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SUMMARY

Building biologically relevant models is a area of research experiencing a boom in growth.

Specifically, many companies and research teams are trying to understand a very efficient and

powerful organ of the body – the brain. The brain weighs 3 pounds consuming a mere 20

watts of energy, yet it is able to perform seemingly thousands of tasks, whether they be visual,

cognitive, or hormonally driven, all simultaneously with the utmost efficiency.

Understanding how the brain works is an important milestone for humankind, but it is far

from easy. One starting point is to try and model the input-output responses of the brain

and somehow formalize these response behaviors. When creating computational models, it is

important to try and stay as true to the biological model as possible. This includes constraining

the model to the architecture and the wiring of components of the biological model. The reason

we constrain ourselves to the architecture is because we need to allow for any unaccounted for

properties to develop within the model. Emergence, for example, is a one of these properties;

it is the way complex patterns arise out from some multiple of relatively simple interactions.

Emergent properties are common in the brain (intelligence being the most commonly cited).

The visual system comprises nearly one-third of all of the processing within the human brain

and is also one of the most widely studied areas of the nervous system, thus it is appropriate to

try and create a model from this plethora of data. In this thesis, I demonstrate that by following

the basic rules of brain organization – sheets of neurons working in parallel organized into a

ix



SUMMARY (Continued)

specific hierarchy – I can achieve a biologically meaningful output. This model is composed

solely of leaky integrate-and-fire neurons constrained to a specific layout.

In the end, I show that this biologically-inspired model can produce outputs equivalent to

empirical data. Additionally, the architecture allows for emergent properties to develop (i.e.

Long Term Potentiation between neighboring neurons). I detail the parameters of the model

and showcase the parameters that can generate biologically similar maps. These comparisons

are done across a multiplicity of dimensionless measures.
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CHAPTER 1

INTRODUCTION

Models are typically developed as a way to help explain a system. Using models, we can

study the effects of different components within a system and can also make predictions about

certain behaviors produced by that system.

The brain is often referred to as a biological super-computer. In the interest of understanding

how the brain works, various models of the brain have been developed (1). Over one-third of

the brain is devoted to processing of the visual world and thus, the visual system is one of the

most widely studied and well documented areas of the brain (2).

Despite these advances, the extent of the current knowledge is comprised in basic input-

to-output models. That is, neuroscientists are able to study the brain empirically, essentially

treating it like a “black box”. The neuroscientist feeds the brain system a specific input and

simply records a response as the output. Through this way, input-output patterns can be

mapped, and behavior predicted (3). However, this input-to-output mapping approach is unable

to describe how a particular input is transformed into an output. In order to be useful, a model

should do more than simply predict a behavior or response, it should be able to provide insight

into the inner workings of the system under study. Many of the current models of prediction are

abstract in how they achieve a certain output. There usually is no biological basis of reasoning

for their design, and any attempt to relate a model back to biology commonly reads as ex post

facto.

1
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One often overlooked property of the intelligent brain is that of emergence. Emergence is the

way complex systems and patterns arise out of a multiplicity of relatively simple interactions

(4). Emergence is central to the theories of integrative levels and of complex systems, yet many

models of the brain fail in this respect (4). Current brain models are limited in that they only

map an input to an output, with predictions resulting from patterns based on these mappings.

However, an emergent property cannot be localized (5) and thus, it cannot be fed an input

nor can an output be recorded from it. Models must be built to allow for the development of

emergent properties, and to do this, it must be kept simple without making biologically out-

landish assumptions. For example, one may find that a particular algorithm creates an output

that appears similar to biological data, but if the algorithm has no basis in biology, then the

framework for important emergent properties does not exist, and thus the model itself is not

biologically plausible.

1.1 Problem Statement

This thesis demonstrates that a biologically plausible output can be generated with a model

built upon biological principles. That is, this model will produce output similar to empirical

data using two basic architectural properties of the brain: parallel and serial processing. This

architecture provides a framework for the development of relevant emergent properties.

In terms of parallel processing, signaling units called “neurons”, which are based off a simple

computational model of the biological neuron, are organized into sheets. For serial processing,

these sheets of neurons are organized in a specific architecture in accordance with the biological
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brain. The result demonstrates that even a simple model adhering to only these two principles

can create biologically plausible outputs. Importantly, the inner-workings of the model are

transparent (not abstract or unknown), and biologically un-related algorithms have not been

assumed and/or programmed into the model. All relevant properties emerge solely as a result

of the architecture.



CHAPTER 2

BACKGROUND

The brain is an organ of the body weighing approximately three pounds (6). It is a structure

responsible for much of our behavior as well as our ability to interpret and to successfully

understand the world in which we live. Because of it, we are able to think and make decisions;

we interpret a set of percepts and act upon them in the most optimal manner that we know of

at that moment.

Given this, the study of the brain and its computational underpinnings has been a topic of

much research. Published academic papers within the field of Artificial Intelligence has seen

explosive growth, and with the advent of large scale projects such as synthetic brain simulator

Blue Brain Project (7), or seemingly intelligent agents like Deep Blue (8), research in this area

will only continue.

However, before one can start simulating the brain, one must understand its architecture.

The brain is made up of units called neurons. Neurons are the signaling units of the nervous

system. Their anatomy allows them to receive incoming binary pulses via their “dendrites”.

Dendrites are small extensions connected to the neuron’s cell body, wherein the cell’s DNA

and other important processes are located. At the base of the body extends the axon, a

myelinated structure which helps propagate the neuron’s own signals downstream. The axon

hillock, connecting the axon to the cell body, is what might be considered the equivalent of the

“step” in a step-function. That is, the axon hillock collects signals from the dendrites, each of

4



5

which slightly modify the electrical potential of the cell. If the electrical charge of the cell body

is increased faster than the cell can work to maintain its resting equilibrium (called its “resting

potential”), then the neuron will depolarize, sending an impulse signal of its own through the

axon. The axon ends at the neuron’s “terminal buttons” which is where other neurons can

connect to receive the current neuron’s pattern of instructions (see Figure 1) (5).

Figure 1. Diagram of a neuron.
Dendrites receive incoming signals and relay them to the cell body. The nucleus contains the

neuron’s DNA. The signals are collected at the axon hillock, where the firing threshold is
located. Signals are send down the axon to the terminal buttons, where post-synaptic cells

can connect.

This is a very basic and assuming description of how a neuron would operate computa-

tionally. There are other factors, such as chemical reactions that occur within the synapse at

receptors, as well as secondary messengers that work from within the cell; both allowing for
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delayed integration of a signal into the step-function. Additionally, not all neurons of the ner-

vous system produce action potentials. For example, there are neurons in the retina that are so

close together, they do not need to send action potentials to their post-synaptic neighbors (2).

Instead, these neurons rely solely on the graded potential changes that occur due to changes

in levels of neurotransmitter. These properties allow for a plethora of different patterns to be

generated by a single neuron.

Neurons can connect to each other forming tight, interconnected networks. While the basic

biology of neurons is the same, how they interconnect with each other dictates how they process

a set of signals. Within the brain proper, such groups of neurons are called “nuclei” (outside of

the brain proper, such as within the spinal cord, these groups are called “ganglia”), and they

perform very specialized tasks. For example, the dorsal Lateral Geniculate Nucleus (dLGN),

located within the hypothalamus of the brain, is specific to filtering out visual noise and to

accentuating edges. Adjacent the dLGN is the Medial Geniculate Nucleus (MGN), which is

specialized for tuning and accentuating auditory signals (5).

A typical property of the brain is that of parallel and hierarchical processing (2). Multiple

structures of the brain may operate at the same time, yet are also linked within a hierarchy.

In the visual system, a visual image is supplanted from the 3D world onto our 2D retinae.

The retina is covered in photoreceptors which are tuned for specific wavelengths and intensities

inherent in the visual stimulus (2). These receptors, working in parallel, send their signals to

the next stage of processing within the retina, where both spatial and temporal properties are
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encoded. These signals fall upon “ON-center” and “OFF-center” ganglion cells, each of which

responds in a particular way to the pattern of light falling upon their receptive fields (2).

Note that there are many additional retinal layers located between the ganglion cells and

photoreceptors, and all of these cells do not produce action potentials. The task of many of

these cells is to further help localize edge components spatially, as well as to accentuate these

components. Additionally, another set of these retinal cells serve to signal changes in time.

That is, when an object is moving in time, these cells will help detect the changes occurring

within the visual field (2) (5).

The signals generated by the ganglion cells are further sent to the bilateral dLGNs; this

wiring is very important. The visual field covered by the retina is such that the temporal fields

route to the ipsilateral dLGN, and the nasal fields route to the contralateral dLGN. Because

primates have eyes which both face forward and have some overlap within their visual fields,

there are also binocular cells within the dLGN. A binocular cell is a cell that responds to a

stimulus shown in either the left or right eye, or responds to the area where the two visual fields

from the two eyes overlap (2).

The dLGN contains 6 layers comprising at least two systems of cells, magnocellular and

parvocellular, each tuned for different properties of the visual scene (2). The magnocellular

system responds best to properties such slight differences in contrast, low spatial frequencies,

and is sensitive to luminance; it comprises the two deepest layers of the dLGN. The parvocellular

system responds best to details, high spatial frequencies, and color; it comprises the other four
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layers. These layers alternate with respect to which eye the incoming signals originate The

main job of the dLGN is to accentuate the contrasts of the visual stimulus and to reduce noise.

At the level of the dLGN, signals from the two hemi-fields remain separate, converging later

at the level of the cortex. Through the optic radiation, signals enter through Layer IV of cortex,

which is the entry point for all signals into the primary sensory areas of the brain (5) (2).

In the visual system, this area is called “Primary Visual Cortex” (also known as V1 or

“striate cortex”). This is the first layer of signal processing. Primary visual cortex is where the

orientation components of a visual scene are parsed and encoded (5). For example, a picture of

a square will stimulate both horizontal edge-tuned cells and vertical edge-tuned cells. This is

because a horizontal edge-tuned cell will fire when the code for a “horizontal edge” is present

and is silent otherwise. These orientation signals are then sent further upstream where, to-

gether with input from the cognitive centers of the brain, they are put together into perceptual

hypotheses regarding what is being sensed (and what is ultimately perceived).

2.1 Features of Primary Visual Cortex

Over 50 years ago, David Hubel and Torsten Wiesel explored the properties of a mammal’s

visual circuitry by carefully inserting micro-electrodes into the primary visual cortex (V1) of

anesthetized cats. Through their work, they introduced the first model of V1 known as the Ice

Cube Model (9). The model proposes that for a given position in space, a cortical column in

V1 is tuned for properties of orientation and ocular dominance. While this model does account
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for the cellular arrangement of V1, it does not accommodate for other properties in which these

cortical cells are tuned, such as spatial frequency or color processing.

Years later, activity in V1 could be marked using 2-deoxyglucose, a substance readily taken

up by active neurons (10). This visualization technique confirmed Hubel and Wiesel’s Ice-

Cube model of V1, yet it also revealed cells arranged around the blobs in pinwheel-like swirls;

gradients of orientation preference that were “clockwise” or “counter-clockwise” (11) (12) (13)

and aligned along the edges of the orientation columns.

In particular, 2-deoxyglucose staining revealed two key features of V1 organization. Not

only were there pinwheels (singularities), but also large swaths of cells all with the same prefer-

ence for an orientation (iso-orientation domains). The iso-orientation domains came together at

the singularities, and in different species these iso-orientation domains can have a characteristic

shape and organization.

2.2 Current Models of Primary Visual Cortex

Many models attempted to explain the self-organizing behavior of V1 cells given visual

experience, as well as to explain the rules by which they organize into singularities and iso-

orientation domains. The three layer approach is considered to be biologically sound, meant to

represent the hierarchical structure of the retina, dLGN, and V1 cortex progression of cellular

organization (14) (15). Bhaumik and Mathur used this model within the context of a purely

feed-forward approach, and using Hubel and Wiesel’s idea that complex cells were a simple,

linear summation of simple cells. A simple cell is a cortical cell whose receptive field can be
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mapped as there are specific excitatory and inhibitory areas. These cells respond strongest to

light stimuli that are the same shape and orientation that fall directly in line with their field

mappings. On the other hand, a complex cell does not have a mappable receptive field and

instead responds to any stimulus (light or dark) that is the preferred shape and orientation for

the cell, and is moving in a particular direction (2) (9) (16).

Such an approach is plausible because it was not necessary to pre-program the shape of the

cell’s receptive fields into a difference of gaussians formation; they found that the formation of

ON-center and OFF-center areas of the retinal ganglion cells happen “naturally” and that the

resulting projections from these areas contributed to the formation of orientation preferences

downstream in V1. Further, when incorporating non-linear contributions from neighboring cells

(17), cells in V1 show an even finer tuning of orientation selectivity, which is also true for what

happens within V1. This natural progression of such properties is a characteristic feature of

brain development (5).

If a cell is binocular, then it can be stimulated by a signal from either of the two eyes. For

example, a stimulus shown to the right eye or the left eye causes the same cell to fire. As a

result of this property, the cell is classified as binocular. This binocularity plays an important

role in the organizing of V1 topographic maps. In 2-deoxyglucose stained maps, pinwheels are

typically found at the edges of binocular columns whereas iso-orientation domains are found

more centrally (18). Tuning influences from neighboring cells, as well as binocular contributions,

are thought to play a role in the development of orientation selective cells in V1.
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Erwin (19) provides an excellent review of the most salient models of orientation selectivity

in V1 and notes the general properties and assumptions of most models of V1.

First, many assume neurons to be organized in 2-dimensional sheets, where the receptive

fields of these cells are represented by either feature vectors or as synaptic weight vectors. Also,

non-linear contributions by complex cells, as well as feedback from intracortical or higher areas,

are also represented in some fashion (unfortunately, these are typically programmed directly

into the model). Almost always, most models incorporate two biologically intuitive properties:

continuity and diversity. Continuity is where nearby columns of cells in the cortex tend to prefer

stimuli with similar features (via the average or convolution of a defined area across a given

period of time), and diversity is where the space of all feature preferences ought to be filled in

as completely as possible (demanding that all of the “neurons” eventually form an orientation

preference). This is typically done with band-pass filters or competitive networks, yet it is not

fully known whether the brain operates in either of these to ways. Additionally there is the

property of “global disorder”, meaning there ought to be some noise added into the signals

creating the map, as noise is inherent in any biological system.

2.3 Current Problems in V1 Modeling

Previous developmental models have been able to reproduce the overall organization of

specific feature maps in V1, such as orientation maps, but are generally formulated at an ab-

stract level that does not allow testing with real images or analysis of detailed neural properties

relevant for visual function.
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For example, it is commonly accepted that a Self-Organizing Map is a biologically relevant

way to create clusters. Self-organizing maps (SOMs) use a learning technique called Kono-

hen’s algorithm, which relies on unsupervised learning to organize similarly preferring neurons

into local sub-networks. Swindale and colleagues have found success when using SOMs in the

organization of cells in V1 (20) (21). However, despite his success in generating seemingly

good biologically similar maps of V1, his single layer approach leaves room for improvement.

Additionally, whether or not the biological brain utilizes a SOM algorithm is not known, and

probably unlikely given that such cellular behavior patterns have not been recorded empirically.

Such models make assumptions that may not agree with biological function. Whether or not

the brain actually implements a self-organizing mapping algorithm has not been confirmed.

The model within this thesis attempts to make no such operational assumptions about how

cells fire when within a network; it simply assumes the properties of a neuron unit and allows

for any network-like properties to develop naturally when these units are placed in a network.



CHAPTER 3

MODEL ARCHITECTURE

It is important to build an architecture that agrees with biology. Thus, the model presented

here is built with a biologically plausible architecture in mind using biologically plausible units.

The model follows two main tenants known in the organization of the brain: parallel and hier-

archical processing.

3.1 Parallel Processes: Leaky integrate-and-fire neuron

This model is built upon the neuron model proposed by McCulloch and Pitts (22) and is

shown below.

y = f(

n∑
i=1

wixi)

Where f represents the step function or threshold for firing (it can return a 0 or 1), n is the

number of dendrites belonging to the neuron, x is the input signal for dendrite i, and w is the

weight given to the signal on the dendrite (see Figure 2).

The function f returns 1 if the membrane potential is greater than -35mV and returns 0

if anything less. The resting potential is then reset to -70mV. These are the values found in

biological data (5).

13
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Figure 2. Artificial Neuron Model
x represent incoming dendrites, which carry signals. w are the weights on each dentdrite for
neuron k. v is the sigmoid function of the weights and dendrites. ϕ(.) is the step function. y

is the output.

3.2 Hierarchical Processes

There are three main hierarchical processes present in the model. These processes are from

retinal “photoreceptors” to the retinal ganglion cells, the retina to the dLGN, and from dLGN

to V1.

3.2.1 Photoreceptors to Ganglion Cells

Images are shown to a retina containing “photoreceptors”. The human retina contains 126

million photoreceptors, 120 million of those being the black-and-white detecting (non-color se-

lective) “rod” photoreceptors, the other 6 million being color-selective “cone” photoreceptors.

These receptors are part of the receptive field of ganglion cells, which are the signaling units to

areas outside the retina. There are approximately 1.5 million ganglion cells in a single human
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retina (5).

The human fovea covers approximately 2-degrees of the visual field, comprising approxi-

mately 108,000 photoreceptors. In the primate fovea (presumably including human) the ratio

of ganglion cells to photoreceptors is about 2.5; almost every ganglion cell receives data from a

single cone, and each cone feeds onto between 1 and 3 ganglion cells (5).

Because I am only interested in the development of orientation selectivity and not acuity,

this model will not consider inputs from the fovea. However, the fovea is used as an anchor

when selecting which retinal efferents will map onto the next stage of visual processing. In neu-

roscience, visual hemi-fields are divided with respect to fixation which in experimental research,

is always placed within the fovea.

The photoreceptor layer simply relays a binary signal to its ganglion cell(s). A photoreceptor

fires a 1 if the (x,y) location is less than or equal to 128 RGB, and does not fire if the (x,y)

location is greater than 128 RGB. All images in the dataset are black and white without shades

of gray.

The ganglion cell (a neuron unit) receives the incoming signal and fires if it receives enough

signals to overcome its threshold. These cells fire most robustly when it’s neighbors are not

firing, a property known as “lateral inhibition”. Lateral inhibition allows for contrasts (and

edges) to be detected more robustly because with this set up, ganglion cells will fire where large

contrasts within the visual stimulus exist, the first stage in signaling the presence of edges (2).
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3.2.2 Retina Layer to dorsal Lateral Geniculate Nucleus Layer

Signals exiting the retina are carried by the ganglion cells. However, before the signal can

reach the dLGN, it travels through the optic chiasm and bifurcates as seen in Figure 3.

The ipsilateral fibers receive signals from cells responsible for covering central vision (which

are mostly binocular) and the contralateral fibers are responsible for those cells covering pe-

ripheral vision (which contain both binocular and monocular cells). It is important to maintain

this distinction because the organization of these fibers influences the ultimate organization of

cortical neuron orientation preferences.

Once the signals reach the dLGN, edge components are further accentuated by applying

Hebbian learning. It is known that cells that fire together will wire together (5), therefore at

the level of the dLGN, cells that fire together on the same time steps are likely signaling an

edge. For example, if a cell’s neighbor immediately above and immediately below fire in the

same time steps, the three of them will reinforce each other’s firing, and are now more likely

to fire together if any single one of them receives input. This set up is likely the beginnings

of a vertical edge. The cortex is left to interpret these signals, but at the level of the dLGN,

Hebbian wiring is already taking place.

3.2.3 dLGN and Binocular Cells

Binocular overlap is the result of two overlapping receptive fields. Humans and other animals

that have a pair of eyes facing forward have binocular vision. Binocular vision allows for depth

perception, an important part of the visual experience. Other animals have eyes on the side of
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Figure 3. The Visual Signal Cascade
A diagram showing how input from the visual field is received by the eyes and travels through

the visual system of the brain. This diagram shows the signal moving from the receptors in
the retina, where each hemi-field has fibers connected to a particular dLGN. At the level of
the dLGN are 6 layers, where two cellular systems reside. These signals exit the dLGN and

enter the Primary Visual Cortex.
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their heads. These animals do not have depth perception, but in exchange they have a wider

field of view. Binocular cells receive a signal from each eye meaning that both eyes can see it

(see Figure 4).

Figure 4. Binocular overlap of a pigeon and a human
Left: visual field of a human. Note the large amount of binocular overlap between the eyes.

Right: visual field of a pigeon. Note the larger visual field.

For example, in Figure 4, we can say that the visual field is sized 200 degrees (monocular and

binocular portions summed). The binocular overlap is 120 degrees (the monocular portion).

The image at time step t is projected onto the entire space (the monocular and binocular

portions). Therefore, in the model, the left eye receives the portion of the image from the
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leftmost monocular portion plus the binocular portion, and the right eye receives the portion

within the binocular portion plus the rightmost monocular portion. This results in the two

eyes receiving nearly the same image, offset only by the amount of monocular vision. The more

binocular overlap, the more similar the images.

In the model, signals from both the left and right eyes contribute to a binocular cell’s firing

threshold. If the signals are different, then the cell looks at its neighbors to check which ori-

entation is preferred in the near vicinity. The monocular cells receive signals only from their

respective retinal ganglion cells. The dLGN in this model contains only one layer for orientation

selectivity. In the biological brain, these signals remain separate until they leave the dLGN, but

because I am not considering the other dimensions of the visual scene, adding them in dLGN

as I do fits well with biological processes.

3.2.4 Primary Visual Cortex (V1)

V1 will receive inputs from the ipsilateral dLGN. In the human brain, V1 is separated by

each visual hemisphere (the signals do not converge until later in the hierarchy). Therefore, as

the network develops, it keeps each each hemisphere of the visual scene separate. By keeping

the two separated, we can then do further experiments by blocking the signal cascade at one

particular point and observing how it affects the output. After the signals from each dLGN

come together, the entire map is created by combining the two maps (one from each eye) by

placing them next to each other using fixation as a reference. The result should be somewhat

symmetrical about this fixation point.
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Additionally, the cortex comprises six layers with a few of them participating in recurrent

feedback. The cortical layer of this model has neurons that accept inputs from many dLGN cells.

Additionally, the dLGN cells send their signals to more than one ganglion cell. Both of these

features are biologically accurate. This part of the model allows for the orientation preferences

to be “smoothed out” so to speak. This overlap of both firing and non-firing cells allows for

“ON” and “OFF” areas to form in the cortex, resulting in the equivalent of a “blurring” of the

orientation preferences. The cells on the edges of the iso-orientation domains receive influence

from many neighbors as well as the afferents of their neighbors, thus the ultimate orientation

preference of these cells is determined by both the neighbor’s preferences (parallel) and the

arriving signals from the dLGN cells (hierarchy).

Lastly, lateral inhibition in the cortical cells helps to “sharpen” the blur due to the inter-

connections between the dLGN and the cortical cells. If a cell receives signals but its neighbor

does not, then lateral inhibition will allow an edge de-marking the boundary between two iso-

orientation domains to develop, if the connections are right for it to happen. The development

of these boundaries is entirely determined by the influence of the neighbors and the strength of

all signals (both lateral and afferent) coming into the cell.



CHAPTER 4

MODEL PARAMETERS

The basic architecture of this model is inspired by the biological brain. It consists of three

main layers, meant to parallel the retina, LGN, and cortical layers of the biological brain. Each

layer is composed of a sheet of leaky, integrate-and-fire neurons. Importantly, the input/output

relationships between layers is typic to the biological brain; that is the layers are wired as they

would be in nature to the best of the current knowledge.

Each of the sections below summarizes a parameter of the model. Note that none of these

parameters change the functioning of the network directly, rather they change how a single

neuron unit responds. Any network behavior is simply the emergent result of the parameters

followed by the interconnected neuron units.

4.1 Image Dataset

Images presented on the model’s retinae are pulled from an Image Dataset. This image

dataset contains 100 images, as well as duplicates of each of these images, rotated every 5

degrees, ranging between 5 and 180 degrees. The 100 images are the numbers 0 through 9,

the English alphabet in both uppercase and lowercase letters in font Ariel, as well as various

geometric shapes such as circles, squares, or interesting textures and high contrast pictures
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from across the internet containing significant numbers of edge components. In total, the

Image Dataset contains 3800 images. See Figure 5 for an example:

Figure 5. Examples of training images
On the left is an example of a geometric shape with edges, on the right is the number 8.

4.2 Time steps

In this model, a time step is synonymous with a single presentation, and they are always

equal. Therefore, on each time step, a single image is shown to the model’s visual field. For

example, as the human visual brain develops, a variety of visual images are nearly continuously

being projected onto the retina. In this model, a single time step is akin to 200ms, or when

comparing to the human visual system, one glance (known as a “saccade”).

The number of time steps in the model can be modified. This changes the number of images

that the model is exposed to and thus, which images influence the “cortical” development.

Fewer images will be less effective than more images. Because this model follows that cells of
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the same orientation preference will likely be found closer to each other, later time steps will

serve only to tune the orientation preference of cells, not modify them. Therefore, a rough

model of visual cortex can be generated by only a few images, but for a more accurate model,

more time steps will be required. There may also be a ceiling to number the of time steps such

that further images will have almost no influence on the orientation preference of the “cortical

cells”, especially given the reinforcement variable (discussed below).

Additionally, the size of the subset of images can be controlled. For example, I could begin

an instance of t=100 time steps, but I would want to limit my sampling pool of images to 10

images. The images shown to the model are always randomly presented, but one is able to

control the size of this sample. This allows for investigation of whether or not a varied set of

input images influences the development of orientation specific cells. Based on the experiments

of Hubel and Wiesel (23), one would hypothesize that by limiting exposure to an enriched set

of images, one would see diminished development of certain orientations. Specifically, if the set

did not contain many images containing edges at 45-degrees, it is likely that not many cells

would be selective for 45-degree edges.

4.3 The Retina

In the model, the dimensions of the photoreceptor sheet can be modified. However, in the

human fovea there are approximately 100,000 photoreceptors. This makes the dimensions of

the retina approximately 330x330. The retina size run in the simulations in the demonstration
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of this model is a fraction of this at 100x100.

4.4 Binocular Overlap

This model allows for the degree of binocular overlap to be modified. If I wanted to create

maps of human visual cortex, I could create a visual field that was 200 degrees total, 120 degrees

of which overlapped. On the other hand, if I wanted to create maps representing pigeon cortex,

the visual field size would be 400 degrees of which only 40 degrees overlapped. By modifying

this parameter, I can test to see the extent to which binocular overlap affects the resultant

orientation preference map in the cortex. See Figure 6 for an example of the input images given

binocular overlap.

4.5 Starting Weights

Primates and cats are born with pre-defined orientation selectivity even before the animal

opens its eyes. These orientations are later modified by experience (24) (25). However, if these

pre-defined orientations are weighted heavily, it would take more time steps in order to change

the orientation selectivity of the cell in question. Therefore, in the model, one can modify the

starting weights of the orientation preference of the cells. It is presumed that with a heavier

starting weight, more time steps are required to “overcome” the influence of the starting weight

on orientation preference.
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Figure 6. Training Images Example
A. Image shown to the left eye. B. Image shown to the right eye. Note some areas overlap

(binocular areas) and other areas do not (monocular areas)
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4.6 Iso-Orientation Domain Size at t=0

One fact that is implemented in building models of V1 is that of an already established

“starting map” that can be mapped before the animal experiences the visual world. Following

the rule that cells with a similar orientation will likely reside together spatially, one set of these

cells is called an “iso-orientation domain”. How large these swaths of cells are at the beginning

could influence the resulting size of the iso-orientation domains. It is assumed that only the

cells on the “fringe” might be influenced by the neighbors on any particular iteration. Then,

as the time steps progress, the iso-orientation domain area might shrink, until the threshold

level is unaffected by the influence of the neighbors. Hence, it is assumed that the larger the

iso-orientation domains are at the start, the larger they will be at the end.

Iso-orientation domains are initialized in the model by randomly placing squares of a

parametrized size about the “cortex sheet”, each with a randomly selected orientation pref-

erence assignment. The number of these squares that are placed is the same as the retina

width, which guarantees that these areas will overlap. Any other area in cortex that has not

yet been covered by the random placement of the domains is filled with a random orientation

preference. These areas should evolve with respect to their neighbors.

4.7 Threshold

Many cells of the nervous system operate in terms of thresholds. A cell either fires or it

does not fire: the code is in the frequency. Therefore, all cells in this model also operate by

thresholds. In the cortex, a cell has a threshold whereby it will change its orientation preference.
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Meeting this threshold depends upon the orientation preference of the neighbors. Essentially,

the current cell pings the other cells falling within its immediate vicinity (8 neighbors) and

checks their orientation preference. If the number of cells within the vicinity prefer a particular

orientation that is different from the current cell, then the current cell will change its orientation

to match. This threshold value can range from 1 to 8. It is assumed that a threshold that is

too low will now allow for domains to form, and a threshold that is too high will force the map

take on a single orientation preference.

4.8 Reinforcement

Additionally, when a cell receives a signal about a particular orientation, there is a set

amount of “reinforcement” for learning this orientation. This reinforcement value competes

with the threshold value. The difference between the current cell and its neighbors does not

play a role in the threshold of the current cell before it makes the switch; it is winner-take-all

for the “winning” orientation. Independent of the current cell’s orientation preference, if the

neighbors override the current cell’s orientation preference, the current cell will adapt and take

on the majority orientation preference.

If the reinforcement value for an orientation is large, then when it comes to modifying the

current cell’s orientation preference based on the neighbors, the contributions from the neigh-

bors must be very large to “offset” the reinforcement value the current cell received for learning

that orientation. Such a case would occur if for x time steps in a row, a cell received the sig-

nal for a horizontal preference. If after x time steps, the other cells are of vertical preference,
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the reinforcement for the current cell to remain horizontal might override the influence of the

neighbors. This would especially happen if reinforcement values are too large.

4.9 Arborization Factor

Lastly, within the model’s cortex, the arborization factor can be changed. This is the degree

of dendritic spread that the dLGN cells use to connect with the cortical cells, as well as the

amount of inputs the cells of the cortex receive. This value is based off of a Gaussian (Gabor-

like receptive fields), and the standard deviation of the Gabor can be modified. The receptive

field shape used is known as the Difference of Gaussian’s model, a very common model used to

describe receptive fields of cells within the visual system(2).

4.10 Output

The final output is a color-coded map containing 6 colors. Each color represents an orien-

tation. While visual cortex can detect orientations along a continuous scale of 0-180 degrees, I

have divided this range into 8 discrete “bins” : 0, 30, 60, 90, 120, 150. The resulting map is

color-coded by orientation preference according to these 6 colors.

I expect these colors to form iso-orientation domains which are connected via interspersed

“pinwheels”. However, an area is not considered a “pinwheel” unless all colors meet at a point,

representing all orientations between 0 and 180 degrees.

A pinwheel can be clockwise or counter-clockwise. This nomenclature refers to the direction

that the orientation preference of the cells goes when moving about the center of the pinwheel.
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For example, a pinwheel where the order of the orientation preference moves from 0 to 180

occurs clockwise, then this pinwheel is clockwise. On the other hand, if it moves from 180 to

0, then it is counter-clockwise.

4.11 Step by Step Model Summary

Let us visualize this model as a basic system. The input for this system comprise a series

of black and white images into the two “retinae”. On each time step, a different image is

projected onto the retinae. The “receptors” of the retina “fire” if light stimulates them or

are silent if they are left in the darkness (“1” if a white portion of the image; “0” if a black

portion of the image). These signals are sent to the ganglion cells, where differences between the

photoreceptors are compared. If a ganglion cell contains two photoreceptors, one signaling “1”

and the other signaling “0”, its electrical potential will become more depolarized. If there are

enough cells with different signals within the ganglion cell’s receptive field, then the electrical

potential of the ganglion cell will be met, and the cell will fire off an action potential.

The signals from the ganglion cells are sent to the dLGN, but not before they pass through

a very important wiring. Cells whose receptive fields are in the nasal hemi-fields route through

the optic chiasm, effectively crossing to the other side of the brain. Cells whose receptive fields

are in the temporal hemi-fields remain on the same side of the brain. Both sets of fibers meet

at an dLGN, but the signals remain separate.

Once inside the dLGN, the receiving signals begin to detect edge components. The ganglion

cells that detect differences within their receptive fields are signaling change, and thus, it is in
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this location where an edge is likely present. For example, if the receptive field is a 3x3 grid,

and all cells in the third row fire on the time step, then the ganglion cell will signal a change

has occurred in its receptive field. dLGN cells also take note of their neighboring cells and

will also actively inhibit all neighboring cells around it if it fires. This allows for edges to be

accentuated.

These signals come together as they leave the dLGN and feed onto the primary visual cortex.

At this point, cortical cells look for dLGN cells that are firing in particular orientations. If of

9 cells in the receptive field, all cells in the second row are firing, then the cortical cell will

begin to prefer horizontal edges. It will compare with its neighbors, which have overlapping

receptive fields, to see if they have also detected similar components in the area. If so, they

reinforce each other’s firing. If not, the cortical cell may change its orientation preference to

match its neighbors. It will not change its orientation preference if either not enough neighbors

are of the same preference, or if it has been highly reinforced for a particular orientation (which

could happen if the particular cell was shown only horizontal edge components in the entire

time sequence).

The cells will update their thresholds and preferences with each iteration, where each it-

eration is a new time step. At the end of all time steps, a map of orientation preferences is

generated by color-coding the preferences of the cells at the last time step.



CHAPTER 5

MODEL EVALUATION

In order to evaluate the model, first we must understand what we can and cannot control,

and then we must be able to compute some quantitative measures on a set of maps and compare

these quantitative measures across both model maps and empirical (real) maps. In order to

do this, we must make sure that these measures are not dependent on receptive field size as

empirical maps are not created using a standard scale. For example, a receptive field in one

lab’s empirical map might be twice as large as another lab’s receptive field.

5.1 System Summary

Figure 7 diagrams the V1 model system. Gray areas are hardwired whereas white areas can

be controlled.

5.1.1 Input

The input are the images projected onto the retinae. One can control the number time

steps, number of images, and the pool from which the images are chosen. For example, for

the normal “brain”, one would provide an enriched environment with a variety of images. If

interested in development without horizontal edges, one would restrict the images shown to the

31



32

model by providing it images without horizontal edge components.

5.1.2 Retina Parameters

The retinal ganglion cells receive signals from the receptors. One may change the size of

the retina. There is no fovea because the model cannot move its “eyes” around.

Additionally, binocular overlap is a parameter that can be modified. If interested in how

animals with good depth perception develop, binocular overlap would be set high. If interested

in how animals with no depth perception, but a large field of few develop, binocular overlap

would be low.

5.1.3 Cortical Cell Parameters

The starting weights of the cells can be set. They will be modified by experience, but their

starting values could have an effect on the outcome, depending on how many iterations.

The size of the iso-orientation domains can also be set. The larger the orientation domains

then the larger they should be at the end.

The threshold for changing orientation preference. One can decide on how the weight of the

influence of the cell’s neighbors on deciding orientation preference.

Reinforcement is the additional weight added to a cell’s particular orientation preference.
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Figure 7. The V1 System
A diagram of the system, indicating the changeable input parameters (white) and the

portions that are not modifiable (gray).
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5.2 Minimum Spanning Tree

At this point, we have a color-coded orientation preference mapping. We can place this

map on a cartesian plan, and given the locations of each pinwheel or iso-orientation domain

centroid, we simply treat each as a vertex in a graph. For each set (pinwheels or iso-orientation

domain centroids) a minimum spanning tree (MST) is generated using Prim’s algorithm (see

Figure 8). Edge weights were the Euclidean distances between any two vertices.

Prims algorithm is an algorithm that generates the MST for a connected, weighted, undi-

rected graph. The tree that it forms includes every vertex, where the total weight of all the

edges in the tree is minimized, therefore Prims algorithm guarantees that all vertices are con-

tained within a single, fully connected graph; each map has a unique MST. We constrained the

implementation of our algorithm to allowing each vertex a maximum valency of three. This is

important because it allows each map to have a unique fingerprint based on the input parame-

ters (and the model itself) that generated it.

5.3 Coefficient of Variation

The resulting collection of edges within each set (pinwheels or centroids) for any given graph

allows us to perform our measures. The first measure is the coefficient of variation (CV), a

dimensionless coefficient defined by the standard deviation of the edge weights (length) over

the mean edge weight for a particular graph. Using a dimensionless coefficient allows us to

ignore receptive field size or the resolution under which a topographical map was generated.

We can also examine the CV of the MST edges of only the clockwise pinwheels and compare
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Figure 8. Example of MST on map
A minimum spanning tree is computed on a map using pinwheels as verticies.
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this to the CV of only the counter-clockwise pinwheels to get an idea of the distribution of

pinwheels depending on type. The CV of the centroids of each of the iso-orientation domains

is also computed.

5.4 Ratio of Counter-clockwise to Clockwise pinwheels

The ratio of counter-clockwise to clockwise pinwheels is also a measure of key interest. A

clockwise pinwheel is one where when moving clockwise about the center, the progression of

colors correspond to the increasing gradient of orientation specificity, and vice a versa for the

counter-clockwise pinwheels. Examining this ratio is a measurement already in practice, and

thus it is included in these analyses.

5.5 Compactness of Domains

For the iso-orientation domains, not only did we statistically compare the edge weights be-

tween centroids, but we also examined the compactness of each iso-orientation domain, or the

“stringiness” of each (or how not compact they were). Compactness is a dimensionless measure

dened as the perimeter squared over the area. To differentiate noise from true iso-orientation

domains, we altered these sections such that any area comprising less than 0.05% of the total

area of the map was discarded.
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5.6 Model Validation

In order to validate the maps generated by my model, all evaluation measures are compared

to those measured in the real data. A dataset containing the CV of the pinwheels and domains,

and the CCW/CW ratio is analyzed by its principal components. In general, this measures the

degree to which these parameters are correlated, and any datasets that overlap are considered

highly similar. Therefore, if the measures obtained by the generated and empirical maps appear

in the same region of PCA space, then they can be considered biologically similar.Before we can

validate the model, first we must preprocess the biological maps in order to make appropriate

comparisons. First, each map is standardized through remapping the original color encoding

(256-color map) to eight standard colors. First, we apply global histogram equalization to each

image so that, for example, all shades of red are mapped to the same value, and so on. A

distinct color-code (colors red, orange, yellow, green, light green, blue, violet, pink) is used to

represent each type of the orientation-preferring cells (0, 22.5, 45, 67.5, 90, 112.5, 135, and

157.5 - degrees respectively); if only 6 of these colors represent cells preferring orientations 0,

30, 60, 90, 120, 150). Each map is already discretized and so the remapping is performed to

rid each image of noise as the result of image compression.

Given each normalized, 8-bit color encoded image map, we set each image on a 2-D Euclidean

plane ascribing the lower-left corner the coordinates (0,0). Scanning the image, we collect the

(x, y)-location of each pinwheel and iso-orientation domain centroid. A pinwheel is defined as

an area within a standard radius where all eight colors had to appear in a clockwise or counter-
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clockwise order. The iso-orientation domain centroid was defined as the center of gravity of the

shape created by the domain.

After preprocessing, all empirical maps are processed and the same measures as described

above are obtained.



CHAPTER 6

RESULTS

The output of my model is a color-coded map of orientation preferences within primary vi-

sual cortex. I have evaluated each of the maps according to the evaluation measures described

in Chapter 5. Now, I must make comparisons to test the power of my model. In this section,

I demonstrate the parameters settings which produce statistically similar maps, and also show

which maps should not be considered biologically similar.

6.1 Principal Component Analysis

Principal Component Analysis is a way to find out which components of a dataset can

account for most of the shared variance within the set. Using the first two main components, it

can demonstrate the extent to which multiple variables are correlated, and the extent of their

relationships. In this thesis, a PCA can tell us the relationships between the input parameters

as well as tell us the relationships that the evaluative measures have in the both model maps

and empirical maps. I demonstrate a PCA using both the first two and first three components

to locate cluster formations.

For example, to find the first principal component, I would draw a regression line through

all of the data in multidimensional space (n dimensions, where n is the number of factors or

variables). This is my principal component. It is the line of best fit, and will serve as my X-axis.
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My second component is a line drawn orthogonal to the principal component. It will capture

any variance in the orthogonal direction to the principal component. Then, these two lines are

rotated such that they can be visualized as an X and Y axis. These two components capture a

good majority of the variance, yet can be extended to adinfinitum.

6.1.1 Input Parameters

Figure 9 shows the PCA of the input parameters. The figure shows that the variables

TimeSteps, Samples, and RunTime are all highly correlated for this set. These variables are

correlated because the more time steps required, the more likely a higher number of images

will be sampled, and this also takes a higher amount of time. Orthogonal to these variables

is StartingWeight, and then opposite of that are variables Threshold and Reinforcement.

StartingWeight is negatively correlated with Threshold and Reinforcement, meaning that

the higher the starting weight, then the lower Threshold and Reinforcement are in this

dataset. Lastly, the variable StartingSize is orthogonally correlated with the other variables.

All other variables were held constant for the data points presented in this thesis.

Biologically, these parameters are meaningful. Timesteps, Samples, and RunTime would

also be well correlated; the more images the animal is exposed then the more time it takes to

view all of those images. If I show an animal 10 images, then that is ten time steps, which will

take a shorter time to run than showing an animal 100 images, requiring 100 time steps.
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Figure 9. PCA of main input parameters
This PCA analysis shows four distinct clusters for this set of data.
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Startingweight is biologically similar to the findings by Hubel and Weisel where they

found kittens, who had not yet opened their eyes and thus had not started to view any images,

already had V1 cells with orientation preferences, albeit they were very weak.

Negatively correlated to startingweight are threshold and reinforcement. These are

two properties of the cell itself. Threshold is the amount of neighbor influence. In biology, a

cell actively inhibits its neighbors. If a particular cell is being inhibited by many neighbors in

a single time step, then it will likely change its firing to sync in with the neighborhood; that is

if a cell receives inhibitory signals from all of its neighbors, the inhibition from the neighbors is

much stronger than the inhibition from the single cell. As a result, the single cell will no longer

be reinforced for its original orientation, and will begin to fire with its neighbors. Typically,

cells that fire for similar stimuli are also spatially nearby.

Also, depending on the frequency of the stream of action potentials arriving at a cell, the

reinforcement for a particular wiring can be weak or strong. If reinforcement is high, then

high frequency pulses “wired” the two cells together (Hebbian Learning). In the PCA, these

two variables are positively correlated because, to quote Donald Hebb, “cells that fire together,

wire together.” Cells with high thresholds must also have high reinforcement values to overcome

the initial thresholds. One can only do that through pooled inhibition by neighbors.

Lastly, cells in the visual cortex are not randomly assigned an orientation preference before

the animal opens its eyes, instead there is some order to the layout. Some cells that prefer the

same orientation will by clustered together, though these clusters will be randomly dispersed

throughout the cortex. This variable is negatively correlated with the biological equivalent of
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the number of images the animal views. If these swaths of cells are large, then it will take

more time steps to “overcome” their size, as only the cells on the edges of these swaths will

be affected by the inhibition of their neighbors with different orientation preferences. As time

continues, the edges of these swaths will become less and less uniform. However, the swaths

do not completely disappear due to Threshold and reinforcement which are responsible for

creating the stable iso-orientation domains.

Figure 10. Four PCA clusters
The four clusters outlined.
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As can be seen in Figure 10, the PCA yields four clusters of data. Two sets (the two to the

left) are highly correlated with timesteps, samples, and runtime. Given more data, it is likely

that these two clusters would form a single cluster as the range for number of time steps was

filled out. These two clusters make up maps where startingsize is negatively correlated with

timesteps, samples, and runtime. Therefore, these maps likely have a small startingsize.

The third cluster (from the left) contains maps that are not so negatively correlated with

startingsize. The fourth cluster contains maps which simply show the same negative corre-

lation, but with the direction reversed: smaller time steps with a larger starting size. From

this analysis, we can infer that with more time steps and/or samples, the influence of a larger

starting size diminishes.

We also see that startingweight is negatively correlated with threshold and reinforcement.

A large threshold or reinforcement value can diminish the influence of the starting weights ap-

plied to the cortical cells. Threshold and reinforcement are positively correlated: the larger

the threshold to overcome, the larger the reinforcement must be to overcome it.
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6.1.2 Evaluative Parameters

The complementary step to this analysis is to do a PCA on the evaluative measures, and

then on this PCA, note which maps cluster near the real maps. Given this, we can match

the name of the map to this set of input parameters, and see which input parameters create

biologically similar maps.

Figure 13 shows the first two components of the PCA of the output measures for the two

sets of data: data generated by the model (blue) and data generated from empirical maps (red).

These measures include: Counterclockwise/Clockwise ratio, pinwheel CV, CW pinwheel CV,

CCW pinwheel CV , and Centroid CV. Importantly, where the two sets of data overlap is where

we find model input parameters that are capable of generating maps similar to real maps across

all of these variables.

While the first two principal components capture most of the variance of the dataset, the

other components do carry some variance that could differentiate clustered data from one an-

other. Figure 12 shows the first three principal components. Unfortunately, a visual inspection

suggests that the “real” data differs from the model data with the added third component.

There may be some very partial overlap, but if there is any, it is on the fringe.

To explore whether or not this third component was important, a Scree Test was performed

on the dataset. “Scree” is a term from geology referring to the rubble at the bottom of a cliff.

We first take a correlation matrix, and decompose it into independent weighted combinations

of the original variables (these combinations correspond to components). Each set will have

some variance associated with it. The idea of the scree test is that if a factor is important, it
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Figure 11. PCA of output measures
Data from model-generated maps are in blue and data from empirical maps are in red. Note

the overlap of generated data to empirical data.
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Figure 12. 3D PCA of output measures
Data from model-generated maps are in black and data from empirical maps are in red. Note
that the overlap of generated data to empirical data is less when we add the third component.
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will have a large variance. Therefore, we order the factors by variance, and plot the variance

against the factor number. Then you keep the number of factors above the “elbow” in the plot.

These are the important factors which account for the bulk of the correlations in the matrix,

or the most salient principal components. It is called a scree test because the graph looks a bit

like where a cliff meets the plain. In looking at a cliff, you might want to decide where the cliff

stops and the plain begins. With the scree test you see where the important factors stop and

the unimportant ones start. What we can do is to create a plot of the eigenvalues (variances)

against their serial order (see ??

Figure 13. Scree Test
A Scree test on the data. The first two components contain a majority of the variance, and

the “elbow” appears to be at around 3.
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The Scree test suggests that there are 2 or possibly 3 underlying factors (meaning 2 or 3

principal components in the data are important), and that most of the variance is within the

first two or three components. The slope between 2 and 3 is small, and so the decision may

just be to conclude that there are two main factors involved. Based on this Scree Test, I will

cluster the data according to the first two components using the K-means clustering algorithm.

K-means clustering is a method of cluster analysis which aims to partition n observations

into k clusters in which each observation belongs to the cluster with the nearest mean. Fig-

ure 14 shows clustering of the data into two clusters. Over 82.5% of the in-between variance

is accounted for when we cluster for two, meaning that most of the variance in the dataset is

accounted for between the two (not within). This means they are fairly disjoint. Figure 15

shows clustering with three clusters. For three clusters, 68% of the variance is due to the differ-

ence between clusters. An analysis locating two or three clusters appear quite similar. These

findings indicate that clusters 2 and 3 are likely quite similar, and I can present the data as

having two main clusters.
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Figure 14. Two Cluster K-means
Clustering given two clusters
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Figure 15. Three Cluster K-means
Clustering given three clusters
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6.2 Run time and Accuracy

Figure 16 is a graph of runtime and accuracy.

Figure 16. Accuracy Scores
Average run time of maps with the five different accuracy scores. Error bars represent 1 SEM.

A longer run time tends to produce the most accurate maps.

There are five main measures in the map evaluation: the CCW/CW ratio, CV of pinwheels,

CV of CCW pinwheels, CV of CW pinwheels, and the CV of the domain centroids. To determine

a measure of “accuracy”, the average of these five variables was taken on all of the real data.
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If for the model map, a value for any one of these five variables fell within one standard error

of the real mean (SEM), then one point (out of five) was awarded to the “accuracy total”.

Therefore, if any model map has an accuracy measure of “5” then that means the value for

the variable fell within 1 SEM of the real map data average. The most accurate maps have an

accuracy score of 5. This translates to an accuracy score of 100%.

The data have been summarized in Figure 16. On the x-axis is the accuracy score, and on

the y-axis is the average run time (inms) for all maps with the respective score. Please note that

all time steps are equal, therefore run time might indicate the complexity of the computation

and does not reflect the amount of time the model viewed the stimulus. The trend from the

data suggest that longer run times produce more accurate maps. Further inquiry shows that

the most accurate maps (those with 100% accuracy) take between 14 seconds to 1:37 minutes.

The data may dip at 60% due to a particular “sweet spot” range required for an accurate

map, for some cases. For example, number of pinwheels plays a role in an accurate map.

However, if the starting parameters were too large or too small, the number of pinwheels

generated could increase with time. Perhaps with a larger run-time, we might see too many

pinwheels, but only with particular parameters. Before attempting to publish this manuscript,

I must address this possibility.

However, it must be mentioned that a fit of 100% may also not be accurate. This is

called “over-fitting”, meaning that I might be describing random error or noise instead of the

underlying relationships I am looking for. Additionally, with this variance accounted for in my

“accuracy” score, it is likely that I am over-fitting the data, and if I allowed some “noise” or did
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some more sophisticated significance testing, I may find a better way to describe the model’s

ability to generate “real” data. For example, by computing the accuracy score in this way, I

am increasing the Familywise Error Rate, which is the probability of making one or more false

discoveries, or type I errors among all the hypotheses when performing multiple hypotheses

tests. If I treat each SEM range for each variable compared to another as a hypothesis test

(testing whether or not they are significantly different), then in total I am performing 10 tests

across all 5 variables. In short, with this method of comparison, a map may receive a high

accuracy score due to chance.

Average RT StDev RT Min RT Max RT Count Accuracy Score

50788 24840 14284 97749 18 100%
48058 24398 7007 107169 114 80%
37558 27403 6993 121715 341 60%
43558 33763 6991 311622 622 40%
40655 36094 6987 277809 679 20%
22098 27199 6983 152095 623 0%

TABLE I

TABLE OF RUN TIME AND ACCURACY STATISTICS
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Table I summarizes the statistics for the run time and accuracy comparisons. This table

shows that only 18 of the total 2397 maps achieved a “perfect” accuracy score, and that the

minimum run time was nearly twice as what was required for the maps achieving 80% accuracy.

Figure 17. MST on a map generated by the model

Lastly, Figure 17 shows a model-generated map and Figure 18 shows an empirical map.

Please note that the scales are completely different and only when compared in a normalized

way can the two maps be considered similar. For example, the average compactness of Fig-
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Figure 18. MST on a map imaged from monkey cortex

ure 17 is approximately 29, however the average compactness of Figure 18 is approximately 80.

Therefore, the scale of Figure 17 to Figure 18 is about 3:8.

Given this analysis, the parameters to be input into this model to create the most biological

similar maps are summarized in Table II. According to Table II, for this model, 10 time steps

are sufficient to get biological similarity. This is a surprising result because I would expect

that more images would further tune the map to be biologically similar. However, as few as 10

images seems to work well for this model. However, the mode is 20 time steps. Therefore, 20
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Time Steps Start Weight Start Size Reinforcement Threshold

10 1 5 0 4
10 1 8 2 1
10 1 4 2 5
10 1 6 1 6
10 1 5 4 1
20 4 6 4 2
20 3 6 4 4
20 1 6 2 2
20 1 4 1 6
20 4 8 2 0
20 4 8 3 6
20 3 6 3 0
20 2 6 3 0
20 1 6 3 1
20 1 6 2 6
20 1 6 3 3
70 1 6 2 5

TABLE II

TABLE OF IDEAL PARAMETERS FOR THE 100% FIT
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images is the norm for this set of data. Please note that the data could also be ideal due to

over-fitting or Type I errors.

A StartingWeight mode was 1 (ranging from 1 to 5), therefore it is important that the

weighted orientation preferences of the cells at initialization are not too overpowering. The

StartSize mode was 6 (ranging from 2 to 10), and so a starting size for the iso-orientation

domain that is slightly over 5% the width of the retina width appears optimal. Reinforcement

values (ranging between 1 and 7) seem to remain fairly low, therefore reinforcement cannot

be overpowering either. Lastly, the threshold can vary, depending on the other parameters.

In fact, there is a moderately negative correlation between threshold and reinforcement (r

= -0.41), and a positive correlation between StartWeight and StartSize (r = 0.51).



CHAPTER 7

DISCUSSION

It is still unclear how the brain processes and stores information, and research into un-

derstanding “how” continues to evolve. The work presented here has demonstrated that by

following the basic, organizational principles employed by the brain, one can achieve what

would be considered biologically plausible responses.

7.1 Future Improvements

Future improvements for this model include adding additional dimensions of the visual

experience such as direction of motion, color, spatial frequency, and direction selectivity. Ad-

ditionally, while this model is composed of leaky-integrate and fire neurons, it should be tested

with other types of neuron models. For example, there is another interesting representation of

a neuron; one proposed by Bhaumik and Maher (14), which considers the resting and firing

potential of the most recently fired neuron. This model allows for the integration of Long Term

Potentiation (LTP) which is important for Hebbian learning adherence in the brain. The next

iteration of the model should include this neuron:

uI(t) = η(t− tfc) + βI
∑
j

W
+/−
ij +

∑
fL

ε(t− tfL) + Rp

59
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Where tfc is the most recent firing time of the neuron, η(t − tfc) is the refractory voltage

of the cortical cell, W
+/−
ij is the ON (+) or OFF (-) center cell weight between the LGN(j) and

the cortical cell (i), ε(t − tfL) is the EPSP (excitatory post-synaptic potential) in the cortical

cell when the LGN cell fires, Rp is the resting potential, βI is a function representing synaptic

plasticity (the ability of the human brain to change as a result of one’s experience), and where

uI(t) is the membrane potential. The function for synaptic plasticity is as follows:

βI = (H− L)f(Av) + L

Where H and L are constants indicating the maximum and minimum values for the global

scaling factor, Av is the average input to the cortical cell I over time T .

Av =
1

t

∫ t
o

∑
j

WijXj

f(Av) = 1− tanh[G(Av − θ)]

Here, G and θ are also constants and Xj(t) ∈ 1, 0. Xj(t) is the firing of the LGN.

Additionally, improvements in the model can be made at the level of the dLGN. Currently,

the model contains only neurons and are not differentiated by the system to which they belong

(i.e. magnocellular or parvocellular). If in future iterations, I include sensitivity to color and

luminance, it is important that I have a biological representation of these systems within the

dLGN. Also, the dLGN in the current model contains only a single layer of neurons, but as
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I include more dimensions of the visual experience, it is important I add these layers to the

dLGN.

Lastly, at the level of the retina, I should incorporate both ON-center and OFF-center

ganglion cells. Currently, I have only ON-center ganglion cells within the retina. While this is

enough to discriminate the strong edges I present to the network, it will likely prove inferior to

more natural scenes. Therefore, in the next iteration, having a set of OFF-center ganglion cells

is important.

Most recently, Bednar et al (26) came out with what they are calling the most “biologically

plausible” model of V1. It would be interesting to compare the accuracy of this model com-

pared to mine. However, this model is different from mine in that theirs is considered the first

developmental model with wiring consistent with V1 only, whereas my model considers signals

from retina up to V1. My model is deficient in that it does not cover all feature dimensions

covered in V1 as Bednar et al’s does.

7.2 Conclusion

Despite the simplicity of this model, I have clearly demonstrated that following very sim-

plistic rules of basic neuron firing and connecting them in a biologically relevant way, a map of

orientation-selective cells akin, to what would be seen in nature, can be generated. This goes

to show that when considering models of the brain, it is very important to take into account

the architecture and subsequent wiring of afferent and efferent signals into different areas when

developing models of the brain.
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I have found what parameters are positively and negatively correlated. From this example,

we can take away that neuron units in the brain, when placed within a network, must find a

particular balance between firing threshold and reinforcement value. In the biological brain,

this threshold is determined by ionic receptors on the cell membrane. The more receptors on

the membrane than the faster the cell may reach threshold. If a cell is quick to reach threshold,

then it is more apt to fire, so perhaps the reinforcement value when it does fire is greater. This

effect in a real neural network is known as LTP. This is an unexpected but very interesting

finding. LTP is an emergent property of this model.

Growth in the area of computer architecture is booming, and companies that seek to model

the brain are further relying on redefining current computer architecture and its underlying

processes. They are finding that it is important to keep processes parallel, yet to have these

processes also within a very specific hierarchy. With these components being built to mimic

the firing of biological cells such as neurons, computational power is increasing such that the

reality of building a computational “brain” may be on the horizon.
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