kernel(s) GPU PED Coef(Inst.coef , W.coef)
3: launch kernel(s) GPU PED Mon(Inst.mon, W.x, W.mon)
4: launch kernel(s) GPU PED Sum(Inst.sum, W.mon, W.matrix)
5: end procedure

2.2 Monomial evaluation and differentiation

For a monomial with k variable cax
ai1
i1
x
ai2
i2
· · ·xaikik , where aik 6= 0, its derivatives are

caai1x
ai1−1
i1

x
ai2
i2
· · ·xaikik , caai2x

ai1
i1
x
ai2−1
i2

· · ·xaikik , . . . , caaikx
ai1
i1
x
ai2
i2
· · ·xaik−1ik

(2.2)
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These derivatives and monomial value share the common factor cax
ai1−1
i1

x
ai2−1
i2

· · ·xaik−1ik
.

Thus, the common factor can be pre-computed with its coefficient. Also, exponents can be

multiplied to derivatives independently. Without common factor and exponents, the derivatives

are

xi2xi3 · · ·xik , xi1xi3 · · ·xik , . . . , xi1xi2 · · ·xik−1
(2.3)

This series of product is called Speelpenning. Instead of computing each of them with O(k2)

multiplications, we can use reverse mode to compute them with O(k) multiplications.

This section discusses two modes to evaluate Speelpenning, the reverse mode and a new tree

mode. The reverse mode is a sequential algorithm for a monomial and each thread evaluates

one monomial. To use reverse mode efficiently on GPUs, we introduce a warp-aligned data

structure. A new tree mode is developed to evaluate one monomial by multiple threads. The

comparison of these two modes shows that the tree mode works better for double, and the

reverse mode works better for double double and quad double.

2.2.1 Reverse mode

The reverse mode (23) contains three parts, forward product, backward product and cross

product. See Figure 9.

For reverse mode on GPUs, each thread evaluates one monomial. The intermediate results

of the forward product need to be stored. But the backward product and cross products are

combined, and the final results can overwrite that of forward product. To provide similar
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Figure 9: Reverse mode to compute the value and derivatives of monomial x0x1x2x3

Forward product → x0 x0 ∗ x1 x0x1 ∗ x2 x0x1x2 ∗ x3
Backward product ← x1 ∗ x2x3 x2 ∗ x3 x3
Cross product ↓ x1x2x3 x0 ∗ x2x3 x0x1 ∗ x3 x0x1x2 x0x1x2 ∗ x3

workload to all threads in one block, the monomials have been sorted by number of variables.

See Figure 10.

For small monomials, the intermediate results of the forward product can be stored in the

shared memory. For large monomials in polynomial system of high dimension, like cyclic-32,

each thread needs 32 data positions to store the intermediate results, and the shared memory

is not enough for all threads. Thus, we have to use global memory.

To use global memory efficiently, we want to create memory coalescing for all threads in a

warp. The memory access in reverse mode contains two parts: position instructions, values and

derivatives of monomials. For the monomial set in Figure 10, the position instruction table is

in Figure 11.

The data structure of position instruction is improved for more memory coalescing. The

original way is organized by monomials, i.e n vartidx plus position array. But it costs random

memory access. To create memory coalescing, we can align position instructions for 32 threads

in a warp, by recording the table of Figure 11 row by row. With some empty position elements,

the size of the joint position array of a warp is 32 ∗max(n vartidx). Plus n var array, the total

size of instruction array is 32 ∗ (max(n vartidx) + 1). For polynomial system of high dimension,
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Figure 10: Evaluating four monomials x0x1x2, x3x4x5, x2x3x4x5, x0x1x3x4x5.

tidx 0 1 2 3
mtidx x0x1x2 x3x4x5 x2x3x4x5 x0x1x3x4x5

∂mtidx

∂xj

x fo
rw

ar
dx0 x3 x2 x0

x0 ? x1 x3 ? x4 x2 ? x3 x0 ? x1
x2x3 ? x4 x0x1 ? x3

x0x1x3 ? x4
(a) the forward product

tidx 0 1 2 3
mtidx x0x1x2 x3x4x5 x2x3x4x5 x0x1x3x4x5

∂mtidx

∂xj

x1 ? x2 x3 ? x4x5 x3 ? x4x5 x1 ? x3x4x5
y b

ac
k

&
cr

os
s

x0 ? x2 x3 ? x5 x2 ? (x4 ? x5) x0 ? (x3 ? x4x5)
x0x1 x3x4 x2x3 ? x5 x0x1 ? (x4 ? x5)

x2x3x4 x0x1x3 ? (x5)
x0x1x3x4

(b) the backward and cross products

Note: The tidx stands for the thread index.

after sorting monomials by number of variables, the n vars of all threads in one warp tends to

be similar. Thus, without adding too many empty position instructions, we can create memory

coalescing for position reading.

Comparing Figure 10 and Figure 11, it is clear that the values of each monomial and its

derivatives have similar structure as the position instruction of this monomial. The value

corresponds to n var and derivatives corresponds to pos array. Thus, we can adapt exact the

same warp-aligned data structure to store monomials’ values and derivatives, including forward

results.
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Figure 11: Position instruction of four monomials x0x1x2, x3x4x5, x2x3x4x5, x0x1x3x4x5.

tidx 0 1 2 3

n vartidx 3 3 4 5

postidx

0 3 2 0
1 4 3 1
2 5 4 3

5 4
5

Note: The tidx stands for the thread index. For each tidx, n vartidx is the number of variables
and postidx is the position array.

2.2.2 Tree mode

A new tree mode is discovered to evaluate Speelpenning of a monomial. Reverse mode is

sequential for a single monomial, but tree mode enables several threads to evaluate the same

monomial together.

Tree mode contains two steps:

1. Evaluation monomial bottom up like parallel reduction. See Figure 12 (a)

2. Differentiation top down like cross product. See Figure 12 (b)

The mathematical logic of the second part differentiation is product rule of computing

derivatives:

d

dx
(u · v) =

du

dx
· v + u · dv

dx
(2.4)
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Figure 12: Evaluate and differentiate of a monomial x0x1x2x3 by tree mode
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(b) Compute partial derivatives top down

If a monomial is splited into two parts u and v, u and v have no common variable. Suppose

u = xi1 · · ·xip and v = xj1 · · ·xjq ,

d

dxi∗
(u · v) =

du

dxi∗
· v d

dxj∗
(u · v) = u · dv

dxj∗
(2.5)

The derivatives of u multiply v and the derivatives of v multiply u. This is the reason of that

there is a cross product between each two terms on each level.

For GPU implementation of tree mode, the intermediate results of evaluation step are used

by differentiation step, so we store them in shared memory. To optimize our kernel, we apply

the techniques of parallel reduction (27), because parallel reduction has similar tree structure.

Three strategies from parallel reduction are used:

1. Sequential addressing: it can solve shared memory back conflicts.
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Figure 13: Evaluate and differentiate of a monomial x0x1x2x3x4x5x6x7 by tree mode
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(b) Compute partial derivatives top down
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2. unroll last warp: there is no need to syncthreads(), because instruction are synchronous

within a warp of 32 threads.

3. unroll completely: block size is fixed (512 for double), so ”for” loop can be unrolled

completely to save iteration instructions.

For double precision, tree mode have low arithmetic intensity and they are memory bounded.

So we use memory bandwidth to measure the efficiency of our kernel. See Figure 14.

Figure 14: Evaluation and differentiation of 65,024 monomials in 1,024 doubles.

method time bandwidth speedup

CPU 330.24ms

GPU reverse mode 86.43ms 3.82
tree mode naive 15.54ms 79.81GB/s 21.25

sequential addressing 14.08ms 88.08GB/s 23.45
unroll last warp 10.19ms 121.71GB/s 32.40

unroll completely 9.10ms 136.28GB/s 36.29

Note: Times on the K20C obtained with nvprof (the NVIDIA profiler) are in milliseconds
(ms). Dividing the number of bytes read and written by the time gives the bandwidth. Times
on the CPU are on one 2.6GHz Intel Xeon E5-2670, with code optimized with the -O2 flag.

Tree mode enables several threads on GPUs to evaluate a monomial. But the number of

threads in GPU block is typically 32n. To adapt tree mode for monomials of any size, we can

adjust the first level in tree mode. We can use 2n threads evaluate for a monomial of size 2n+1
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Algorithm 2 Single Monomial evaluation and differentiation by GPU block

1: procedure GPU Mon(X,n)
2: load X into shared memory x
3: nl← n
4: xlevel← x
5: for nl > 1 do
6: xlast← xlevel
7: nl← dnle
8: if idx < nl then
9: xlevel[idx]← xlast[2 ∗ idx] ∗ xlast[2 ∗ idx+ 1]
10: end if
11: local barrier
12: end for
13: nl← 2
14: if idx = 0 then
15: CommonFactor ← base ∗ coef
16: end if
17: xlevel← xlevel − nl
18: if idx < 3 then
19: xlevel[idx]∗ = CommonFactor
20: end if
21: while nl < n do
22: xlast← xlevel − 2 ∗ nl
23: if idx < nl then
24: newidx← idx XOR 1
25: xlast[2 ∗ idx]∗ = xlevel[newidx]
26: xlast[2 ∗ idx+ 1]∗ = xlevel[newidx]
27: end if
28: nl← 2 ∗ nl
29: xlevel← xlast
30: local barrier
31: end while
32: end procedure
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to 2n+1. To be specific, to evaluate a monomial of size 2n + k, where 0 < k ≤ 2n, the first k

threads are in charge of 2k variables and the rest 2n−k threads are in charge of 2n−k variables.

The first k threads multiply two variables at the beginning, but the rest with one variable don’t

need to. See Figure 15.

Furthermore, the number of threads in GPU block is typically 32n and polynomial systems

often have a lot of monomials of size smaller than 32. Thus, we want to use a block to evaluate

multiple monomials simultaneously. For 2n threads, it can evaluate a monomial of size 2n + 1.

But if we stop evaluation before the top level, it can evaluate two monomials of size 2n. For

example, 4 threads can evaluate a monomial of size 8, and they can evaluate 2 monomials

together, too. See Figure 16.

For a block of 512 threads, we can evaluate 1 monomial of size 1024, 2 monomials of size

512, 4 monomials of size 256, etc. In the test of double precision, we can get speedup for all

size of monomials. See Figure 17.
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Figure 15: Evaluate monomials of size 5 to 8 by 4 threads in tree mode

x0x1x2 ∗ x3x4

x0x1 ∗ x2

x0 ∗ x1

x0 x1

x2

x2

x3 ∗ x4

x3

x3

x4

x4

thread3thread2thread1thread0

(a) Evaluate x0x1x2x3x4

x0x1x2x3 ∗ x4x5

x0x1 ∗ x2x3

x0 ∗ x1

x0 x1

x2 ∗ x3

x2 x3

x4 ∗ x5

x4

x4

x5

x5

thread3thread2thread1thread0

(b) Evaluate x0x1x2x3x4x5

x0x1x2x3 ∗ x4x5x6

x0x1 ∗ x2x3

x0 ∗ x1

x0 x1

x2 ∗ x3

x2 x3

x4x5 ∗ x6

x4 ∗ x5

x4 x5

x6

x6

thread3thread2thread1thread0

(c) Evaluate x0x1x2x3x4x5x6

x0x1x2x3 ∗ x4x5x6x7

x0x1 ∗ x2x3

x0 ∗ x1

x0 x1

x2 ∗ x3

x2 x3

x4x5 ∗ x6x7

x4 ∗ x5

x4 x5

x6 ∗ x7

x6 x7

thread3thread2thread1thread0

(d) Evaluate x0x1x2x3x4x5x6x7
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Figure 16: Evaluate single or multiple monomials in the same block by tree mode

x0x1x2x3 ∗ x4x5x6x7

x0x1 ∗ x2x3

x0 ∗ x1

x0 x1

x2 ∗ x3

x2 x3

x4x5 ∗ x6x7

x4 ∗ x5

x4 x5

x6 ∗ x7

x6 x7

thread3thread2thread1thread0

(a) Evaluate x0x1x2x3x4x5x6x7

x0x1 ∗ x2x3

x0 ∗ x1

x0 x1

x2 ∗ x3

x2 x3

x4x5 ∗ x6x7

x4 ∗ x5

x4 x5

x6 ∗ x7

x6 x7

thread3thread2thread1thread0

(b) Evaluate x0x1x2x3 and x4x5x6x7

2.2.3 Comparision of reverse mode and tree mode

In this subsection, reverse mode and tree mode are compared and tested for the evaluation

of multiple monomials.

About complexity to evaluate a monomial of size k, reverse mode and tree mode have similar

3k+C multiplications. Reverse mode costs k+C multiplication for forward product, backward

product and cross product. Tree mode costs 1
2k + (12)2k + · · · + 1 = k + C multiplication

for evaluation bottom up, another k + C for differentiation top down without last level, and

on the last level, it takes k multiplications for each variable. Thus tree mode costs 3k + C

multiplication, too.
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Figure 17: Evaluation and differentiation of m monomials of different size n

n m CPU GPU speedup

1024 1 330.24ms 9.12ms 36.20
512 2 328.92ms 8.73ms 37.66
256 4 320.78ms 8.84ms 36.29
128 8 309.02ms 8.15ms 37.89
64 16 289.30ms 7.27ms 39.77
32 32 256.07ms 9.51ms 26.94
16 64 230.34ms 8.86ms 25.99
8 128 218.74ms 7.79ms 28.07
4 256 202.20ms 7.05ms 28.69

Note: by 65,024 blocks with 512 threads per block for 1,024 doubles in shared memory, accel-
erated by the K20C with timings in milliseconds obtained by the NVIDIA profiler. Times on
the CPU are on one 2.6GHz Intel Xeon E5-2670, with code optimized with the -O2 flag.

For implementations on GPUs, memory bandwidth and thread ability are two important

factors. For reverse mode, each thread has its own monomial to compute and thread ability

is not limited, but shared memory is not enough for the intermediate results of all threads,

and intermediate results need to be stored in the global memory and costs more global mem-

ory access. On the other hand, reverse mode can use shared memory to store intermediate

results and reduce global memory access. The disadvantage is that tree structure limits thread

computation in upper levels. On nth level, only (12)n of all threads are used.

To sum up, tree mode works better for lower precision like complex double, which is memory

bounded. For complex double-double and complex quad-double, which are more computation

intensive, reverse mode is more efficient. See Figure 18.
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Figure 18: Compare reverse mode and tree mode for a k-variable monomial

Reverse mode Tree mode

Multiplications 3k + C 3k + C

Global memory full access half access

Shared memory None k

Thread ability no limitation limited on upper levels

Usage complex double double,
complex quad double

complex double

2.3 Homotopy coefficient evaluations

For homotopy coefficient, we can evaluated in a single kernel. Preprocessing of coefficient

can reduce total computations.

2.3.1 Coefficient-parameter homotopy

h(x, t) = γ(1− t)kg(x) + tkf(x) = 0, t ∈ [0, 1] (2.6)

h(x, t) could be considered as a general polynomial function. But after expending t terms,

the number of monomials will be increased by k times. For this special polynomial system, we

can simplify this homotopy and save computation.

The parameters γ(1 − t)k and tk are constants for all monomials. Also, there are many

monomials with the same support in f and g, because gi shares the same Newton polytope

with fi. Like the following example(Gaussian quadrature formula 4),
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f1 = w1 + w2 − 1 g1 = (−0.38− 0.93I)w1 +(−0.06 + 0.99I)w2 +(−0.91− 0.42I)

f2 = w1x1 + w2x2 g2 = (−0.99− 0.08I)w1x1 +(−0.45 + 0.89I)w2x2

f3 = w1x
2
1 + w2x

2
2 − 2 g3 = (0.82 + 0.58I)w1x

2
1 +(0.94 + 0.33I)

f4 = w1x
3
1 + w2x

3
2 g4 = (−0.48 + 0.88I)w1x

3
1 +(−0.81 + 0.59I)w2x

3
2

By simplification, each equation has the following form:

hi =
∑

a∈Af∪Ag

(γ(1− t)kc(f)a + tkc
(g)
a )xa (2.7)

where c
(f)
a is the coefficient of monomial xa in f and c

(g)
a is that of g. Af is the support set

of f and Ag is the support set of g. After preprocessing coefficients, the number of monomials

of homotopy is the sum of all different monomials in f and g. γ(1− t)k and tk can be computed

first and then all coefficients can be evaluated in parallel.

2.3.2 Polyhedral homotopy

Give a group of polyhedral homotopies,

ĝi(x, t) =
∑
a∈Ai

c̄iat
θi(a)xa (2.8)

where θi(a) are generated decimal exponent and 2 of them are 0s for each equation.
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The coefficients of xa in ĝi(x, t) are the same for all i’s. Thus, we can evaluates the same a

of all i’s together. θi(a) are stored vertically to align data of the same a, so for the same a, we

can have more memory coalescing.

2.4 Multiple evaluations

To find all isolated solutions for a polynomial system, we need to track multiple solution

paths. During this process, we need to compute multiple evaluations of the same polynomial

system with different points of x(t)’s.

We can use similar strategies of the single evaluation: evaluate coefficients, evaluate mono-

mials and then add values of the monomial workspace to Jacobian matrix. In the last step of

the single evaluation, the summation of Jacobian matrix need random global memory access,

because the partial derivatives for the same variable are in different monomials. But for the

strategy of multiple evaluations, we can organize the workspace vertically to avoid random

global memory access.

Figure 19: Tranposition of multiple monomial workspaces at different points.

monomials in memory

path 0 a0a1a2 a1a2 a0a2 a1a2
path 1 b0b1b2 b1b2 b0b2 b1b2
path 2 c0c1c2 c1c2 c0c2 c1c2
· · · · · · · · · · · · · · ·

(a) Multiple horizontal workspaces

path 0 path 1 path 2 · · ·
a0a1a2 b0b1b2 c0c1c2 · · ·
a1a2 b1b2 c1c2 · · ·
a0a2 b0b2 c0c2 · · ·
a1a2 b1b2 c1c2 · · ·
(b) Multiple vertical workspaces

Note: the example consider x0x1x2 at the points (a0, a1, a2), (b0, b1, b2), (c0, c1, c2), . . ..
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Figure 20: The sequence of steps in evaluating one monomial and its derivatives for three paths

x1x2x3x4 and its four derivatives evaluated
path 0 path 1 path 2

0 a1 b1 c1
1 a1 ? a2 b1 ? b2 c1 ? c2
2 a1a2 ? a3 b1b2 ? b3 c1c2 ? c3
7 a1a2a3 ? a4 b1b2b3 ? b4 c1c2c3 ? c4
6 a1a2 ? a4 b1b2 ? b4 c1c2 ? c4
3 a3 ? a4 b3 ? b4 c3 ? c4
4 a1 ? a3a4 b1 ? b3b4 c1 ? c3c4
5 a2 ? a3a4 b2 ? b3b4 c2 ? c3c4

Note: three paths have different points (a1, a2, a3, a4), (b1, b2, b3, b4), and (c1, c2, c3, c4). Each
new multiplication is marked by a ?.

To sum the same element in Jacobian matrix, multiple evaluations follow the same instruc-

tions to access the same position of their own workspace. If the monomial workspaces join

horizontally like 20(a), we need to sum by column, which causes random memory access. But

if we can organize the workspaces vertically like 20(b), the same position of the workspaces are

aligned, and we can sum by rows, which creates memory coalescing.

To generate vertical monomial workspaces, we can make all threads of the same block to

evaluate one monomial of multiple paths. Reverse mode works directly, because all threads

read and write sequentially at the same step. Also, all threads in each block shared the same

instructions to evaluate monomials, which save the instruction reading time. An example of

multiple evaluations is displayed in Figure 20.
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Algorithm 3 Multiple polynomial evaluations on GPUs

1: procedure GPU PED Mult(Inst,W )
2: launch kernel Transpose Array(W.x array, W.x vertical, W.t array, W.t mult,
W.path idx, W.x t idx)

3: launch kernel PED Coef Mult(Inst.coef , W.t array, W.coef mult)
4: launch kernel PED Mon Mult(Inst.mon, W.coef mult, W.mon mult)
5: launch kernel PED Sum Mult(Inst.sum, W.mon mult, W.matrix vertical)
6: launch kernel Transpose Array(W.matrix vertical, W.matrix,W.path idx)
7: end procedure

Compared with the tree mode, this consecutive mode has more memory bandwidth. Al-

though monomial evaluation part has twice memory access than tree mode, summation has

more speedup due to consecutive memory. See Figure 21. Also, multiple threads in a single

block use the same instruction to avoid redundant reading. Thus, this consecutive mode is

more suitable for evaluation of multiple paths.

Figure 21: Memory bandwidth of 1,000 evaluations of the same polynomial system(GB/s)

name double double double quad double

Mon
cyclic10 190.41 124.78 25.70
nash8 206.68 143.30 27.62
pieri44 209.47 147.31 27.32

Sum
cyclic10 104.91 126.63 123.13
nash8 121.38 128.52 126.56
pieri44 87.26 80.41 77.56

Note: details of these polynomial systems are in Section 2.5.2



39

2.5 Computational Results

In this section we report timings and speedups. We implemented the path tracker with the

gcc compiler and version 6.5 of the CUDA Toolkit. Our NVIDIA Tesla K20C, which has 2496

cores with a clock speed of 706 MHz, is hosted by a Red Hat Enterprise Linux workstation

of Microway, with Intel Xeon E5-2670 processors at 2.6 GHz. Our code is compiled with the

optimization flag -O2. The settings also are also used in the tests in the other chapters.

2.5.1 Test Problems

We selected three examples of polynomial systems, which arose in different applications.

The examples can be formulated for any number of equations and variables. Below is a brief

description of each system:

2.5.1.1 Cyclic n-roots

Our first test problem is the cyclic n-roots problem, denoted by f(x) = 0, f = (f1, f2, . . . , fn),

with

f1 = x0 + x1 + · · ·+ xn−1,

f2 = x0x1 + x1x2 + · · ·+ xn−2xn−1 + xn−1x0,

fi =

n−1∑
j=0

j+i−1∏
k=j

xk mod n, i = 3, 4, . . . , n− 1,

fn = x0x1x2 · · ·xn−1 − 1.

(2.9)
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2.5.1.2 Pieri hypersurface problems

Our second class of test problems has its origin in the output pole placement problem in

the control of linear systems. We may view this problem as an inverse eigenvalue problem (34).

The polynomial equations arise from minor expansions on

det(A|X) = 0, A ∈ Cn×m, (2.10)

and where X is an n-by-p matrix (m+ p = n) of unknowns. For example, a 2-plane in complex

4-space (or equivalently, a line in projective 3-space) is represented as

X =



1 0

x2,1 1

x2,2 x3,2

0 x4,2


. (2.11)

To determine for the four unknowns in X we need four equations as in (Equation 2.10), which

via expansion results in four quadratic equations.

2.5.1.3 Nash equilibrium problems

In game theory, the Nash equilibrium is a solution concept of a competitive game involving

two or more players. The solutions of this system give all totally mixed Nash equilibria in a

game with n players, where each player has two pure strategies. See (16; 42; 51) for details.
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2.5.2 Running the single polynomial evaluation on GPUs

Cylic n-roots are the testing polynomial systems for reverse mode and tree mode. Cyclic-n

polynomial system has n equations, each equation has n monomials and each monomial has 1

to n variables. It is a common benchmark problem in computational algebraic geometry. We

evaluate cyclic n-roots of dimension 16 to 352 in multi-precision.

For double precision in Figure 22 (a), the tree mode achieves better speedup. The peak is

around dimension 128 and 256, because these dimensions are multiple times of the block size.

In the tree mode, the first level has less computation jobs if the number of variables is between

2n + 1 to 2n+1. See Figure 15.

As discussed in Section 2.2.3, tree mode works better for lower precision like complex double,

which is memory bounded. For complex double-double and complex quad-double, which are

more computation intensive, reverse mode is more efficient. See Figure 22.
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Figure 22: Speedup comparison of tree mode and reverse mode for cyclic n-roots
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(a) Complex double precision
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(b) Complex double double precision
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(c) Complex quad double precision
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TABLE I: Speedup for one evaluation and differentiation of cyclic n-roots in various precisions
and in various dimensions.

complex double complex double double complex quad double
n cpu gpu S cpu gpu S cpu gpu S

16 0.028 0.055 0.509 0.693 0.145 4.767 2.374 1.123 2.113
32 0.267 0.077 3.464 2.148 0.267 8.054 19.553 2.106 9.285
48 0.814 0.117 6.948 7.160 0.418 17.118 66.936 3.267 20.490
64 1.898 0.176 10.796 16.900 0.594 28.447 159.186 4.445 35.810
80 3.348 0.276 12.135 32.902 0.785 41.929 313.973 5.564 56.425
96 5.395 0.411 13.142 57.791 1.063 54.373 558.524 8.737 63.927

112 8.676 0.592 14.666 97.866 1.452 67.393 897.442 11.764 76.285
128 14.016 0.815 17.204 148.108 2.025 73.158 1340.249 16.869 79.451
144 21.681 1.151 18.842 209.462 2.718 77.072 1912.814 21.586 88.613
160 30.123 1.551 19.426 287.067 3.506 81.882 2630.132 28.587 92.003
176 39.663 2.032 19.520 383.578 4.607 83.266 3497.826 37.148 94.160
192 52.669 2.592 20.322 499.784 5.759 86.788 4545.077 46.797 97.123
208 66.725 3.257 20.484 637.110 7.304 87.232 5772.866 57.580 100.257
224 83.004 3.974 20.889 797.452 8.967 88.932 7206.397 70.608 102.062
240 102.646 4.828 21.261 980.851 10.884 90.122 8852.913 86.181 102.725
256 124.910 5.750 21.725 1191.949 13.033 91.460 10722.170 103.191 103.906
272 149.886 6.974 21.492 1431.843 15.552 92.070 12875.790 122.041 105.504
288 176.960 8.355 21.179 1700.141 18.411 92.342 15230.040 143.201 106.354
304 207.467 9.980 20.788 2000.403 21.584 92.681 17898.370 165.669 108.037
320 242.306 11.693 20.721 2326.944 25.036 92.943 20864.140 195.818 106.548
336 280.838 13.476 20.839 2693.531 28.808 93.500 24106.570 222.668 108.262
352 322.295 15.489 20.808 3091.023 33.141 93.268 27692.870 255.431 108.416

Note: The last column for each dimension and precision contains the speedup S. Timing in
milliseconds.
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Figure 23: Speedup for one evaluation and differentiation of cyclic n-roots in various precisions
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Dimension of cyclic-n polynomial systems, from 16 to 352
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2.5.3 Running multiple polynomial evaluations on GPUs

For testing multiple monomial evaluation, we choose polynomial systems of relative small

dimension, in order to prove that we can achieve good speedups as long as we compute many

PEDs for the same polynomial systems.

1. cyclic10: the cyclic 10-roots problem is a 10-dimensional system with 34,940 isolated

complex solutions. Except for the last equation (which has two terms), every polynomial

has 10 monomials. The k-th polynomial in this system is of degree k. These roots appear

in the study of complex Hadamard matrices (52).
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2. pieri44: there are 24,024 four dimensional planes that meet 16 four dimensional planes,

given in general position. This system is a 16-dimensional problem and can be interpreted

as a matrix completion problem (34), see also (30; 31). Every polynomial in the system

is of degree 4 and has 246 monomials.

3. nash8: the solutions of this system give all totally mixed Nash equilibria in a game with

8 players. For generic payoff matrices, this 8-dimensional system has 14,833 equilibria.

Every polynomial in this system has 130 monomials of degrees ranging from one till seven.

Table II, Table III and Table IV show the running times of CPU and GPU in multiple

precision. m is the number of Newton iterations to get convergent solutions. Figure 24 visualize

the speedups in these tables.
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Figure 24: Speedups for multiple evaluations and differentiations of three polynomial systems
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(a) cyclic 10-roots
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(b) Nash equilibrium system

10 20 50 100 150 200 250 300 500 750 1000 1250 1500 2000 3000
m evaluations and differentiations of pieri44, for m from 10 to 3000

0

20

40

60

80

100

120

sp
ee

du
ps

 a
re

 (t
im

e 
on

 o
ne

 C
PU

 c
or

e)
/(a

cc
el

er
at

ed
 ti

m
e)

double
double double
quad double

(c) hypersurface Pieri system

Note: All of them are computed in complex double, double double, and quad double arithmetic.
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TABLE II: Speedups for multiple evaluations and differentiations of the cyclic 10-roots problem.

complex double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 0.062 0.017 0.008 0.004 0.028 2.19
20 0.078 0.020 0.008 0.004 0.033 2.39
50 0.188 0.024 0.011 0.005 0.040 4.69

100 0.379 0.030 0.016 0.006 0.051 7.39
200 0.732 0.042 0.026 0.008 0.076 9.60
500 1.824 0.087 0.056 0.015 0.157 11.61

1000 3.748 0.155 0.101 0.026 0.282 13.30
2000 7.381 0.299 0.191 0.050 0.540 13.67
3000 11.148 0.459 0.284 0.082 0.826 13.50

complex double double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 0.587 0.066 0.011 0.011 0.088 6.65
20 1.135 0.066 0.012 0.011 0.089 12.79
50 2.808 0.072 0.017 0.012 0.101 27.90

100 5.598 0.092 0.028 0.017 0.137 40.81
200 11.225 0.145 0.043 0.025 0.213 52.64
500 27.912 0.263 0.092 0.052 0.408 68.47

1000 55.871 0.472 0.175 0.096 0.743 75.24
2000 112.040 0.917 0.338 0.183 1.438 77.92
3000 167.568 1.383 0.502 0.278 2.163 77.47

complex quad double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 5.572 0.632 0.042 0.072 0.705 7.91
20 11.129 0.622 0.043 0.073 0.738 15.07
50 27.769 0.633 0.054 0.075 0.762 36.44

100 55.566 0.931 0.080 0.130 1.141 48.70
200 111.027 1.438 0.120 0.224 1.782 62.29
500 277.978 2.486 0.257 0.436 3.178 87.46

1000 554.742 4.582 0.485 0.786 5.853 94.77
2000 1111.412 8.916 0.929 1.532 11.377 97.69
3000 1676.977 13.244 1.375 2.245 16.864 99.44

Note: timing in milliseconds
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TABLE III: Speedups for multiple evaluations and differentiations of the Nash equilibrium
system

complex double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 0.311 0.042 0.050 0.015 0.106 2.92
20 0.586 0.057 0.069 0.015 0.072 8.10
50 1.417 0.079 0.075 0.027 0.181 7.81

100 2.813 0.140 0.113 0.032 0.285 9.86
200 5.586 0.244 0.169 0.057 0.470 11.89
500 13.834 0.567 0.314 0.125 1.006 13.75

1000 27.509 1.111 0.608 0.254 1.973 13.94
2000 55.157 2.209 1.179 0.523 3.910 14.11
3000 82.710 3.303 1.742 0.877 5.922 13.97

complex double double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 4.345 0.195 0.116 0.050 0.361 12.03
20 8.664 0.201 0.125 0.056 0.382 22.66
50 21.587 0.226 0.141 0.062 0.429 50.26

100 43.239 0.411 0.219 0.120 0.750 57.68
200 86.489 0.762 0.321 0.215 1.297 66.67
500 216.220 1.623 0.598 0.491 2.712 79.74

1000 431.826 3.203 1.182 0.957 5.341 80.86
2000 864.464 6.361 2.299 1.936 10.596 81.58
3000 1301.577 9.517 3.420 2.984 15.922 81.75

complex quad double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 43.425 1.956 0.502 0.506 2.964 14.65
20 86.566 1.977 0.522 0.534 3.033 28.55
50 216.214 2.154 0.552 0.537 3.244 66.66

100 433.039 4.150 0.807 1.051 6.009 72.07
200 866.149 8.051 1.171 2.077 11.299 76.66
500 2161.734 16.866 1.938 4.182 22.986 94.05

1000 4327.603 33.228 3.852 8.173 45.253 95.63
2000 8652.404 68.903 7.380 16.727 93.010 93.03
3000 12977.386 100.940 10.799 24.771 136.510 95.07

Note: timing in milliseconds
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TABLE IV: Speedups for multiple evaluations and differentiations of the Pieri hypersurface
system

complex double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 1.129 0.137 0.138 0.049 0.324 3.48
20 2.127 0.168 0.156 0.050 0.373 5.70
50 5.223 0.239 0.208 0.097 0.544 9.60

100 10.226 0.447 0.306 0.113 0.866 11.80
200 20.239 0.794 0.475 0.206 1.475 13.72
500 50.778 1.890 1.113 0.471 3.474 14.62
750 75.665 2.895 1.589 0.729 5.213 14.51

1000 102.170 3.718 2.074 0.958 6.751 15.13
2000 201.537 7.425 4.064 2.003 13.492 14.94
3000 302.158 11.108 6.138 3.351 20.597 14.67

complex double double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 15.116 0.559 0.266 0.170 0.995 15.19
20 29.886 0.582 0.287 0.202 1.071 27.91
50 75.020 0.659 0.391 0.217 1.267 59.22

100 151.854 1.263 0.573 0.437 2.273 66.80
200 298.554 2.425 0.907 0.781 4.113 72.59
500 746.392 5.299 2.129 1.862 9.289 80.35

1000 1491.030 10.570 4.080 3.649 18.299 81.48
2000 2990.387 21.057 7.908 7.429 36.394 82.17
3000 4478.135 31.423 12.001 11.455 54.879 81.60

complex quad double arithmetic
CPU GPU

#evals total mon sum coeff total speedup

10 146.920 5.329 1.132 1.867 8.328 17.64
20 293.975 5.369 1.188 1.935 8.493 34.61
50 734.441 6.104 1.954 1.468 9.526 77.10

100 1470.332 12.760 2.123 3.895 18.778 78.30
200 2942.909 25.181 3.149 7.859 36.189 81.32
500 7346.943 58.511 6.909 15.901 81.321 90.35

1000 14697.217 113.970 13.027 31.309 158.306 92.84
1250 18394.761 134.100 16.487 38.865 189.452 97.09
1500 22045.021 177.920 19.023 48.569 245.512 89.79

Note: timing in milliseconds
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2.5.4 Conclusion

In this chapter, parallel algorithms are given to polynomial evaluation and differentiation

(PED) on GPUs. The problem is split into three parts: the evaluation of homotopy coefficients,

the evaluation and differentiation of monomials, and the summation to the Jacobian matrix.

For the single PED, the tree mode works better for lower precision like complex double,

which is memory bounded. For complex double-double and complex quad-double, which are

more computation intensive, reverse mode with aligned memory is more efficient.

Multiple PEDs can be computed simultaneously following the same instruction. The data

structure is reorganized vertically for all evaluations, so there is more memory coalescing in

monomial and summation kernels. With many PEDs, even for a small system like cylic-10, the

speedup is better than that of a single large dimension polynomial system.



CHAPTER 3

NEWTON’S METHOD ON GPUS

In this chapter, we design accelerated algorithms for solving large polynomial systems with

numerical methods, Newton’s method. The ideas are originally presented in our paper (58).

3.1 Overview

Newton’s method is a numerical method to solve nonlinear systems. Given a polynomial

system f(x), we begin with a start point x0 and find better approximations successively by:

xk+1 = xk − [f′(xk)]
−1f(xk), for k = 0, 1, . . . (3.1)

If x0 is close to a solution α and f′(x) 6= 0 near the solution, then the rate of convergence is

quadratic.

In Newton’s method, each iteration are two major steps:

1. evaluate and differentiate f(x),

2. solve the linear equations f′(xk)∆xk = f(xk)

then we update x by xk+1 = xk −∆xk. Repeat iterations until a sufficient accurate solution is

reached.

For the linear solver, we choose Modified Gram-Schmidt(MGS), because it can solve overde-

termined matrices like our applications in Section 4.3.

51
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3.2 Check the convergence of Newton iteration

Newton iterations are not always convergent, and the reasons of failures include arithmetic

precision limits more accurate approximation, xk is not in the convergent range, etc. To check

the status of convergence, residues ‖ f(xk) ‖ and correction size ‖ ∆xk ‖ can be used for each

Newton iteration. Some checking standards are listed in Figure 25.

Figure 25: Standards to check the convergence of Newton iterations

1. ‖ f(xk) ‖ and its ratio to ‖ xk ‖. If either of them is small enough, xk is sufficient accurate.

2. ‖ ∆xk ‖ and its ratio to ‖ xk ‖. If either of them is small enough, xk is sufficient accurate.

3. If ‖ f(xk) ‖>‖ f(xk−1) ‖, the updated approximation xk is divergent.

4. If ‖ ∆xk ‖>‖ ∆xk−1 ‖, it implies that Newton’s method is not convergent quadratically.
This could be used for more restrict convergence.

3.3 Design Newton’s method on GPUs

Newton’s method is sequential, and each iteration depends on the result of the last one.

After each iteration, the CPU host requests the control parameters from the GPU device. These

control parameters include ‖ f(xk) ‖, ‖ ∆xk ‖ and ‖ xk ‖. These control parameters are not

necessary to be extreme accurate, so double part is sufficient to represent for double double

and quad double. With communications of these 3 double variables between host and device,

the host can control the device kernel launches and finish Newton’s method. The host only
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costs O(n iteration) time much less than the device. We design GPU algorithms for Newton’s

method in different versions.

3.3.1 Newton’s method to find one solution

To find one solution of the polynomial system, we can pick a random point, typically form

a unit circle as the start point. Without any constrain, we allow points to walk through space

and fall into the convergent range of any solution. Thus, we can run many Newton iterations,

until standard 1 or 2 of Figure 25 is satisfied. See Algorithm 4.

Algorithm 4 Newton’s method for find one solution

1: procedure GPU Newton(Inst,W, P )
2: last max eq val← P.max eq val
3: for k = 1 to P.max iteration do
4: GPU PED(Inst,W )
5: launch kernel Max Array(W.eq val, max eq val)
6: copy max eq val from device to host
7: launch kernel Max Array(W.x, max x)
8: copy max x from device to host
9: if max eq val < P.tolerance or max eq val/max x < P.tolerance then
10: return success
11: end if
12: GPU MGS(W )
13: launch kernel Update x(W.x,W.∆x)
14: launch kernel Max Array(W.∆x, max ∆x)
15: copy max ∆x from device to host
16: if max ∆x < P.tolerance or max ∆x/max x < P.tolerance then
17: return success
18: end if
19: last max eq val← max eq val
20: end for
21: return fail
22: end procedure
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3.3.2 Newton’s method for path tracking

To track a solution path, we avoid jumping from one solution path to others, so we limit

number of Newton’s iteration (3 for double) and use 3 to check each iteration, until 1 or 2 is

satisfied. See Algorithm 5.

Algorithm 5 An accelerated Newton’s method in path tracking

1: procedure GPU Newton Path(Inst,W, P )
2: last max eq val← P.max eq val
3: for k = 1 to P.max iteration do
4: GPU PED(Inst,W )
5: launch kernel Max Array(W.eq val, max eq val)
6: copy max eq val from device to host
7: if max eq val > last max eq val then
8: return fail
9: end if
10: launch kernel Max Array(W.x, max x)
11: copy max x from device to host
12: if max eq val < P.tolerance or max eq val/max x < P.tolerance then
13: return success
14: end if
15: GPU MGS(W )
16: launch kernel Update x(W.x,W.∆x)
17: launch kernel Max Array(W.∆x, max ∆x)
18: copy max ∆x from device to host
19: if max ∆x < P.tolerance or max ∆x/max x < P.tolerance then
20: return success
21: end if
22: last max eq val← max eq val
23: end for
24: return fail
25: end procedure
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3.3.3 Newton’s method for refining the solution

To refine a solution, we want the result to be as accurate as possible. To increase its

accuracy, we run more iterations (5 for double), until 3 is not satisfied any more. Then we

choose the point before the last correction xk−1 , which has minimal residue ‖ f(xk−1) ‖. See

Algorithm 6.

Algorithm 6 An accelerated Newton’s method for refinement

1: procedure GPU Newton Refine(Inst,W, P )
2: GPU PED(Inst,W )
3: launch kernel Max Array(W.eq val, max eq val)
4: copy max eq val from device to host
5: last max eq val← P.max eq val
6: for k = 1 to P.max iteration do
7: GPU MGS(W )
8: swap the pointers of W.last x and W.x
9: launch kernel Update New x(W.x, W.last x,W.∆x)
10: last max eq val← max eq val
11: GPU PED(Inst,W )
12: launch kernel Max Array(W.eq val, max eq val)
13: copy max eq val from device to host
14: if max eq val > last max eq val then
15: swap the pointers of W.last x and W.x
16: max eq val = last max eq val
17: break
18: end if
19: end for
20: launch kernel Max Array(W.∆x, max ∆x)
21: copy max ∆x from device to host
22: return max eq val, max ∆x
23: end procedure
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3.4 Computational Results

In this section we report timings and speedups.

3.4.1 The Chandrasekhar H-Equation

The system arises from the discretization of an integral equation. The problem was treated

with Newton’s method in (33). In (21), the system was studied with methods in computer

algebra. We follow the formulation in (21):

fi(H1, H2, . . . ,Hn)

= 2nHi − cHi

n−1∑
j=0

i

i+ j
Hj

− 2n = 0,
(3.2)

for i = 1, 2, . . . , n, and for some constant c, 0 < c ≤ 1. As the evaluation and differentiation

cost is linear in n, the cost of Newton’s method is dominated by the cost for solving the linear

system, which is O(n3).

For all c, there is one real solution with all its components positive and relatively close to 1.

Starting at Hi = 1 for all i leads to a quadratically convergent Newton’s method. The value

for the parameter c we used in our experiments is 33/64.

Table V shows the running times obtained with the command time. Comparing absolute

real wall clock times: when we double the dimensions from 2048 to 4096, the accelerated versions

of the code run twice as fast, 20 minutes versus 42 minutes without acceleration. As the cost of

evaluation and differentiation grows only linearly in n, the cost of the linear solving dominates
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and as the dimension grows, the difference in speedups between the two accelerated versions

fades out.

TABLE V: Running six iterations of Newton’s method in complex double double arithmetic

n mode real user sys speedup

1024 CPU 5m22.360s 5m21.680s 0.139s
GPU1 24.074s 18.667s 5.203s 13.39
GPU2 20.083s 11.564s 8.268s 16.05

2048 CPU 42m41.597s 42m37.236s 0.302s
GPU1 2m45.084s 1m48.502s 56.175s 15.52
GPU2 2m29.770s 1m26.373s 1m03.014s 17.10

3072 CPU 144m13.978s 144m00.880s 0.216s
GPU1 8m50.933s 5m34.427s 3m15.608s 16.30
GPU2 8m15.565s 4m43.333s 3m31.362s 17.46

4096 CPU 340m00.724s 339m27.019s 0.929s
GPU1 20m26.989s 13m39.416s 6m45.799s 16.63
GPU2 19m24.243s 11m01.558s 8m20.698s 17.52

Note: it runs by one core on the CPU and accelerated by the K20C with block size equal to
128, once with the evaluation and differentiation done by the CPU (GPU1) and once with all
computations on the GPU (GPU2).

3.4.2 Running one Newton’s method of cyclic n-roots

Cylic n-roots in Section 2.5.1.1 are another testing polynomial systems. The dimension n

goes from 16 to 352. Table VI shows the running times of CPU and GPU in multiple precision.

m is the number of Newton iterations to get convergent solutions. Figure 26 visualize the
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speedups in Table VI. As the cost of PED and MGS both grow in O(n3), we have similar

speedups as that of PED in Section 2.5.2 .

Figure 26: Running one Newton’s method for cyclic n-roots in various precisions and in various
dimensions.
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3.4.3 Conclusion

In this chapter, we design accelerated algorithms for Newton’s method. For each Newton

iteration, we combined two computational intensive steps, PED and MGS, on GPUs. After

each iteration, the CPU host control the GPU device by the 3 double control parameters from

the device. Both speed up and quality up are achieved with acceleration on GPUs.
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TABLE VI: Running one Newton’s method for cyclic n-roots in various precisions and in various
dimensions.

complex double complex double double complex quad double
n m cpu gpu S m cpu gpu S m cpu gpu S

16 3 0.15 1.55 0.10 5 2.82 4.72 0.60 6 31.24 38.38 0.81
32 3 0.92 2.61 0.35 4 17.35 7.21 2.41 5 204.99 64.75 3.17
48 3 3.25 3.88 0.84 5 70.76 13.86 5.11 7 935.22 137.30 6.81
64 3 7.32 5.22 1.40 5 166.78 19.25 8.66 6 1909.63 163.68 11.67
80 3 13.26 7.03 1.88 4 235.26 19.89 11.83 5 3161.74 182.92 17.28
96 3 22.08 9.00 2.45 4 466.89 26.69 17.50 5 5553.42 240.86 23.06

112 3 35.57 11.19 3.18 5 935.46 41.10 22.76 6 10448.05 367.23 28.45
128 3 58.08 13.67 4.25 4 1155.56 41.44 27.88 5 13220.62 391.49 33.77
144 3 89.05 17.32 5.14 4 1643.32 64.93 25.31 5 18825.85 500.48 37.62
160 3 123.51 20.98 5.89 5 2735.92 95.10 28.77 6 30476.23 738.58 41.26
176 3 165.06 25.21 6.55 5 3270.80 106.84 30.61 6 40562.41 910.85 44.53
192 3 214.94 29.72 7.23 5 4738.31 129.74 36.52 7 60654.46 1272.72 47.66
208 3 273.44 35.25 7.76 4 4960.92 128.33 38.66 5 56610.35 1106.07 51.18
224 3 342.81 40.97 8.37 5 7562.59 183.10 41.30 6 83375.63 1554.22 53.64
240 3 421.82 47.47 8.89 4 7640.55 170.55 44.80 5 86844.43 1539.55 56.41
256 3 514.06 54.23 9.48 5 11265.36 238.63 47.21 6 124071.40 2126.90 58.33
272 3 611.70 69.47 8.81 4 11064.50 231.06 47.89 5 126159.60 2077.61 60.72
288 3 725.22 78.79 9.20 5 16070.59 322.71 49.80 6 176611.80 2846.56 62.04
304 3 851.21 90.06 9.45 5 18808.85 361.37 52.05 7 220810.90 3591.97 61.47
320 3 993.82 100.86 9.85 5 21971.36 402.82 54.54 7 278637.30 4296.27 64.86
336 3 1148.51 114.11 10.07 5 22784.08 439.82 51.80 6 279560.70 4185.93 66.79
352 3 1319.96 126.62 10.42 4 24002.53 422.99 56.74 5 272289.00 4000.33 68.07

Note: The number of Newton iterations equals m. The last column for each dimension and
precision contains the speedup S. Timing in milliseconds.



CHAPTER 4

SINGLE PATH TRACKING ON GPUS

Path tracking is a numerical compute-intensive method. Tracking one single path is se-

quential. It might take hundreds of steps of prediction and correction. In this section, we first

develop the predictor on GPU. Then, we join the predictor and the corrector in Section 3.3.2

as a single path tracker on GPU. The ideas in this chapter are presented in our paper (59).

4.1 Predictor

The predictor uses previous points to generate an estimated point that is close enough to

the solution path. Because the solution path x(t) is continuous, we can predict by interpolation.

For the solution path of any variable x(t), we use previous p points {x(t0), x(t1), . . . , x(tp−1)}

to predict the new point x̃(t). By the Newton polynomial,

x̃(t) =x(t0) + x(t0, t1)(t− t0) + x(t0, t1, t2)(t− t0)(t− t1)

+ · · ·+ x(t0, t1, . . . , tp−1)(t− t0)(t− t1) · · · (t− tp−2)

where x(ti, t1, . . . , tj) are divided differences, computed recursively by

x(ti, ti+1, . . . , tj) =
x(ti, ti+1, . . . , tj)− x(ti+1, . . . , tj)

ti − tj

To compute all divided differences efficiently, we use the following table:

60
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t0 x(t0)

t1 x(t1) x(t0, t1)

t2 x(t2) x(t1, t2) x(t0, t1, t2)

t3 x(t3) x(t2, t3) x(t1, t2, t3) x(t0, t1, t2, t3)

...
...

...
...

...
. . .

The diagonal is the divided differences we need and intermediate results can be overwritten.

Thus, we compute column by column from left to the right, and each column is computed

from bottom to the top. During this process, each new element is computed by its left and

its upper left elements, and after computation, its left element is not used any more. Thus,

the new element can overwrite its left element. So the total space is p to compute the divided

differences for each variable.

Then, the new point value can be computed by Horner’s method:

x̃(t) =x(t0) + (t− t0)(x(t0, t1) + (t− t1)(x(t0, t1, t2) + · · ·+ (t− tp−2)x(t0, t1, . . . , tp−1)) · · · )

For GPU implementation, each thread can handle one variable following the same instruc-

tion. Within a block, all threads share the ts’ values of {t0, t1, . . . , tp−1}, and they can be

preloaded into shared memory. Also, he differences of t, {t − t0, t − t1, . . . , t − tp−2} and

{ti− tj}0≤i<j≤p−1, can be precomputed in shared memory, too. Although the size of the second

part is p(p+ 1)/2, in our real applications, p is from 2 to 5 and the second part does not take

too much shared memory.
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Previous points on a solution path and ts are stored in global memory. Suppose p is numbers

of previous points used by the predictor, the total space is (p+ 1)dim. For each step, the new

point overwrite the first one of the array of the previous points to reuse the space. In this case,

an alternative pointer is used to identify the newest point.

4.2 Single path tracking on GPUs

Single path tracking is a sequential algorithm to follow the solution path from the start

solution to the target solution. For each step in path tracking, it consists of a predictor, a

corrector and a step controller.

1. Predictor: Each variable has an independent interpolation. O(dim ∗ n predict2)

2. Corrector: Newton’s method, each Newton’s iteration consists of the following:

(a) Polynomial evaluation and differentiation. Depends on systems, cyclic-n: O(dim3)

(b) Linear solver by Modified Gram-Schmidt. O(dim3)

(c) Convergence check

i. Evaluate ‖ f(xk) ‖, ‖ ∆xk ‖ and ‖ xk ‖. O(dim)

ii. Compare with error tolerance or last step. O(1)

3. Step controller: If correct is fail, decrease ∆t. If success, increase t by ∆t, until t = 1. If

success several steps, increase ∆t before adding to t. O(1)

From complexity analysis, predictor (1), polynomial evaluation and differentiation (2.(a))

and Modified Gram-Schmidt (2.(b)) are compute-intensive parts can be run on GPUs device.
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Also, the evaluation part of convergence check (2.(c).i) can be done on GPUs device. For

O(1) part, the step controller and comparison part of convergence check (2.(c).ii). In the step

controller, t and ∆t are controlled by the host, and t is sent from host to device. In this

way, CPU host controls GPU device kernels’ launch, according to the minimum communication

(O(1)) with GPU device.

4.3 Computational Results

In this section we report timings and speedups.

4.3.1 Test Problems

We choose two classes of benchmark polynomial systems that can be formulated for any

dimension. In the first problem, we bootstrap from a linear system into a gradually higher di-

mensional and higher degree problem. Monodromy is applied in the second benchmark problem

and the homotopies connect polynomial systems of the same complexity.

4.3.1.1 Monodromy on cyclic n-roots

Cyclic n-roots is first introduced in Section 2.5.1.1. Backelin’s Lemma (6) states that this

system has a solution set of dimension m−1 for n = `m2, where ` is no multiple of k2, for k ≥ 2.

The system benchmarks polynomial solvers, see (15; 18; 47). In (3; 1) we derived an explicit

parameter representation for those positive dimensional cyclic n-roots solution sets. To compute

the degree of the sets, we add as many linear equations L (with random complex coefficients) as
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Algorithm 7 Accelerated tracking of one single path

1: procedure GPU Newton Refine(Inst,W, P )
2: t← 0,
3: ∆t← P.max∆t
4: #successes← 0
5: #steps← 0
6: while t < 1 do
7: if #steps > P.max#steps then
8: return fail
9: end if
10: t = min(1, t+ ∆t)
11: copy t from host to GPU
12: launch kernel predict(W.x array, W.t array, W.x t idx)
13: newton success = GPU Newton Path(Inst,W ,P )
14: if newton success then
15: Update array index W.x t idx
16: Update pointer of W.x in W.x array, W.t in W.t array
17: #successes = #successes + 1
18: if #successes > 2 then
19: ∆t = min(∆t ∗ P.step increase, P.max∆t)
20: end if
21: else
22: #successes = 0
23: ∆t = ∆t ∗ P.step decrease
24: if ∆t < P.min ∆t then
25: return fail
26: end if
27: end if
28: #steps = #steps+ 1
29: end while
30: return success
31: end procedure
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Figure 27: Visualization of monodromy on cyclic 4-roots
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x-rea
l

−0.6
−0.4

−0.2
0.0

0.2
0.4

x-imag

0.0
0.5

1.0
1.5

t

0.0

0.2

0.4

0.6

0.8

1.0

(h) Path 8

Note: cyclic 4-roots has two solution sets of degree 2. Each subfigure adds a new path. Corrected
points on path are marked by a star and the target point is circled.
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the dimension of the set and count the number of solutions of the system f(x) = 0, augmented

with L: 
f(x) = 0

L(x) = 0.

(4.1)

The explicit representation of the cyclic n-roots solution sets allows for a quick calculation of

the degrees, displayed in Table VII. From (2; 1, Proposition 4.2), we have that the degree d = m

for n = m2 and this result extends for n = `m2.

TABLE VII: Degrees d of the cyclic n-roots solution sets.

n 16 32 48 64 80 96 128 144 160 176

d 4 4 4 8 4 4 8 12 4 4

n 192 208 240 256 272 288 304 320 336 352

d 8 4 4 16 4 12 4 8 4 4

Observe that many solution sets in Table VII have degree four. A fourth-order predictor will give

accurate predictions on a surface of degree four. Therefore, the numerically harder problems

are those dimensions for which the degree of the solution set is larger than four. For cyclic

64-roots double precision is no longer sufficient.



67

As done in PHCpack (48), with monodromy, the degree is computed numerically, using a

sequence of homotopies:

hα(x, t) =


f(x) = 0

α(1− t)L(x) + tK(x) = 0

(4.2)

hβ(x, t) =


f(x) = 0

β(1− t)K(x) + tL(x) = 0

(4.3)

where K(x) = 0 is as L(x) = 0 another set of linear equations with random coefficients and

where α and β are different random complex constants. One loop consists in tracking one path

defined by hα(x, t) = 0 and hβ(x, t) = 0. In both cases t goes from 0 to 1. See Figure 27.

After sufficiently many loops, each time for different values of the random constants α

and β, we will find as many different solutions of the system (Equation 4.1) as the degree of

the solution set, as in Table VII.

4.3.1.2 Matrix completion with Pieri homotopies

Pieri hypersurface problem is first introduced in Section 2.5.1.2. In the application of Pieri

homotopy algorithm (30; 31; 50), we consider matrices X:



1 0

0 1

0 x3,2

0 0


,



1 0

0 1

0 x3,2

0 x4,2


,



1 0

x2,1 1

0 x3,2

0 x4,2


,



1 0

x2,1 1

x2,2 x3,2

0 x4,2


, (4.4)



68

and then ends in the matrix X of (Equation 2.11). Each matrix in the sequence introduces one

new variable and the homotopy starts at a solution of the previous homotopy, extended with a

zero value for the new variable, each time a new matrix A is introduced.

Using a superscript to index a sequence of matrices, A(i) ∈ Cn×m, i = 1, 2, . . . , k, Pieri

homotopies are defined as

h(x, t) =


det(A(i)|X) = 0, i = 1, 2, . . . , k − 1,

det(tA(k) + (1− t)SX |X) = 0,

(4.5)

where SX is a special matrix which ensures that for t = 0, we have start solutions by setting the

bottommost variables of X to zero. Because of the similarities in the monomial structure, for

this fully determined type of Pieri homotopy we may consider as last equation in the homotopy

t det(A(k)|X) + (1− t) det(SX |X) = 0. (4.6)

In the sequence of homotopies, the index k runs from 1 to m × p. Because in our setup, we

track one single path, we may start at k = m− 1, which corresponds to a linear system as only

the last column of X contains variables. As k increases, the polynomial homotopy becomes

more and more nonlinear. In the last stages of the homotopy, for p = 3, the cost of evaluation

via the minor expansions becomes cubic in n. As the cost of evaluation and differentiation

becomes dominant, the most important factor lies in the summation of the many terms in

every polynomial.
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4.3.2 Running Pieri homotopies

Table VIII and Table IX summarize the execution of two sequences of Pieri homotopies,

Table VIII is the first instance for dimensions n ranging from 32 and 96. Table IX is the second

instance for dimensions n ranging from 32 and 103. For each path, we list the number m of

predictor-corrector stages, as we use the same step length control strategy.

Figure 28: The speedups of two sequences of pieri homotopies.
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TABLE VIII: Running the first instance of Pieri homotopies in complex double double arith-
metic, from dimensions 32 to 96.

n m cpu gpu S n m cpu gpu S

32 25 0.05 0.05 1.1 65 63 5.6 0.7 8.0
33 150 0.70 0.55 1.3 66 187 25.3 2.4 10.7
34 65 0.44 0.30 1.5 67 98 17.4 1.3 13.1
35 101 0.84 0.49 1.7 68 239 50.0 3.2 15.8
36 36 0.40 0.21 1.9 69 244 68.0 3.7 18.4
37 10 0.13 0.06 2.1 70 118 40.4 2.0 20.1
38 37 0.56 0.25 2.3 71 41 17.0 0.8 21.9
39 24 0.44 0.18 2.4 72 89 41.8 1.8 23.2
40 19 0.39 0.15 2.6 73 99 44.2 1.8 24.6
41 52 1.12 0.41 2.7 74 85 41.9 1.7 25.0
42 66 1.38 0.48 2.9 75 89 50.3 1.9 26.0
43 72 1.67 0.55 3.0 76 246 136.0 4.6 29.8
44 23 0.61 0.19 3.2 77 100 53.3 1.9 27.7
45 16 0.45 0.13 3.4 78 81 45.7 1.6 28.2
46 25 0.74 0.21 3.5 79 272 210.0 6.2 34.0
47 27 0.90 0.24 3.7 80 226 158.0 5.5 28.7
48 53 1.69 0.45 3.8 81 50 39.0 1.3 29.4
49 32 1.05 0.27 3.9 82 116 91.2 3.1 29.1
50 108 3.77 0.94 4.0 83 136 107.2 3.6 29.5
51 48 1.67 0.41 4.1 84 69 59.2 2.0 29.6
52 79 2.97 0.71 4.2 85 248 206.5 6.9 30.1
53 53 2.06 0.47 4.4 86 181 166.5 5.3 31.2
54 91 3.37 0.75 4.5 87 32 31.1 1.0 30.5
55 18 0.90 0.19 4.6 88 36 37.3 1.2 30.2
56 28 1.37 0.29 4.7 89 94 113.7 3.2 36.0
57 45 2.01 0.42 4.7 90 73 75.7 2.5 29.9
58 34 1.69 0.35 4.8 91 66 68.4 2.3 30.1
59 29 1.41 0.28 5.0 92 90 98.0 3.2 30.3
60 111 5.70 1.13 5.1 93 102 112.6 3.7 30.3
61 67 3.77 0.74 5.1 94 41 40.2 1.3 30.4
62 42 2.40 0.46 5.3 95 53 61.4 1.8 34.4
63 85 4.85 0.91 5.3 96 64 67.2 2.2 30.8
64 63 3.36 0.62 5.4

Note: timing in seconds. The last column for each dimension contains the speedup S.
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TABLE IX: Running the second instance of Pieri homotopies in complex double double arith-
metic, from dimensions 32 to 103.

n m cpu gpu S n m cpu gpu S

32 16 0.03 0.03 1.1 68 51 11.3 0.7 15.6
33 68 0.38 0.30 1.3 69 60 17.9 1.0 18.2
34 21 0.16 0.10 1.5 70 22 7.7 0.4 21.1
35 19 0.20 0.11 1.7 71 156 62.0 2.8 22.1
36 18 0.20 0.11 1.9 72 39 19.4 0.8 23.4
37 34 0.44 0.21 2.1 73 49 26.9 1.1 24.2
38 32 0.44 0.19 2.3 74 98 56.7 2.3 24.6
39 41 0.65 0.26 2.5 75 74 43.6 1.7 25.9
40 12 0.25 0.09 2.6 76 63 38.8 1.5 26.4
41 17 0.36 0.13 2.9 77 37 27.1 1.0 27.0
42 29 0.65 0.23 2.9 78 95 67.9 2.5 27.6
43 66 1.47 0.48 3.1 79 112 76.6 2.8 27.7
44 10 0.28 0.08 3.2 80 157 115.0 4.0 28.8
45 46 1.30 0.39 3.4 81 321 265.2 7.6 35.0
46 31 0.85 0.24 3.5 82 63 47.9 1.6 29.6
47 51 1.60 0.44 3.6 83 42 33.3 1.1 29.9
48 16 0.54 0.14 3.8 84 19 17.3 0.6 30.0
49 16 0.58 0.15 3.9 85 224 188.1 6.2 30.2
50 24 0.91 0.23 3.9 86 159 147.9 4.3 34.1
51 62 2.31 0.56 4.1 87 252 199.4 6.4 31.0
52 40 1.52 0.36 4.3 88 574 431.2 13.3 32.4
53 46 2.09 0.49 4.2 89 213 171.3 5.5 30.9
54 33 1.62 0.37 4.4 90 137 129.9 3.6 35.9
55 79 3.84 0.86 4.5 91 187 157.8 5.0 31.7
56 36 1.71 0.36 4.7 92 250 219.8 6.1 36.2
57 42 2.23 0.48 4.6 93 847 646.1 19.3 33.4
58 29 1.58 0.33 4.8 94 199 169.1 4.9 34.6
59 37 1.98 0.40 4.9 95 108 96.1 3.1 31.0
60 16 0.95 0.19 5.0 96 190 230.8 6.2 37.1
61 37 2.10 0.41 5.2 97 161 305.3 6.7 45.8
62 50 2.97 0.57 5.2 98 76 264.7 4.4 60.5
63 34 1.95 0.36 5.4 99 75 322.6 5.5 58.7
64 75 4.54 0.84 5.4 100 242 1367.2 23.0 59.4
65 83 7.93 0.96 8.3 101 809 4655.7 70.7 65.9
66 195 27.20 2.56 10.6 102 1016 5231.7 75.6 69.2
67 154 26.43 2.07 12.8 103 375 2923.2 44.0 66.5

Note: timing in seconds. The last column for each dimension contains the speedup S.
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Because the fluctuations in the number of predictor-corrector steps along a path can vary

by a factor as large as five, the single digit speedups obtained by acceleration in low dimensions

is often in the same range as the factor in the fluctuations of the timings. While fluctuations

in larger dimensions remain of the same order, the double digit speedups make that with

acceleration we may increase the dimension, compare for example the lines for n = 63 and

n = 96 in Table VIII and still be faster: 2.2 seconds versus 4.85 seconds.

Double digit speedups arise after dimension 65. After dimension 97, the speedup then

almost doubles, see Figure 28.

4.3.3 Running one path of cyclic n-roots

Table X summarizes the computational results from running one path on a homotopy to

apply the monodromy on the cyclic n-roots problem. The first case where double precision

does not suffice is in dimension n = 64, but the path can then be tracked successfully in double

double precision. For n = 144, both double and double double precision are insufficient and

quad double precision is needed.

The difficulties could be explained by the higher degree of the solution set. Cyclic 256-roots

remains a challenge. The double digit speedups obtained by acceleration implies that we can

offset the cost of one extra level of higher precision.

The data in Table X for complex double and complex double double precision is visualized

in Figure 29. Concerning the data in Table X, let us compare the accelerated times in double

double precision to the times on one CPU core in double precision. For the last line, observe

that it takes 93.89 seconds to track one path in double precision without acceleration. With
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TABLE X: Running one path of cyclic n-roots in various precisions and in various dimensions.

complex double complex double double complex quad double
n m cpu gpu S m cpu gpu S m cpu gpu S

16 32 0.00 0.03 0.14 20 0.04 0.06 0.65 20 0.48 0.52 0.92
32 100 0.06 0.16 0.35 79 1.03 0.41 2.53 79 12.66 3.62 3.50
48 103 0.17 0.24 0.72 78 3.23 0.61 5.29 78 39.46 5.39 7.32
64 0 225 22.94 2.57 8.92 181 229.99 17.93 12.83
80 99 0.73 0.42 1.74 75 14.96 1.15 13.01 75 180.37 10.13 17.81
96 95 1.23 0.52 2.36 69 23.17 1.34 17.26 69 289.38 12.64 22.90

112 171 3.42 1.17 2.92 121 68.07 2.98 22.86 121 813.91 28.36 28.70
128 162 5.66 1.47 3.85 123 102.94 3.88 26.54 123 1253.82 37.75 33.21
144 0 0 1074 15898.67 479.18 33.18
160 68 4.84 0.87 5.53 49 83.11 2.84 29.31 49 998.43 23.96 41.67
176 160 15.65 2.52 6.21 118 259.80 8.06 32.24 118 3179.81 70.58 45.05
192 0 150 419.16 13.03 32.16 143 5054.70 105.69 47.83
208 231 39.51 5.22 7.57 168 628.46 16.33 38.48 168 7529.02 147.09 51.19
224 96 19.39 2.46 7.88 71 319.27 7.88 40.54 71 3925.33 73.76 53.22
240 140 34.04 4.04 8.42 96 531.01 12.49 42.50 96 6714.01 119.86 56.01
256 0 0 0
272 160 58.19 7.19 8.09 118 914.24 19.12 47.82 118 10829.36 183.12 59.14
288 0 0 0
304 142 81.04 8.05 10.07 103 1176.29 22.87 51.44 103 13992.60 226.78 61.70
320 0 0 0
336 157 105.30 11.12 9.47 114 1772.97 33.26 53.31 114 20807.27 327.25 63.58
352 121 93.89 9.78 9.60 90 1621.15 28.75 56.39 90 18881.13 290.36 65.03

Note: Data in the column under the header m indicates the number of predictor-corrector
steps. If the path fails, m = 0. The last column for each dimension and precision contains the
speedup S. Timing in seconds.
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Figure 29: Running one path of cyclic n-roots in various precisions and in various dimensions.
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acceleration tracking one path in double double precision takes 28.75 seconds, so we can double

the precision and still be three times faster than in double precision without acceleration.

Speedups computed in Table X are shown in Figure 29. We see that in double double precision,

the speedups rise faster as the dimension increases than in double precision.

4.3.4 Conclusion

With many sequential steps of predictions and corrections, the CPU host controls the GPU

device by the minimum feedback. Both speed up and quality up are achieved by the GPU’s

acceleration. Further work includes automatic determination of the required level of precision

and the multi-precision path tracking.



CHAPTER 5

MULTIPLE PATH TRACKING ON GPUS

To find all isolated solutions, we need to track multiple solutions paths. Given a polynomial

system with multiple start solutions xi(0), all paths xi(t) are tracked independently to the

target solutions xi(1).

With Single instruction, multiple thread (SIMT) model, we want GPU device to track

multiple paths. The challenge is that paths need different number of steps, and also, correctors

of paths need different number of Newton’s iterations. Thus, we need a unified pattern to

combine all paths, in order to build a SIMT model. The ideas in this chapter are presented in

our paper (60).

5.1 SIMT multiple Path Tracking

From analysis in Section 4.2, the path tracking has three basic compute-intensive parts, pre-

dictor, polynomial evaluation and differentiation (PED) and Modified Gram-Schmidt (MGS).

First, we synchronize all paths to work on the same parts like 31(a).

For each stage, each job is associated with its path idx. The number total of jobs N Job in-

dicates grid sizes for GPU kernels, so GPU threads locate their own jobs by path idx. See 31(b).

The number of jobs N job and the array of path idx can be generated in parallel on GPUs.

After each stage, there is a check kernel to determine the status of all paths. There are three

status in Newton’s method: 0 is to continue, −1 is for failure or 1 is for success. Then all

75
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Figure 30: Simplified SIMT of one predictor-corrector step on three paths.

Path0 Path1 Path2

Predict Predict Predict

PED PED PED
MGS MGS MGS

PED PED
MGS MGS

PED
MGS

=⇒

(a) Unified pattern

Job 0 Job 1 Job 2 N Job

predict 0 predict 1 predict 2 3

PED 0 PED 1 PED 2 3
MGS 0 MGS 1 MGS 2 3

PED 0 PED 2 2
MGS 0 MGS 2 2

PED 2 1
MGS 2 1

(b) Unified pattern with job indices

Note: The first path needs two Newton’s iterations, the second path needs only one, and the
third path needs three.

Figure 31: Generated the job array of path idx from current iteration status for the next stage

path0 path1 path2 path3 path4 · · ·
path status 0 1 0 −1 0 · · ·
scan for 0 1 1 2 2 3 · · ·
job idx+ 1 1 2 3 · · ·
path idx 0 2 4 · · ·

paths with status 0’s are counted by a parallel scan(prefix sum). In the scan array, element of

path idx with status 0’s is job idx + 1. Thus, we can generate the array of path idx for the

next stage. The last element of the scan array is the number of jobs N job. See Figure 31.
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5.2 Newton’s method for multiple path tracking on GPUs

Based on SIMT, we generalize the Algorithm 5 in Section 3.3.2 for multiple paths. ‖ f(xk) ‖

and its ratio to ‖ xk ‖, ‖ f(xk) ‖>‖ f(xk−1) ‖ are the standards to check the convergence of one

Newton iteration. When we track one single path, these standards are checked by the host. For

multiple paths, all paths has theirs own conditions, with O(n path) complexity, Thus we check

them on the device and generate the array of path idx, in order to minimize communication

between host and device. After each check point, only one integer n path is copied from device.

Algorithm 8 An accelerated Newton’s method for tracking multiple paths

1: procedure GPU Newton Path Mult(Inst,W, P )
2: for k from 1 to P.max iteration do
3: GPU PED Mult(Inst,W )
4: launch kernel Max Array Mult(W.matrix vertical, W.max eq val)
5: launch kernel Max Array Mult(W.x vertical, W.max x)
6: launch kernel Check PED(W.max eq val, W.max x, W.Newton Success)
7: launch kernel Check Path Idx(W.success, W.n success, W.path idx, W.n path)
8: copy n path from device to host
9: if n path = 0 then
10: break
11: end if
12: GPU MGS Mult(W )
13: launch kernel Max Array Mult(W.∆x, W.max ∆x)
14: launch kernel Update x Mult(W.x,W.∆x)
15: launch kernel Check MGS(W.max ∆x, W.max x, W.Newton Success)
16: launch kernel Check Path Idx(W.success, W.n success, W.path idx, W.n path)
17: copy n path from device to host
18: if n path = 0 then
19: break
20: end if
21: end for
22: end procedure
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5.3 Multiple path tracking on GPUs

Similar like Newton’s method, we generalize Algorithm7 in Section 4.2 for multiple paths.

When we track one single path, the step size control can be performed by the host. When

tracking many solution paths, every solution path has its own continuation parameter t and

step size ∆t, with O(n path) complexity. To minimize communication between CPU and GPU,

the step size control is executed on the device. After each check point, only one integer n path

is copied from device.

Algorithm 9 Accelerated tracking of multiple paths

1: procedure GPU Newton Path Mult(Inst,W, P )
2: launch kernel Path Init(W.x array, W.t array)
3: while true do
4: launch kernel predict Mult(W.x array, W.t array)
5: GPU Newton Mult(Inst,W ,P )
6: launch kernel Step Control(W.t, W.∆t, W.success, W.n success,
P.step increase, P.step decrease)

7: launch kernel Check Path Idx(W.success, W.n success, P.path idx, W.n path)
8: copy n path from device to host
9: if n path = 0 then
10: break
11: end if
12: end while
13: copy W.success from device to host
14: return success
15: end procedure
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5.4 Computational Results

For testing multiple path tracking, we choose polynomial systems of relative small dimension,

like the multiple PEDs in Section 2.5.3.

Results for tracking many paths for the cyclic 10-roots problem are summarized in Table XI.

Observe the quality up. Tracking 10,000 paths in double double arithmetic takes 10 seconds on

GPUs, while on the CPU it takes 26.562 seconds in double arithmetic. With our accelerated

code we obtain solutions in a precision that is twice as large in a time that is more than twice

as fast.

Table III lists times and speedups for evaluating and differentiating the Nash equilibrium

system. Times for path tracking are listed in Table XII. Table IV lists times and speedups

for evaluating and differentiating the Pieri hypersurface system. Times for path tracking are

listed in Table XIII. Table XII lists times and speedups for tracking many paths of the Nash

equilibrium system.

In Figure 32 we visualize these data. Notice that, as the Nash equilibrium system has more

monomials than the cyclic 10-roots system, the speedups for nash8 are better than those form

cyclic10. The speedups improve slightly for the Pieri problem, but with a larger of number

of monomials the memory allows for fewer paths to be tracked simultaneously.

5.4.1 Conclusion

With the number of solution paths in polynomial homotopies reaches several hundreds,

acceleration with GPUs achieves both speed up and quality up, even for polynomial homotopies

of small dimension. Future work includes multicore parallelism for multiple CPUs and GPUs.
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Figure 32: Speedups for tracking many paths of three polynomial systems
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(a) cyclic 10-roots

10 20 50 100 200 500 1000 2000 5000 10000
tracking m paths of nash-8, for m from 10 to 10000

0

10

20

30

40

50

60

70

80

sp
ee

du
ps
 a
re
 (t
im
e 
on

 o
ne

 C
PU

 c
or
e)
/(a

cc
el
er
at
ed

 ti
m
e)

double
double double
quad double

(b) Nash equilibrium system
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(c) Pieri hypersurface system

Note: All of them are computed in complex double, double double, and quad double arithmetic.
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TABLE XI: Speedups for tracking a number of paths of the cyclic 10-roots system

complex double arithmetic
#paths CPU GPU speedup

10 0.040 0.128 0.31
20 0.075 0.139 0.54
50 0.158 0.147 1.07

100 0.277 0.155 1.79
200 0.482 0.181 2.67
500 1.239 0.250 4.96

1000 2.609 0.432 6.03
2000 5.341 0.768 6.96
5000 13.358 1.711 7.81

10000 26.562 3.334 7.97

complex double double arithmetic
#paths CPU GPU speedup

10 0.563 0.344 1.63
20 1.082 0.386 2.80
50 2.248 0.404 5.56

100 3.706 0.421 8.81
200 6.480 0.458 14.15
500 16.802 0.729 23.05

1000 35.683 1.315 27.14
2000 83.601 2.397 34.87
5000 210.287 5.246 40.09

10000 414.332 10.063 41.18

complex quad double arithmetic
#paths CPU GPU speedup

10 5.859 2.696 2.17
20 11.189 2.852 3.92
50 24.018 2.866 8.38

100 38.782 2.966 13.08
200 67.703 3.568 18.97
500 174.769 6.203 28.17

1000 368.449 11.175 32.97
2000 851.255 21.432 39.72
5000 2164.485 48.495 44.63

Note: timing in seconds.
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TABLE XII: Speedups for tracking a number of paths of the Nash equilibrium system

complex double arithmetic
#paths CPU GPU speedup

10 0.152 0.196 0.77
20 0.330 0.239 1.38
50 0.815 0.292 2.79

100 1.512 0.341 4.43
200 2.894 0.462 6.26
500 7.257 0.809 8.97

1000 14.171 1.343 10.55
2000 28.524 2.514 11.35
5000 72.292 6.156 11.74

complex double double arithmetic
#paths CPU GPU speedup

10 2.130 0.595 3.58
20 4.496 0.641 7.01
50 11.215 0.720 15.59

100 20.813 0.831 25.04
200 40.018 1.124 35.62
500 100.446 2.057 48.82

1000 194.243 3.462 56.11
2000 392.615 6.345 61.87
5000 992.708 15.504 64.03

complex quad double arithmetic
#paths CPU GPU speedup

10 20.745 4.593 4.52
20 42.969 4.835 8.89
50 106.348 5.101 20.85

100 198.098 5.926 33.43
200 383.885 8.846 43.40
500 986.145 16.407 60.10

1000 1876.226 28.365 66.15
2000 3805.213 52.710 72.19
5000 9618.930 128.948 74.60

Note: timing in seconds.
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TABLE XIII: Speedups for tracking a number of paths of the Pieri hypersurface system

complex double arithmetic
#paths CPU GPU speedup

10 0.757 0.506 1.50
20 1.580 0.603 2.62
50 3.883 0.890 4.36

100 7.800 1.229 6.35
200 15.813 1.801 8.78
500 39.861 3.713 10.74

1000 80.347 6.898 11.65
2000 161.498 13.232 12.21
5000 401.001 33.050 12.13

complex double double arithmetic
#paths CPU GPU speedup

10 11.307 2.042 5.54
20 23.558 2.231 10.56
50 58.339 3.010 19.38

100 113.878 3.883 29.32
200 232.249 5.120 45.36
500 586.282 10.141 57.81

1000 1183.342 18.317 64.60
2000 2376.400 34.497 68.89

complex quad double arithmetic
#paths CPU GPU speedup

10 111.498 19.403 5.75
20 234.984 20.642 11.38
50 583.908 25.590 22.82

100 1168.055 34.496 33.86
200 2375.275 47.696 49.80
500 5986.772 91.191 65.65

1000 12075.740 165.244 73.08

Note: timing in seconds.



CHAPTER 6

PHC WEB INTERFACE

The high speed internet and various types of user devices, like tablets and phones, inspire

us to create cloud computing service for PHCpack. The ideas in this chapter are presented in

our paper (8). The advantages of PHC web interface for users include:

1. No software installation is required for the user.

2. Faster computation is hosted by our computational workstation.

3. Any device from computers, cell phones to tablets has access to PHC web interface.

4. Easy graphic user interface enables the user to solve and manage polynomial systems.

The first verson of PHC Web Interface includes basic functions of solving polynomial systems

from PHCpack:

1. phc -b: the black box solver in PHCpack use polyheral homotopy to the solve start system

g(x) that has as many roots as mixed volume.

2. phc -p: tracking paths defined by a homotopy in one parameter.

6.1 PHC Web Interface design

PHC Web Interface is built to server many users intuitively. Front end is a web interface.

Back end includes a TCP server for job distribution, local and remote solvers, and a SQL

84
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database for user and file management. The TCP server is a process running to handle all

requests from the web interface. Besides, the TCP server keeps connection to the SQL database

in order to avoid extra time for SQL authorization.

6.1.1 Registration and activation

Registration and activation follow the standard process of a usual website. In this process,

the Email address is used to validate a real user. See Figure 33.

Figure 33: Registration and activation process of PHC Web Interface

TCP ServerWeb SQL

Encrypt Password

Generate Ticket

Email Ticket

Check Ticket

Validate Ticket

Register

Activate

Store Information

Update Folder

When a user registers, his/her information is sent to the TCP server. The TCP server

encrypts the password, generates a random ticket, and store the information with password



86

and ticket to the SQL database. After this, it sends a hyperlink containing the random ticket

to the user by email. When the user clicks this hyperlink, the Web interface sends the request

of activating his/her account to the TCP server. After the ticket in the request is validated by

the TCP server, its creates the Folder and store it in the SQL database.

Figure 34: Resetting the password of PHC Web Interface

TCP ServerWeb SQL

Check Information

Generate Ticket
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Validate Ticket

Reset Password

Forget

Reset

Check Information

Store Password

When the user forgets the password, he/she can use the information of email, name and

organization to reset the password. The Web interface sends these requests to the TCP server.

After the TCP server validates these informations in the SQL database, the TCP server send

a new ticket for the user to reset a password by email. See Figure 34.
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6.1.2 Job distribution based on TCP Server

The TCP server is also in charge of distributing jobs to local and remote solvers. The Web

interface submits jobs of users’ new polynomial systems. The TCP server is a single-thread

process to put these jobs into a job queue. The TCP server first assigns these jobs to the local

solver. If the local solver is fully occupied, remote solvers help solving the jobs. The remote

solvers check the job queue in TCP server once in each certain time interval. If a remote solver

finds a new job, it requests the file with the polynomial system from TCP server and send the

solution file back after solving the job. In sum, the job distribution makes the TCP server

handle many jobs simultaneously and expendable to remote computation resources.

Figure 35: Job distribution of PHC Web Interface
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6.1.3 User management by SQL

A SQL database is constructed for PHC Web Interface. It includes two basic tables. One is

the users table with the registration information of users. See 37(a). The other is the polynomial

table storing basic information of all polynomial systems and solving status. See 37(b).

Figure 36: Database structure of tables in PHC Web Interface

Name Datatype Description

Uid INT Unique user ID

Name First CHAR(20) First name
Name Last CHAR(20) Last name
Email CHAR(40) Email address
Org CHAR(40) Organization

passwd CHAR(40) Encrypted password by SHA
Reg Date DATE Users’ registration date
Ticket CHAR(40) A SHA ticket for user to activate and reset password
Folder CHAR(40) Name of the user’s folder

Status SMALLINT Status of solving the user’s polynomial system
(a) Table of users

Name Datatype Description

Polyid INT Unique polynomial system ID
Uid INT User ID

Name Char(50) Name of polynomial system
Dim INT Dimension of polynomial system
CTIME DATETIME Create time of polynomial system

Status INT Status of solving
Sols INT Number of solutions
Time FLOAT Solving time

(b) Table of polynomial systems
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Each user has a randomly named folder, which stores solved polynomials, solutions and

PHCpack reports. From the web interface, the user has ability to view all his/her polynomial

systems, edit the names of the systems, delete the systems and check the solving status of the

current polynomial system. See Figure 37.

Figure 37: Manage polynomial systems in PHC Web interface

6.2 Development Environment and tools

The web interface is running in Red Hat on Microway RHEL workstation with two Intel

Xeon E5-2670, 16 cores at 2.6 Ghz. Our web server is built on Apache, and Python CGI is the

script language for Web interface. We use MySQL for user and data management and TCP

server for job distribution. For the security of our users, we use HTTPS/SSL to encrypt the

data of web page and store users’ passwords encrypted SHA.



CHAPTER 7

A POLYNOMIAL SYSTEM DATABASE

A polynomial system can be written in different ways by permuting variables, monomials

and equations. Traditional databases use text to store the polynomial systems. But based on

text, it is hard to search a polynomial system from the database. The difficulty is to represent

a polynomial system as a unique string.

Definition 1. We say two polynomial systems f(x) and g(x) are isomorphic, if

1. f(x) and g(x) have the same dimension and the same number of equations,

2. there exists a permutation σ1 for their variables and a permutation σ2 for their equations,

such that each equation of two polynomial systems are exactly the same,

f(x) = σ2(g)(σ1(x)) (7.1)

In this chapter, we develop a new approach to check the isomorphism of polynomial systems

by graph. Similar ideas are presented in our paper (8). Here are some related work. Algo-

rithms in multivariate cryptology (45) apply Grbner basis algorithms (19) and graph-theoretic

algorithms (9).

90
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Figure 38: Generate a unique graph representation for a polynomial equation

2.4 + 4x1 + x2x
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(a) Expand and simplify the equation. Record it on a 4-level tree graph
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2
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(b) Merge variable nodes and degree nodes

2.4

14 1

2 11 3.5

(c) Label nodes by numbers

Note: the example is 2.4+4x1+x2x
2
1+x21x

3.5
2 . Type of nodes are represented as different shape:

circle is for variable, diamond is for degree, ellipse is for monomial, rectangle is for equation.
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Figure 39: Generate a unique graph representation for a polynomial system

x1 x2 x3

x1 + x2 + x3

x1x2 x2x3 x3x1
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(a) Record the polynomial system on a 4-level graph. Merge variable nodes and degree nodes

1 1 1

0

1 1 1

0

1

1

1 1 1

(b) Label nodes by numbers

Note: the example is the polynomial system: x1 + x2 + x3, x1x2 + x2x3 + x3x1, x1x2x3 − 1.
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7.1 A graph representation for the polynomial system

A type of graph with labelled vertices is designed to represent polynomial systems. We

convert a polynomial system to its unique graph representation in the following steps:

1. Expand and simplify equations of the polynomial system.

2. Generate a tree of 4 levels, i.e. equation, monomial, degree and variable, to record the

system by graph nodes. Equation nodes are connected to monomial nodes, monomial

nodes are connected to degree nodes, and degree nodes are connected variable nodes. In

a monomial, each variable has one degree. Thus, one variable node are connected to one

degree node. See Figure 38 (a).

3. Merge the nodes of the same variable and the degree nodes of the same degree for the

same variable. See Figure 38 (b).

4. Label nodes by numbers. Label each equation node by its constant, label each monomial

node by its coefficient, label each degree node by its degree number. See Figure 38 (c).

Figure 38 shows the graph construction procedure for a polynomial equation, and Figure 39

shows that for a polynomial system. For convenience, we call this graph GraphPoly.

GraphPoly explicitly stores the information for each monomial and equation. The nodes of

GraphPoly are labelled by numbers and the types of nodes, i.e. equation, monomial, degree

and variable. In this way, each variable, degree, monomial and equation is represented by one

node of its type. Also, the constants of equations, the coefficients of monomials and the degrees



94

of variables are represented by the numbers on their nodes. Moreover, the edges have one to

one-to-one mapping to the relationships between equations, monomials, degrees and variables.

Theorem 1. Each polynomial system has a unique graph representation, up to isomorphism.

Proof. The proof is straight forward from the graph construction procedure and it goes in two

ways.

From the procedure, like Figure 38, there is a bijection between the graph nodes and the

elements of the polynomial system, such as equations, monomials, degree and variable. Also,

there is a bijection between the graph edges and the relationships between equations, monomials,

degrees and variables.

If for two polynomial systems, F1 and F2, we can construct the same graph of polynomial

system. For both polynomial systems, there is a bijection from each equation, monomial, degree

and variable to the nodes on the graph. Thus, there is a bijection between two polynomial

systems for each of their equations, monomials, degrees and variables. So F1 and F2 are exactly

the same.

In the other way, if there are two graphs from the same polynomial system. For both graphs,

there is a one-to-one mapping from the graph nodes to the equations, monomials, degrees and

variables of the polynomial system. On the other hand, there is a one-to-one mapping from the

graph edges to the relationships of variables, monomials, degrees and variables. Thus, there is

a bijection between two graphs for both nodes and edges. So, two graph are isomorphic.

Note: the bijection between a polynomial system and its graph is not unique. For a cyclic-n

polynomial system, variables can be permuted, which implies multiple bijections.
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Theorem 2. Isomorphism of polynomial systems is equivalent to graph isomorphism.

Proof. From theorem 1, the isomorphism of two polynomial systems is equivalent to the iso-

morphism of two vertex-labelled graphs. That is to say, we already prove that the isomorphism

of two polynomial systems belongs to graph isomorphism problems.

On the other hand, we want to prove that any undirected unlabelled, unweighted graph can

be represented as a polynomial system consisting of 2-variable monomials with degree 1.

Given the graph with vertices {Ni}, any edge connecting vertex Ni and vertex Nj is repre-

sented as a monomial xixj . For each connected maximum subset of the graph, we sum all the

monomials from its edges as a polynomial equation. For any isolated vertex Nk without any

edge to any other vertices, we can use a monomial of one variable to present it as xk. In this

way, we represent the entire graph as a unique polynomial system.

To check whether two undirected non-labelled non-weighted graphs are isomorphic, we can

check the isomorphism of these two polynomial systems.

GraphPoly can also represent the support set of a polynomial systems. We first remove all

coefficients of monomials. Then we change the value of an equation node to 1 if a equation has

a non-zero constant, otherwise we keep 0. See Figure 40. Corollary 1 and Corollary 2 about

the suppport sets directly follow Theorem 1 and Theorem 2. Another proof of Corollary 2 is

shown in (8).

Corollary 1. The support set of each polynomial system has a unique graph representation.
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Corollary 2. Isomorphism of the support set of polynomial systems is equivalent to graph

isomorphism.

Figure 40: A graph representation for a polynomial equation and that of its support set.
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7.1.1 Symmetry of variables on polynomial system graph

For a polynomial system, we care more about the symmetry of variables, which GraphPoly

can be used to detect. GraphPoly includes nodes of variable, degree, monomial and degree, but

we can simplify GraphPoly to a graph with only nodes of variables. In this way, we can more

easily detect the symmetry of variables.
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For each two variables, they are related by their common monomials and equations. For

GraphPoly, each two nodes of variables are connected by their common nodes of monomial and

equation. This is their relationship. After getting all these relationships, we can classify them.

Then we store the types of these relationships into the adjacent matrix of the variables. With

the adjacent matrix, we can classify it like a graph of only variables and get the symmetry of

variables.

The simplified graph of variables can be used to detect the symmetry of variables, but it

is not sufficient to prove the symmetry of variables. To prove it, we can use the generators of

their symmetric group in DataPoly, as discussed in the following section.

7.2 A polynomial data representation by set of set

With set of set, we want to find the unique string representation of a polynomial system.

7.2.1 Order of set

If the elements in the set can be sorted, each set has a unique representation. For example,

{1, 2, 3, 0} or {3, 2, 1, 0} sort−−→ {0, 1, 2, 3} (7.2)

To compare to two sorted sets S1 and S2, define the order of set by comparing two aspects:

1. Number of elements len(S).

len(S1) < len(S2) =⇒ S1 < S2 (7.3)
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For example,

{4, 5, 6} < {0, 1, 2, 3}

{4, 5, 6, 7, 8} > {0, 1, 2, 3}

2. The first pair of different elements in two sets. Suppose S[i] is the ith element of S,

S1[i] = S1[i] if i < k

S1[k] < S2[k]

 =⇒ S1 < S2 (7.4)

For example,

{0, 1, 2, 3} < {0, 1, 2, 4}

{1, 3, 4, 5} > {1, 2, 6, 7}

For any two sets are either the same or one is smaller than the other. In this way, all sets

have an order to sort. There is a unique sorted representation of any set.
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This process can work recursively, i.e. set of set. Each set of set also has a unique repre-

sentation after sorting. To sort a set of set, we need to sort each element and then sort all of

them.

{{3, 2, 1}, {0, 5}, {1, 0}} element sort−−−−−−−→ {{1, 2, 3}, {0, 5}, {0, 1}} sort−−→ {{0, 1}, {0, 5}, {1, 2, 3}}

(7.5)

To compare two sets of set,

1. Number of elements. For example,

{{4, 5, 6, 7}, {7, 8, 9, 10, 11}} < {{0, 1, 2}, {0, 1, 2, 3}, {0, 5, 6, 7}} (7.6)

2. The first pair of different elements in two sets of set. For example,

{{0, 1}, {7, 8}, {7, 8, 9, 11}} < {{0, 1}, {0, 1, 2}, {0, 1, 2}} (7.7)

In this way, set of set, set of set of set, etc, has a unique representation after sorting.

The exponent structure of a polynomial system has a unique representation. First, we find

all types of the monomial exponents. Consider a exponent set of all monomials, after sorting,

it has an unique representation as a set of set.

{
∏
j

x
aij
∗ , a

i
j 6= 0}i exponent−−−−−−−→ {{aij}j}i (7.8)
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For example,

{x2∗x1∗, x3∗, x1∗, x2∗x3∗}
exponent−−−−−−−→ {{2, 1}, {3}, {1}, {2, 3}}

sort−−−−−−−→ {{1}, {3}, {1, 2}, {2, 3}}
(7.9)

Then, we find all types of the equation exponents. For each equation,

f(x) = C +
∑
a∈A

cax
a, ca 6= 0, (7.10)

we can identify the type of each monomial in Equation 7.9. For example,

x1∗x
2
∗ + x1∗x

2
∗ + x1∗ + C

exponent−−−−−−−→ {{1, 2}, {1, 2}, {1}, C} (7.11)

mon type−−−−−−−→ {C, 1, 3, 3} (7.12)

Finally, we identify all types of equations for the entire polynomial systems. For example,

f1 = x1x
2
2 + x1x

2
3 +x1 + 1

f2 = x2x
2
1 + x2x

2
3 +x2 + 1

f3 = x31 +x3 + 1

(7.13)

1. Record the support of the polynomial system

f1 = x1∗x
2
∗ + x1∗x

2
∗ +x1∗ + C

f2 = x1∗x
2
∗ + x1∗x

2
∗ +x1∗ + C

f3 = x3∗ +x1∗ + C

(7.14)
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2. Classify monomials, equations and identify system

MonType = {x1∗, x3∗, x1∗x2∗}

EqType = {{C,m1,m2}, {C,m1,m3,m3}}

Sys = {eq1, eq2, eq2}

(7.15)

Because al types of monomial, equation and system has set structures, they can be sorted.

Thus, the exponent structure of a polynomial system has a unique representation.

Given an order of variables, we can find a unique representation of a polynomial system. All

indices can be recorded as set of set. Elements of the same degree, monomial type or equation

type can be switched. After sorting these elements, we have a unique representation of variable

indices.

f1 = x1
1x2

2 + x1
1x3

2 −x11 + 1

f2 = x2
1x1

2 + x2
1x3

2 −x21 + 1

f3 = x1
3 −x31 + 1

(7.16)

Index = {([1], [3]), ([1], [1, 2], [1, 3]), ([2], [2, 1], [2, 3])} (7.17)
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By combining Equation 7.15 and 7.2.2, we get the unique representation of a polynomial system.

For the equation constant, the first element of EqType is 1, if the equation type has a constant,

otherwise it is 0. Here is the data structure DataPoly for Equation 7.14.

MonType = {((1), (3), (1, 2)}

EqType = {(1, 1, 2), (1, 1, 3, 3)}

Sys = {1, 2, 2}

Index = {([1], [3]), ([1], [1, 2], [1, 3]), ([2], [2, 1], [2, 3])}

(7.18)

It is straight forward that each DataPoly and each polynomial system has 1-to-1 mapping.

When the order of monomials and equations are switched, DataPoly keeps the same.

7.2.2 Check permutations on DataPoly

For any two permutations p1 and p2 of variables in a polynomial system, they are the same

for a polynomial system, if f(p1(x)) = f(p2(x)).

For each permutations, it defines an order of variables. Thus, it has the unique representa-

tion of DataPoly, especially for Index in. If two permutations generates the same, they are the

same for the polynomial system. It takes O(n log(n)) to check whether two permutations are

the same by DataPoly.

7.2.3 A unique string representation of a polynomial system

If variables are allowed to switch, we can still find the unique representation by O(n!), where

n is number of variables. The number of the variables’ orders are n!. Each order of variables has

a unique Index. It is easy to compare these Index and find the minimum as the representation.
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To reduce complexisty, we can combine DataPoly and GraphPoly to decrease complexity.

Refinement is used to classify different types of nodes by its own type and its neighbors’ types.

After refinement, we can identify different types of variables. The variables are partitioned

by different types. So we can avoid permutations between different partitions. On the other

hands, when we try permutations, if we fix a variable node by giving it an index, the other

unfixed variables are influenced after the refinement of the GraphPoly. Thus, this also creates

more partitions of variables. Through the refinement of GraphPoly, we can largely reduce the

complexity of checking all permutations.

7.3 A polynomial database and search engine

Traditional databases use text to store the polynomial systems. But based on text, it is

hard to search a polynomial system from the database. With the canonical form of GraphPoly,

we create tables of polynomial equations, polynomial systems and their relationships. Users

can search the database by the following keywords:

1. a polynomial system or its support

2. equations in a polynomial system or their supports

3. monomials’ supports
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