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SUMMARY

Gene expression profiling is considered as an approach to define, the phenotypes of many
types of complex diseases such as tumors at the molecular level. DNA microarray technology
provides biologists with the ability to measure the expression levels of thousands of genes in a
single experiment and therefore enhance the transition from patterns detection of gene expres-
sion to pathways analysis.

Pathways representing molecular interactions between a set of genes are perturbed by the
dis-regulation of the genes expression and can be used for potentiel targeted therapies. The
dis-regulation of gene expression has been associated to many factors including single nucleotide
polymorphisms and epigenetic alterations such as DNA methylation. Many studies have been
conducted to integrate the gene expression and gene single nucleotide polymorphism and demon-
strated better detection of pathways related to the phenotype. Recent literature has explored
the association of gene expression and DNA methylation, but no study yet reported the combi-
nation of these factors using a gene set enrichment analysis to enhance the pathways analysis.

In the present work, we have developed a statistical framework to combine gene expression
and DNA CpGs methylation and performed a gene set enrichment analysis to detect relevant
pathways to the phenotype of interest. We adopted different scoring methods by first determin-
ing a score to a gene using only its gene expression data. Then we scored the gene according
to its associated set of CpGs methylation status. Finally, we combined the two previous scores

using different mathematical models to obtain a gene combined-score.

xiii



SUMMARY (Continued)

We used the proposed framework to analyse two datasets, breast cancer invasive carcinoma
disease and the lymphatic and blood endothelial cells. Our approach detected abnormalities
in previously identified phenotype associated pathways, such as Wnt and hedghog signaling
pathways and DNA damage response. In addition, our statistical framework predicted novel
pathways such as RNA degradation. These results demonstrate that our approach may help

uncover biological pathways underlying human diseases and complex traits.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

DNA code alterations as SNPs, indels, translocations...whether inherited or not, are used for
cancer diagnosis, prognosis and targeted treatment. These mutations can disrupt genes func-
tions by enhancing the cancer genes called oncogenes or disrupting the tumor-supressor genes
(1). In addition to genetic alterations, epigenetic alterations of the DNA can also be related
to cancer development. The epigenetic profiles are also inherited and have been related to the
silencing of cancer suppressor genes, by methylation of gene promoters where transcription of
DNA to RNA begins (2).

In the last decades, gene expression dis-regulation has been highly correlated to cancer
initiation and proliferation (3) (4) (5) (6). However it is still a debate whether also epigenetic
modification alone or with association to gene expression trigger cancer progression and gene
expression alterations (2). DNA methylation and gene expression are important processes in
cell proliferation, differentiation and apoptosis and many disease traits (7) (8). Furthermore,
changes in methylations can alter transcription and even be fatal in fetus development (7) (9)
(10), which considers DNA methylation as a key regulator of gene expression.

The increasing evidence of high correlation between DNA methylation alterations and phe-

notype changes makes epigenetic as a new promising target for potential treatments. Since gene



expression has been used before for targeted therapies, could also DNA methylation be used as
a complement to gene expression to strengthen the correlation between the phenotype and the
molecular alterations? or could it be used independently? If so, how can we aggregate these
two features? And to which extend their inherent relations can synergetically give better and

more significant results?

1.2 Motivation and Significance

Gene expression regulation has been widely used in deciphering many phenotype variation
traits and uncovering potential targeted gene therapy in complex diseases such as cancer. How-
ever, gene-set based analysis is more advantageous than single gene based analysis since it can
uncover the interactions between related different genes within a pathway context related to
the phenotype in study.

Many genomic and epigenomic features such as gene expression, gene copy number, SNPs,
microRNA, DNA methylation, histone modification, can be combined together in analysis. The
purpose of the combination is to increase the evidence and the power to elucidate the relation-
ship between the phenotype in study and the alterations of these genomic features. In this
work, we combine gene expression and DNA CpGs methylation data and propose a statistical
framework to integrate both features to detect significant pathways related to the phenotype
in question.

1.3 Thesis Organisation

We developed a statistical framework that integrates genes expression and DNA CpGs

methylation to detect gene sets enriched for differential expression and/or DNA CpGs methy-



lation.

The thesis is organised as follows:

Chapter 2 reviews the relevant background knowledge. We briefly introduce concepts of gene
expression, DNA methylation and their relation. We also introduce the Gene-Set Enrichment
Analysis (GSEA) method and a summary of the available integrative analyses of genomic and
epigenomic features.

Chapter 3 explains technical details on the proposed framework, and explains the Gene
Single-Score, CpGs-Set Score, the Gene Combined-Score.

Chapter 4 presents the datasets we used to run our statistical framework and the different
preprocessing steps of each dataset. We selected breast cancer and primary lymphatic and
blood endothelial cells datasets.

Chapter 5 discusses results and literature validations. Our method identified significant
gene-sets that are related to the selected datasets. These results indicate that the proposed
method may help discover biological pathways related to human diseases and complex traits.

Chapter 6 concludes our work and presents our future perspectives



CHAPTER 2

BACKGROUND

This chapter describes the genomic features relevant to this work, which are the gene ex-
pression and DNA CpG methylation. We also give an overview of the Gene Set Enrichment
Analysis (GSEA) method that was used in our statistical framework to detect relevant path-

ways. Finally, a summary of the integrative studies in the literature is provided.

2.1 Genomic Feature: Gene Expression

Gene expression profiling came into use as a new approach to define, at the molecular level,
the phenotypes of many types of complex diseases, especially tumors. So far, many studies per-
formed genome-wide expression patterns in several cancers including breast, lung, liver, ovarian.
A common feature of these studies has been the emergence, using, for example, hierarchical
clustering analysis, of different tumor subtypes based on distinct gene expression profiles pat-
terns for each of these cancers.

The differences in gene expression patterns between cancer subtypes are likely to reflect
differences in the cell biology of the tumors, at the molecular level. Based on these obser-
vations and results, one might consider these molecular subtypes as separable diseases (12).
Therefore, DNA microarray technology provides biologists with the possibility to measure the

expression levels of thousands of genes in a single experiment. Initially, experiments suggest



that genes of similar functions yield similar expression patterns in microarray hybridization
experiments. However, the accumulation of such high-throughput data raised the need to use
accurate methodologies for extracting biological significance and using the data to assign genes
functions. To date, many approaches to the computational analysis of gene expression data
attempt to learn functionally significant classifications of genes in a supervised or unsupervised
fashion (11). Additionally, the transition from gene expression patterns detection to pathways
analysis (13) make it also possible to study genes in a gene-set approach and leads to new

medical insights and tumors targeted therapies (14).

2.2 Epigenomic Feature: DNA Methylation

The molecule of life, known as DNA sequence, is reproduced through the replication of four
bases -adenine, guanine, cytosine, and thymine- which compose the alphabets of our primary
sequence. However, there is also a ”fifth” base that is a covalent modification in post replica-
tive DNA, that is the methyl group added to cytosine (1) which happens mostly in cytosines
preceding guanines, called also CpG site (2).

Mammalian genomes are highly methylated compared to simple organisms like yeast and
drosophila. Most of this methylation is found in or arround CpG Islands regions densily crowded
with CpG sites which occurs in almost half of genes promoter regions. Several studies observed
that, in normal cells, CpG sites outside of the CpG island are mostly methylated, while CpG
islands sites in genes promoter region are unmethylated. These findings have been explained
as a possible suppression of unwanted transcriptions. However, in cancer cells, these normally

methylated CpG sites become unmethylated and unmehtylated CpGs in promoter regions of
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Figure 1. Methylation of Cytosine in the Mammalian Genome

other genes become methylated. These dis-regulated methylation have been related to tran-

scriptional silencing of potentially tumor suppressor genes (2).
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Figure 2. Gene methylation is manifested by the Mehtylation (M) or Unmethylation (U) state
of every cytocine preceeding a guanine (CpG site)and can happen upstream or downstream

the Transcription Starting Site (T'SS) and goes until the Transcription Ending Site (TES).



2.3 Relation between Gene Expression and DNA Methylation

DNA methylation assures the silencing of genes in normal cells. Many studies have linked
patterns of DNA methylation to gene expression and concluded that methylation in a gene
promoter generally correlates with a silenced gene (2). However, methylation status of CpG
sites in cancer cells have been correlated to losses and gains of methylation. In addition to
mutations, methylation of CpG islands in gene promoter is associated with aberrant silencing
of transcription and is considered as a mechanism for inactivation of tumor-suppressor genes
(2). The loss of methylation was explained by a potentiel activation of normally silent regions
of the genome leading to harmful expression of inserted viral genes such as imprinted genes on
the inactive X chromosome. Recently, in addition to promoter region, new studies have found a
high correlation between methylation of specific genomic regions, such as Exonl (15) and gene

Body (16) (17), and alterations in the gene expression.

2.4 Gene Set Enrichement Analysis: GSEA

We use the GSEA to validate our statistical framework through evaluation of the detected
pathways and their numerical and biological significance. The numerical validation is well es-
tablished by the GSEA and the biological one depends on the dataset selected and the literature
validation.

Traditionally, different methods for gene expression analysis identify individual genes ex-
hibiting differences between two phenotypes which does not detect biological processes that are
distributed through a network of genes (31). In fact, the GSEA (31) considers all the genes in

an experiment to generate a ranking list based on their associations to phenotypes. The GSEA



method aims to determine if genes belonging to a pathway, called also gene set, are ranked on
the top (bottom) of the ranked list of genes (31). The GSEA uses a weighted Kolmogorov-
Smirnov (K-S) test to determine which gene sets have statistical significance for association of

the gene-set with the given phenotype.

2.4.1 Running Enrichment Score: RES

Genes can be ordered in a list L according to their differential expression g; between pheno-
types, which can be any test statistic suitable to assess the difference between the measurements
of genes between phenotypes. Let us denote:

1. g;: 1 =1,..., N genes in the ranked list.
2. s5:5=1,..., M gene sets.

3. w: 1,..., II permutations.

Given the rank list L and a gene-set s; with H genes, a running enrichment score RES;, (i) at

positions z =1, ..., N is computed as:
1 ¢ 1 ¢
RES;, (i) = I(k i) — ——— I(k ; 2.1
S](’L) stkz::l ( ES]) N_HICXZ:I ( ¢8])7 ( )
where
N
Ng =Y I(k € s)), (2.2)



The Equation 2.1 is as provided in the GSEA method, where I(k € s;) is an indicator
function which is one if the gene at the position k of the ranked list belongs to gene set sj,

otherwise 0.

2.4.2 Normalized Enrichment Score: NES

After computing the RES for each gene set at each position of the ranked list of our genes,
these scores need to be normalized as they are dependent on the sizes of the gene sets. To do

so, we define the best enrichment score ES(s;) for gene-set s; as follow:

maxi—1,.,v RES,, () if jmaxi—1,.. v RES,, (i)] > |mini1,. v RES,, (3)|
ES(s;) = (2.3)

min;—1 n RESs; (i) otherwise.

The score ES(s;) is the maximum deviation of the RESg;(7) from zero over all the positions
i = 1,...,N. The absolute magnitude of ES(s;) indicates the strength of the association
between the gene set and the phenotype. The sign indicates which phenotypic class the gene
set is enriched with.

A normalized enrichment score (NES) for each gene set is calculated to adjust for difference
in gene set size. The GSEA method uses a mean-based method and normalizes the positive
and negative scores separately. Therefore, the normalized enrichment score as explained in the

GSEA user guide respects this formula:

actual ES(s;)
mean(ES(s;)against all permutations)

NES(Sj) =
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The normalized enrichment score (NES) is the primary statistic for examining gene set
enrichment results. NES is based on the gene set enrichment scores for all dataset permutations.
Therefore, changing the permutation method, the number of permutations, or the size of the

expression dataset affects the NES (18).

2.4.3 Permutation Test: Pvalue and FDR

The assessment of statistical significance of the gene set enrichment score and adjustment for
multiple hypothesis testing are carried out on a phenotype-based permutation procedure (18).
A nominal P-value is calculated relative to a null distribution that is generated by shuffling the
phenotypic class labels and recalculating the gene set association scores II times as shown in 3.

The Pvalue is computed as follow when the NES(s;, mg) is positive :

o S I(NES(sj, 7) > NES(s;, m0))
Si H

(2.5)
where I(-)istheindicator functionandlIl is the total number of permutations.

False discovery rate (FDR) control is used in multiple hypothesis testing in order to correct
for multiple comparisons. FDR is generated based on the normalized gene set association scores

to correct for multiple hypothesis testing and to control the proportion of false positives below

a certain threshold.
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Figure 3. Permutation normalized scores. For every gene set s; the enrichment scores RES,

ES and NES are computed based on shuffled samples

Given M gene sets s1,..., syr and label permutations m = 1,... 11, and 7, it represents the
observed data, the FDR for each gene set s; with NES(s;) > 0 is computed according to the

GSEA method as follow:

_ % NES(sj,m) > NES(sj, mp)forj=1,....,Mand7 =1,...,1I

FDR, = - 2.6
' % NES(sj,m9) > NES(s;, m) forj =1,..,M (2:6)
otherwise if NAS,; < 0 :

FDR,, — % NES(s;,m) < NES(s;,mp)forj=1,..,Mandw =1,.,1I 27)

% NES(sj,m) < NES(s;,mp)forj=1,..,M
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when the gene set normalised score is positive, the FDRg; is the ratio between, the propor-
tion of the normalised gene sets scores NES(s;, ) that are bigger than the observed NES(s;, mp)
across all permutations IT and all gene sets M, and the proportion of normalised gene sets scores

NES(s;,m) that are bigger than NES(s;, mo) in the observed data across all gene sets M.

2.5 Integrative Analysis of Genomic and Epigenomic Data

To classify phenotypes, single genomic feature, such as gene expression, SNPs, microRNAs
or epigenomic features such as DNA methylation, have been used successfully (41) (42) (43)
(44). A daunting challenge is to explore the relationship between these different genomic and
epigenomic features in order to combine them and stratify different disease subtypes where
the use of a single feature fails. Several integrative analysis methods and tools have been
proposed to integrate different genomic and epigenomic features by using different approaches
and methods such as correlation or regression.

Xiong et al. developed a statistical framework to integrate genetic and gene expression
into a genome-wide association analysis of gene sets, and demonstrated that this joint analysis
improved the power to detect real associations compared to the use of only one genomic feature
(27). Louhimo et al. proposed an algorithm to integrate data from gene copy number, DNA
methylation and gene expression. Their study revealed a synergistic effect of DNA methylation
and copy number changes on gene expression for several known oncogenes as well as novel
candidates (28).

Nervertheless, Li et al. conducted an integrated analysis by clustering and correlating DNA

methylation and gene expression and revealed associated pathways with the phenotype in study
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(29). Sun et al. used a similar approach integrating gene expression, CpG island methylation,
and gene copy number in breast cancer, revealing a global pattern of differential CpG island
methylation that contributes to the transcriptome (30).

Most of these studies revealed interesting results by integration of genomic and epigenomic
features, however, they focus on the intersection of genes with differential expression and genes
with differentially methylated CpGs. This intersection only represents a small proportion of
the available data that could be explored. Moreover, a lot of genes are differentially expressed
and may not have differentially methylated CpGs while other genes may not be differentially
expressed but have many differentially methylated CpGs. These cases are not considered by the
previous studies and they may have an interpretation in the related studied phenotypes. The
existing approaches do not provide a framework that can incorporate the complete information
provided from gene expression and DNA methylation data.

More importantly, the differentially methylated CpG sites or position (DMP) are less mean-
ingful when considered individually compared to being grouped by regions called differentially
methylated regions (DMR) instead of differentially methylated CpGs. Finally, so far, none of
the mentioned studies have integrated gene expression and DNA methylation in a statistical
framework using a gene set enrichment analysis (GSEA).

In this study, we propose a new statistical framework to associate gene expression and
DNA methylated gene regions. We suggest a scoring method that may reflect the nature of
relation between these genomic and epigenomic features in order to detect the most relevant

and significant pathways related to the studied phenotype.



CHAPTER 3

METHODS

In this chapter we present our statistical framework that integrates gene expression and
DNA CpG methylation within a GSEA procedure to detect dis-regulated pathways in the phe-
notype of interest. First, the Gene Single-Score (GSS) and the CpG Single-Score (CSS) are
explained. Then, since every gene could be related to a set of CpGs in different regions, we
explain how we elucidate this problem by assigning a CpG-Set Score (CSeS) for every gene
according to different regions. Consequently, we developed two mathematical models to obtain

Gene Combined-Score (GCS) by aggregating the GSS and the CSeS.

3.1 Statistical Framework

We propose a new statistical framework to combine gene expression and CpG methylation
that is illustrated in 4. First, from a gene expression profile, we compute a test statistic for
individual genes between the phenotypes, as the score representing the degree of the differential
gene expression. We call it Gene Single-Score (GSS). The same computation is performed to
determine the CpG Single-Score (CSS) from CpG methylation profiles. Second, CpG-Set Score
(CSeS) for each gene is produced based on the CpGs assigned to the respective gene and a
selected formula. Initially, the CpGs are grouped in a set for each gene as defined by the

methylation microarray platform annotation file. CSSs are aggregated using different formulas

14
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and will be described later in the chapter. Next, the Gene Combined-Score (GCS) is the
combination of the gene GSS and its correspond CSeS. Finally, using GSEA, we performed

pathway analysis test to identify significant gene sets related to the studied phenotype.

S1 S2 S3 5S4 S1 S2 S3 sS4
Genel CpG1
Gene2 GpG2
Genen GpGn
* T-test *T-‘ES‘
ESona Singh-SWrB{ EPG Singlg-SOqu
A

-

Steplé&2

1. Select region Rk
2. Select Formula Minmax

or AVG-Exponentiel I

* Step 1 & 2

CpG-Set Score

A

k;ene Combined-Score

* GSEA test

Pathway anlysis : Gene-set scores

~

Figure 4. Proposed statistical framework
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3.1.1 Gene Single-Score and CpG Single-Score: GSS and CSS

The GSS, Sexp(9i), is based on the gene test statistic only, and the same is true for the CSS,
Sepg;- In our case we used the t-test statistic, which is computed between two phenotypes for

individual genes and CpGs as follow:

where:

e I is the mean value of samples values from phenotype k, k =1, 2.
e s is the standard deviation of samples values from phenotype k, kK =1, 2.

e 1y is number of samples in phenotype k, k =1, 2.

3.1.2 CpG-Set Score: CSeS

In this step, we propose a novel approach to obtain a score for a gene according to its set
of CpGs single scores. These CpGs are associated to the gene as reported by the annotation
file of the microarray platform. We choose to study datasets having methylation experiments
using Illumina Infinium Human Methylation450 BeadChip (illumina 450k) because it covers
over 450,000 methylation sites per sample at single-nucleotide resolution (45).

Numerous studies have found that CpGs methylations in promoters around the transcription
starting site (TSS) are correlated to gene expression alterations (46) (47). Nonetheless, recent
studies observed that methylation of the first exon is also tightly linked to transcriptional

silencing (15) and gene body methylation is positively correlated to gene expression (17) (16).
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Therefore, it is more convenient to group CpGs according to regions to detect differences in
methylation. For these reasons we clustered CpGs according to regions rather then using single

CpG or all CpGs together. We grouped CpGs into four regions:

(a) TSS region: includes the CpGs in TSS200 and TSS1500 as defined according to the illumina

450k annotation file

(b) EXONI region: includes the CpGs in 5’'UTR and 1stEXON as defined according to the

illumina 450k annotation file

(¢c) BODY region: includes the CpGs in body and 3’UTR as defined according to the illumina

450k annotation file

(d) Gene region: includes the TSS, EXON1 and BODY region all together and using all the

CpGs in these regions to compute a CpG-set score for the gene.

Different methods can be used to score the CpG-set in a specific region for the gene asso-
ciation score used in the GSEA method. For example, if we select the TSS region, the max
statistic, which is the maximum value of the test statistic of the CpGs, represents the most
hyper-methylated CpGs associated to a gene. Likewise, the min statistic represents the most
hypo-methylated CpG among the set of the CpGs related to the same gene in the TSS re-
gion. Hyper-methylation reflects the gain of methylation in the disease case relatively to the
normal case and hypo-methylation is the opposite. In diseases such as cancer, the alteration
of the methylome is not in one sense, some genes gain methylation and some others lose it.

Surprisingly, some gene gain and lose at the same time and according to different regions. For
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Figure 5. Gene Regions

example, over-expression of UHRF1 has been associated with epigenetic silencing of BRCA1
in sporadic breast cancer (20). In our study we found this gene observation valid, but we also
found significant epigenetic activation of the same gene. We also used breast cancer dataset
and found many other genes, gaining and losing methylation at the same time (see 6).

If we use the maximum statistic and select only the CpG with the highest statistic (hyper-
methylated) then we ignore minimum which is also significant. Therefore, we propose the
following formula to assess if the gain and loss of mehtylation together are involved in the

phenotypes studied:
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A | B | c | D | B e ] G | H | I |
1 cpg gene chromosome  position region tstat pval genetstat | genepval

2 |cg00033371 UHRF1 19 4956786 BODY -2,77543948 0,0105111404 11,08562689 6,33E-011
3 |cg01396275 UHRFL 19 4961535 BODY -1,5722028785 0,128995168
4  |cgDl977762 UHRF1 19 4909193 TSS -5,9354629554 3,99E-006
5 |cg04571196 UHRF1 19 4910051 EXON1 -1,2791001891  0,2130912237
6 |cg04682120 UHRFL 19 4930815 BODY -0,0973305855  0,9232721392
7 |cg04693399 UHRFL 19 4909447 TSS 0,9044726416  0,3747349724
8 |cg06423533 UHRF1 19 4909366 TSS 0,7873660489 0,4387747031
9 |cg08422181 UHRF1 19 4909468 TSS -0,5684921592  0,5749822067
10 |cgD9317102 UHRF1L 19 4909554 EXON1 -0.8703071349  0,3927544549
11 |cg09443401 UHRF1 19 4944473 BODY 10,1231609249 3,87E-010
12 |cgl0158633 UHRF1 19 4930908 BODY 3,2697718827  0,0032422051
13 |cglOoG601761 UHRFL 19 4930780 BODY 3.6514547554 0.00126456724
14 |cgll888359 UHRF1 19 4936127 BODY -1,4667814999  0,1554176444
15 |cgl2159575 UHRF1 19 4910274 EXON1 -1,9270611222  0,0658909371
16 |cgl7714703 UHRF1 19 4912221 BODY -5,8842468303 4 53E-006
17 |cgls030386 UHRFL 19 4944160 BODY 8,6973567921 6.97E-009
18 |cgl8322448 UHRF1 19 4910276 EXONL -1,3367780304  0,1938297799
19 |cgl8473042 UHRF1 19 4909381 TSS 0,2376166688  0,8141952206
20 |cgl9230709 UHRF1L 19 4933046 BODY -2,0359856973  0,0529332613
21 |eg23290217 UHRF1 19 4909290 TSS -11,1983784051 5.16E-011
22 |cg23933606 UHRF1 19 4944005 BODY 4,1137265841  0,0003951465
23 |cg25466989 UHRFL 19 4939259 BODY -3.2059531203  0,0037857179

Figure 6. Gene UHRF1 methylation status
SHE(gi) = || min (Sepg,)* max (Sepg,)|, k=1,2,3,4 (3.2)
j=1..nk j=1..nk

cprg crg

In our first approach as illustrated in the following figure, the above formula computes a

k

cpg 18 the number of CpGs in

score for all CpGs that are in the specific region of gene g;, where n,
a specific region Ry, and Ry, Ry and Rg represent T'SS, EXON1 and BODY regions respectively.

This CpG-set score selects the maximum score, max(Scpq j), and the minimum score, min(Seyg, ),

among all values of single CpG scores that are in the region Ry, of gene g;.
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Figure 7. Scoring a CpG-Set of a Gene based on MinMax formula and different regions
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Our second approach of scoring a set of CpGs targets all the CpG single scores of a particular
region in order not to discard any value. To address the problem of differents signs due to CpGs
having negative single scores when they are hypo-methylated and positive ones when hyper-
methylated, we transformed all the CpGs single scores through an exponential function and

associated them according to the following formula:

k
"epg ef(SCPQj)
S (g = =L O (33)

e Mpg

In the above formula, single scores Sy, are rescaled to f(Sepg,) to fit into the interval [-2, 2]

then raised to the exponential e/ Sera;) and finally all values averaged in one score Sg,kg(gi) to

represent the gene g; (8).
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Figure 8. Gene score based on a CpG-Set using an Avg-Exponential formula and according to

different regions
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3.1.3 Gene Combined-Score : GCS

The gene combined score is the aggregation of the expression score of the gene, with its
correspondent CpG-set score. We used either formula MinMax or Avg-Exponetial to combine
the gene and CpG-set scores.

The first formula we call it formula MinMax:

S hk (9:) = S€$p(gi)\/‘MianI..nlc“pg(SCpgj) * Mawj:l..nlgpg(SCpgj) (3.4)
The second formula we call it formula Avg-Exponential:
" g Z’}Eplg ef(SCng)
Sk (g) = ef (Seap(9:)) ZI= — (3.5)
cpg

3.1.4 Gene Set Score: GSEA

We performed a pathway analysis using the GSEA test and assessments as described in the
previous chapter. However, we also used the GSEA in three different ways. First, we run the
GSEA test using only the Gene Single-Score (9). Then, we run it using the CpG-Set Score (9).

Finally, we used the combined score as illustrated by 4.
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Figure 9. GSEA using first Gene Single-Score only, then CpG-Set Score only.



CHAPTER 4

DATASETS

This chapter starts by presenting the two datasets used for evaluation of our framework
through the GSEA algorithm. These datasets are Breast Cancer (BC), invasive carcinoma
type, and the Primary Lymphatic and Blood Endothelial Cells (LEC/BEC). Afterwards, the
preprocessing steps for checking, cleaning and filtering the data are explained and illustrated

through different graphs.

4.1 BC dataset

The first dataset we used is from the Cancer Genome Atlas (TCGA) which provides a data
portal for researchers to search, download, and analyse data sets in cancer studies (32). The
TCGA provides researchers with a research network, to consolidate different research efforts
within a common infrastructure of experiments. Results are publicly available, in order to
improve research findings and progress locally and globally (32).

We chose the breast cancer dataset, which is the most frequently diagnosed cancer and the
second cause of cancer deaths in women (32). In 2010, according to the TCGA website, 207,090
women were estimated to have been diagnosed with invasive breast cancer in the United States

and approximately 40,000 women were estimated to have died of the disease.

25
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4.2 LEC/BEC dataset

The lymphatic system and blood vasculature share a similar molecular and developmental
relationship, but they exhibit distinct features and functions (33). In fact, transitions between
blood endothelial cells (BEC) and lymphatic endothelial cells (LEC) starts from the embryonic
development and can occur even after terminal differentiation (33). Bronneke et al. conducted
gene expression and CpGs methylation studies in LEC and BEC cells and identified a set of dif-
ferentially methylated and expressed genes. Pathway analyses of the differentially methylated
and upregulated genes in LEC revealed involvement in developmental and transdifferentiation

processes (33). We also used this dataset to assess our satistical framework.

4.3 Data Pre-processing

4.3.1 Pre-processing BC dataset

The breast cancer dataset was suitable for our study due to its large number of case and
control samples in gene expression and DNA methylation experiments. We obtained data
from 27 patients, and each breast cancer patient had a sample from the solid tumor tissue
(case sample) and another one from the normal tissue (control sample). The gene expression
microarray experiment and the DNA CpG mehtylation microarray experiment used case and
control samples from the same patients (see details in Annexel).

The TCGA data is codified according to different criterion like project, participant, type of

sample as shown in 10.



27

TSS Sample Portion Plate

4 A A
TCGA - 02 - 0001 - 01C - 01D - 0182 - 01
—— —— A~/
Project Particiapant  yja|  Apalyte Center

Figure 10. TCGA samples code explanation

For the complete list of our samples codes see Annexel. The TCGA samples barcodes start
with the project name which is the TCGA project for all the samples we had. Then, the tissue
source site (TSS) represents the center that extracted the samples and for our samples we had
"BH” which is the broad institute of MIT and Havard. The study participant code is the
participant identifier. The sample type, denotes the tissue type, for example ”01” stands for
solid tumor, and ”11” stands for normal tissue. The vial is the order of sample in a sequence of
samples, for example, 7 A” is first sample, "B” is second, ”C” is third and so forth. Then comes
the portion number which is the order of portion in a sequence of 100-120 mg sample portions.
The portion is associated to the analyte representing the molecular type of the sample for
analysis, for example "D” for DNA or ”R” for mRNA. Finally we have the plate order number
and the code of the center that performed the sequencing or the microarrays experiment. For
our study, the gene expression experiment was performed by University of North Carolina center
707" and the DNA methylation experiment was performed by the John hopkins/University of

Southern California center ”05”.
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The gene expression data was already pre-processed, and the level 3 folder of the downloaded
BC-dataset contained the genes intensities for every sample. However, we needed to quantile

normalize all the samples as showed in the 11.

All samples Boxplot
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Figure 11. Normalized gene samples: we used quantile normalization method.
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The methylation data, for BC dataset and also LEC/BEC dataset, were obtained from
microarray experiment using Illumina Infinium HumanMethylation450 BeadChip. For both
datasets, each CpG has a beta value computed as the following:

Methylation intensity (M)
(Unmethylation intensity (U) + Methylation intensity (M) + 100)

f= (4.1)

The Illumina Infinium HumanMethylation450 BeadChip uses two types of probes, infinium
I and Infinium II, and a bias in this platform has been reported and studied previously (34) (35)
(36) (37). In fact, the CpGs probes are designed differently (34) and have different beta value
distributions as presented in the distributions and densities of the BC dataset (17). Therefore,
a correction is needed to ensure the effectiveness of the downstream analysis (35) (36) (37).
First, we present our pre-processing pipeline in the following manner:

We used the methylumi bioconductor package to import the samples microarray files that
have the extension .idat and two color channels green and red for each sample. We retrieved
54 samples, each having 485,577 CpGs. The wateRmelon bioconductor package provides a
function to filter unreliable probes, which in our case indicated that zero samples having 1 %
of sites with a detection p-value greater than 0.05 were removed, 4,358 sites were removed as
beadcount less than 3 in 5 % of samples and 8,943 sites having 1 % of samples with a detection
p-value greater than 0.05 were removed. We also used lumi bioconductor package to correct for

color bias as shown in 13 and 14 and to adjust the background as indicated by 15.
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Figure 12. CpG Methylation pre-processing steps

It is worth to mention that the color bias correction is only applied to the Infinium II probes
because they use one bead to catch the methylated and unmethylated probes. By contrast, the
Infinium I probes have only one color channel by using two beads, one for the methylated and
the second for the unmethylated. After correcting the color bias and adjusting the background
we checked for batch effect and found that two patients samples data were outliers even after
normalization and the batch effect was not effective, so we eliminated them.

The next step of our preprocessing pipeline was to eliminate the sex bias by filtering 11,112
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Boxplots of Red and Green color channels
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Figure 13. Samples color channels having color bias

probes that are on the X chromosome and 41 from Y chromosome and the population ethnicity

bias by filtering 85,608 probes with SNPs. After eliminating all the wanted probes that could

present a bias and the samples outliers, we were left with 379873 probes and 50 samples. We

separated the probes in two groups, Infinium I and II and we obtained 106325 probes in type

I and 273548 probes in type II.
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Boxplots of Red and Green color channels

SrrrirTziziziiiiiiiiipg®9% §

0000000000000 00CO0000000C0000MO00000000000CO0O0M0O0O00O00O0

segoud perejAyiswun pue peleliuiew wod jo Asusiul 6o

200204 ZLOPZETIO9
100504 LE0VEEER09
200¥04d_2L0tacei09
100204 0LOYZEEH09
100104 GE0F2EE09
200504 +L0¥2ESH09
100504 L/OVZEZ09
200904 _8¥0¥2EEY09
100504 8rOFaEEr09
Z0DE0Y ZLO9BKG009
200904 £1098¥5009
200v0Y £L098F5009
L00¥0H_S209875009
100604 52098+5009
100204 6209875009
200504 LLO98F5009
200%04” 109875009
200104 LLO98YG009
100904 109875009
100504 09875009
102F0H LLO98#5009
100604 11098+5009
100109 1 LO9875009
100904 _EL09875009
100104 5209875009
200204 _0DEOFZEZV09
100104 0eokaEEF09
100E0Y_0E0PZEEHO9
200904 0E0FZEEV09
100904 0L0F2E2H00
200204 1 LOPZEEHO9
L00F0H_LLOVEEEH09
200504 3r0F2Eer09
100904 8vOVZEZP09
100904 _2+09875009
200904 DLOIBLIO09
100V0H_#D01621009
100104 1209875009
20020Y £209875009
c00¥0Y_61098¥5009
100904 £209875009
100104 6L09875009
200804 7109875009
100904 6109875009
Z00V0H L2098¥5009
100504_7+098+5009
100€0Y” | 209875009
200904 _12098¥5009
100204 6109875009
100¥YDH” 9001677009

Figure 14. Samples color channels after color bias correction

To correct the two types of probes peaks bias due to their different bead design by the

-quantile method

constructor, many methods were proposed and we used a beta mixture inter

(37) that was implemented in the bioconductor package wateRmelon. After the correction of

the Infinium type I and II peaks (16), we normalized them separately (17 and 18) with quantile

normalization method then we remerged them again (20).
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Boxplots of Red and Green color channels
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Figure 15. Samples color channels after background adjustment
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Densities of Infiniuml&Il CpGs Densities of Typel&ll CpGs after BMIQ peak correction
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(a) Before peak correction. (b) After peak correction.

Figure 16. Boxplot of CpGs-methylation infinium I & II. on the left figure the Infinium I
(black) and the infinium II (blue) have different distributions for the bumps that was corrected

using the beta-mixture quantile normalization method (37) as shown on the right figure
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Figure 17. Infinum I&IT boxplot after peak correction
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Figure 18. Infinum I&II boxplot after normalization
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Figure 19. Density of Infinum I and II probes after normalization
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Figure 20. Boxplot after merging all probes from Infiniuml and IT
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After finishing with all the preprocessing steps, we proceeded to filter our data to fit the
requirements of our statistical framework. Some genes did not have associated CpGs so we
discarded them and some CpGs were also eliminated because they did not have associated
genes (TABLE I). Grouping the CpGs into regions also reduced the number of genes and CpGs

(TABLE II).

Genes | CpGs

Initial number 17,811 485,577

After filtering 15,320 379,873

Matched number | 14,731 | 246,835

TABLE I

NUMBER OF GENES HAVING CPGS AND VICE VERSA



Genes | CpGs
Initial Total number | 14,731 | 246,835
TSS 13,439 | 70,363
EXON1 12,151 | 47,890
BODY 13941 | 128,582
TABLE 11

NUMBER OF GENES AND CPGS PER REGION

40
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4.3.2 Pre-processing LEC/BEC dataset

The LEC/BEC dataset has less number of samples, 10 LEC and 6 BEC, in gene expression
and DNA methylation experiments. The expression data were obtained from Agilent microar-

ray experiment. The values were log2 transformed and normalized as shown by 21.
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Figure 21. Normalized gene-expression samples
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We also poltted the Principal Component Analysis(PCA) to verify that there were no out-

liers in the experiment (22).
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Figure 22. PCA plot of the samples
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We plotted the density of LEC samples as well as the BEC samples in 23.
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Figure 23. Density plot of gene-expression samples

Concerning the methylation data, the Beta values are normalized and have no outliers as

confirmed by the boxplot and PCA plots shown in 24 and 25 and the density plot in 26.
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Figure 24. Boxplot of normalized samples
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Figure 25. PCA plot of the samples
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Figure 26. Density plot of all samples CpGs methylation
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Since we integrate gene expression information and CpG sites methylation information at

the gene level, we needed to discard the genes that don’t have CpGs and the CpGs that do not

belong to any gene (TABLE III).

Genes | CpGs
Initial number 18,691 | 485,512
After eliminating those with no values | 18,691 | 182,937
Matched number 16,887 | 163,467

TABLE III

NUMBER OF GENES HAVING CPGS AND VICE VERSA

Also, grouping the CpGs into regions reduced the number of genes and CpGs as follow:



Genes | CpGs
Initial Total number | 16,887 | 163,467
TSS 15,281 | 52,899
EXON1 11,603 | 30,195
BODY 14,375 | 80,373
TABLE 1V

NUMBER OF GENES AND CPGS PER REGION
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents the experimental results of our statistical framework tested on the
BC and LEC/BEC datasets. The results are highlighted in summary tables and more details
about the detected pathways can be found in subsequent tables. We also validated our results

through the literature.

5.1 BC Results and Literature Validation

e Based on Gene Single Score (GSS)

We start by ranking genes with at least one CpG in the ascending order of GSS. The rank
list was used as input for the GSEA algorithm. We considered all the genes when we counted
for the CpGs that are in the gene region. However, when we restrict the CpGs to the TSS
or EXON1 or BODY regions, then the number of genes will be reduced as was described in

chapter 4 (Table II).
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Formula MinMax | Formula AvgEzponentiel
TSS Region 0 pathways 0 pathways
EXON1 Region | 0 pathways 0 pathways
BODY Region | 0 pathways 0 pathways
Gene Region TABLE VI TABLE VII
TABLE V

SUMMARY OF RESULTS USING GENE SINGLE-SCORE
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The GSS did not detect any significant pathways with FDR cutoff less than 25%, except
for gene region that gave two significant pathways as presented in TABLE VI and TABLE VII.
Consulting the literature, K1 is associated with proliferation of human breast cancer cells due to
the dis-regulation of ribosome bio-genesis and translational capacity (48). The pathway taurine
and hypotaurine metabolism (KO0) is also significant as taurine is abundant in the brain, heart,
breast,... and has important roles in health and disease in these organs (19). Moreover, taurine
is related to tumor cells (21) and is significantly involved with breast cancer (22).

TABLE VI. PATHWAYS IN BC DETECTED BY GENE SINGLE SCORE (FORMULA

MINMAX, GENE REGION)

Index Geneset Name P FDR
KO KEGG_TAURINE_AND HYPOTAURINE METABOLISM 00580 01977
K1 KEGG_RIBOSOME 0.1090 0.1890

TABLE VII. PATHWAYS IN BC DETECTED BY GENE SINGLE SCORE (FORMULA

AVG-EXPONENTIEL, GENE REGION)

Index Geneset Name P FDR
KO KEGG_TAURINE_AND_HYPOTAURINE_METABOLISM 0.0550 0.1882
K1 KEGG_RIBOSOME 0.1030 0.2360

e Based on Gene CpG-Set Score

The scoring of genes based on CpGs-set gave a more significant pathways than the GSS. A
summary of these results is presented in TABLE VIII and more details about the significant

detected pathways is given in the subsequent tables.



Formula MinMazx | Formula AvgExponentiel
TSS Region TABLE IX TABLE XIII
EXON1 Region | TABLE X TABLE XVIII
BODY Region | TABLE XI 0 pathways
Gene Region TABLE XII TABLE XV
TABLE VIII

SUMMARY OF RESULTS USING CPG-SET SCORES
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TABLE IX. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA

MINMAX TSS REGION)

Index Geneset Name P FDR
K1 KEGG_RIBOSOME 0.0000 0.0000
K2 KEGG NEUROACTIVE LIGAND_RECEPTOR INTERACTION 0.0000 0.0000
K3 KEGG RNA DEGRADATION 0.0000 0.0006
K4 KEGG_UBIQUITIN MEDIATED_PROTEOLYSIS 0.0000 0.0010
K5 KEGG_OLFACTORY TRANSDUCTION 0.0020 0.0040
K6 KEGG_CYTOKINE CYTOKINE RECEPTOR INTERACTION 0.0000 0.0136
K7 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.0010 0.0217
K8 KEGG _SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0.0010 0.0236
K9 KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 0.0000 0.0410
K10 KEGG NON HOMOLOGOUS_END_JOINING 0.0040 0.0450
K11 KEGG_CELL_CYCLE 0.0000 0.0453
K12 KEGG_SPLICEOSOME 0.0000 0.0523
K13 KEGG_PURINE_METABOLISM 0.0060 0.1303
K14 KEGG GRAFT VERSUS HOST DISEASE 0.0010 0.1365
K15 KEGG_PROTEASOME 0.0010 0.1630
K16 KEGG_OOCYTE MEIOSIS 0.0000 0.1670
K17 KEGG_TIGHT_JUNCTION 0.0120 0.1941
K18 KEGG_ALZHEIMERS_DISEASE 0.0020 0.2004
K19 KEGG_ASTHMA 0.0020 0.2058
K20 KEGG_ONE_CARBON_POOL_BY FOLATE 0.0150 0.2132
K21 KEGG_VALINE LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 0.0420 0.2185
K22 KEGG_HUNTINGTONS_DISEASE 0.0050 0.2239
K23 KEGG NOTCH SIGNALING PATHWAY 0.0230 0.2279
K24 KEGG_VEGF_SIGNALING_PATHWAY 0.0150 0.2303
K25 KEGG_RNA POLYMERASE 0.0410 0.2410

52

In general, the CpG-set scoring led to more results than GSS or GCS. For BC dataset,

the TSS region gave a large number of pathways that were significant and at the same time

biologically relevant. The neuroactive ligand receptor interaction pathway (K2) was reported

as highly significant in the breast cancer cell line MCF-7 treated with 178 Estradiol (49). In

addition, other significant pathways such as cytokinecytokine receptor interaction (K6), calcium
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signaling (K53), cell adhesion molecules CAMs (K33) axon guidance (K50) and ErbB signaling
pathway were also reported as relevant to cancer (49).

The ubiquitin mediated proteolysis pathway (K4) has a very important role in the molecular
basis of carcinogenesis and specifically in breast cancer (51) (52) and a study about applying
drugs affecting the ubiquitin-proteasome pathway to the therapy of breast cancer has been
proposed (53). The induction of olfaction and cancer-related genes in mice fed with a high-fat
diet also propose the olfactory transduction pathway (K5) as a cancer related pathway (54) and
highly correlated to breast cancer (55). The snare interactions in vesicular transport pathway
(K8) is regulated by Rab GTPases and it was shown that Rab25 is upregulated in certain
ovarian and breast cancers due to amplification of a chromosomal region containing the Rab25
gene (58).

A study was conducted about neurotrophins and their receptors in breast cancer which
relates neurotrophin signaling pathway (K9)to breast cancer (59). In fact, nerve growth factor
stimulates proliferation and survival of human breast cancer cells through a specific signaling
pathways (60). In addition, nerve growth factor promotes breast cancer angiogenesis by ac-
tivating multiple pathways (61). We also found a multigenic study on cancer susceptibility
stating that the risk to breast cancer was associated with genotypic polymorphism of the non-
homologous end-joining (K10) genes (62).

Furtheremore, one study identified a gene signature in cell cycle pathway (K11) for breast
cancer prognosis using gene expression profiling data (63). Moreover, in cancer cells the deregu-

lated spliceosome (K12) core machinery can be targeted for potential therapy and the interaction
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of p53 and SAP145 represents a novel role for p53 in splicing (64). This finding is likely to
have direct implications for breast cancer research, considering p53 and cyclin E as prognos-
tic markers for breast cancer, since both proteins converge their pathways at the spliceosome
(65). Another point, concerns the effect of methotrexate on intracellular folate pools in human
MCEF-7 breast cancer cells, which was found as an evidence for direct inhibition of purine syn-
thesis (K13) (66) (67). Molecularly targeted therapies for breast cancer, do also include the
proteasome pathway (K15) especially for chemotherapy (69).

So far, the evidences reported in literature support the effectiveness of our proposed frame-
work. In addition, our method also suggests new significant pathways involved with the methy-
lation of the T'SS region of certain genes that can be strongly related to breast cancer and can
be further investigated to become a new target treatment. The RNA degradation pathway (K3)
has been found to regulate GAS5 function which is a non-coding RNA in mammalian cells and
far less is known about the mechanisms and biological importance of ncRNA (50). Furthermore,
the aminoacyl-tRNA biosynthesis pathway (K7) can be important in breast cancer since the
aminoacyl-tRNA synthetase is deeply involved with cancer disease such as in glioblastoma tu-
mor (56) and potentielly in breast cancer (57). Additionally, the induction of graft versus host
disease pathway (K14) has been proposed as an immuno-therapy for relapsed chronic myleoid

leukemia (68) and may also be breast cancer related.
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TABLE X. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA MINMAX

EXON1 REGION)

Index Geneset Name P FDR
K2 KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.0000 0.0000
K4 KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0.0010 0.0220
K11 KEGG_CELL_CYCLE 0.0000 0.0235
K26 KEGG_BASE_EXCISION REPAIR 0.0000 0.0306
K27 KEGG PHENYLALANINE METABOLISM 0.0010 0.0706
K28 KEGG DILATED CARDIOMYOPATHY 0.0000 0.0707
K29 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0.0010 0.0772
K30 KEGG DNA REPLICATION 0.0030 0.0772
K31 KEQG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS 0.0030 0.0798
K6 KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.0050 0.0898
K32 KEQG_COMPLEMENT AND_COACULATION_CASCADES 0.0030 0.0920
K33 KEGG_CELL ADHESION MOLECULES CAMS 0.0040 0.0947
K17 KEGG_TIGHT_JUNCTION 0.0080 0.0995
K34 KEGG PROPANOATE METABOLISM 0.0040 0.1052
K12 KEGG_SPLICEOSOME 0.0050 0.1165
K35 KEGG N GLYCAN BIOSYNTHESIS 0.0030 0.1272
K1 KEGG_RIBOSOME 0.0140 0.1648
K36 KEGQG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 0.0100 0.1888
K37 KEGG_VIRAL MYOCARDITIS 0.0120 0.2367
K5 KEGG_OLFACTORY_TRANSDUCTION 0.0010 5e-04

TABLE XI. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA

MINMAX BODY REGION)

Index Geneset Name P FDR
K15 KEGG_PROTEASOME 0.002 0.134
K20 KEGG_ONE_CARBON_POOL_BY_FOLATE 0.003 0.1956
K1 KEGG_RIBOSOME 0.008 0.24125

CpG-Set Scoring using the MinMax formula in EXON1 region detected many interesting

significant pathways, and some of them are overlapping with the ones detected in the TSS

region and they are highlighted in TABLE X. Also, when CSeS scoring in BODY region was
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used, only 3 significant pathways were detected and they all overlap with the ones detected by
using the same scoring in T'SS and/or EXONI region. The pathways detected by using CSeS
scores in EXONT1 region include also breast cancer related pathways and others are unexplored
but could be a new topic or hypothesis of research and interest.

The base-excision repair pathway (K26) was significant and has also genetic polymorphisms
in its genes presenting a risk for breast cancer (70). As a therapeutic strategy, it was also sug-
gested to target the DNA repair defect in BRCA mutant cells (71). Phenylalanine metabolism
pathway(K27) is very important in cancer since an analysis of metabolic correlation network
was established and found it as a potential biomarkers for breast cancer (72), in addition, it is
already used in tumor cell metabolism imaging (73). Another study related dilated cardiomy-
opathy (K28) and HER2-Positive breast cancer (74) through the interaction between specialties.
The amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is also
critical for the progression of many forms of breast cancer and it is showed that ErbB2 is es-
sential in the prevention of dilated cardiomyopathy (75). DNA damage response pathwya was
suggested as a candidate for anti-cancer barrier in early human tumorigenesis (76). Therefore,
the targeting of DNA replication (K30) before it starts has been elaborated by proposing Cdc7

as a therapeutic target in p53-mutant breast cancers (77).



TABLE XII. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA

MINMAX GENE REGION)

Index Geneset Name P FDR
K38 KEGG_ECM_RECEPTOR_INTERACTION 0.000  0.0120
K39 KEGG_PARKINSONS_DISEASE 0.0010 0.0150
K15 KEGG_PROTEASOME 0.0000 0.0177
K22 KEGG_HUNTINGTONS_DISEASE 0.0010 0.0180
K20 KEGG_ONE_CARBON_POOL_BY_FOLATE 0.0010 0.0230
K40 KEGG_NON_HOMOLOGOUS_END_JOINING 0.0000 0.0306
K1 KEGG_RIBOSOME 0.0030 0.0405
K41 KEGG_OXIDATIVE PHOSPHORYLATION 0.0140 0.0490
K42 KEGG_FATTY_ACID METABOLISM 0.0240 0.1164
K31 KEGG _GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIosyNTHEsIs 0.0150 0.1223
K43 KEGG_PEROXISOME 0.0200 0.1243
K18 KEGG_ALZHEIMERS_DISEASE 0.0040 0.1317
K3 KEGG_RNA_DEGRADATION 0.0130 0.1444
K44 KEGG OTHER GLYCAN DEGRADATION 0.0040 0.1540
K45 KEGG_BUTANOATE_METABOLISM 0.0180 0.1557
K29 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0.0210 0.2027
K46 KEGG_REGULATION OF AUTOPHAGY 0.0310 0.2243

TABLE XIII. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA

AVG-EXPONENTIEL TSS REGION)

Index Geneset Name P FDR
K14 KEGG_GRAFT_VERSUS_HOST_DISEASE 0.0060 0.1030
K47 KEGG ALLOGRAFT REJECTION 0.0080 0.1060
K48 KEGG_AUTOIMMUNE_THYROID_DISEASE 0.0050 0.1080
K5 KEGG_OLFACTORY_TRANSDUCTION 0.0040 0.1100
K49 KEGG_TYPE_I DIABETES_ MELLITUS 0.0030 0.1100
K19 KEGG_ASTHMA 0.0070 0.1315
K2 KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.0090 0.1980
K25 KEGG_RNA_POLYMERASE 0.0210 0.2398
K6 KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.0260 0.2463
K1 KEGG_RIBOSOME 0.0130 0.2471
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TABLE XIV. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA

AVG-EXPONENTIEL EXON1 REGION)

Index Geneset Name P FDR
K5 KEGG_OLFACTORY_TRANSDUCTION 0.0010 0.0730
K50 KEGG_AXON_GUIDANCE 0.0020 0.0731
K51 KEGG MELANOGENESIS 0.0040 0.0731
K52 KEGG_BASAL_CELL_CARCINOMA 0.0040 0.0760
K2 KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.0090 0.0780
K28 KEGG_DILATED_CARDIOMYOPATHY 0.0020 0.0788
K53 KEGG_CALCIUM_SIGNALING_PATHWAY 0.0010 0.092

K41 KEGG_ECM_RECEPTOR_INTERACTION 0.0030 0.0966
K4 KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0.0050 0.0986
K12 KEGG_SPLICEOSOME 0.0030 0.1180
K54 KEGG_PATHWAYS_IN_CANCER 0.0070 0.1353
K55 KEGG_WNT SIGNALING_PATHWAY 0.0120 0.1914
K56 KEGG_VASCULAR_SMOOTH MUSCLE CONTRACTION 0.0050 0.1974
Kb7 KEGG FOCAL_ADHESION 0.0160 0.1986
KO KEGG_TAURINE AND HYPOTAURINE METABOLISM 0.0020 0.2030
K58 KEGG HEDGEHOG SIGNALING PATHWAY 0.0180 0.2101
K59 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS HEPARAN SULFATE 0.0060 0.2122

o8

For the BC dataset, we found that the best results were generated by the formula AvgEx-

ponentiel (Equation 3.3) when applied to the EXON1 region using GSeS (TABLE XVIII) since

it detected multiple cancer pathways such K54 and especially breast cancer pathway, basal cell

carcinoma (K52). In addition, this scoring combined with this region detected only relevant

pathways like the calcium signaling pathway (K53) which is highly correlated to cancer and

the melanogenesis pathway (K51) that has also been related to breast cancer cell lines in dif-

ferent studies (78). Moreover, there is an evidence that transgenes encoding components of

the Wnt signaling pathway (K55) preferentially induce mammary cancers from progenitor cells

(79). Another point, concerning the gene expression programs of human smooth muscle cells
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pathways (K56), it showed a tissue-specific differentiation and prognostic significance in breast
cancers (80). A study of the focal adhesion kinase (K57) and p53 signal transduction pathways
in cancer (81) has been related to migration and survival of breast cancer cells (82). Finally,
the hedgehog signalling pathway (K58) is well studied in breast development, carcinogenesis
and cancer therapy (83) and the heparan-sulfate and glycosaminoglycans pathway(K59) have
an important role in cancer in general (84) and especially in breast cancer (85).

TABLE XV. PATHWAYS IN BC DETECTED BY CPG-SET SCORE (FORMULA

AVG-EXPONENTIEL, GENE REGION)

Index Geneset Name P FDR
K28 KEGG_DILATED CARDIOMYOPATHY 0.0010 0.1410
K30 KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 0.0040 0.2226
K24 KEGG_ENDOCYTOSIS 0.0010 0.2302
K15 KEGG_ADHERENS_JUNCTION 0.0050 0.2408

e Based on Gene Combined-Score

The GCS is the aggregation of the GSS and the CSeS. This scoring procedure gave also better
results than a gene single score results with more significant FDRs. Using formula MinMax
the EXONI region detected the pathway K60 glutathione metabolism with Pvalue= 0.0000
and FDR=0.0560. Also, using the whole gene as region, only one pathway was detected drug

metabolism cytochrome p450 (K61) with Pvalue=0.0010 and FDR=0.2000.



Formula MinMax | Formula AvgExponentiel
TSS Region 0 pathways 0 pathways
EXON1 Region | 1 pathway TABLE XVIII
BODY Region | TABLE XVII 0 pathways
Gene Region 1pathway 0 pathways
TABLE XVI

SUMMARY OF RESULTS USING GENE COMBINED SCORE

TABLE XVII. PATHWAYS IN BC DETECTED BY GENE COMBINED SCORE

(FORMULA MINMAX, BODY REGION)

Index Geneset Name P FDR
K5 KEGG_OLFACTORY_TRANSDUCTION 0.0000 0.0000
K61 KEGG_DRUG_METABOLISM_CYTOCHROME_P450 0.0000 0.0575
K62 KECG_LYSINE_DEGRADATION 0.0000 0.0970
K63 KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS 0.001 0.1743

TABLE XVIII. PATHWAYS IN BC DETECTED BY GENE COMBINED SCORE

(FORMULA AVG-EXPONENTIEL, EXON1 REGION)

Index Geneset Name P FDR

K5 KEGG_OLFACTORY_TRANSDUCTION 00070 00660

K64 KEGG_ENDOCYTOSIS 0.0000 0.2130
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5.2 LEC/BEC Results and Literature Validation

e Based on Gene Single Score

Based on this type of scoring the first formula did not lead to any significant pathways. A

summary of the results is presented in the following table:

Formula MinMax | Formula AvgEzponentiel
TSS Region 0 pathways 0 pathways
EXON1 Region | 0 pathways 0 pathways
BODY Region | 0 pathways 0 pathways
Gene Region 0 pathways 0 pathways
TABLE XIX

SUMMARY OF RESULTS USING GENE SINGLE SCORE
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e Based on Gene CpG-Set Score

CSeS in TSS region gave two significant pathways using minMax formula and only one by using
formula AvgExponentiel. Also, one significant pathway in EXONI region was detected. All

the significant pathways are listed below (TABLE XXI)with their correspondant Pvalues and

FDRs.
Formula MinMax | Formula AvgExponentiel
TSS Region 2pathways 1pathway
EXONI1 Region | 0 pathways 1pathway
BODY Region | 0 pathways 0 pathways
Gene Region TABLE XXII 0 pathways
TABLE XX
SUMMARY OF RESULTS USING CPG-SET SCORE
TABLE XXI. PATHWAYS IN LEC/BEC DETECTED BY CPG-SET SCORE
Index Geneset Name P FDR
Formula MinMAx TSS region
Kl KEGG_CELL_ADHESION_ MOLECULES_CAMS 0008 0169
K2 KEGG_HEMATOPOIETIC_CELL_LINEAGE 0.001 0.114
Formula MinMax EXON1 region
K4 KECGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 0.001 0.035

Formula AvgExponentiel TSS region

Continued on next page



Continued from previous page

Index
K3

Geneset Name

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION

P FDR
0.002 0.072
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TABLE XXII. PATHWAYS IN LEC/BEC DETECTED BY CPG-SET SCORE (FORMULA

MINMAX, GENE REGION)

Index Geneset Name P FDR
K4 KEGG_HEMATOPOIETIC_CELL LINEAGE 0.0010 0.0160
K5 KEGG_GRAFT VERSUS HOST DISEASE 0.0020 0.0200
K6 KEGG _SPLICEOSOME 0.0030 0.0210
K7 KEGG_AUTOIMMUNE THYROID DISEASE 0.0020 0.0226
K8 KEGG_OXIDATIVE PHOSPHORYLATION 0.0010 0.0320
K9 KEGG_ALLOGRAFT REJECTION 0.0040 0.0562
K10 KEGG_PARKINSONS_DISEASE 0.0040 0.0646
K11 KEGG_NUCLEOTIDE EXCISION_REPAIR 0.0110 0.0738
K12 KEGG_HUNTINGTONS_DISEASE 0.0020 0.0752
K13 KEGG RNA DEGRADATION 0.0110 0.0776
K14 KEGG_VIBRIO_CHOLERAE_INFECTION 0.0000 0.0867
K15 KEGG_ALZHEIMERS DISEASE 0.0010 0.0876
K16 KEGG_BASAL TRANSCRIPTION FACTORS 0.0160 0.0932
K17 KEGG RIBOSOME 0.0100 0.0932
K18 KEGG_PROTEASOME 0.0050 0.0960
K19 KEGG_GLUTATHIONE METABOLISM 0.0230 0.0998
K20 KEGG_AMINO_SUGAR_AND NUCLEOTIDE SUGAR_METABOLISM 0.0070 0.0998
K21 KEGG_HOMOLOGOUS_RECOMBINATION 0.0110 0.1000
K22 KEGG_GLYCOSPHINGOLIPID BIOSYNTHESIS GANGLIO SERIES 0.0060 0.1130
K23 KEGG_PROTEIN_EXPORT 0.0490 0.1204
K24 KEGG_ABC_TRANSPORTERS 0.0190 0.1222
K25 KEGG_TYPE_I DIABETES_MELLITUS 0.0020 0.1293
K26 KEGG CELL ADHESION MOLECULES CAMS 0.0270 0.1365
K27 KEGG_ECM_RECEPTOR_INTERACTION 0.0010 0.1514
K28 KEGG _BIOSYNTHESIS OF UNSATURATED FATTY ACIDS 0.0020 0.1775
K29 KEGG_FOLATE_BIOSYNTHESIS 0.0160 0.1782
K30 KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL GPI ANCHOR_BIOSYNTHESIS 0.0530 0.1798
K31 KEGG_TYROSINE METABOLISM 0.0420 0.1807
K32 KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0.0280 0.1953
K33 KEGG_GLYCINE_SERINE_AND_THREONINE METABOLISM 0.0050 0.1978
K34 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE DEGRADATION 0.0660 0.2098
K35 KEGG_VASOPRESSIN_ REGULATED_WATER_REABSORPTION 0.0160 0.2118
K36 KEGG_VIRAL_MYOCARDITIS 0.0110 0.2133

Continued on next page
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Continued from previous page
Index Geneset Name P FDR

K37 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_ HEPARAN_SULFATE 0.0410 0.2441

e Based on Gene Combined Score

Based on the CpG-set scoring, formula MinMax in the TSS region gave one significant pathway
and the EXONT1 region also gave one significant pathway too. For formula AvG-Exponentiel,

only BODY region gave one significant pathway (TABLE XXIV).

Formula MinMax | Formula AvgExponentiel

TSS Region 1pathway 0 pathways
EXON1 Region | 1pathway 0 pathways
BODY Region | TABLE XXV 1pathway

Gene Region TABLE XXVI 0 pathways

TABLE XXIIT

SUMMARY OF RESULTS USING GENE COMBINED SCORE
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TABLE XXIV. PATHWAYS IN LEC/BEC DETECTED BY GENE COMBINED-SCORE

Index Geneset Name P FDR
Formula MinMax TSS region

K5 KEGG_PPAR_SIGNALING_PATHWAY 0.002 0.249
Formula MinMAx EXONT1 region

K38 KEGG_RENAL_CELL CARCINOMA 0.003 0.207
Formula AvgExponentiel BODY region

K17 KEGG_RIBOSOME 0.004 0.249

TABLE XXV. PATHWAYS IN LEC/BEC DETECTED BY GENE COMBINED-SCORE

(FORMULA MINMAX BODY REGION)

Index Geneset Name P FDR
K39 KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 0.0010 0.0090
K5 KEGG_PPAR_SIGNALING_PATHWAY 0.0030 0.1075
K40 KEGG_NEUROTROPHIN SIGNALING_PATHWAY 0.0020 0.1076
K41 KEGG CHRONIC_MYELOID LEUKEMIA 0.0010 0.1280
K42 KEGG_HYPERTROPHIC_CARDIOMYOPATHY HCM 0.0030 0.1366
K43 KEGG_FC_GAMMA _R_MEDIATED PHAGOCYTOSIS 0.0120 0.1470
K44 KEGG_FOCAL_ADHESION 0.0190 0.1499
K45 KEGG INOSITOL PHOSPHATE METABOLISM 0.0090 0.1506
K46 KEGG_ADHERENS_JUNCTION 0.0130 0.1542
K47 KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_.GLOBO_SERIES 0.0150 0.1544
K48 KEGG_ADIPOCYTOKINE SIGNALING PATHWAY 0.0100 0.1573
K49 KEGG_NOTCH_SIGNALING_PATHWAY 0.0210 0.1591
K50 KEGG BLADDER CANCER 0.0180 0.1592
K51 KEGG_SMALL_CELL_LUNG_CANCER 0.0270 0.1598
K52 KEGG_COLORECTAL CANCER 0.0110 0.1635
K53 KEGG_APOPTOSIS 0.0140 0.1672
Kb4 KEGG_GLYCOSAMINOGLY CAN_BIOSYNTHESIS HEPARAN SULFATE 0.0190 0.1723
K55 KEGG_ENDOCYTOSIS 0.0220 0.1751
K56 KEGG_AXON_GUIDANCE 0.0290 0.1785
K57 KEGG_PHOSPHATIDYLINOSITOL SIGNALING SYSTEM 0.0100 0.1796
K58 KEGG_DILATED_CARDIOMYOPATHY 0.0280 0.1802
K59 KEGG_MAPK SIGNALING PATHWAY 0.0170 0.1813
K60 KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 0.0140 0.1853

Continued on next page
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Continued from previous page

Index Geneset Name P FDR
K61 KEGG_INSULIN_SIGNALING_PATHWAY 0.0320 0.1854
K62 KEGG PANCREATIC CANCER 0.0240 0.1861
K63 KEGG_PATHWAYS_IN_CANCER 0.0190 0.1913
K64 KEGG_PROSTATE_CANCER 0.0390 0.1948
K65 KEGG_DRUG_METABOLISM_OTHER_ENZYMES 0.0010 0.2170
K66 KEGG_GLYOXYLATE _AND_DICARBOXYLATE METABOLISM 0.0340 0.2432
K67 KEGG_ARRHYTHMOGENIC_RIGHT VENTRICULAR_CARDIOMYOPATHY ARVC 0.0440 0.2481

TABLE XXVI. PATHWAYS IN LEC/BEC DETECTED BY GENE COMBINED SCORE

(FORMULA MINMAX GENE REGION)

Index Geneset Name P FDR
K68 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS. HEPARAN_SULFATE 0.0020 0.0390
K69 KEGG_ENDOCYTOSIS 0.0010 0.0750
K70 KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 0.0040 0.2216
K71 KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 0.0210 0.2366
K44 KEGG_FOCAL_ADHESION 0.0090 0.2431
Kb KEGG_PPAR_SIGNALING_PATHWAY 0.0100 0.2444
K72 KEGG_FC_GAMMA R_MEDIATED PHAGOCYTOSIS 0.0420 0.2475
K49 KEGG NOTCH SIGNALING PATHWAY 0.0350 0.2479

The involvement of lymphatic and blood vessels in the course of tissue genesis and regener-
ation in several physiological mechanisms has been reported(33) . In addition, these lymphatic
and endothelial cells are tightly related to the progression of many pathological states such as
tumor metastasis. Nonetheless, cancer proliferation needs the development of new anomalous
blood vessels, which can also cause other types of diseases. Therefore, in some conditions, blood
endothelial cells (BEC) can look similar to the lymphatic endothelial cells (LEC) (33).

In the present work, through the statistical framework scoring procedures, we detected
several cancer pathways such as renal cell carcinoma (K38), chronic myeloid leukemia (K41),

bladder cancer (K50), small cell lung cancer (K51) and colorectal cancer(K52), in addition to
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cancer related signaling pathways such as notch pathway (K49) and neurotrorphin pathway
(K40). Our results confirm with the literature, indicating that epigenetic processes play an
important role in specifying the vascular lineage of endothelial cells and may further be involved

in cancer initiation, formation and proliferation.
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5.3 Discussion

In this work, we have built a statistical framework in which, we proposed three types of
scoring methods (GSS/CSS, CSeS, GCS), to be used in gene set enrichment analysis (GSEA),
in order to detect phenotype related pathways that can be investigated for potential therapies
and prognosis. The first score is based on gene expression as a single score and same for CpG
single-score. The second score, is based on an aggregation of a set of CpGs methyaltion in a
specific region. The third one, is based on the combination of the first and the second scores
using two mathematical models.

The evaluation of this approach on two datasets generated significant results which demon-
strates that the proposed statistical framework could detect relevant pathways involved with
the disease. However, the results are very variable and dependent on the scoring type, the
methylation region selected, the combination formula used and the dataset specificities.

We selected breast cancer and lymphatic/blood endothelial cells datasets, and we observed
a group of gene sets (pathways) that are commonly detected by different scoring procedures
through different regions and some are presented in TABLE XXVII and TABLE XXVIII.
These pathways have general and specific functions according to KEGG pathways descriptions.
Eventually, they belong to functional categories associated with cellular processes, especially
with the processing of genetic information and environmental information, in addition to the
metabolism of cofactors, vitamins, nucleotides and amino acid. These findings suggest that
epigenetic mechanisms are involved in regulating metabolic, developmental and environmental

processes of the cancer disease (BC) and vascular system (LEC/BEC).
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TABLE XXVII. BREAST CANCER PATHWAYS DESCRIPTION

Index Geneset function

K1,K7 Genetic Information Processing:Translation

K4,K3,K8 K15 Genetic Information Processing:Folding,sorting and degradation

K12 Genetic Information Processing:Transcription(Spliceosome)

K6,K2 Environmental Information Processing:Signaling molecules and interaction

K11,K16 Cellular Processes:Cell growth and death

K17 Cellular Processes:Cell communication

K5 Organismal Systems:Sensory system

K9 Organismal Systems:Nervous system

K10 Genetic Information Processin:Replication and repair

K25 Genetic Information Processing:Transcription

K22 K18 Human Diseases:Neurodegenerative diseases

K14,K19 Human Diseases:Immune diseases

K20 Metabolism:Metabolism of cofactors and vitamins

K13 Metabolism:Nucleotide metabolism

K21 Metabolism:Amino acid metabolism

K23, K24 Environmental Information Processing:Signal transduction
TABLE XXVIII. LEC/BEC PATHWAYS DESCRIPTION

Index Geneset Function

K1,K3 Environmental Information Processing:Signaling molecules and interaction

K2 Organismal Systems:Immune system

K4 Metabolism: Amino acid metabolism

K5 Organismal Systems:Endocrine system

K6 Human Diseases:Cancers Specific types

K7 Genetic Information Processing:Translation

The breast cancer dataset had more significant pathways due to many factors. For example,

it has a larger number of samples compared to that of the second dataset (50 versus 16 sam-

ples). Both datasets agreed on the fact that the scoring based on the gene expression only is

less effective and almost gave no significant pathways. However, combining the expression with

the CpG methylation showed a significant improvement and detected a large set of pathways

depending on the combination of formula and region. This combination was more efficient in
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the LEC/BEC dataset than it was in the breast cancer dataset, suggesting that LEC/BEC
phenotype is synergetically altered by the gene expression and DNA methylation at the same
time. Meanwhile, the breast cancer alteration is more connected to DNA methylation than
gene expression.

In the LEC/BEC case, the first combination using the MinMax product of CpG methylation
detected more significant pathways and the body region outperformed the other regions, which
suggests that the genes bodies methylation is potentially more connected to the gene expression
and the phenotype. The observation about the capabilty of the first formula to detect many
significant pathways can be considered true also for the breast cancer case, however, when using
the CpG-set scoring which is based only on methylation of the genes, the second formula which
uses the exponential function to account for all the CpGs methylation values outperfomed the
other one, not in the number of the pathways but in their biological meaning and reduced noise.

The effectiveness of formula Avg-Exponential is clear especially in EXONT1 region by de-
tecting the breast cancer immediate pathways such as the basal cell carcinoma, which highly
suggests the importance of the methylation alteration in the EXONT1 region of the breast cancer
genes. Finally, the majority of the detected pathways in both datasets are specific metabolic
pathways and directly related to the phenotype. However the less specific ones can be con-
sidered as noise like Asma, parkinson, huntington disease but they showed only in a couple of

tables and mostly less significant which proves the great potential of our proposed framework.



CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

Gene expression dis-regulation and DNA nucleotide mutation such as Single Nucleotide
Polymorphisms (SNP), have been extensively studied and used for complex diseases such in
cancer diagnosis, prognosis and targeted treatment. Recently, numerous studies considered epi-
genetic alterations, such as DNA methylation, as another factor that can distinguish between
phenotypes and contribute to targeted treatment.

However, it is still unclear how methylation is affecting the gene expression, by only up-
regulation or down-regulation or both, and to which extend. Several studies conducted success-
ful integrated analysis of genomic features such as gene expression and SNPs to decipher the
inherent relation between both of them, but very few studies were as successful as those ones,
when it comes to gene expression and DNA mehtylation integration.

In this work, we proposed a statistical framework to assess the integration of gene expres-
sion and DNA CpGs methylation in a gene-set enrichment analysis. Through this approach, we
rank the genes according to their differential expression test-statistic, such as t-test, called also
gene single-score and for every ranked position we determine an enrichment score for every gene
set in KEGG pathways. We assess the significance of detected pathways by computing Pvalue
and FDR from the null distribution generated through permutations between phenotypes. The
same procedure is repeated by ranking the genes according to their CpG-set score in different

regions then again according to a combination of the gene single-score and CpGs-set score to-

72
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gether. Consequently, we developed two mathematical models to combine the scores.

We tested our framework on breast cancer and lymphatic/blood endothelial cells datasets.
Our results, showed that depending on the region the gene combined score can perform bet-
ter then using gene expression only to detect pathways significantly correlated to phenotype in
study. However, in most regions CpG-set score showed more pathways that are numerically and
biologically more significant which shows the promising power of DNA methylation alterations
in complex diseases.

In a future work, we intend to use larger datasets and pathways databases. Also, we urgently
need to elaborate a simulation study to assess the sensitivity and precision of our statistical
framework. Furthermore, different test statistics can be used for gene and CpGs combined
scores, for example, by using Stouffer or Fisher combined Pvalues. Finally, more investigation
is needed to improve our mathematical models to increase the significance and reduce and the

noise.
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TABLE XXIX. TCGA BREAST CANCER CASE SAMPLES USED FOR DNA

CPG-METHYLATION EXPERIMENT

Index Case Sample Barcodes

Chip_position

CO 3 O U i~ W N+

ROR DR NN NN R = R = = = O
JTJO N E WN RSO0 Uk W~ O

TCGA_BH_AOBC_01A_22D_A10P_05
TCGA BH AODK 01A 21D _A10P_05
TCGA_BH_AOH7 01A_13D_A10P_05
TCGA _BH AOBA 01A 11D _A10P_05
TCGA_BH _A0OB3 01A_11D_A10P_05
TCGA BH A0BJ 01A 11D _A10P 05
TCGA BH A0DP 01A 21D_A10P 05
TCGA BH AOE0 01A 11D A10P_05
TCGA BH AOE1 01A 11D _A10P_05
TCGA_BH_AOHK 01A_11D_A10P_05
TCGA BH A0C0 01A 21D _A10P 05
TCGA_BH_AOB8 01A_21D_A10P_05
TCGA BH A0OBM 01A 11D _A10P 05
TCGA_BH_AOH9 01A_11D_A10P_05
TCGA _BH A0DQ 01A 11D_A10P_05
TCGA_BH AODH 01A _11D_A10P_05
TCGA BH A0B2 01A 11D A10N 05
TCGA BH A1EO 01A 11D _A138 05
TCGA BH A1F0 01A 11D _A138 05
TCGA BH A1EW 01A 11D A138 05
TCGA_BH_A1ET 01A_11D_A138 05
TCGA BH A1EU 01A 11D _A138 05
TCGA_BH_AOHA 01A_11D_A12R_05
TCGA BH A0C3 01A 21D A12R 05
TCGA_BH _AOAU 01A_11D_A12R 05
TCGA _BH A0BZ 01A 31D _A12R 05
TCGA_BH _AOBS 01A_11D_A12R 05

6004791006_R04C01
6005486019_R02C01
6005486021 R05C01
6005486021_R06C02
6005486021 _R03C01
6005486014 _R05C01
6005486021_R04C02
6005486019 _R06C01
6005486014 R03C02
6005486019 R01C01
6005486023 _R06C01
6005486019 R04C02
6005486023_R02C02
6005486021 R01C01
6004791004_R04C01
6004791010_R06C02
6005486012 _R06C01
6042324048 R06C01
6042324071 _R06C02
6042324048 R05C02
6042324071 _R04C01
6042324071_R02C02
6042324070_R06C01
6042324030_R06C02
6042324030_R03C01
6042324030_R01CO01
6042324030_R02C02
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TABLE XXX. TCGA BREAST CANCER CONTROL SAMPLES USED FOR DNA

CPG-METHYLATION EXPERIMENT

Index Control Sample Barcodes

Chip_position

CO 3 O U i W N+

RO R DR DR DR — = = s = O
JTJO R WN R, SOOI Uk W~ OoO

TCGA_BH_AOBC_11A_22D_A093_05
TCGA BH AODK 11A 13D A10Q_05
TCGA_BH_AOH7 11A_13D_A10Q_05
TCGA _BH AOBA 11A 22D _A10Q_05
TCGA_BH _A0B3_11B_21D_A10Q_05
TCGA BH A0BJ 11A 23D _A10Q 05
TCGA BH A0ODP _11A 12D_A10Q_05
TCGA BH AOEO 11A 13D_A10Q_05
TCGA BH AOE1 11A 13D_A10Q_05
TCGA_BH_AOHK_11A_11D_A10Q_05
TCGA BH A0C0_11A 21D _A10Q 05
TCGA_BH_AOB8_11A_41D_A093_05
TCGA BH AOBM 11A 12D _A093 05
TCGA_BH _AOH9 11A_22D_A093_05
TCGA_BH A0DQ_11A 12D A10Q_05
TCGA_BH AODH 11A 31D _A10Q_05
TCGA BH A0B2 11A 11D A10N 05
TCGA BH A1EO 11A 31D _A138 05
TCGA BH A1F0 11B 23D A138 05
TCGA BH A1EW 11B 33D A138 05
TCGA_BH_A1ET_11B_23D_A138_05
TCGA BH A1EU 11A 23D _A138 05
TCGA_BH_AOHA _11A_31D_A12R_05
TCGA BH A0C3 11A 23D A12R 05
TCGA_BH AOAU_11A 11D_A12R 05
TCGA BH A0OBZ 11A 61D _A12R 05
TCGA_BH _AOBS 11A 11D _A12R 05

6005486025 _R01C01
6005486013 _R06C01
6005486013 R05C02
6005486011_R01C01
6005486011 _R03C01
6005486011_R04C01
6005486011 _R05C01
6005486011_R06C01
6005486011_R01C02
6005486011 _R04C02
6005486011_R05C02
6005486025 _R02C01
6005486025_R03C01
6005486025 _R04C01
6005486013_R04C02
6005486013 _R06C02
6005486012 _R03C02
6042324048 R05C01
6042324048 R03C02
6042324048 R06C02
6042324071_R05C01
6042324071_R05C02
6042324035_R01C01
6042324070_R02C01
6042324072_R04C02
6042324037_R05C01
6042324072_R02C02
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TABLE XXXI. TCGA BREAST CANCER CASE AND CONTROL SAMPLES USED FOR

GENE EXPRESSION EXPERIMENT

Index Case Sample Barcodes

Control Sample Barcodes

CO 3 O U i~ W N+

ROR DR N R DR = = s = O
JTJO N R WN RSO0 Uk W~ O

TCGA BH A0BC_01A 22R _A084 07
TCGA_BH AODK 01A 21R A056_07
TCGA BH A0H7 01A 13R A056 07
TCGA_BH _AOBA 01A_11R _A056_07
TCGA BH A0B3 01A 11R A056 07
TCGA_BH A0BJ_01A_11R_A056_07
TCGA_BH AODP 01A 21R A056_07
TCGA BH AOEO 01A 11R _A056 07
TCGA_BH AOE1 01A 11R A056_07
TCGA BH AOHK 01A 11R A056 07
TCGA_BH A0C0_01A 21R _A056 07
TCGA BH A0BS8 01A 21R _A056 07
TCGA_BH AOBM 01A_11R _A056 07
TCGA BH A0H9 01A 11R A056 07
TCGA_BH _A0DQ 01A_11R A084 07
TCGA BH AODH 01A 11R A084 07
TCGA_BH A0B2 01A_11R_A10J_07
TCGA BH A1EO 01A 11R A137 07
TCGA BH A1F0 01A 11R A137 07
TCGA_BH A1IEW 01A 11R A137 07
TCGA_BH_A1ET 01A_11R_A137 07
TCGA BH A1EU 01A 11R A137 07
TCGA_BH_AOHA 01A_11R_A12P_07
TCGA_BH A0C3_01A 21R_A12P 07
TCGA_BH _AOAU 01A_11R_A12P 07
TCGA BH A0BZ 01A 31R _A12P 07
TCGA_BH _AOBS 01A_11R_A12P 07

TCGA BH A0OBC_11A 22R A089 07
TCGA_BH AODK 11A 13R A089 07
TCGA BH AOH7 11A 13R A089 07
TCGA_BH _AOBA_11A 22R _A089 07
TCGA BH A0B3 11B 21R A089 07
TCGA_BH A0OBJ_11A 23R_A089 07
TCGA _BH AODP_11A 12R A089 07
TCGA BH AOEO_11A 13R_A089 07
TCGA_BH AOE1 11A 13R_A089 07
TCGA BH AOHK 11A 11R A089 07
TCGA_BH A0CO0_11A 21R _A089 07
TCGA BH A0BS8 11A 41R A089 07
TCGA_BH AOBM _11A_12R _A089 07
TCGA BH AO0H9 11A 22R A089 07
TCGA_BH _A0DQ 11A_12R _A089 07
TCGA BH AODH 11A 31R A089 07
TCGA BH A0B2 11A 11R A10J 07
TCGA BH A1EO _11A 31R A137 07
TCGA BH A1F0 11B 23R _A137 07
TCGA_BH A1EW_11B 33R _A137 07
TCGA_BH_A1ET _11B_23R_A137_07
TCGA BH A1EU 11A 23R A137 07
TCGA_BH_AOHA _11A_31R_A12P 07
TCGA_BH A0C3_11A 23R_A12P 07
TCGA_BH AOAU_11A _11R_A12P 07
TCGA BH AOBZ 11A 61R_A12P 07
TCGA_BH _AOBS 11A 11R_A12P 07
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