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SUMMARY 
 

This thesis examines multiple multibody dynamic formulations and their effects in the large 

displacement analysis of flexible bodies. The second chapter will examine the effect of using 

independent finite rotation fields in the large displacement analysis of flexible beams first 

formulated 30 years ago. This finite rotation description is at the core of the large rotation vector 

formulation (LRVF), which has been used in the dynamic analysis of bodies experiencing large 

rotation and deformation. The LRVF employs two independently interpolated meshes for 

describing the flexible body dynamics: the position mesh and the rotation mesh. The use of these 

two geometrically independent meshes can lead to coordinate and geometric invariant 

redundancy that can be the source of fundamental problems in the analysis of large deformations. 

It is demonstrated in this thesis that the two geometry meshes can define different space curves, 

which can differ by arbitrary rigid body displacements. The material points of the two meshes 

occupy different positions in the deformed configuration, and as a consequence, the geometries 

of the two meshes can differ significantly. Other issues including energy conservation and the 

inextensibility of the rotation mesh will also be discussed. Simple examples are presented in 

order to shed light on these fundamental issues. 

The third chapter of this thesis focuses on the dynamic formulation of mechanical joints 

using different approaches that lead to different models with different numbers of degrees of 

freedom. Some of these formulations allow for capturing the joint deformations using discrete 

elastic model while the others are continuum-based and capture joint deformation modes that 

cannot be captured using the discrete elastic joint models. Specifically, four types of joint 

formulations are considered in this chapter; the ideal, penalty, compliant discrete element, and 

compliant continuum-based joint models. The ideal joint formulation, or constrained dynamics 
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approach, which does not allow for deformation degrees of freedom in the case of rigid body or 

small deformation analysis, requires introducing a set of algebraic constraint equations that can 

be handled in computational multibody system (MBS). When the constrained dynamics approach 

is used, the constraint equations must be satisfied at the position, velocity, and acceleration 

levels. The penalty method, on the other hand, ensures that the same algebraic equations are 

satisfied at the position level only with a force-based approach. In the compliant discrete element 

joint formulation, no constraint conditions are used; instead the connectivity conditions between 

bodies are enforced using forces that can be defined in their most general form in MBS 

algorithms using bushing elements that allow for the definition of general nonlinear forces and 

moments. The new compliant continuum-based joint formulation, which is based on the finite 

element (FE) absolute nodal coordinate formulation (ANCF), has several advantages: (1) It 

captures modes of joint deformations that cannot be captured using the compliant discrete joint 

models; (2) It leads to linear connectivity conditions, thereby allowing for the elimination of the 

dependent variables at a preprocessing stage; (3) It leads to a constant inertia matrix in the case 

of chain like structure; and (4) It automatically captures the deformation of the bodies using 

distributed inertia and elasticity. The formulations of these three different joint models are 

compared in order to shed light on the fundamental differences between them. Numerical results 

of a detailed tracked vehicle model are presented in order to demonstrate the implementation of 

some of the formulations discussed in this chapter. 

Because of the lack of computational methods that can be used for the direct calculation 

of the stresses of complex multibody systems such as tracked vehicles, the dynamic stresses of 

such systems are often evaluated at a post-processing stage using forces obtained from a rigid 

body analysis. With the recent developments in MBS dynamics, detailed flexible body models of 
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vehicle systems can be developed and used to evaluate, for the first time, the accuracy of the 

stress prediction based on the rigid body force calculations. It is, therefore, the objective of this 

chapter to use the finite element absolute nodal coordinate formulation, which automatically 

accounts for the dynamic coupling between the rigid body motion and the elastic deformation, to 

obtain the stress results. These results are then used to evaluate the accuracy of the stresses 

calculated at a post-processing stage using forces determined from a rigid body analysis. ANCF 

finite elements are used to perform the coupled dynamic analysis and obtain the stresses based 

on a fully nonlinear flexible body analysis. In order to obtain an accurate representation of the 

stresses in the case of the rigid body analysis, the floating frame of reference (FFR) formulation 

dynamic equations are used to define the inertia and joint reaction forces that must be used in the 

post-processing stress calculations. To this end, the rigid body accelerations, including the 

angular accelerations, as well as the joint reaction forces are first predicted using a rigid body 

analysis. The solution of the rigid body problem is then used to formulate the FFR equations 

associated with the elastic coordinates. These equations include the effect of the inertia, 

centrifugal, and Coriolis forces resulting from the rigid body displacements. The resulting linear 

second order ordinary differential equations associated with the FFR elastic coordinates are 

solved for the elastic accelerations which are integrated to determine the elastic coordinates and 

velocities. The obtained elastic coordinates are used to determine the stresses which are 

compared with the stresses obtained using the fully coupled ANCF analysis. The two approaches 

described are explained in detail and used in the stress analysis of the track links in a complex 

three-dimensional tracked vehicle model. One of the most common areas of failure for such 

tracked vehicles is attributed to the failure of the track link chains, and therefore, performing a 
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detailed fully coupled stress analysis, as the one described in this chapter, is necessary in order to 

obtain more accurate stress results and avoid failure of such complex vehicle systems. 
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CHAPTER 1 

INTRODUCTION 

 

1.1   LARGE DISPLACEMENT FORMULATIONS 

The choice of the geometric description used in large displacement analysis can be a challenge, 

particularly in the case of finite rotations. An example of a large displacement analysis 

formulation is the floating frame of reference (FFR) formulation, which is widely used when the 

bodies experience finite rigid body rotation and small deformation. This formulation leads to a 

local linear elasticity problem that allows for exploiting model-order reduction techniques 

(Shabana, 2014). Because of the need for the simulation of rigid body motion and large 

deformation, several nonlinear theories were proposed in the two fields of computational 

mechanics and flexible multibody system (MBS) dynamics. In the co-rotational formulations, a 

coordinate system is used for each finite element to define both the elastic and inertia forces 

(Belytschko et al., 1977). In the absolute nodal coordinate formulation (ANCF), on the other 

hand, the rigid and flexible body motion is defined using global coordinates including Cartesian 

position and gradient coordinates (Bayoumy et al., 2013; Gerstmayr et al., 2013; Shabana, 2012). 

Another finite element (FE) formulation used for the description of large rotation and large 

deformation problems is the large rotation vector formulation (LRVF), which is supposed to be a 

non-incremental procedure intended mostly for beam and plate applications (Simo and Vu-Quoc, 

1986). Simo and Vu-Quoc developed this formulation by describing the geometrically exact 

beam dynamics based on the Kirchhoff-Love model developed by Reissner (1972; 1973). 

Reissner’s work represents the foundation of the large-displacement finite-strain theory of shear-

deformable beams (Irschik and Gerstmayr, 2009). Reissner formulated a one-dimensional large-
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strain beam theory for plane deformations by first deriving the local equations of beam 

equilibrium with the assumption of a plane and undistorted cross-section. He then developed 

generalized constitutive relations at the beam-theory level based on generalized strain measures 

such as the bending, axial force, and shear force strains. The virtual work of the internal, 

external, and boundary forces were then derived to obtain the governing equations. Simo and 

Vu-Quoc expanded upon this static theory to dynamics with the essence of this approach leading 

to accomplishing a fully nonlinear plane beam theory that can account for finite rotations as well 

as finite strains. Absolute positions and absolute finite angles are used as generalized 

coordinates. The position and rotation fields are interpolated independently in the LRVF, giving 

rise to questions with regard to the redundancy in the geometric description. The rotation field 

can be used to define a tangent vector that defines a space curve which possesses geometric 

properties, such as curvature and torsion, which can significantly differ from those obtained 

using the position field (Shabana, 2010). In fact, the nodes of the position-based (PB) 

interpolation can occupy positions in space that are different from the positions occupied by the 

nodes of the rotation-based (RB) interpolation. Furthermore, as will be shown in this thesis, the 

rotation mesh defines a beam that is inextensible, leading to an additional inconsistency in the 

LRVF geometry representation. 

 Several notable contributions by other authors were based on Simo and Vu-Quoc's 

geometrically exact beam theory, such as the work of Romero (2004) who examined the use of 

interpolation types for the rotation field. The interpolations types were discussed in terms of 

advantages and drawbacks using nonlinear rod models to provide qualitative and quantitative 

evaluation of four interpolation techniques with the goal to assess each method. The best overall 

properties were obtained with models using an orthogonal interpolation in the rotation group, 
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where the objectivity of the continuum model was preserved. This method was originally 

proposed by Crisfield and Jelenic (1999), where it was also shown that the application of linear 

interpolation techniques to finite rotation fields of either incremental or iterative rotations is non-

objective and is path-dependent. Objectivity is achieved when the geometry is invariant under 

rigid body transformation. When this condition is met, the formulation is said to be objective, 

otherwise it is non-objective. In order to address this problem, simple algorithms that achieve 

objectivity were developed to test finite rotation formulations to help identifying the source of 

the problems and deal with the unavoidable singularities associated with the use of some finite 

rotation parameters (Bauchau et al., 2008). Although the algorithms can handle the finite 

rotations through a rescaling operation, the separation of displacement and rotation fields still 

exists.  

 

 

Figure 1.1: The SIGMA/SAMS tracked vehicle model 



4 
 

 

1.2   JOINT FORMULATION PRINCIPLES 

Accurate formulation of mechanical joints is another necessity in the computer simulation of 

multibody systems that represent many technological and industrial applications. An example of 

these MBS applications, in which accurate modeling of joint compliance is necessary, is the 

tracked vehicle shown in Fig. 1.1. The links of the track chains of this vehicle are connected by 

pin joints that can be subjected to significant stresses during the vehicle functional operations. 

Nonetheless, there are different joint formulations that can lead to different dynamic models 

which have different numbers of degrees of freedom. This thesis will investigate the use of four 

different methods for formulating mechanical joints in MBS applications. These four methods 

are the ideal joint formulation, the penalty method, the compliant discrete element joint 

formulation, and the compliant continuum-based joint formulations.  

The ideal joint formulation is based on a set of algebraic equations that do not account for 

the joint flexibility; this is regardless of whether or not the body is flexible. The algebraic joint 

equations are expressed in terms of the coordinates of the two bodies connected by the joint. 

These algebraic equations are considered as constraint equations which can be enforced using 

two fundamentally different methods; the constrained dynamics approach and the penalty 

method. In the constrained dynamics approach, the technique of Lagrange multipliers or a 

recursive method is used. In this case, the joint constraint equations must be satisfied at the 

position, velocity, and acceleration levels. The number of degrees of freedom of the model in this 

case is equal to the number of the system coordinates minus the number of the algebraic joint 

constraint equations. In the penalty method, on the other hand, the number of degrees of freedom 

of the model is not affected by the number of joint constraint equations. These joint algebraic 
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equations are enforced using high stiffness penalty coefficients that ensure that the algebraic 

constraint equations are satisfied at the position level. The penalty method does not ensure that 

the constraint equations are satisfied at the velocity and acceleration levels. 

In the compliant discrete element joint formulation, no algebraic equations are used to 

describe the joints between bodies in the system. The connectivity between bodies is instead 

described using force elements that have forms defined by the user of the MBS code. MBS 

system codes have bushing elements that can be used to define general linear or nonlinear force 

and moment expressions. The stiffness and damping coefficients in the force and moment 

expressions can be selected by the user. The bushing elements can be used to model the joint 

compliance in the case of rigid and flexible body dynamics. It is important, however, to point out 

that adding bushing elements has no effect on the number of degrees of freedom of the model. 

Unlike the penalty method, the use of bushing element does not require the formulation of 

algebraic joint equations. Bushing elements allow for systematically introducing three force 

components and three moment components. 

 The new finite element (FE) absolute nodal coordinate formulation (ANCF) allows for 

systematically developing new joint formulations that capture modes of deformation that cannot 

be captured using the discrete joint models. It also allows for modeling body flexibility using 

new FE meshes that have constant inertia and linear connectivity conditions. Specifically, the 

compliant ANCF continuum-based joint formulation has the following advantages: 

1. ANCF finite elements allow for developing new joint formulations that capture 

deformation modes that cannot be captured using compliant discrete joint formulations. 

The use of the ANCF gradient coordinates allows for developing different joint models 

with different numbers of degrees of freedom that allow for different strain modes. 
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2. The use of the ANCF gradient coordinates allows for developing linear joint constraint 

equations. These linear algebraic equations can be used to eliminate dependent variables 

at a preprocessing stage, thereby significantly reducing the model dimensionality. 

3. ANCF finite elements can also be used to model the body deformation in addition to the 

joint compliance. Distributed inertia and elasticity are used for both body flexibility and 

joint compliance. 

4. ANCF finite elements lead to new types of FE meshes that have constant inertia, a feature 

that can be exploited to develop a sparse matrix structure of the MBS dynamic equations.  

 

1.3   STRESS ANALYSIS ON A COMPLEX TRACKED VEHICLE MODEL 

Another contribution from this thesis, is an investigation into accurate predictions of the dynamic 

stresses in MBS simulations. This work is crucial in the design of many complex engineering 

systems. One system that is commonly modeled and tested because of its use in tough terrains 

and because of the high manufacturing and maintenance cost is the aforementioned tracked 

vehicle. One of the most complex and difficult to model sections of these vehicles is the track 

chain, which consists of multiple track links interconnected by revolute joints. As previously 

mentioned, these joints can be modeled using kinematic constraints or bushing elements to 

eliminate or constrain the necessary degrees of freedom and allow for a rotation about a single 

axis. Because of the difficulties of developing flexible link chain tracked vehicle models, the 

stress analysis of such systems has been performed by obtaining forces from a rigid body 

analysis of the vehicle. These forces are then used in a linear structural problem to obtain the 

track link stresses. With the recent developments in flexible MBS analysis techniques and the 

introduction of new finite element approaches, such as the absolute nodal coordinate 
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formulation, it is now feasible to build fully coupled flexible link chain tracked vehicle models. 

The results of these new nonlinear models, which account for the coupling between the rigid 

body motion and the elastic deformation, can be used to examine the accuracy of the models that 

ignore the effect of the elastic deformation on the rigid body motion of the track links. It is, 

therefore, another focus of this thesis to develop a fully nonlinear coupled ANCF stress analysis 

approach and use this approach to evaluate the stress results based on forces determined using 

the rigid body analysis.  

1.3.1 Tracked Vehicle Development and Simulation 

Choi et al. (1998) developed the first three-dimensional multibody tracked vehicle model 

utilizing nonlinear constrained dynamic equations of motion. Recursive kinematic equations for 

the vehicle were expressed in terms of independent joint coordinates using a velocity 

transformation matrix. Furthermore, three-dimensional nonlinear contact force models to 

describe the interaction between track links and the sprockets, road wheels, idlers and ground 

were developed and used to define the generalized contact forces associated with the vehicle 

generalized coordinates. Ryu et al. (2000) developed track link models using compliant elements 

based on experimental data from a high-speed tracked vehicle. Numerical difficulties 

encountered in the simulation of the tracked vehicle model due to high frequency contact forces 

were resolved by using explicit numerical integration methods with a variable time step size. 

Ryu et al. (2003) later validated the numerical results using real-life simulation data of the 

chassis and track link acceleration and track tension. Stiff compliant elements were used to 

represent the joints between the track links. An efficient contact search algorithm was used to 

detect the interactions between the track links and other vehicle components including the 

ground. Yamakawa and Watanabe (2004) developed a high-mobility rigid body tracked vehicle 
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model utilizing a torsion bar suspension system. The vehicle model was evaluated in terms of 

ride performance, steerability, and stability over rough terrain.  

1.3.2 Dynamic Stress Analysis Comparison 

As previously stated, one of the most widely accepted formulations used in flexible MBS 

applications is the FFR formulation. The FE/FFR formulation uses a coupled set of reference and 

elastic coordinates and allows for systematically filtering out complex shapes associated with 

high frequencies that have no significant effect on the solution. The reference coordinates define 

the location and orientation of a selected body reference while the elastic coordinates describe 

the body deformation with respect to the body reference (Nada et al., 2009; Shabana, 2014). The 

choice of the body reference is an important issue in defining the stresses and strains in the FFR 

formulation and this issue will be discussed further in the following section. The FFR 

formulation was used by Campanelli and Shabana (1998) to study the vibration and dynamic 

stresses of the track links of tracked vehicles. A detailed three-dimensional FE model of a track 

link was developed and used to determine the natural frequencies and mode shapes. An 

explanation of the terms representing the rigid body inertia, centrifugal and Coriolis forces in the 

equations of motion associated with the elastic coordinates of the track was provided. 

Furthermore, a computational procedure for determining the generalized constraint forces 

associated with the elastic coordinates of the deformable chain link was presented. Hamed et al. 

(2015) simplified the modeling of a heavily constrained tracked vehicle model by using flexible 

ANCF finite elements and linear connectivity conditions. The elimination of joint constraint 

equations at a preprocessing stage was discussed and attributed to solving a fundamental 

singularity problem with closed loop systems. Results of rigid- and flexible-linked chains were 

compared, including rigid body motion and constraint forces. It is impractical to develop a 
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detailed flexible link tracked vehicle model using the FFR formulation. It is important, however, 

to point out that in the case of small deformation problems, as it is the case with the track links, 

the results obtained using the two approaches (FFR and ANCF) have been compared in the 

literature. The reported results show that the two formulations agree well in the case of small 

deformations (Shabana and Schwertassek, 1998; Shabana, 2014; Dibold et al., 2009). Dibold et 

al. (2009), in particular, gave a detailed comparison between the ANCF and FFR using small and 

large static deformation problems, as well as small and large deformation dynamic problems. 

Included in this comparison are examples of a cantilever beam with a tip load, a pendulum 

subjected to the effect of gravity, and a slider-crank mechanism. Using the fact that the two 

formulations give similar results in the case of small deformation problems and the fact that it is 

impractical to develop an FFR tracked vehicle model with flexible link chain, the fully nonlinear 

model that will be developed in this thesis will employ ANCF finite elements that facilitate 

developing such complex tracked vehicle models. 

 

1.4   SCOPE AND ORGANIZATION OF THIS THESIS 

The second chapter analytically and numerically examines and demonstrates the fundamental 

LRVF redundancy problem. It is will be shown that the use of two independent interpolations for 

the position and rotation leads to two independent meshes with nodes that occupy different 

positions in space in the deformed configuration. As a consequence, the material points of the 

rotation mesh are different from the material points of the position mesh.  Furthermore, the space 

curve resulting from the rotation mesh is inextensible regardless of the axial load applied. 

Another contribution of this chapter is to show that, while shear is an independent mode of 

deformation, the independent position and rotation interpolations cannot, in general, lead to the 
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same geometric representation. As a consequence, the use of curvature defined using the rotation 

mesh to describe the bending of the position mesh cannot be justified. Numerical examples are 

presented to shed light on these fundamental issues and concepts. 

 Chapter 2 is organized as follows. Section 2.2 demonstrates using a simple example that 

two independent kinematic descriptions cannot be used, in general, to obtain the same geometry. 

The brief discussion presented in Section 2.2 is necessary in order to clearly understand the 

LRVF kinematic assumptions and the potential problems which can develop from using 

independent interpolations for the position and rotation. Section 2.3 shows that a rotation mesh 

implicitly defines another space curve whose geometric properties may differ from an 

independently interpolated position mesh in a three-dimensional case. The LRVF kinematic 

description and equations of motion are presented in Section 2.4 for the planar case, where the 

definitions of the strains are also included. Section 2.5 compares the curvatures obtained using 

the PB and RB interpolations and shows how they can vary significantly. This section will also 

show additional complications resulting from using an independent RB interpolation such as the 

rotation field’s inextensibility when some assumptions related to the definition of the tangent 

vector are made. Section 2.6 presents numerical results obtained using the LRVF, including a 

robot arm subjected to a specified angular motion and an axial load. The numerical results 

obtained, which demonstrate that the nodes of the two meshes occupy different positions in 

space, shed light on the fundamental redundancy issue in the definition of inertia and strains. 

Conclusions are presented in Section 2.7. 

 The objective of the third chapter of this thesis is to provide a comprehensive study of 

different joint formulations and demonstrate the fundamental differences between them when 

applied to the analysis of complex tracked vehicle system models. Better understanding of these 
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formulations can lead to more accurate, and possibly faster, computer simulations that can be the 

basis for more reliable performance evaluation of the vehicles. The tracked vehicles considered 

in this chapter are assumed to consist of interconnected bodies that can have arbitrary 

displacements. These results are obtained using the general purpose MBS computer code 

SIGMA/SAMS (Shabana, 2010) which allows for systematically modeling MBS applications 

using the augmented formulation, penalty method, bushing elements, and ANCF finite elements. 

In the augmented formulation, the technique of Lagrange multipliers is used to determine the 

unknown accelerations and joint forces. The computational algorithm used in SIGMA/SAMS 

ensures that the algebraic constraint equations are satisfied at the position, velocity, and 

acceleration levels. 

 Chapter 3 is organized as follows. Section 3.2 gives background analysis into high 

mobility tracked vehicle models, including major developments in MBS applications. Such 

examples include force implementations, suspension development and testing, three-dimensional 

modeling, and complex contact algorithm development. Section 3.3 describes two separate 

methods that can be used to model a system of algebraic constraint equations. In the first method, 

the augmented formulation, the dynamic equations of motion explicitly show the constraint 

forces in terms of redundant coordinates. This approach leads to a general MBS structure though 

also increases problem dimensionality. The second formulation is the recursive formulation, 

which eliminates redundant coordinates and leads to a minimum set of differential algebraic 

equations. This method uses the joint degrees of freedom in the dynamic equations of motion, 

and although isn’t as general as the previous method, lowers problem dimensionality and 

increases computational efficiency. Section 3.4 emphasizes the importance of understanding the 

relationship and difference between generalized and Cartesian moments. Section 3.5 contains 
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four subsections, each describing a specific joint formulation used to model each track system 

used in the simulation of the tracked vehicle shown in Fig. 1.1. As described in the abstract of 

this thesis, the track systems are created using the algebraic constraint method, the penalty 

method, the compliant discrete element method, and the compliant continuum-based method. 

Section 3.6 outlines the components and component properties used for all the tracked vehicle 

models, then uses numerical results to compare each model in terms of position, velocity, and 

joint forces. Conclusions are presented in Section 3.7. 

 Developing a three-dimensional rigid body tracked vehicle model remains a challenging 

task. As will be shown in Chapter 4, this is mainly due to the complexity of the joints in these 

models and the high frequency forces resulting from the contact forces. For this reason, one 

cannot find in the literature a flexible link chain tracked vehicle model based on the FFR 

formulation (Sherif et al., 2011, 2012; Irshik et al., 2009; Shabana, 2014). The FFR formulation 

leads to a highly nonlinear mass matrix and to a significant increase in the complexity of the 

joint formulations. The Coriolis and centrifugal forces also have complex expressions that 

depend nonlinearly on the coordinates and velocities. As a result, developing an FFR tracked 

vehicle model that takes into account the dynamic coupling between the rigid body motion and 

the small elastic deformations of the links has been recognized as impractical, and for this 

reason, the development of such a model has not been pursued in the literature. Instead, the chain 

link stresses are calculated using decoupled analysis that employs forces obtained from the rigid 

body simulation of the tracked vehicle. This was the only practical approach available. 

Nonetheless, the accuracy of this approach has never been evaluated by comparison with a fully 

nonlinear coupled analysis because of the above mentioned limitations of the existing 

approaches.  
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 The use of ANCF finite elements (Abbas et al., 2010; Liu et al., 2011; Nachbaguaer, 

2012, Olshevskiy et al., 2013; Yoo et al., 2004, 2005; Tian et al., 2009, 2010; von Dombrowski, 

1997), allows for developing detailed flexible-link tracked vehicle models. The use of ANCF 

finite elements allowed for formulating the joint constraints at a preprocessing stage, thereby 

eliminating the dependent variables before the start of the simulation and also eliminating the 

need for formulating such equations during the dynamic simulation. The concerns regarding the 

nonlinearity of the inertia forces are also addressed since ANCF finite elements lead to a 

constant inertia matrix which can be converted to an identity matrix if the ANCF Cholesky 

coordinates are used (Shabana et al., 2012). Using ANCF finite elements, a fully coupled 

analysis of complex tracked vehicle systems with flexible link chains can be performed 

efficiently. The dynamic stresses can be calculated and used to shed light on the response of the 

vehicle to different loading conditions. These new fully coupled tracked vehicle models can also 

be used to evaluate the accuracy of the stress calculation procedures that ignore the effect of the 

elastic deformation on the rigid body motion of the track links. The objective of this chapter is 

therefore to develop two stress analysis approaches; the first is based on a fully coupled ANCF 

approach that accounts for the complete coupling between the rigid body motion and the elastic 

deformations, while the second is based on a linearization procedure that neglects the effect of 

the elastic deformation on the rigid body motion of the track link. The governing equations used 

in both approaches are developed and a comparative numerical study is presented in order to 

evaluate the accuracy of the stresses and strains obtained from forces determined using rigid 

body vehicle simulations. 

 Chapter 4 is organized as follows. Section 4.2 describes the motion description in both 

the ANCF and FFR formulations, including the four coordinates systems used for each finite 
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element and the deformation and rotation restrictions held in the FFR formulation. Section 4.3 

describes the post processing stress analysis using the FFR formulation. It is important to note 

that this section describes the FFR equations used in terms of deformation coordinates and 

doesn’t refer to the more commonly used modal analysis. This section will show how the 

kinematic equations are used to determine the highly nonlinear mass matrix, as well as how each 

force vector is determined and the assumptions made in the calculation of each component of the 

equations of motion. Section 4.4 will define the fully coupled, nonlinear deformation analysis 

accomplished by the ANCF. Similarly to the previous section, the mass matrix and force vector 

calculations are shown for the ANCF. Several advantages to this approach are also pointed out, 

including problem dimension reduction and a constant mass matrix which leads to zero Coriolis 

and centrifugal forces. Section 4.5 displays numerical results from two separate simulations: a 

lower velocity simulation and a higher velocity simulation. The numerical results presented in 

this section will compare between the FFR post processing and ANCF tracked vehicle models in 

terms of positions, velocities, and, most importantly, axial stress and strain. Conclusions are 

presented in Section 4.6. 
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CHAPTER 2 

 INDEPENDENT ROTATION FIELDS IN LARGE DISPLACEMENT 

ANALYSIS  

(Previously published as Ding, Jieyu, Wallin, Michael, Wei, Cheng, Recuero, Antonio M., 

Shabana, Ahmed A., 2014, “Use of Independent Rotation Field in the Large Displacement 

Analysis of Beams,” Journal of Computational and Nonlinear Dynamics, Vol. 76(3), pp. 1829-

1843) 

 

2.1 INITIAL LARGE ROTATION VECTOR FORMULATION OBSERVATIONS 

This chapter examines multiple multibody dynamic formulations and their effects in the large 

displacement analysis of flexible bodies. More specifically, the effect of using independent finite 

rotation fields in the large displacement analysis of flexible beams first formulated 30 years ago 

will be examined. This finite rotation description is at the core of the large rotation vector 

formulation (LRVF), which has been used in the dynamic analysis of bodies experiencing large 

rotation and deformation. The LRVF employs two independently interpolated meshes for 

describing the flexible body dynamics: the position mesh and the rotation mesh. The use of these 

two geometrically independent meshes can lead to coordinate and geometric invariant 

redundancy that can be the source of fundamental problems in the analysis of large deformations. 

It is demonstrated in this chapter that the two geometry meshes can define different space curves, 

which can differ by arbitrary rigid body displacements. The material points of the two meshes 

occupy different positions in the deformed configuration, and as a consequence, the geometries 

of the two meshes can differ significantly. Other issues including energy conservation and the 
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inextensibility of the rotation mesh will also be discussed. Simple examples are presented in 

order to shed light on these fundamental issues. 

 

2.2   FUNDAMENTAL KINEMATIC DESCRIPTIONS EXAMPLE 

In this section, a simple example is used to demonstrate that two independent kinematic 

descriptions can possess significantly different geometries. This issue is fundamental in 

understanding the basic assumptions and the redundancy problem associated with the use of 

some large displacement FE formulations. There are two types of redundancies; one which can 

be eliminated systematically using a constraint or penalty approach, while the other cannot be 

eliminated and this second type can pose fundamental problems since it is in violation of basic 

mechanics motion description principles. 

 

Figure 2.1: Mode shape displacement and curvature 
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 In order to explain the second type of redundancy which cannot be resolved, the two 

modes of deformation shown in Fig. 2.1 are considered. Figure 2.1a shows an example of a 

simple mode shape that defines a displacement field    1 1sin
x

u x,t q t
L

  
   

  
, while Fig. 2.1b 

shows a second mode shape that defines another displacement field    2 2

2
sin

x
u x,t q t

L

  
   

  
 

with 1q  and 2q  being the amplitudes of the first and second independent mode shapes, 

respectively, for an element of length L  with x   as the axial coordinate of the beam, and t  as 

time. Even in this simple case, the two independent fields 1u  and 2u  have significantly different 

geometric properties. By applying forces or constraints, 1u  and 2u  cannot be brought to be the 

same. As a consequence, the material points of the curve defined by the field 1u  will occupy 

positions that are different from the positions occupied by the material points of the curve 

defined by the field 2u  regardless of the forces and the constraints used. For example, the 

constraint condition that    1 2u x,t u x,t  leads to the trivial solution    1 2 0q t q t   which 

corresponds to the undeformed reference configuration.  One can also show, using the simple 

example of this section, that the geometric properties of two independent fields can be 

significantly different. As a consequence, it cannot be justified to assume that the geometric 

properties, obtained using one field, are the same as those of the other field. For example, using 

the assumption of small change in the length of the beam, the curvatures of the curves defined by 

the two fields  1u x,t  and  2u x,t  can be approximated by differentiating twice with respect to 

the parameter x  as      2 2 2 2

1 1sin
x

u x L q t
L




  
     

  
 and 
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     2 2 2 2
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. These two equations show that for the same 

amplitudes, the values of the curvature of 2u  is different from the values of the curvature of 1u . 

The differences in curvature can be seen clearly in Fig. 2.1c where the same coordinate 

amplitude q  is used for the two fields.  

 The concept discussed in this section is important to understand when nodes in the 

position and rotation meshes are shown in later sections of this chapter to occupy different 

positions in space. While the displacement solution obtained using the position mesh in the 

LRVF may compare favorably with the solution obtained using other formulations, further 

investigation into derived geometric properties such as curvature and torsion can show greater 

geometric inconsistency that sheds light on more fundamental formulation issues.  

 

2.3   ROTATION-BASED GEOMETRIC REPRESENTATION 

In the preceding section, it was shown, using a simple example, that in general two different 

shapes cannot be brought together perfectly regardless of the magnitude of the forces or type of 

constraints applied. In the LRVF, two independent interpolations are used for the position and 

finite rotation fields. The curve defined using the rotation field has geometric properties different 

from those of the curve defined by the position field. This section explains how the rotation field 

can be used to define a space curve (another position field) expressed in terms of finite rotations. 

 A three-dimensional space curve can be systematically defined in a global coordinate 

system XYZ  by introducing a rotation field that defines the orientation of coordinate systems at 

points on the space curve. One can then choose an appropriate sequence of the three Euler angle 

successive rotations to reach any orientation in space. For example, if s  is the space curve arc 
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length parameter, one can use the interpolated rotation vector        
T

s s s s   θ    to 

define the orientation of coordinate systems with origins attached to material points on the space 

curve. If 
i i iX Y Z  is the coordinate system at an arbitrary material point i  defined by the arc 

length parameter s  on the space curve, one can use the Euler angle sequence defined by an angle 

  (yaw) about the 
iZ  axis, followed by a second rotation   (roll) about the 

iY  axis, followed 

by a third and final rotation   (pitch) about the 
iX  axis (Shabana, 2010). Using this sequence 

of rotations, the transformation matrix that defines the orientation of the coordinate system at s  

can be written as (Ratho and Shabana, 2006)  

 

cos cos sin cos cos sin sin sin sin cos sin cos

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos
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 (2.1) 

In order to construct a curve using the rotation field, the first column of the transformation 

matrix can be considered as the unit tangent to the space curve at s . Let  Tzyxs )(r  be the 

vector that defines the space curve. The location of an arbitrary point on the space curve as a 

function of the arc length can be determined by integrating the equation dsd tr  . This equation 

with the use of Eq. 2.1 can be written as  dss trr 0)( . Substituting the tangent vector t  into 

this equation leads to 
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where subscript 0 refers to an initial value, and  cos cos sin cos sin
T

    t  is the unit 
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tangent vector at the arbitrary point i  on the space curve. The preceding equation can be used to 

define a curve based on the rotation field without resorting to a position based interpolation. It is 

important to note that, even in the case of using a linear rotation field, the space curve of Eq. 2.2 

is a highly nonlinear function since it contains trigonometric functions. Differentiating the 

tangent vector with respect to the parameter s  defines the curvature vector as 
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where s /  and s / . The norm of this vector defines the curve curvature as 

 22 )()cos(  
ds

dt
 (2.4) 

Furthermore, the normal vector can be defined using Eqs. 2.3 and 2.4 as  
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The curve torsion can then be evaluated by differentiating the curvature vector of Eq. 2.3 with 

respect to s  one more time. Therefore, the geometric properties of the curve can be uniquely 

defined. Furthermore, if the angles are functions of time, the curvature will also change as 

function of the angles, and therefore, an arbitrary large deformation can be captured.  

 The curvature and torsion, obtained using the finite rotation interpolation, are often used 

to formulate the strains in the large rotation vector formulations. It is implicitly assumed that the 

RB curvature and torsion are the same as the curvature and torsion of another space curve 

obtained using an independent position interpolation. This important issue will be discussed in 

more detail in later sections of this chapter.  
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2.4   LARGE ROTATION VECTOR FORMULATION 

While in the preceding section, general three-dimensional analysis is used to define a space 

curve using the finite rotation interpolation, the LRVF considered in this chapter can be clearly 

addressed without delving into the details of the spatial analysis. The LRVF incorporates two 

independent interpolations, one PB and one RB; this brings up the issue of redundancy despite 

the fact that shear is an independent deformation mode. As previously shown, two independent 

meshes cannot be brought together regardless of the constraints and forces used. In this section, 

the kinematics and dynamic equations of the large rotation vector formulation are explained 

using planar analysis in order to better understand and interpret the results of the examples that 

will be presented in later sections of this chapter. To this end, consider a two-dimensional 

flexible beam of length L, with one end at the origin of the inertial frame XY . The beam is 

allowed to rotate about the Z  axis, but the entire motion of the beam is constrained to the XY  

plane. 

2.4.1 LRVF Kinematics 

In the large rotation vector formulation, two independent interpolations are used for the position 

and finite rotations. These two independent fields can be written, respectively, as 

     0 r rx,t x tr S e  and      x,t x tS e  , where x  is the axial coordinate, t  is time, 

subscript 0 refers to the beam centerline, rS  and S  are shape function matrices, and re  and e  

are vectors of nodal coordinates. The position vector of an arbitrary point P on a finite element j 

may be defined as follows 

      txytxtxj

P ,,, 20 trr   (2.6) 
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where  0 ( , )
T

x t x u v r  denotes the deformed position of the beam axis (see Fig. 2.2), y  is a 

coordinate that defines the locations of points on the planar cross sections, and 2t  is a vector in 

the direction of the cross section. Scalars u  and v  represent the displacements of the beam 

material points along the global axes X and Y, respectively. The position vector 0r  and the 

moving vectors 1t  and 2t  are defined with respect to the inertial frame. The moving vectors are 

parameterized by means of the time dependent finite angle θ as 

  1 2A t t , 
1 2

cos sin
,

sin cos

 

 

   
    
   

t t  (2.7)         

In Eq. 2.7, A is the orientation matrix defined at a point on the beam centerline. The orientation 

of the cross section is therefore kinematically uncoupled from the position field in order to allow 

accounting for the shear deformation. 

 It is important to point out that while the LRVF kinematic description accounts for the 

shear deformation, the beam cross section in this description is assumed to be rigid and planar. 

An axial force or stretch of the beam does not lead to a change in the cross section dimensions. 

This formulation is, therefore, conceptually different from the absolute nodal coordinate 

formulation (ANCF) which allows for the shear and warping using fully parameterized elements. 

The two formulations capture different modes of deformation, and therefore, the LRVF and the 

ANCF can be compared only when using very specific and simplified examples. 
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Figure 2.2: Kinematic definition of a beam in the large rotation vector formulation 

 

2.4.2 Energy Expressions 

For the most part, the LRVF implementation is based on the co-rotational approach. Following 

the work presented in (Simo and Vu-Quoc, 1986) and using the co-rotational procedure 

description, no distinction is made in most LRVF investigations between the spatial coordinate x  

and the beam centerline arc length s . It is important, however, to point out that in the case of 

large deformation and when non-incremental solution procedure is used, one must distinguish 

between x  and s  in order to accurately define the beam geometry. Based on the kinematic 

description in Eq. 2.6, the kinetic energy of a beam can be written as (Simo and Vu-Quoc, 1986) 

 2

0 0

0

1
( )

2

L

TT A I dx  r r   (2.8) 

where L is the length of the element in the longitudinal direction, and the inertia constants are 
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defined as 
2/

2/
),(

h

h
dyyxA   and 

2/

2/

2),(
h

h
dyyyxI  , respectively, where ρ is the mass 

density and h is the beam height. The resulting LRVF mass matrix is constant only in the case of 

planar analysis. In the case of three-dimensional analysis, the resulting LRVF mass matrix is 

highly nonlinear. This is another fundamental difference between the LRVF and ANCF since 

ANCF finite elements always lead to a constant mass matrix.   

The LRVF potential energy, however, becomes nonlinear and is defined by the axial, 

bending, and shear components as 

 

2

2 2

0

1

2

L

xx s xy

d
V EA GA EI dx

dx

  
       



   (2.9) 

where EA, GAs, and EI are the axial, shear, and flexural stiffnesses of the beam, and xx  and xy  

are the axial and shearing strains, respectively, which can be defined as 

 1 0 02
1

TT

xx xy,   t r t r   (2.10) 

where   0 0 0/ x / s s / x        r r r , where s  is the arc length of the beam centerline. From 

Eq. 2.10, it is clear that the strains are defined using both interpolation meshes which can have 

very different geometry. If the independent rotation mesh is used with the assumption that x s , 

then 10 tr   and when 0r  is substituted into Eq. 2.10, the axial and shearing strains become 

1 1 1 0T

xx   t t  and 
2 1 0T

xy  t t , respectively, and are therefore constant. For a consistent 

geometry description, the two meshes should yield the same location for the material points at 

which the strains are computed. This presents a brief proof of the inextensibility of a beam when 

using independent angular coordinates and can easily be generalized to the three-dimensional 

case which poses an inconsistency in the LRVF geometry representation. Further analysis into 
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beam inextensibility, as well as other issues associated with independent rotation interpolations, 

will be shown in greater detail in Section 2.5.  

2.4.3 Equations of Motion 

The equations of motion of a planar body in the large rotation vector formulation utilize 

uncoupled inertia terms and can be systematically obtained by means of Hamilton's principle 

(Simo and Vu-Quoc, 1986). Accordingly, it is required that 

  
2

1

)(

t

t

dtVTL  (2.11) 

be stationary for arbitrary paths connecting two points at time 1t  and 2t  in the configuration 

space. Substituting the kinetic and potential energies previously defined in Eqs. 2.8 and 2.9, 

respectively, into Eq. 2.11 with standard manipulations yields the following equations for the 

planar case 
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where EA and GAs are the axial and shear stiffness of the beam, respectively, A  and I  are the 

respective inertia constants defined in the previous subsection, and dxd /)()(  . The external 

force vector and external moment acting on the deformed cross section of the beam are 

represented in these equations as  1 2

T
n nn  and m , respectively, while the transformation 

matrix A is defined previously in Eq. 2.7, and C is given as 



26 
 

 









sGA

EA

0

0
C  (2.13) 

Note that the equations shown in Eq. 2.12 constitute the system of nonlinear partial differential 

equations governing the response of the system and neglect the effects of viscous friction. 

 

2.5   COMMENTS ON THE ROTATION INTERPOLATION 

The interpolation of angles with application to the analysis of large displacement of beams and 

plates has posed a number of challenges with regard to its use in computer simulations. This 

section intends to provide discussions on some limitations and difficulties which are 

characteristic of the interpolation of large rotations in flexible multibody systems.   

The LRVF uses two independent meshes which can cause redundancy in the geometric 

definition. This issue especially affects the definition of the strains of the beam, which is at the 

core of the formulation and its applicability. Another issue, even though algorithmically 

avoidable, is the singularity that appears when parameterizing rotations using a minimal set of 

angular parameters. The mesh defined by these angular parameters is can be shown to be 

inextensible, which makes it unsuitable to capture axial deformation. Other methods that employ 

linearized angles, such conventional beams used with the co-rotational formulation, do not face 

some of the problems discussed in this section. Nonetheless, the use of linearized angles entails 

approximations that can burden the computational efficiency and accuracy and limits the 

applicability of the method in the case high rotational speeds (Shabana, 1996). The subsections 

presented hereafter discuss these problems in more detail either by deriving simple proofs or 

including state-of-the-art solutions to the aforesaid problems. 
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2.5.1 Redundancy of the Strain Definition 

The use of two independent meshes to describe the same geometry causes redundancy in the 

definition of strains since two independent shapes cannot be brought together, as shown in 

Section 2.2. This issue can be easily exemplified using the strains by deriving the expressions for 

the curvature using both finite element meshes. In the case of planar beam elements, the tangent 

vector along the space curve 1t , defined in Eq. 2.7, can be differentiated with respect to 

parameter s  to determine the curvature vector as 
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 (2.14) 

where s     . The norm of this vector defines the RB curvature as 

  
ds

drot 1t
 (2.15) 

The preceding definition of the curvature is based on the rotation mesh. If an independent 

position field is used, there exists, however, a different definition of the geometry invariants that 

depend on the assumed field of the position mesh. The geometric curvature based on the position 

mesh may be defined by the following equation 
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  (2.16) 

where the subscript x denotes a spatial derivative with respect to the beam longitudinal 

coordinate. The definition in Eq. 2.16 requires the computation of second spatial derivatives, 

which are geometrically unrelated to the expression in Eq. 2.15, based on the rotation mesh. 

Equations 2.15 and 2.16 are an example of the redundancy in the geometry definition that results 

from the use of two independent meshes. The preceding two equations demonstrate that the use 
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of two independent meshes leads to two different sets of geometry invariants (curvature and 

torsion). In the LRVF, the curvature shown in Eq. 2.15 is commonly used to define the elastic 

forces.   

 

2.5.2 Singularities in the Three-Dimensional Analysis of Beams 

The study of the three-dimensional body rotation requires addressing the known problem of 

singularities. Flexible multibody formulations that use angles to describe large deformation can 

make use of minimal (e.g. Euler angles) or non-minimal (e.g. Euler parameters) rotation 

parameters to this end. When singularities occur, the simulation of the motion of the system does 

not proceed smoothly and this often causes the simulation to stop. Romero (2004) discussed 

different rotation interpolation strategies in four different methods in a series of tests for 

geometrically exact rods. Romero found in his work that two of his interpolation strategies 

(orthogonal interpolation by local rotation updates and non-orthogonal interpolation) possess 

singularities. The purpose of these investigations and several others was to cut down on extra 

computational costs and avoid any potential error accumulation. Within the context of the large 

rotation vector formulation, rescaling operations of a minimal set of rotation parameters have 

been suggested in order to avoid the singularities associated with the interpolation of rotation 

(Bauchau et al., 2008). In the latter publication, Bauchau and his collaborators (2008) analyzed 

the interpolation of finite rotations by developing and testing two algorithms dealing with 

geometrically exact beams. The first algorithm interpolated the rotation field by its rotation 

parameters at the nodes of each finite element and removed any possible effects of rescaling 

from the interpolation process. The second algorithm interpolated the rotation field by 

incremental nodal rotations defined by the rotation parameters at the nodes of each finite 
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element. In both algorithms, the task of rescaling is mandatory to avoid simulation failure. In 

summary, the treatment of the interpolation of rotations requires the use of algorithms 

specifically devised to avoid the accumulation of error and the well-known singularities 

associated with minimal sets of rotation parameters. This problem can be avoided by using non-

rotation based finite element formulations such as the absolute nodal coordinate formulation. 

2.5.3 Inextensibility of the Rotation Field 

The large rotation vector formulation relies on both the rotation and position mesh for the 

calculation of strains. When calculating the strains, both meshes contribute to the geometric 

definition of strains (see Eq. 2.10 or (Simo and Vu-Quoc, 1986)). In the large deformation 

analysis of beams, a consistent description of geometry is necessary since strains can reach high 

values. However, rotation-based meshes can be inextensible, which adds a significant anomaly in 

the LRVF description of the large deformation. Another issue with regard to the use of a RB 

position representation is its inability to capture accurately axial and shearing strains in various 

applications. This can be especially problematic in situations where the beam stiffness is 

particularly low. Beam inextensibility when using a rotation mesh can be proven in multiple 

ways by using a two-dimensional beam element example. For a RB mesh  x,t  that employs 

the axial coordinate x  as a parameter, one can write  0 0d x dx  r r  and use this equation to 

define a space curve. If 0 x r  is assumed to be the first column of a rotation matrix based on 

the assumed rotation field, the position vector of an arbitrary point can be defined by rotation 

parameters instead of the previously defined position coordinates u and v as 
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where x is the axial parameter of the beam, and t is time. Note that in Eq. 2.7, it is assumed that 

0 x r  is a unit tangent. Figure 2.2 shows that 1cos  u  and sinv  in the rotation mesh, 

which leads to           0 11 cos 1 sin cos sin
T T

x,t x,t x,t x,t x,t            r t , 

where x /00 rr . The strain measures of a beam using a RB mesh can then be defined as 
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where rot

xx  and 
rot

xy  are the axial and shearing strains, respectively, and 
rot  is the RB curvature. 

The moving vectors 1t  and 2t  are defined in Eq. 2.7 with respect to the inertial frame and shown 

in Fig. 2.2. Equation 2.18 shows that the axial and shearing strains are constant throughout.  

 A second proof of beam inextensibility when using the rotation mesh can be shown by 

defining the current length of a beam as 

      
2 22

0 0 0cosθ sinθ cosθ sinθ
TTdl d d dx ( x,t ) ( x,t ) ( x,t ) ( x,t ) dx dx dl   r r . This shows 

that, when using the RB mesh parameter to define a unit tangent as the first column of the 

rotation matrix, the current length of a beam l will be equal to its initial length. Therefore, the 

described beam cannot be stretched and will retain its original length, which leads to inaccuracy 

when capturing the precise deformation of a beam. A specific example highlighting beam 

inextensibility of the rotation mesh will be shown in the numerical results section to better shed 
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light on this fundamental issue. 

 The fact that a RB interpolation leads to an inextensible beam can be also demonstrated 

in the case of spatial analysis. Using the rotation coordinates, the tangent vector can always be 

defined as the first column of a rotation matrix. This column is always a unit vector regardless of 

the parameterization used ( x  or s ). The angles at an arbitrary point on the beam centerline can 

be defined in terms of any parameter; coordinates in the reference configuration are often used as 

parameters to define the rotation mesh (Lagrangian description). The use of parameters defined 

in the current deformed configuration will require different treatment and different solution 

procedure. Nonetheless, the first column of the rotation matrix expressed in terms of these angles 

remains a unit vector. 

2.5.4 Energy Conservation 

One widespread field of research within the context of flexible multibody dynamics is linked to 

the study of energy and momentum preserving schemes. The total energy of a non-dissipative 

system must remain constant throughout the simulation. When the LRVF description was 

systematically incorporated into flexible multibody systems codes, the use of constraints became 

mandatory.  These constraints cause non-physical high frequency oscillations in the solution. 

These oscillations, in turn, together with the conservation of energy and momentum of the 

integration algorithms, have been studied in numerous investigations. One such investigation 

using beams was presented by Bauchau et al. (1995). In their work, it was discussed that high 

frequency oscillations hindered the convergence of the equations of motion and that a smaller 

time step did not necessarily help this problem. The higher frequency oscillations also made 

strict total energy preservation strenuous to accomplish. Bauchau and Theron (1996) later 

discussed an energy decaying scheme for non-linear beam models with the main focus being on 
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the derivation of an algorithm presenting with high frequency dissipation. The derived energy 

decay algorithms followed the parameter that the total energy at a time step must be equal to or 

less than that of the previous time step. It was also mentioned that this approach could be used as 

a time step control parameter with the concept that if the total energy was larger than it was at the 

previous time step, then a smaller time step would be used. Some of this theory was used by 

Romero and Armero (2002) when they developed a finite element formulation using 

geometrically exact rods. These rods used a time-stepping algorithm which improved the rod's 

dynamics by using the preservation of total linear and angular momentum, as well as the 

conservation of the total mechanical energy H (or Hamiltonian: VTH  , where T and V are 

the kinetic and potential energy, respectively).  

Besides the challenge of an energy and momentum preserving numerical integration, the 

definition of the strains using two independent meshes can lead to an inconsistent definition of 

the strain energy, which utilizes strain measures defined by the two meshes, when large 

deformation occurs. This can be attributed to the inextensibility of the rotation field in the way 

presented in the preceding subsection. According to the axial and shearing stresses defined in Eq. 

2.10, the potential energy definition uses independently interpolated position and rotation 

meshes. As shown earlier, these meshes should describe the same geometry. However, the beam 

material points using LRVF cannot be properly and uniquely associated with the rotation and 

position meshes, and the same material point can greatly differ in location between the two 

meshes. This can cause inaccuracies in the definition of the strain energy. As a beam moves 

during a simulation, the differences in the position and rotation meshes can become considerably 

large and this may cause some sort of energy drift. While the kinematics used in the LRVF, as 

traditionally used by the finite element community, can be accurate for the description of small 
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deformation, the study of the geometry of large deformation on the basis of two independent 

meshes can lead to inconsistency. 

 

Figure 2.3: Flexible robot arm example 

 

2.6   NUMERICAL RESULTS 

A flexible robot arm rotating about one end, similar to the one shown in Fig. 2.3, is considered to 

illustrate the effect of the use of the rotation interpolation in the large rotation-large deformation 

analysis of beams. To this end, the large rotation vector formulation is used, as detailed in by 

Simo and Vu-Quoc (1986). The robot arm is represented by a beam whose first node is 

connected to the ground by a revolute joint. Several cases of an angle-driven flexible robot arm 

are considered to better demonstrate the redundancy of the geometry definition. For the figures 

in this section, Eq. 2.2 is used to obtain the space curve from the rotation mesh. The dimensions 

of the beam are assumed to be the same as reported by (Simo and Vu-Quoc, 1986), while the 

axial, shear, and flexural stiffnesses of the arm for each case are shown in Table 2.1. The finite 
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element mesh consists of 10 elements of equal length with linear interpolation functions for both 

displacement and rotation. The equations of motion are obtained using selective Gauss 

quadrature.   

Table 2.1: Model parameters 

 
Figure 2.4 

Parameters 

Figures 2.5 and 2.6 

Parameters 

Figures 2.7, 2.8, and 

2.9 Parameters 

EA 1.00 × 109 N 1.00 × 107 N 1.00 × 106 N 

GAs 5.00 × 108 N 5.00 × 106 N 5.00 × 105 N 

EI 8.33 × 107 N∙m2 8.33 × 105 N∙m2 8.33 × 104 N∙m2 

 

 

Figure 2.4: Rotation angle at the revolute joint 

 

 In the first case, the robot arm is repositioned to an angle of 1.5 rad from its initial 
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position by prescribing the rotation angle as a linear function of time, as shown in Fig. 2.4a. The 

sequence of motion during this repositioning stage is depicted in Fig. 2.5, where one snapshot of 

the beam is depicted at each second. This figure shows that when the stiffness is high and the 

angular velocity is low, the material point position results obtained using the position and 

rotation meshes can be in a good agreement. In the second case, the same prescribed rotational 

displacement is used with lower element stiffness. More significant differences may be observed 

between the two curves in this case, as shown in Fig. 2.6. The differences between geometry 

representations can be observed from the first steps of the simulation. The third case involves the 

robot arm repositioning to an angle of 1.5 rad from its initial position in 4.5 sec, as shown in Fig. 

2.4b, with the elemental stiffness being the same as in the previous simulation model. Figure 2.7 

shows that the increased angular velocity with a low stiffness leads to the meshes differing 

greatly in terms of curvature and nodal position. Figure 2.8 shows further differences between 

the position and rotation-based meshes when incorporating an axial load at the tip of the flexible 

arm. The tip load of 100 kN is applied in the axial direction of the last element of the arm at each 

time step. The results presented in this last figure show that the rotation-based interpolation 

cannot capture the stretch in the elements, whereas the independent position-based interpolation 

is actually stretched.  
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Figure 2.5: Repositioning sequence in LRVF: high stiffness  

(     position-based curve, ---- rotation-based curve) 

 

 

Figure 2.6: Repositioning sequence in LRVF: medium stiffness 

(     position-based curve, ---- rotation-based curve) 
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Figure 2.7: Repositioning sequence in LRVF: low stiffness 

(     position-based curve, ---- rotation-based curve) 

 

 

Figure 2.8: Repositioning sequence in LRVF: axial load 

(     position-based curve, ---- rotation-based curve) 
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 Another example using the same beam model is depicted in Figure 2.9. In this second 

example, the clamped boundary conditions are assumed at the first node. A constant external 

moment of 30 kN∙m is applied at the free tip of the beam. The generalized moment is applied on 

the rotation coordinate of the node at the tip. The definition of axial and shear strains in Eq. 2.10 

involve both position and rotation meshes. For this reason, the applied moment can generate 

axial and shear stresses. However, this aforesaid coupling is not sufficient to bring the two 

meshes together, as shown in Figure 2.9. It is clear from the results presented in this figure that 

the curvature obtained using the rotation-based mesh is not a good representative of the curvature 

of the position-based mesh. Figure 2.10 displays the values of the RB curvature at 20 sec. When 

using the rotation-based mesh, the curvature is nonzero and constant within the elements. 

However, because of the linear interpolation, the PB mesh always yields null curvature at every 

point within the element, which is in contrast to the large values obtained from the other mesh. It 

can also be seen in Fig. 2.10 that the curvature used to account for bending deformation in the 

LRVF does not possess inter-elemental continuity. More specifically, the use of independent 

position and rotation meshes in the LRVF makes it difficult to create strategies to enforce higher-

order derivative continuity.  
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Figure 2.9: Cantilever beam with a moment applied at the tip 

(     position-based curve, ---- rotation-based curve) 

 

Figure 2.10: Curvature of rotation-based mesh at t = 20 s (the position-based curvature remains 

zero all the simulation due to the linear interpolation of the displacements) 
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2.7   CONCLUDING REMARKS 

This chapter highlights some issues on the interpolation of rotations in the analysis of large 

deformation of bodies in flexible multibody system dynamics and presents results of the large 

rotation vector formulation. The focus is on the geometry issues arising from the use of two 

interpolation meshes: the position mesh and the rotation mesh. These two meshes lead to 

different space curves that can differ by an arbitrary rigid body displacement and have different 

geometric properties. The examples demonstrate the known fact that the rotation mesh of the 

LRVF is inextensible and that the material points of a rotation-based position mesh occupy 

different positions from the material points of the position mesh. The consequences of the 

redundancy in the geometry definition can negatively affect the accuracy of the strain energy and 

the inertia of the bodies. These inconsistencies become more apparent in the case of larger 

deformations and are not circumvented by the inclusion of elastic forces or imposing kinematic 

constraints. This is mainly due to the fact that two different assumed displacement fields cannot, 

in general, be brought to the same configuration as previously illustrated. 

 It is important to point out that this chapter is concentrated on a fundamental issue related 

to the use of the large rotation vector formulation. This chapter is not intended to provide a 

comparison of the LRVF with other formulations. Nonetheless, it is worth mentioning that 

several other approaches have been used in the large displacement analysis of structural systems. 

These formulations include the absolute nodal coordinate formulation (ANCF) and methods 

based on B-spline representation. For example, a more recent approach for flexible beams in 

multibody systems employs elastic beams modeled using dynamic splines (Theetten et al., 2008; 

Valentini and Pennestri, 2011). This approach is based on the Qin and Terzopoulos’s work with 

D-NURBS (Qin and Terzopoulos, 1996), which is a physics-based generalization of non-uniform 
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rational B-Splines. D-NURBS combines physics-based constraint equations with spline 

geometry to improve the overall design process. Theetten et al. (2008) used this concept to 

develop geometrically exact dynamic splines (GEDS), which extends the mechanical accuracy 

with the use of geometrically exact formal expressions along with analytical spline expressions 

for real-time, computer-aided models. Valentini and Pennestri (2011) further advanced this 

approach by developing a dynamic spline formulation which could be suitable for MBS 

dynamics implementation of flexible beams undergoing large displacement.  
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CHAPTER 3 

A COMPARATIVE STUDY OF JOINT FORMULATIONS 

(Previously published as Wallin, Michael, Aboubakr, Ahmed K., Jayakumar, Paramsothy, 

Letherwood, Michael D., Gorsich, David J., Hamed, Ashraf, Shabana, Ahmed A., 2013, "A 

Comparative Study of Joint Formulations: Application to Multibody System Tracked Vehicles," 

Journal of Computational and Nonlinear Dynamics, Vol. 74(3), pp. 783-800) 

 

3.1   JOINT CHAIN MODELS 

The third chapter of this thesis focuses on the dynamic formulation of mechanical joints using 

different approaches that lead to different models with different numbers of degrees of freedom. 

Some of these formulations allow for capturing the joint deformations using discrete elastic 

models while the others are continuum-based and capture joint deformation modes that cannot be 

captured using the discrete elastic joint models. In the first chain formulation, referred to in this 

chapter as the ideal joint chain model, kinematic joints between the track links are described 

using nonlinear constraint equations that lead to significant reduction in the number of vehicle 

degrees of freedom. This joint model does not require assuming stiffness and damping for the 

track link connectivity, and therefore, does not allow for flexibility between the track links; it 

requires, however, the solution of a system of differential and algebraic equations if redundant 

coordinate formulations are used. Redundant coordinate algorithms based on the Lagrangian 

augmented form of the equations of motion require the use of Newton-Raphson method in order 

to ensure that the constraint equations are satisfied at the position level. Recursive and joint 

variables methods can also be used instead of redundant coordinate formulations in order to 
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avoid Newton-Raphson algorithm. Another approach that can be used to enforce the constraint 

equations at the position level is the penalty method. This model does not lead to reduction in the 

number of the system degrees of freedom. Two other approaches that capture the joint 

compliance are also considered in this chapter. The first is the compliant discrete element 

method that employs MBS bushing elements to define the connectivity between the track links. 

This approach, as in the case of the penalty method, requires assuming stiffness and damping 

coefficients at the connection, and therefore allows for the flexibility between the track links. In 

the second, the compliant continuum-based joint formulation that employs ANCF finite elements 

is used. This approach, which captures new joint deformation modes, leads to linear connectivity 

conditions allowing for an efficient elimination of the dependent variables which can be applied 

a single time at a preprocessing stage; this leads to a constant inertia matrix and zero Coriolis and 

centrifugal forces (Shabana et al., 2012). This approach leads to new types of FE chain meshes 

that have desirable characteristics. 

 

3.2   TRACKED VEHICLES: BACKGROUND 

High mobility tracked vehicle such as military battle tanks and armored personal carriers are 

designed for the mobility over rough and off-road terrains. Investigations on the dynamic 

analysis of such tracked vehicles shown in Fig. 1.1 have been limited because of the complexity 

of the forces resulting from interaction between the vehicle components. These forces are 

impulsive in nature, and their dynamic modeling requires sophisticated computational 

capabilities. Several two dimensional models for the analysis of tracked vehicle have been 

developed. Galaitsis (1984) demonstrated that the dynamic track tension and suspension loads in 

high speed tracked vehicles developed by analytical methods are useful in evaluating the 
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dynamic characteristics of the tracked vehicle components. Bando et al. (1991) outlined a 

procedure for the design and analysis of rubber tracked small-size bulldozers, and produced a 

computer simulation which was used in the evaluation of the vehicle performance. Both steel and 

continuous rubber tracks are modeled by discretizing them into several rigid bodies connected by 

compliant elements.  The simulation results indicate that the vehicle has favorable 

characteristics, such as less damage to the road surface, and reduced vibration and noise. Murray 

and Canfield (1992) used general purpose multibody computer codes to model a simple track 

link and sprocket system. The behavior of the interaction between the track link and the sprocket 

was illustrated graphically and it was found that the computer time can be significantly reduced 

by using supercomputers.  Nakanishi et al. (1994) developed a two dimensional contact force 

model for planar analysis of multibody tracked vehicle systems. Modal parameters such as modal 

stiffness and damping, and the mode shapes, are found experimentally and utilized to simulate a 

multibody tracked vehicle model consisting of interconnected rigid and flexible components. The 

theoretical foundation for using the modal parameters of the assembled vehicle to obtain the 

component modal parameters of the chassis is explained in depth. Also presented is the set of 

modal and reference generalized coordinates used to formulate the equations of motion of the 

full vehicle system.  

A number of approaches have been proposed in the literature for developing three-

dimensional MBS models. Choi et al. (1998) developed the nonlinear dynamic equations of 

motion of the three-dimensional multibody tracked vehicle systems, taking into consideration the 

degrees of freedom of the track chains. To avoid the solution of a system of differential and 

algebraic equations, the recursive kinematic equations of the vehicle are expressed in terms of 

the independent joint coordinates. In order to take advantage of sparse matrix algorithms, the 
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independent differential equations of the three-dimensional tracked vehicles are obtained using 

the velocity transformation method. Three-dimensional nonlinear contact force models that 

describe the interaction between the track links and the vehicle components such as the road 

wheels, sprockets, and idlers as well as the interaction between the track links and the ground are 

developed and used to define the generalized contact forces associated with the vehicle 

generalized coordinates. A computer simulation of a tracked vehicle in which the track is 

assumed to consist of track links connected by a single degree of freedom revolute joint is 

presented in order to demonstrate the use of the formulations presented in their study.  Ryu et al. 

(2000) developed compliant track link models and investigated the use of these models in the 

dynamic analysis of high-speed, high-mobility tracked vehicles. The characteristics of the 

compliant elements used in this investigation to describe the track joints are measured 

experimentally. A numerical integration method having a relatively large stability region is 

employed in order to maintain the solution accuracy, and a variable step size integration 

algorithm is used in order to improve the efficiency. The dimensionality problem is solved by 

decoupling the equations of motion of the chassis and track subsystems. Recursive methods are 

used to obtain a minimum set of equations for the chassis subsystem. Several simulations 

scenarios including an accelerated motion, high-speed motion, braking, and turning motion of 

the high-mobility vehicle are tested in order to demonstrate the effectiveness and validity of the 

methods proposed. Ozaki and Shabana (2003) evaluated the performance of different 

formulations using a tracked vehicle model that is subjected to impulsive forces. They developed 

joint constraints models and the resulting contact forces from the interactions between the track 

chains and other vehicle components, such as the sprocket and road wheels, as well as between 

the track chains and ground. In this study, the nonlinear contact force models used were 
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developed and presented with the formulations of the generalized forces associated with the 

generalized coordinates. Ryu et al (2003) investigated the nonlinear dynamic modeling methods 

for the virtual design of tracked vehicles by using MBS dynamic simulation techniques. The 

results include high oscillatory signals resulting from the impulsive contact forces and the use of 

stiff compliant elements to represent the joints between the track links. Each track link is 

modeled as a body which has six degrees of freedom, and two compliant bushing elements are 

used to connect track links. Efficient contact search and kinematics algorithms in the context of 

the compliance contact model are developed to detect the interactions between track links, road 

wheels, sprockets, and ground for the sake of speedy and robust solutions. Rubinstein and Hitron 

(2004) developed a three-dimensional multibody model for predicting dynamic behavior of off-

road tracked vehicles using LMS-DADS. Each track link is considered a rigid body and is 

connected to its neighboring track link via a revolute joint. The road-wheel track-link interaction 

is described using three-dimensional contact force elements, and the track-link terrain interaction 

is modeled using a pressure-sinkage relationship. An efficient contact search algorithm was used 

to detect the interactions between the track links and other vehicle components including the 

ground. Yamakawa and Watanabe (2004) developed a high-mobility rigid body tracked vehicle 

model utilizing a torsion bar suspension system. The vehicle model was evaluated in terms of 

ride performance, steerability and stability over rough terrain. 

 

3.3   ALGEBRAIC CONSTRAINT EQUATIONS 

In the methods of constrained dynamics, there are two approaches that are often used to model 

ideal mechanical joints that do not account for the effect of elasticity and damping. These two 

methods are the augmented formulation that employs the technique of Lagrange multipliers or 
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the recursive formulation which allows for systematic elimination of the dependent variables 

using the algebraic equations. These two formulations are briefly discussed in this section. 

3.3.1 Augmented Formulation 

In the augmented formulation, the constraint forces explicitly appear in the dynamic equations 

which are expressed in terms of redundant coordinates (Shabana, 2010). Unknown accelerations 

and constraint forces are solved for using the constraint relationships with the differential 

equations of motion. While this approach leads to a sparse matrix structure, it has the drawback 

of increasing the problem dimensionality and it requires more sophisticated numerical algorithms 

to solve the resulting system of differential and algebraic equations (DAE). Using the 

generalized coordinates, the equations of motion of a body i  can be written as (Roberson and 

Schwertassek, 1988; Shabana et al., 2008) 

 ii

c

i

e

ii

QQQqM    (3.1) 

where 
i

M is the mass matrix of the body, 
T

i iT iT   q R θ is the vector of the accelerations of the 

body with 
i

R  and i
θ  defining the body translation and orientation, respectively, i

eQ  is the vector 

of external forces, i

cQ  is the vector of the constraint forces which can be written in terms of 

Lagrange multipliers λ  as i

i T

c   q
Q C λ , i

q
C is the constraint Jacobian matrix associated with the 

coordinates of body i , and i

Q  is the vector of the inertia forces that absorb the quadratic terms 

in the velocities. The constraint equations at the acceleration level can be written as i

i i

d
q

C q Q , 

where i

dQ  is a vector that absorbs first derivatives of the coordinates. Using Eq. 3.1 with the 

constraint equations at the acceleration level, one obtains 
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The matrices and vectors that appear in this equation are the system matrices and vectors that are 

obtained by assembling the body matrices and vectors. The unknown accelerations and Lagrange 

Multipliers in Eq. 3.2, which guarantees the constraint equations are satisfied at the acceleration 

level, can then be found. To ensure that the algebraic kinematic constraints are satisfied for both 

the positions and velocities, the independent accelerations iq  are recognized and integrated to 

calculate the independent coordinates and velocities iq  and iq , respectively. From the numerical 

integration the independent coordinates can be determined, while the dependent coordinates dq  

can be calculated from the nonlinear constraint equations using an iterative Newton-Raphson 

algorithm requiring the solution of the system 
d d  qC q C , where dq  is the vector of 

Newton differences, and 
dqC  is the constraint Jacobian matrix partition only associated with the 

dependent coordinates. With the independent velocities, the dependent velocities dq  can be 

determined by simply solving the set of linear algebraic constraint equations at the velocity level. 

This system of equations can be written as 
d id i t  q qC q C q C ; where 

iqC is the Jacobian 

constraint matrix associated with the independent coordinates and t t  C C  is the partial 

derivative of the constraint functions with respect to time.  

Lagrange multipliers can be used to obtain the generalized constraint equations acting on 

a body. The generalized constraint forces acting on body i  from a given joint k , can be 

determined by the equation 

     i

TTi iT iT

c k k k k
k

     q
Q C λ F T   (3.3) 
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where i

kF  and i

kT  are the generalized joint forces associated with the translation and orientation 

coordinates of body i , respectively. Using the results of the previous equation and the concept of 

equipollent forces, the reaction forces at the joint definition point can be determined. 

 

Figure 3.1: Revolute joint 

 

3.3.2 Recursive Formulation 

Another alternate approach for formulating the equations of motion of constrained mechanical 

systems is the recursive method, wherein the equations of motion are formulated in terms of the 

joint degrees of freedom. This formulation leads to a minimum set of differential equations from 

which the workless constraint forces are automatically eliminated (Roberson and Schwertassek, 

1988; Shabana, 2010). The numerical procedure used in solving these differential equations is 

much simpler than the procedure used in the solution of the mixed system of differential and 

algebraic equations resulting from the use of the augmented formulation. In the recursive 
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formulation, the equations of motion are formulated in terms of joint degrees of freedom. In this 

formulation, the multibody system is assumed to consist of subsystems, as in the case of the track 

chains shown in Fig. 3.1. The absolute coordinates and velocities of an arbitrary body i  in a 

subsystem are expressed in terms of the independent joint variables as well as the absolute 

coordinates and velocities of body j . If body i  is connected to body j  through a revolute joint, 

which is the case in this subsystem, the relative rotation is the only degree of freedom 

represented between the bodies. The connectivity between bodies i  and body j  can then be 

described using the kinematic relationships 

 
,

i i i j j j

P P

i j i j

    


  

R A u R A u 0

ω ω ω
 (3.4) 

where 
i

R  is the global position vector of the origin of body I;  i
A  is the transformation matrix 

that defines the body orientation and can be expressed in terms of Euler parameters; i

Pu  and j

Pu  

are the local position vectors of point P  defined in the coordinate systems of body I and j , 

respectively, i
ω  and j

ω  are, respectively, the absolute angular velocity vectors of  bodies i  and 

j , and ,i j
ω  is the angular velocity vector of body I with respect to body j  which can be defined 

as 
,i j i jω v , with j j jv A v  where j

v  is a unit vector along the axis of rotation defined in the 

coordinate system of body j , and 
i  is the angle of relative rotation. By differentiating the first 

equation in Eq. 3.4 twice and the second once with respect to time, one obtains 

 
( ) ( )

( )

i i i i i i j j j j j j

P P P P

i j j i j j i 

            


    

R ω ω u α u R ω ω u α u

α α v ω v
 (3.5) 

In this equation, k
α  is the absolute angular acceleration vector of body k . Using the kinematic 

equations obtained in this section, one can systematically eliminate the dependent variables in 
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order to obtain a number of differential equations of motion equal to the number of the system 

degrees of freedom. Using this approach, one obtains a dense inertia matrix in a system of 

dynamic equations that does not have constraint forces. A second, alternative approach is to use 

the kinematic equations developed in this section to determine all the system absolute 

coordinates and velocities. One can then construct Eq. 3.2, which can be solved for the 

accelerations and Lagrange multipliers. Using the absolute acceleration relationships of Eq. 3.5, 

one can determine the relative joint accelerations. The joint accelerations can be integrated 

forward in time in order to determine the joint coordinates and velocities. 

 

3.4   GENERALIZED FORCES 

In defining the joint forces between the track links, it is important to understand the relationship 

and differences between the generalized and the Cartesian moments (Roberson and 

Schwertassek, 1988; Shabana, 2010). This is important in interpreting the reaction forces of the 

ideal joints and also important in the implementation of the penalty method and bushing 

elements.  Let 
i

F  be a force vector that acts at a point 
iP  on a rigid body i. If this force vector is 

assumed to be defined in the global coordinate system, then the virtual work of this force vector 

can be written as 
Ti i i

e PW  F r , where i

P r  can be found using the virtual change in the position 

vector of an arbitrary point on rigid body i  as 

 
i

i i i i

P P i






 
     

 

R
r I A u G

θ
 (3.6) 

In this equation, 
i

A is the transformation matrix that defines the body orientation, 
i

Pu
~

 is the skew 

symmetric matrix associated with the vector 
i

Pu  that defines the local coordinates of the point Pi
, 
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and 
i

G is the matrix that relates the angular velocity vector 
i

ω  defined in the body coordinate 

system to the time derivatives of the orientation coordinates, that is 
i i iω Gθ . Note that since 

Tii

P

ii

P AuAu
~~  , Eq. 3.6 can be written as i i i i i

P P   r R u G θ . Using this equation in the virtual 

work expression, one obtains 
T Ti i i i i i i

e PW   F R F u G θ , which can be written as 

 
T Ti i i i i

e RW    F R F θ  (3.7) 

where i i

R F F , and 
T Ti i i i

P  F G u F . These equations imply that a force that acts at an arbitrary 

point on the rigid body I is equipollent to another system defined at the reference point that 

consists of the same force and a set of generalized forces, defined by 
T Ti i i i

P  F G u F  associated 

with the orientation coordinates of the body (Roberson and Schwertassek, 1988; Shabana, 2010). 

 Since i

Pu  is a skew-symmetric matrix, it follows that 
Ti i

P P u u . Using this identity, one 

can show that the generalized moment can be written as ( )
Ti i i i

P  F G u F  , where i i i

a P M u F  

is the Cartesian moment resulting from the application of the force 
i

F , and i
G  is the matrix that 

relates the angular velocity vector i
ω defined in the global coordinate system to the time 

derivatives of the orientation coordinates, that is i i iω Gθ . It follows that the relationship 

between the generalized and Cartesian moment is i

a

ii T

MGF  . If the components of the 

moment vector are defined in the body coordinate system, one has i

a

ii T

MGF  , where 

i

a

ii

a

T

MAM  . The relationships developed in this section will be used in the formulation of the 

joint forces in the case of the penalty method. These relationships will also be used in the 

computer implementation of the bushing element in general MBS algorithms.  
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3.5   JOINT FORMULATIONS 

In this chapter, four different joint models are considered; two models are based on algebraic 

equations that require the use of the methods of constrained dynamics or the penalty method. In 

the case of constrained dynamics, an alternative to the use of Lagrange multipliers is the use of 

the recursive methods, as previously discussed. When Lagrange multiplier technique or the 

recursive methods are used, the constraint equations must be satisfied at the position, velocity, 

and acceleration levels. The penalty method, on the other hand, satisfies the algebraic constraint 

equations at the position level only.  

3.5.1 Constraint Equations 

The revolute (pin) joint is used in this section as an example to demonstrate the formulation of 

the algebraic constraint equations. This joint has been used in the literature in the modeling of 

the track chains. As shown in Fig. 3.1, the track chain can be assumed to consist of links 

connected to each other by a pin joint that allows for the relative rotation between them. General 

MBS algorithms allow for the nonlinear algebraic equations that define the pin joint to be 

expressed in terms of the absolute coordinates of the two bodies i  and j  interconnected. The 

five algebraic constraint equations that eliminate five degrees of freedom can be written in terms 

of the absolute Cartesian coordinates of the two bodies as (Shabana, 2010) 

   1 2 1 2,
T

i j iT j iT j iT ij iT ij ijT ij

P P P P k    C q q v v v v v r v r r r 0

  

(3.8) 

where vi and vj are two vectors defined along the joint axis on bodies i  and j , respectively; 

1 2, ,i i i
v v v  form an orthogonal triad defined on body i ; k  is a constant (Shabana, 2010); and 
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 ij i j i i i j j j

P P P P P     r r r R A u R A u   (3.9)  

In this equation, 
i

A  and 
j

A  are the transformation matrices that define the orientation of bodies 

i  and j , respectively, and i

Pu  and j

Pu  are the local position vectors of points 
iP  and 

jP  with 

respect to bodies i  and j , respectively. Points 
iP  and 

jP  are defined on the axis of the pin joint 

on bodies i  and j , respectively. One can show that the Jacobian matrix of the pin joint 

constraints is defined as 

 

1 1

2 2

1 1 1

2 2 2

2 2

i j

jT i iT j

jT i iT j

ijT i iT i iT j

P P P

ijT i iT i iT j

P P P

ijT i ijT j

P P P P

 
 
 

      
   

  
  

q q q

v H v H

v H v H

C C C r H v H v H

r H v H v H

r H r H

 (3.10) 

where iq
C and jq

C  are the constraint Jacobian matrices associated with the coordinates of bodies 

i  and j , respectively; and other vectors and matrices that appear in the preceding equation are 

   1 2
1 1 2 2, , , ,

i i
i i i T i j j j T j i i i i i i

P P P P i i i i

  
               

v v
H I A u G H I A u G H A v H A v

q q q q

 
j

j j j

j j

 
 
 

v
H A v

q q
. 

 An alternate approach for formulating the revolute (pin) joint constraints is to consider a 

special case of the spherical joint in which the relative rotation between the two bodies is 

allowed only along a single joint axis. If point P  is the joint definition point, and 
i

v  and 
j

v  are 

two vectors defined along the joint axis on bodies i  and j  , respectively, the constraint 

equations of the revolute joint can be written as   1 2,
T

i j ij iT j iT j

P
   C q q r v v v v 0 . The first 

equation ensures no displacement between the two bodies to within a given tolerance. The last 
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two equations guarantee the vectors 
i

v  and 
j

v  remain parallel and, in so doing, eliminates the 

relative rotation between the two bodies in two perpendicular directions.  

3.5.2 Penalty Method  

The constraint equations that describe the connectivity between the track links can be enforced 

using the penalty approach. In this case, these algebraic equations are satisfied only at the 

position level. The penalty method does not lead to elimination of degrees of freedom, and 

therefore, it is conceptually different from the case of Lagrange multiplier technique or the 

recursive approach.  In order to demonstrate the penalty approach, the violations in the constraint 

equations of a revolute joint k  can be written as  

 1 2

T
ij iT j iT j

k P
   d r v v v v  (3.11) 

Using this violation kd , a restoring force vector  can then be defined as 
k k k kk

k c f d d , where 

kk , and kc  are assumed penalty stiffness and damping coefficients, respectively, and 
kd  is the 

time derivative of the violation vector kd . The virtual work of this restoring force kf  can then be 

written as ij T

k k kW  f d , which can be written as 

    1 1 2 2

ij T ij iT j iT j

k B pW  = F F           F r v v v v  (3.12) 

where 
ij i i i i j j j j

p P P       r R u G θ R u G θ , 
ij ij

B k p k pk c F r r , 1 1 1( )iT j jT i iT j   v v v v v v , 

2 2 2( )i T j jT i i T j   v v v v v v ,  
 1

1 1

iT j

iT j

k k

d
F k c

dt
 

v v
v v  , and  

 2

2 2

iT j

iT j

k k

d
F k c

dt
 

v v
v v . 

Equation 3.12 can be used to define a set of generalized forces acting on bodies I and j that 

maintain the connectivity between the two bodies as 
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                                    ij i T i i T i j T j jT j

k R RW         Q R Q θ Q R Q θ                                  (3.13) 

Which can be rewritten in a compact form as i T i j T j

B BW   Q q Q q , where 
i

q  and 
j

q  are the 

generalized coordinates of bodies i  and j , and 

                                     
1 2

1 2

   
i

Bi R

B iT i T iT i iT ii
P B

j
Bj R

B jT j T jT i jT ij
P B





   
     

    


    
          

FQ
Q

G u F G M G MQ

FQ
Q

G u F G M G MQ

                         (3.14) 

where 
1 1 1

i i jF M v v , 
1 1 1  j i jFM v v , 

2 1 2  i i jF M v v , and 
2 1 2  j i jFM v v . Equation 14 defines the 

generalized forces associated with the absolute Cartesian coordinates due to the revolute joint 

connection between bodies i  and j . With a proper selection of the penalty coefficients, these 

forces ensure that the constraint equations are satisfied at the position level. 

 

 

Figure 3.2: Bushing element 
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3.5.3 Compliant Discrete Element Joint Formulation 

The compliant discrete element joint formulation allows for introducing joint deformations. In 

this approach, no algebraic equations are enforced. In most MBS computer codes, the compliant 

discrete element joint method can be applied using the standard MBS bushing element that 

allows for introducing three force and three moment components that can be linear or nonlinear 

functions of the body coordinates. As shown in Fig. 3.2, the position vectors 
j

P1
u

 
and j

P2
u

 
of two 

points, 
jP1 and 

jP2  on body j, can be used to define one axis of the coordinate system of the 

bushing element as   
1 2 1 2

j j j j j

p p p p  n u u u u , where 
j

n  is one of the bushing axes defined 

in the body j coordinate system. This axis can then be defined in the global coordinate system as 

jjj
nAn  , where 

j
A  is the transformation matrix that defines the orientation of the coordinate 

system of body j  in the global system. Using this axis, one can define the directional properties 

of the bushing element with the other two axes of the bushing coordinate system being defined 

using the transformation matrix 1 2

bj j j j   A t t n
 where 

j

1t  and 
j

2t  are the two unit vectors 

that complete the three orthogonal axes of the bushing element coordinate system. Assuming that 

body j  is a rigid body, the bushing coordinate system can be defined with respect to the global 

coordinate system as 
bjjbj

AAA  . Choosing points 
iP  and 

jP1  to initially coincide; one can 

define the bushing deformation and rate of deformation vectors in the bushing coordinate system 

as 
ijbjbij T

rAδ  , and  ijbjbij T

rAδ 
 , respectively, where 

1

ij i j

P P r r r  is the position vector of point 

1

jP  with respect to point 
iP .  

 The rotational deformation of the bushing element can be obtained using the 

transformation matrix that defines the orientation of the bushing coordinate system on body i  
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with respect to the bushing coordinate system on body j . This matrix is defined as 

bibjbij T

AAA  , where 
bj

A  is the orientation matrix of the bushing coordinate system on body j , 

while 
bi

A is the orientation matrix of the bushing coordinate system with respect to the 

coordinate system of body i  that is defined as 
biibi

AAA  . Assuming that the relative rotations 

between bodies i and j are small, the relative rotation matrix, 
bij

A  can be used to extract three 

relative rotations defined in the bushing coordinate system,   
T

b i j b i j b i j b i j

x y zθ θ θ   θ . The 

relative angular velocity between the two bodies defined in the bushing coordinate system can 

also be written as ( )
Tbij bj i j ω A ω ω , where i

ω  and j
ω  are the absolute angular velocity 

vectors of bodies i and j , respectively, defined in the global coordinate system. The bushing 

stiffness and damping coefficients are often determined using experimental testing, and these 

coefficients are defined generally in the bushing coordinate system. Let rK  and rC  be the 

translational stiffness and damping matrices, respectively, defined with respect to the bushing 

coordinate system; and assume that the rotational stiffness and damping matrices are K  and 

C , respectively. In terms of translational and rotational stiffness and damping matrices, the 

force vector defined in the bushing coordinate system can be written as 

 














































bij

bij
r

bij

bij
r

b

b

R

ω

δ

C0

0C

θ

δ

K0

0K

M

F 



 (3.15) 

This force vector can then be defined in the global coordinate system, and the results can be used 

to define the generalized bushing forces and moments acting on the two bodies as previously 

described in this chapter.  
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Figure 3.3: ANCF beam element coordinates 

 

3.5.4 Compliant Continuum-Based Joint Formulation 

The compliant continuum-based joint formulation allows capturing joint strain modes that cannot 

be captured using the compliant discrete element joint method. When ANCF finite elements are 

used, one can develop new FE meshes that have linear connectivity and constant inertia 

(Shabana et al., 2012). This allows for systematically eliminating dependent variables at a 

preprocessing stage, and as a result, there is no need for the use of joint formulations in the main 

processor. This approach can be used to develop new spatial chain models where the modes of 

deformations at the definition points of the joints that allow for rigid body rotations between 

ANCF finite elements can be captured. The displacement field of an ANCF finite element, as the 

one shown in Fig. 3.3, can be written as ( , , , ) ( , , ) ( )x y z t x y z tr s e  where ,x y , and z  are the 

element spatial coordinates; t  is time; S  is the element shape function matrix, and e  is the 

vector of element nodal coordinates. Using this displacement field, the equations of a pin joint 
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between elements i  and j  can be written using the  six scalar equations ,i j i j

  r r r r , where 

  is the coordinate line that defines the joint axis;   can be ,x y , or z  or any other coordinate 

line. The six scalar equations eliminate six degrees of freedom; three translations, two rotations, 

and one deformation mode. Therefore, this joint has five modes of deformation that include 

stretch and shear modes. This ANCF revolute joint model ensures 1C  continuity with respect to 

the coordinate line   and 0C  continuity with respect to the other two parameters. It follows that 

the Lagrangian strain component  1 2T

    r r  is continuous at the joint definition point, 

while the other five strain components can be discontinuous. The resulting joint constraint 

equations are linear, and therefore, can be applied at a preprocessing stage to systematically 

eliminate the dependent variables. Using these equations, one can develop a new kinematically 

linear FE mesh for flexible-link chains in which the links can have arbitrarily large relative 

rotations.  

In the numerical investigation presented in this chapter, a three-dimensional cable 

element is used to model the flexibility of the chain links. For the three-dimensional cable 

element used in the compliant continuum-based model, the nodal coordinates can be written as 

 Tjj

x

jjjj

x

jjj lxlxxx
TTTT

)()()0()0( 1111 11
 rrrre , with the element shape function 

defined as  IIIIS 4321 ssssj   where I is the 3 3  identity matrix (Gerstmayr and 

Shabana, 2006). The shape functions ,is for I = 1, 2, 3, 4, are defined as 
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),2(,231
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lss

lss
 (3.16) 
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where lx j /1  and l  is the length of the element. The constraint forces, j

CQ , can then be found 

using the equation of motion for a single body (element) j as j

C

j

e

j

con

j

s

jj
QQQQeM  )( , 

where j

sQ , j

conQ , and j

eQ  are the elastic forces, forces of contacts between the chain links and 

other bodies in the system, and gravity forces, respectively, associated with the element nodal 

coordinates j
e  and Mj is the symmetric mass matrix of the finite element j defined as 


j

T

V

jjjjj dVSSM  , where 
j  is the mass density of the material points of the element and jV  

is the element volume. Since the shape function for a three-dimensional cable element only 

depends on the 1x spatial coordinate, the mass matrix can then be defined as 

 
2 2

0 1 2 3 0 1

0 0

2 2

T T

d h

l l

j j j j j j j j j

d h

dx dx dx d h dx 
 

    M S S S S  (3.17) 

For the cable element, this mass matrix can be written explicitly as 

2 2

2 2

2 2

2 3 2 3

2 3 2 3

2 3

0
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0 0 0 0 0 0 0 0
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11 1 13
0 0 0 0 0 0

210 105 420j j j j

l l l l

l l l l

l l l l

l l l l

l l l l
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0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
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0 0 0 0
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0 0 0 0
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 (3.18)
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where jd , jh , and j

0  are the width, height, and initial density, respectively, of element j. It is 

important to note that the mass matrix is constant in both two-dimensional and three-dimensional 

cases and leads to zero centrifugal and Coriolis forces when the body experiences an arbitrary 

large deformation and finite rotation. The virtual work of the elastic forces can then be defined as 

  

ll

s dxEIdxEAW
0

1

0

11111   (3.19) 

where E  is the modulus of elasticity, A  is the element cross section, I  is the second moment of 

area and   is the curvature. The elastic forces of the cable element can also be evaluated using 

the following expression for the strain energy  

ll

dxEIdxEAU
0

1

2

0

1

2

11 )()(   as 

T

s

U














e
Q . 

Similarly, the gravity forces can be found using the virtual work of the gravity forces, 

  
V

e dVgW eS 000 . Substituting in the shape functions and integrating over the 

volume leads to e 
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 (3.20)

 

Using the principle of virtual work with the mass matrix and nodal accelerations as previously 

defined, the joint forces for a specific element can then be easily calculated. 
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Figure 3.4: Tracked vehicle contact models 

 

 

Figure 3.5: Suspension system layout of the tracked vehicle 

(www.combatreform.org/SoucyBandTrackInstallationA-654RB.pdf) 

 

 

 

http://www.combatreform.org/SoucyBandTrackInstallationA-654RB.pdf
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Table 3.1: Mass and inertia values for tracked vehicle parts 

Part Mass (kg) xxI
 ( kg.m2) 

yyI
 ( kg.m2) zzI

 ( kg.m2) xy xz yzI ,I ,I
 (kg.m2) 

Chassis 5489.2 1786.9 10450 10721 0 

Sprocket 
436.67 13.868 12.216 12.216 0 

Idler 429.57 14.698 12.545 12.545 0 

Road Wheel 561.07 26.063 19.819 19.819 0 

Road Arm 75.264 0.77085 0.37632 0.77085 0 

Track Link 18.024 0.04113 0.22463 0.25256 0 

 

Table 3.2: Contact Parameters 

Parameters Sprocket-Track 

Contact 

Road Wheel-

Track Contact 

Ground-Track 

Contact 

k 2.00×106 N/m 2.00×106 N/m 2.00×106 N/m 

c 5.00×103 N·s/m 5.00×103 N·s/m 5.00×103 N·s/m 

μ 0.150 0.100 0.300 

 

Table 3.3: Suspension properties 

Constants Spring/Shock Absorber Track Tensioner 

Stiffness Coefficient, k 1.00×106 N/m 1.00×106 N/m 

Damping Coefficient, c 1.50×104 N∙s/m 1.40×104 N∙s/m 

Initial Length, l 0.508 m 0 m 
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3.6   NUMERICAL RESULTS 

In this section, numerical results, obtained using the tracked vehicle model shown in Fig. 1.1, are 

used to compare the different joint formulations presented in this chapter. The tracked vehicle 

modeled is an armored personnel carrier that consists of a chassis, idler, sprocket, 5 road-wheels, 

and 64 track links on each track side (right and left). Figure 3.4 shows the engagement of the 

track links with some of the vehicle components, while more details about the road wheel 

arrangement and the configuration of the suspension system of the tracked vehicle model are 

shown in Fig. 3.5. Table 3.1 shows the inertia properties for all the tracked vehicle model 

components used in this simulation. More specifications of this vehicle can be obtained from 

open sources (M113, 2003). The vehicle has a suspension system that consists of road arms 

placed between the road wheels and chassis as well as shock absorbers connected to each road 

arm. Table 3.2 shows the stiffness and the damping coefficients of the contact models used. 

Initially two different simulation scenarios, one with the suspension system and the other without 

the suspension system, will be considered to study the effect of using the suspension system on 

the results. The road arms and the sprockets are connected to the chassis by revolute joints, and 

the road arms are connected to the road-wheels by revolute joints. The track links are connected 

to each other using revolute joints, which can be modeled using the constraint equations, penalty 

method, bushing element, or ANCF finite elements as previously mentioned. Tensioners are 

added to the system by connecting each idler to a tensioner with a revolute joint and connecting 

the tensioner to the chassis with a prismatic joint to ensure only translation between them. Table 

3.3 shows the properties of the suspension system of each model used in the simulation. The 

angular velocities of the sprockets of the vehicle model considered in this numerical section are 
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assumed to increase after 1 sec until they reach a constant value of 25 rad/sec after 8 seconds as 

shown in Fig. 3.6.  

 

Figure 3.6: Sprocket angular velocity 

 

Figure 3.7 shows the chassis vertical displacement using the joint model with and without the 

suspension system. The results presented in this figure show that the model with a suspension 

system allows for more vibration (a 7 cm initial drop compared to 0.64 cm), which helps make 

the model more realistic as compared to the previously unsuspended model. The ANCF finite 

element for the track links used is a three-dimensional steel cable element with a modulus of 

rigidity of 76.9 Gpa, a Young’s modulus of 200 Gpa, and a mass density of 37.80 10  kg/m3. 

Figures 3.8 and 3.10 show, respectively, the chassis forward position and velocity results 

obtained using different joint models. While the results presented in these figures show good 

agreement, the computational time varies when these different models are used. The constrained 

joint model takes less computational time compared to the penalty, bushing element, and ANCF 



67 
 

joint models; the penalty model CPU time is six times that of the constraint model CPU time, 

while the bushing model CPU time is three times, and the ANCF joint model CPU time is 5 

times that of the constraint model CPU time. This increase in the penalty and bushing element 

CPU time is attributed to the high stiffness coefficients used in both of these models. Efforts are 

currently being made to improve the efficiency of the ANCF model.  

 

Figure 3.7: Chassis vertical displacement 

(  with suspension,  without suspension) 
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Figure 3.8: Chassis forward position 

(  Constrained joint model,  Penalty method model,  Bushing element model, 

 ANCF model) 

 

 

Figure 3.9: Chassis forward velocity 

(  Constrained joint model,  Penalty method model,  Bushing element model, 

 ANCF model) 
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Figure 3.10 shows the motion trajectory of a track link in the chassis coordinate system using the 

constraint model, the penalty model, the bushing element model, and the ANCF joint model, 

respectively. The results in this figure show good, although not exact, agreement between the 

different models and emphasize differences between the penalty method and bushing element 

models, which both use forces to enforce the connectivity conditions between bodies. Figures 

3.11 – 3.15 show the joint forces in the longitudinal and the vertical directions, respectively, 

obtained using the constrained, penalty, and ANCF joint models. The variation from positive to 

negative values in Figs. 3.11a and 3.11b are defined in the global coordinate system and they 

occur when the track links rotate in opposite directions. The changes in the orientation of the 

links, shown in Figs 3.12a and 3.12b, explain the change from positive to negative of the sign of 

the spikes in the constraint forces after 4 seconds. Very high frequencies were filtered out in all 

models using a low pass FFT with a cut-off frequency of 30 Hz in order to show clearly the 

nominal values of the joint forces presented in Figs. 3.11b and 3.12b. The results presented in 

these figures are obtained using a stiffness coefficient of 91 10  N/m and damping coefficient of  

51 10  N.s/m for the penalty method model. The results show good agreement between the 

constrained and penalty joint models with the ANCF joint model, as expected, showing lower 

force magnitude due to the flexibility of the elements. Figures 3.13 and 3.14 show the same 

results in the case of a stiffness coefficient of 71 10  N/m and damping coefficient of  51 10  

N.s/m for the penalty method model. The results of Figs. 3.13 and 3.14, which show significant 

differences between the two ideal joint models, demonstrate the drawback of the penalty method 

when the penalty stiffness coefficient is reduced. Similar results can be expected in the case of 

the bushing element models where the forces obtained also depend on the stiffness and damping 

coefficient of the joint. Figure 3.15 shows the joint deformation predicted using the penalty 
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model using different stiffness coefficients. The penalty model with a stiffness coefficient of 

91 10  N/m shows much less deformation, less than 0.075 mm, while the penalty model with a 

stiffness of 71 10  N/m has much more deformation, over 1.5 mm, between the track links. The 

results presented in Figs. 3.13-3.15 explain the differences that can be accumulated as a result of 

user defined stiffness coefficients in the penalty force joint formulation. 

Table 3.4: Joint model characteristics 

Joint model type Number of Coordinates Number of DOF Number of Constraints 

Pin Joint 1092 168 924 

Penalty Method 1092 798 294 

Bushing Element 1092 798 294 

ANCF 1227 1060 167 

 

 Table 3.4 shows the data of each type of the joint formulations used. These data include 

the number of coordinates, the number of degrees of freedom (DOF), and the number of 

constraints. In this chapter, four Euler parameters are used to describe the orientation of each 

body in the model. In Table 3.4, the constraints include the Euler parameters constraints; one for 

each body.  
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Figure 3.10: Trajectory motion of a track link in the chassis coordinate system 

(  Constrained joint model,  Penalty method model,  Bushing element model, 

 ANCF model) 

 

 

Figure 3.11a:  Joint longitudinal forces 

(  Constrained joint model,  Penalty method model k = 
9101  N/m,  ANCF model) 
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Figure 3.11b:  Filtered joint longitudinal forces using FFT 

(  Constrained joint model,  Penalty method model k = 
9101  N/m,  ANCF model) 

 

 

Figure 3.12a: Joint vertical forces 

(  Constrained joint model,  Penalty method model k = 
9101  N/m,  ANCF model) 
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Figure 3.12b: Filtered joint vertical forces using FFT 

(  Constrained joint model,  Penalty method model k = 
9101  N/m,  ANCF model) 

 

 

Figure 3.13: Joint Longitudinal forces 

(  Constrained joint model,  Penalty method model k = 
71 10  N/m, ANCF model) 

 
 

 
 



74 
 

 

Figure 3.14:  Joint vertical forces 

(  Constrained joint model,  Penalty method model k = 
71 10  N/m,  ANCF model) 

 

 

Figure 3.15: Joint constraint violation using penalty model 

(  k = 
91 10  N/m,  k = 

71 10  N/m) 

 

 
 

 



75 
 

3.7   CONCLUDING REMARKS 

In this chapter, different MBS joint formulations are presented and compared using detailed 

tracked vehicle models. Four main joint formulations are discussed; they are the ideal joint 

formulation, the penalty method, the compliant discrete element joint formulation, and the 

compliant continuum-based joint formulation. The ideal joint formulation is developed to 

eliminate the relative displacement between the two bodies connected by the joint. This can be 

achieved by enforcing a set of joint algebraic equations using a constrained dynamics approach 

or by using the penalty method. The constrained dynamics approach eliminates degrees of 

freedom and ensures that the constraint equations are satisfied at the position, velocity, and 

acceleration levels. The penalty method, on the other hand, does not reduce the number of 

degrees of freedom and ensures that the constraint equations are satisfied at the position level 

only provided that a high stiffness coefficient is used. The compliant discrete element 

formulation, which allows for joint deformations, can be systematically applied using a standard 

MBS bushing element that allows for six degrees of freedom of relative motion. The compliant 

continuum-based approach can be used to develop new joints that capture deformation modes 

that are not captured by the compliant discrete element joint formulation. ANCF finite elements 

can be used to systematically develop new joints with distributed elasticity and linear 

connectivity conditions.               

        As discussed in this chapter, it is important to choose the proper stiffness and damping 

coefficients when the penalty method and the bushing elements are used. Numerical results 

were presented in order to compare between different methods. The ideal joint formulation 

produces the desired joint kinematics and accurate joint forces. The  same  is  true  with  the  

penalty  force based joint  when  large  penalty stiffness coefficients are used. Penalty force 
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based joint construction has been shown to be sensitive to the selection of penalty stiffness with 

the higher stiffness coefficients leading to better overall results. However, higher penalty 

stiffness increases CPU time significantly due to higher frequencies. The penalty method and 

bushing element models each have much larger CPU times than the ideal constrained model due 

to these high stiffness coefficients. The results presented in this chapter show that the ANCF 

joint model leads to lower force predictions which can be attributed to the track link flexibility. 
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CHAPTER 4 

 ACCURACY EVALUATION IN THE PREDICTION OF THE DYNAMIC 

STRESSES 

(Previously published as Wallin, Michael, Hamed, Ashraf M., Paramsothy, Jayakumar, Gorsich, 

David J., Letherwood, Michael D., Shabana, Ahmed, A., 2016, “Evaluation of the Accuracy of 

the Rigid Body Approach in the Prediction of the Dynamic Stresses of Complex Multibody 

Systems,” International Journal of Vehicle Performance, Vol. 2(2), pp. 140-165) 

 

4.1   COUPLED AND DECOUPLED NONLINEAR ANALYSIS 

Due to the lack of computational methods that can be used for the direct calculation of the 

stresses of complex multibody systems such as tracked vehicles, the dynamic stresses of such 

systems are often evaluated at a post-processing stage using forces obtained from a rigid body 

analysis. With the recent developments in MBS dynamics, detailed flexible body models of 

vehicle systems can be developed and used to evaluate, for the first time, the accuracy of the 

stress prediction based on the rigid body force calculations. It is, therefore, the objective of this 

chapter to use the finite element absolute nodal coordinate formulation, which automatically 

accounts for the dynamic coupling between the rigid body motion and the elastic deformation, to 

obtain the stress results. These results are then used to evaluate the accuracy of the stresses 

calculated at a post-processing stage using forces determined from a rigid body analysis. ANCF 

finite elements are used to perform the coupled dynamic analysis and obtain the stresses based 

on a fully nonlinear flexible body analysis. In order to obtain an accurate representation of the 

stresses in the case of the rigid body analysis, the floating frame of reference (FFR) formulation 
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dynamic equations are used to define the inertia and joint reaction forces that must be used in the 

post-processing stress calculations. To this end, the rigid body accelerations, including the 

angular accelerations, as well as the joint reaction forces are first predicted using a rigid body 

analysis. The solution of the rigid body problem is then used to formulate the FFR equations 

associated with the elastic coordinates. These equations include the effect of the inertia, 

centrifugal, and Coriolis forces resulting from the rigid body displacements. The resulting linear 

second order ordinary differential equations associated with the FFR elastic coordinates are 

solved for the elastic accelerations which are integrated to determine the elastic coordinates and 

velocities. The obtained elastic coordinates are used to determine the stresses which are 

compared with the stresses obtained using the fully coupled ANCF analysis. The two approaches 

described are explained in detail and used in the stress analysis of the track links in a complex 

three-dimensional tracked vehicle model. One of the most common areas of failure for such 

tracked vehicles is attributed to the failure of the track link chains, and therefore, performing a 

detailed fully coupled stress analysis, as the one described in this chapter, is necessary in order to 

obtain more accurate stress results and avoid failure of such complex vehicle systems. 
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Figure 4.1: Finite element coordinate system 

 

 

4.2   MOTION DESCRIPTION 

Both the ANCF and the FFR formulation will be used in this chapter. ANCF finite elements will 

be used to develop the fully nonlinear coupled model, while the FFR formulation will be used to 

define the equations required for the post-processing stress calculations based on forces obtained 

using rigid body simulations. For this reason, these two formulations are briefly introduced in 

this section. 

 The FE/FFR formulation requires the use of four coordinate systems for each finite 

element, as is shown in Fig. 4.1. The global coordinate system 
321 XXX  is fixed in time and 

space. Kinematic constraints which can represent mechanical joints and specified motion 

trajectories are formulated in this coordinate system using a set of nonlinear algebraic equations 

that depend on the system generalized coordinates and can also be time-dependent. A body 

coordinate system iii

321 XXX , called the floating frame of reference, forms a single set of axes for 
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the entire assembly of elements in the body i  and, as such, serves to express the connectivity of 

all the elements in the body. Using this coordinate system, the connectivity conditions between 

elements can be defined using a constant Boolean matrix. The configuration of the body 

coordinate system is identified by using a set of reference coordinates that define the location 

and orientation of this rigid frame of reference. The element coordinate system ijijij

321 XXX  for an 

element j  on the deformable body i  is rigidly attached to the element. This coordinate system 

translates and rotates with the element. The final coordinate system, the intermediate element 

coordinate system ij

i

ij

i

ij

i 321 XXX , has its origin rigidly attached to the body coordinate system and 

does not follow the deformation of the element. This coordinate system is initially oriented to be 

parallel to the element coordinate system and is represented by the dotted axes lines shown in 

Fig. 4.1. It is important to note that the use of the intermediate element coordinate system is 

necessary in order to obtain an exact modeling of the rigid body inertia in the case of complex 

structures with discontinuities. This concept is similar to the parallel axis theorem used in rigid 

body mechanics. Furthermore, since this coordinate system has a constant orientation with 

respect to the body coordinate system, exact modeling of the rigid body inertia in the body 

coordinate system can be obtained using a constant transformation. Using each of these 

coordinate systems, the location of an arbitrary point on an element can be defined and used to 

develop the kinematic and dynamic equations of the elements undergoing large displacement and 

angular rotation. The FFR formulation will be discussed in more detail in the following section.  

 While the FFR formulation can be used with finite elements that employ infinitesimal 

rotations, ANCF finite elements have no infinitesimal or finite rotations as nodal coordinates, 

and therefore, there are no restrictions on the amount of rotation or deformation within the 

element. Instead, element nodal coordinates are defined in the inertial frame and used with a 
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global shape function matrix that has a complete set of rigid body modes. Shown previously in 

Fig. 3.4 is a beam element consistent with this approach which shows the position vector 

gradients along each axis as well as the spatial coordinates associated with each node. This 

element is a fully parameterized element since it has a complete set of parameters, while other 

elements such as the Euler Bernoulli beam element are called gradient deficient elements since 

complete set of position vector gradients cannot be defined. Gradient deficient elements such as 

the Euler-Bernoulli beam element are simpler and more efficient in many applications including 

chain and belt applications, and for this reason, they will be used in the numerical study 

presented in this chapter to determine the stresses of the track links of three-dimensional tracked 

vehicles.  

 

4.3   FFR FORMULATION 

The FFR equations account for the dynamic coupling between the rigid body motion and the 

elastic deformation. The use of these equations will shed light on the approximations made when 

the forces, determined using a rigid body analysis, are subsequently used at a post-processing 

stage to solve a linear structural problem for the deformations in order to determine the stresses. 

Presenting the general form of the FFR dynamic equations of motion will clearly show the terms 

neglected when determining the stresses using the forces of the rigid body simulations. These 

stresses will be compared with the stresses determined using a fully coupled ANCF analysis. 
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Figure 4.2: Flexible body coordinates 

 

4.3.1 Kinematic Equations 

The FE/FFR formulation employs a mixed set of absolute reference and local deformation 

coordinates (Shabana, 2014). The displacement field for an element i  on a deformable body j  

can be written as 
ijijij

eSw  , where 
ij

e  is the vector of nodal coordinates which can be split into 

the vectors of the undeformed coordinates and the elastic nodal coordinates associated with the 

deformation of the element, ij

0e  and ij

fe , respectively, as ij

f

ijij
eee  0

. The matrix 
ij

S  is the 

shape function matrix which depends on the element spatial coordinates. For a three-dimensional 

beam element, the shape function 
ij

S  is defined in the appendix. In the FE/FFR formulation, a 

deformable body can be divided into more than one finite element in order to obtain more 

accurate results. Using the element shape function matrix, the global position vector of an 

arbitrary point 
ijP  on the finite element j  of the deformable body i  can be written as 
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ij

f

ijijij
uuRr  0

, where 
ij

R  is the position vector of a reference point 
ijO , and ij

0u  and ij

fu  

are the undeformed and deformed local position of the arbitrary point 
ijP , respectively, as 

shown in Fig. 4.2. The local position vector of the arbitrary point in the FE/FFR formulation can 

be written as 
0

ij ij ij

f u u u , or equivalently, i

n

iji

n

ijijijijijiij
qNqBCSCuAu  1

, where 
i

A  is 

the rotation matrix that defines the orientation of the body reference, 
ij

S  is the shape function 

matrix, ij

1B  is a constant Boolean matrix describing the element connectivity conditions, i

nq  is 

the vector of nodal coordinates of body i , ijijijij

1BCSCN
ij   is a space dependent matrix, and 

the element transformation matrices 
ij

C  and 
ij

C  are defined in the appendix (Shabana, 2014). 

One can show that the global position vector can be written as  2

ij i i ij i i i

o f  r R A N q B q , 

where the vector of element nodal coordinates can be divided into its undeformed and deformed 

components i

oq  and i

fq , respectively, and i

2B  is a Boolean matrix representing a linear 

transformation that arises from imposing the reference conditions that define a unique 

displacement field. The velocity vector can then be defined as 

  i

f

iijiijiiijij
qBNAuωARr 

2 , where 
i

ω  is the angular velocity vector defined in the local 

coordinate system, and 
iijiji

ωuuω
~

 , where 
ij

u
~

 is the skew-symmetric matrix associated 

with the vector 
ij

u .  The local angular velocity vector 
i

ω  can be written in terms of the 

reference rotational coordinates of body i  as iii
θGω  , where i

G  can be either a 3   4 matrix 

dependent on the Euler parameters or a 3   3 matrix dependent on the sequence of Euler angles, 

and i
θ  is the vector of rotational coordinates of the body reference.  One can then write 

i

f

iijiiijiijij
qBNAθGuARr 

2

~
 .  
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4.3.2 Inertia Forces  

One can use the definition of the kinetic energy 
ijV

ijijTijijij dVT rr 
2

1
 to write 

iijTiijT qMq 
2

1
 , where the total vector of generalized coordinates of body i  is 

 TTi

f

TiTii
qθRq  , 

ij  and ijV  are, respectively, the element mass density and volume, and 

ij
M  is the symmetric mass matrix of the finite element defined in terms of the vectors and 

matrices previously introduced in this section as 

ij

iijTijTi

iijijTiiijTijTi

iijiiiji

V

ijij dV

symmetric
ij 














 

 
22

2

2

~~~

~

BNNB

BNuGGuuG

BNAGuAI

M    (4.1) 

This mass matrix is highly nonlinear in the coordinates and accounts for the dynamic coupling 

between the rigid body motion and the elastic deformation. It is important to understand the form 

of this matrix in order to be able to develop a systematic procedure for the post-processing stress 

calculations in which the effect of the elastic deformation on the rigid body motion is neglected. 

Because the mass matrix is highly nonlinear, one obtains a complex expression for the vector of 

Coriolis and centrifugal forces. If the effect of the elastic deformation on the rigid body motion is 

neglected, the vector of centrifugal and Coriolis forces can be written as (Campanelli et al., 

1998) 
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where  
ii V

iiTii

V

iiTiii dVdV 00

~~~~
uuuuI 

 is the inertia tensor evaluated by neglecting the 

effect of the deformation on the mass moments and products of inertia. The vector of centrifugal 

and Coriolis forces associated with the deformation coordinates can be written as 

   ii

o

i

f

ii

f

i

f

i

v ωIqSqSQ
~~~

2 21   , where i

1

~
S , i

2

~
S , and i

oI
~

 are defined in the appendix of the 

thesis. The vector  i

v f
Q  can be simplified to   ii

of

i

v ωIQ
~

  if the first two terms in this vector 

are assumed to be much smaller than the third term. Using this assumption, the vector  i

v f
Q  

becomes independent of the elastic coordinates. Furthermore, when a centroidal body coordinate 

system is used   0Q 
R

ij

v
 since the moment of mass of the body in the initial configuration is 

equal to zero, that is 0ij

i ij ij

V
dV  u 0 .  

The expressions of the inertia forces associated with the elastic coordinates must be 

correctly evaluated and consistently used in the post-processing stress analysis. The last term in 

the preceding equation, as mentioned above, defines the Coriolis and centrifugal forces 

associated with the elastic coordinates. This term, which depends on the angular velocity of the 

body reference (rigid body motion), must be evaluated and used in the equations that are solved 

for the deformation coordinates used in the stress calculations. Note also that the first term in the 

preceding equation represents the moment of mass. If the origin of the body coordinate system is 

selected to be initially attached to the body center of mass, this term will identically equal to zero 

in the case of the rigid body analysis. 

4.3.3 Applied Forces  

The vector of generalized forces which includes the external forces ij

eQ , the centrifugal and 

Coriolis inertia forces ij

vQ , and the constraint forces can be written as λCQQQ
q

Tij

v

ij

e

ij
ij , 
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where ijq
C  is the constraint Jacobian matrix, and λ  is the vector of Lagrange multipliers. Each 

of the force components in this equation must be determined in terms of undeformed, 

displacement, rotation, and deformation coordinates, as demonstrated in the case of the vector of 

Coriolis and centrifugal forces ij

vQ . The vector of generalized external forces, which includes the 

gravity and contact forces, can be formulated to define the nodal forces. For example, the 

generalized nodal forces as the results of a force vector ij

extF  acting at a point on the element can 

be written as  ij ij T iT ij

e m extQ S A F  where ij

mS  is the shape function matrix defined at the point of 

application of the force. 

4.3.4 Constraint Forces  

Tracked vehicle models represent heavily constrained systems that can have a large number of 

joints, particularly revolute joints. For the post-processing stress analysis in which the effect of 

deformation on the rigid body motion is neglected, the joint reaction forces are calculated using 

the rigid body analysis. The effect of these forces in the linear structural problem used to solve 

for the deformations that define the stresses must be taken into consideration. In general, the 

vector of generalized constraint forces can be written as the product of the constraint Jacobian 

matrix and Lagrange multipliers as λCQ
q

Ti

c i . For example, in the case of a revolute joint, the 

constraint equations can be written as    1 2

T
T

i j iT j i T j

P P
   
  

C r r v v v v 0 , where 
i

Pr  and 
j

Pr  

are the position vectors of the joint definition points on bodies i  and j , respectively, and 
i

1v  and 

i

2v  are two vectors defined on body i  perpendicular to the joint axis vector 
j

v  defined on body 

j  , as shown previously in Fig. 4.2. Using the revolute joint kinematic equations, one can define 

the generalized constraint forces as (Campanelli et al., 1998). 
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where i

rcS  is a partition of the shape function matrix which describes the orientation of the 

intermediate joint coordinate system with respect to the body coordinate system. The virtual 

work of the constraint forces can then be written as  

       i

c

Ti

c

i

c

Ti

c

i

f

TTiTTiTTiTi

c

i

c i
f

ii ψMrFqλCθλCRλCqQW
qθR

   (4.4) 

where i

f

i

c

iiii

c

iii

c qSAθGuARr  
~

,  i

f

i

rc

iiii

c qSθGAψ   , i

cS  is the shape function 

matrix defined at the point of application of the force and i

cF  and i

cM  represent the vectors of 

the actual joint reaction forces and moments acting on body i  as a result of the revolute joint 

connection with body j , respectively. The use of these definitions and the preceding equation of 

the virtual work leads to the definition of the generalized constraint forces as 
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 (4.5) 

The vector of generalized constraint forces can be simplified by writing the vector of actual joint 

moments to be  i i

i i i T i iT T

c G c
 

R
M A B C u A C λ , where iR

C  and iθ
C  represent the partitions of the 

constraint Jacobian matrix associated with the displacement and rotation coordinates, and the 

matrix   1


Tii

G GB  when using Euler angles or Rodrigues parameters or   ii

G GB 4/1  when 

using Euler parameters. This provides a straightforward definition of the generalized constraint 

forces as 
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In the post-processing stress analysis, the vector of Lagrange multipliers λ  is determined using 

the rigid body simulation of the model. Using this vector and knowing the reference coordinates, 

the third element of the constraint force vector in the preceding equation can be evaluated and 

introduced as an externally applied force to the linear structural problem used to solve for the 

deformation coordinates that define the stresses. 

4.3.4 Post-Processing Stress Analysis 

Using the FFR kinematic description, the equations of motion of the elements can be assembled 

to obtain the equation of motion of the deformable body i   which can be written as 

 
i
r

i
f

T
i i i i i

rr rf r r r

ii i i i i T
fffr ff f f f

         
           
                  

q

q

C0 0m m q q Q
λ

0 Km m q q Q C
 (4.7) 

where the vectors and matrices that appear in this equation are the assembled vectors and 

matrices of the finite elements. In the post-processing stress analysis, the following assumptions 

are made: 

1. The effect of the elastic deformation on the rigid body motion is neglected.  

2. In this case, the mass moments and products of inertia are assumed to be independent of 

the body deformation. 

3. The quadratic velocity vectors reduce to the gyroscopic moments used in the rigid body 

analysis. 
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4. The submatrix 
i

rfm  that defines the dynamic coupling between the rigid body motion and 

the elastic deformation is neglected.  

Using these assumptions, one can first solve the nonlinear system of equations 

i
r

i i i T

rr r r 
q

m q Q C λ  for the reference coordinates, velocities, and accelerations as well as the 

vector of Lagrange multipliers using a rigid body analysis approach. Lagrange multipliers can be 

used to determine the joint reaction forces. Knowing the reference coordinates, velocities, 

accelerations, and the vector of Lagrange multipliers, the system of linear equations 

i
f

i i i i i i i T

ff f ff f f fr r   
q

m q K q Q m q C λ  can be solved for the elastic coordinates which can be used 

to calculate the stresses. The stresses obtained using this dynamically decoupled procedure will 

be compared with the stresses obtained using a fully coupled nonlinear ANCF analysis. 

 

4.4   ANCF COUPLED RIGID BODY/DEFORMATION NONLINEAR ANALYSIS 

As previously mentioned in this chapter, while the track links of tracked vehicles experience, for 

the most part, small deformations, the use of the FFR formulation to develop a coupled rigid 

body/elastic deformation analysis is impractical. This is mainly due to the large number of chain 

nonlinear constraint equations and the highly nonlinear inertia matrix of the finite elements in the 

FE/FFR formulation. For this reason, the decoupled rigid body/deformation analysis described in 

the preceding section has been the only available practical option to evaluate the track link 

stresses. ANCF finite elements, on the other hand, while developed for large deformations have 

proven to be very effective in developing efficient small deformation models as in the case of 

complex tracked vehicle systems. ANCF finite elements can be used to develop linear constraint 

chain models, allowing for the elimination of the dependent variables at a preprocessing stage. 
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Furthermore, with the use of the ANCF Cholesky transformation, one obtains a generalized 

identity inertia matrix. For this reason, ANCF finite elements will be used in this chapter to 

develop efficient flexible link tracked vehicle models. The use of this approach is justified for the 

following reasons: (1) By eliminating most of the vehicle constraint equations at a preprocessing 

stage and by using an identity mass matrix for the vehicle tracks, the problem dimension is 

significantly reduced and more efficient solution can be obtained; (2) The results obtained  by 

ANCF finite elements and the FFR formulations in the case of small deformation problems agree 

well as demonstrated in the literature using several examples; (3) In the ANCF approach, no 

modal reduction techniques are used and a nodal-based model is developed, and therefore, issues 

such as the choice of the appropriate modes are not relevant when ANCF finite elements are 

used.  

 The absolute nodal coordinate formulation (ANCF), which is based on a global position 

field description, can be used to describe an arbitrary displacement including large rotation and 

large deformation. ANCF finite elements define a unique rotation field and can be obtained from 

the position field using a general continuum mechanics description. These finite elements allow 

for imposing continuity on higher order derivatives without increasing the order of the 

interpolation or the number of nodal coordinates. Furthermore, one can develop finite element 

meshes that have linear connectivity and constant inertia, as previously mentioned (Shabana et 

al., 2012).  Figure 4.4 shows an example of the displacement field of an ANCF finite element 

which can be written as      1 2 3 1 2 3

j j jx ,x ,x ,t x ,x ,x tr S e , where 1x , 2x , and 3x  are the 

element spatial coordinates; t  is time; j
S  is the element shape function matrix, and j

e  is the 

vector of element nodal coordinates. Using this displacement field, the equations of a pin joint 

between elements i  and j  can be written as 
ji

rr  , ji

 rr  , where α is the coordinate line 
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defining the joint axis;   can be 1x , 2x , or 3x , or any other coordinate line. In this chapter, the 

three-dimensional Euler-Bernoulli beam element is used in the coupled rigid body/deformation 

analysis of the flexible link track chain. Note that for simulations involving maneuverability, 

which can involve acts such as cornering, a fully parametrized element that captures all the 

deformation modes would be more ideal. For the Euler-Bernoulli beam element, the vector of 

nodal coordinates for element j  can be written as 

       
1 11 1 1 10 0

T T T T T
j j j j j j j

x xx x x l x l     
 

e r r r r , where 1/
1

xjj

x  rr , and jl  is the 

length of the finite element. It can be shown that the element shape function matrix can be 

defined as  IIIIS 4321 ssssj  , where I  is a 3×3 identity matrix (Gerstmayr and Shabana, 

2006), and the shape functions is , for i  = 1, 2, 3, 4, are defined as  

 
 

 

2 3 2 3

1 2

2 3 2 3

3 4

1 3 2 2

3 2

j

j

s , s l ,

s , s l

    

   

      


     

 (4.8) 

where 
1

jx / l  . The kinetic energy of an element can then be computed as 

 
jV

jjTjjjTjjj dVT eMerr 
2

1

2

1
 , in which a dot denotes differentiation with respect to time, 

j  and jV  are, respectively, the mass density and volume of the element, and the constant 

generalized mass matrix of the element is defined as  jV

jjTjjj dVSSM  . It is important to 

note that the mass matrix is constant and symmetric in both two-dimensional and three-

dimensional cases and leads to zero centrifugal and Coriolis forces when the body experiences an 

arbitrary large deformation and finite rotation. This mass matrix, as previously mentioned, can be 

converted to an identity generalized mass matrix associated with the ANCF Cholesky 



92 
 

coordinates. The virtual work of the elastic forces of the Euler-Bernoulli beam element can then 

be defined as 11 11 1 1
0 0

j jl l

sW EA dx EI dx        (Shabana, 2008), where E  is the modulus 

of elasticity, A  is the element cross section area, I  is the second moment of area, and   is the 

curvature. The elastic forces of the Euler-Bernoulli beam element can also be evaluated using the 

following expression for the strain energy    
2 2

11 1 1
0 0

j jl l

U EA dx EI dx     as 

 
T

s U /   Q e . The axial strain at an arbitrary point on the Euler-Bernoulli beam element can 

then be defined using the gradient vector evaluated using the element assumed displacement 

filed as  
1 111 1 2T

x x  r r . The evaluation of this axial strain using ANCF finite elements in a 

coupled rigid body/deformation analysis is straight forward and does not require the complexity 

required by the less accurate post-processing stress analysis that ignores the effect of the elastic 

deformations on the rigid body motion. 

 

4.5   NUMERICAL RESULTS 

In this section, the tracked vehicle model described in the preceding chapter is used to evaluate 

the accuracy of the stresses calculated using the post-processing approach that neglects the effect 

of the elastic deformation on the rigid body motion. The accuracy of this approach is measured 

against the results obtained using a fully coupled ANCF stress analysis.   

 

4.5.1 Initial Configuration and Driving Constraints 

This subsection discusses two different tracked vehicle models: one referred to as the “rigid 

model” which involves rigid track links to later be used in post processing with the simplified 



93 
 

FFR equations and the other referred to as the “ANCF model” which involves flexible ANCF 

finite element track links. For both models, a relative angular velocity constraint on the sprocket 

rotation about the lateral axis with respect to the chassis is used to drive the vehicle. The angular 

velocity profile, which is shown in Figs. 4.3a and 4.3b, starts with the sprocket remaining still for 

the first second, then increasing for the next seven seconds until it reaches its maximum angular 

velocity which is then maintained for the final two seconds of the simulation. There are two 

maximum angular velocities used in this section which represent two different simulation 

scenarios, one set to 30 rad/sec and the other to 80 rad/sec which, according to Figs. 4.4a, 4.4b, 

4.5a, and 4.5b, correspond to maximum forward velocities of 7.27 m/sec (16.26 miles/hour) and 

19.62 m/sec (43.90 miles/hour), respectively, for both models. 

 

(a)  Lower angular velocity             (b) Higher angular velocity 

Figure 4.3: Sprocket angular velocity profile 
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(a)  Lower angular velocity             (b) Higher angular velocity 

Figure 4.4: Chassis forward position 

(---- Rigid model,       ANCF model) 

 

 

(a)  Lower angular velocity             (b) Higher angular velocity 

Figure 4.5: Chassis forward velocity 

(---- Rigid model,       ANCF model) 

 

 

 

 



95 
 

4.5.2 Axial Stress/Strain Results 

This subsection presents specific strain results obtained using the ANCF finite elements and the 

post processing procedure that employs the simplified FFR equations. Figure 4.6 shows the 

unfiltered axial strain comparison for a specific track link. The results are obtained using rigid 

analysis with the post-processing procedure and the fully coupled ANCF analysis in the case of 

the lower angular velocity profile shown in Fig. 4.3a. It can be seen from Fig. 4.7 that the 

unfiltered axial strain results have high frequencies due to the high frequencies found in the joint 

constraint forces. The lower overall magnitude in the ANCF model results can be attributed to 

the flexibility of the ANCF finite elements that include more modes of deformation. The noise of 

the unfiltered results makes it impossible to compare anything besides average magnitude of the 

strain values. Instead, the higher frequencies can be filtered out by using a Fast Fourier 

Transform (FFT) to compare the results using only the lower frequencies. Figure 4.8 shows the 

axial strain comparison for the lower velocity simulation using an FFT with a low-pass cut off 

frequency of 15 Hz. This figure shows a clearer depiction of the axial strain in the track link with 

each model showing similar results, specifically in trend. The ANCF model in this figure 

displays a larger range of axial strain values, while the results from post-processing with the rigid 

model creates a more defined path with lower spikes in frequency. The ANCF model in this case 

shows a more conservative prediction of the axial strains which can be important when making a 

general approximation for what strain values could lead to failure in the track chain. Figures 4.9 

and 4.10 show, respectively, the unfiltered and filtered axial strain values for the flexible and 

rigid tracked vehicle models for the higher angular velocity profile shown in Fig. 4.3b. This 

simulation was performed to examine the effect of larger centrifugal and Coriolis forces due to 

greater angular velocities on the specific track link. As would be assumed, Figs. 4.9 and 4.10 
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show larger overall values while Fig. 4.10 still shows a good comparison between models with 

the vector of centrifugal and Coriolis forces not leading to a significant difference. A closer look 

at the results of Figs. 4.8 and 4.10 show comparable trend for the two models, while after 8 

seconds the results seem to deviate. In Fig. 4.8 at around 9.5 seconds, the post-processing 

analysis shows an axial strain of about 5105.1   while the axial strain of the ANCF model is 

approximately 5105.0  . When each value is multiplied by a Young’s Modulus of 200 GPA, it 

leads to a stress difference of 3 MPA to 1 MPA between the post-processing and the ANCF 

models. In Fig. 4.10, just before the 10 second mark, a difference of 5100.4   to 5100.2   can 

be seen between the rigid and flexible models, respectively. To further investigate these 

differences, a simulation for the lower angular velocity profile was continued at the same 

maximum angular velocity. This can be understood as a continuation of Fig. 4.8 for another 10 

seconds. Figure 4.11 shows this as a more definitive difference with the ANCF model having a 

larger average axial strain value. Figure 4.12 shows the stresses calculated from the axial strain 

values in Fig. 4.11 which can have differences of over 2 MPa. 

 Simulation times varied between the two models. The rigid-linked model took 

approximately a third of the time as the flexible-linked model for its initial simulation. When the 

second step of the stress analysis is added on, the overall post processing CPU time becomes 

double that of the one-step ANCF model. Each step utilizes the same step size of 10-3. 
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Figure 4.6: Unfiltered axial strain (Lower angular velocity) 

(       FFR post processing,       ANCF) 

 

Figure 4.7: Joint longitudinal forces (Lower angular velocity) 

( ▲  Rigid model,  ■  ANCF model) 
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Figure 4.8: Filtered axial strain (Lower angular velocity) 

( ▲  FFR post processing,  ■  ANCF) 

 

Figure 4.9: Unfiltered axial strain (Higher angular velocity) 

(       FFR post processing,       ANCF) 
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Figure 4.10: Filtered axial strain (Higher angular velocity) 

( ▲  FFR post processing,  ■  ANCF) 

 

Figure 4.11: Filtered axial strain (Lower angular velocity) 

( ▲  FFR post processing,  ■  ANCF) 
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Figure 4.12: Filtered axial stress (Lower angular velocity) 

( ▲  FFR post processing,  ■  ANCF) 

 

4.6   CONCLUDING REMARKS 

In this chapter, two different formulations are described and used to examine the accuracy of the 

stress prediction when neglecting the effect of the elastic deformation on the rigid body motion 

in the case of complex tracked vehicle systems. The FFR formulation, which uses a mixed set of 

absolute reference and local deformation coordinates, was used to obtain simplified equations 

that are used to perform the rigid body analysis to determine the inertia and joint forces which 

are entered to a linear structural analysis problem to determine the strain and stresses. The results 

of this decoupled procedure are compared with the results obtained using a fully coupled analysis 

using ANCF finite elements. In the ANCF approach, no infinitesimal or finite rotations are used 

as nodal coordinates, meaning there are no restrictions on the amount of rotation or deformation 
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within an element. Instead, element nodal coordinates are defined in the inertial frame and used 

with a global shape function covering a complete set of rigid body modes. 

 The results presented in the preceding section show that both the simplified FFR 

formulation and ANCF can be used to predict the stresses of complex tracked vehicle models. 

Rigid and flexible simulations showed almost exact values in terms of tracked vehicle positions 

and velocities while axial strain results found using each formulation showed comparable trends, 

but different strain values. Differences in magnitude become more apparent as the simulation 

continues. This can be attributed to differences between the formulations such as the online 

computations used in the ANCF versus a two-step process using the post-processing analysis. 

The two-step process includes the inherent error of decoupling the equations and using an 

integrator for each step when determining the deformation coordinates. The post-processing 

analysis assumptions were clearly stated in Section 4.3. 

 In this chapter, the ANCF and post-processing procedures were each shown to carry their 

own benefits. The ANCF showed a more conservative approximation of the axial strain values 

calculated with less efforts, while the post-processing procedure showed a more defined result 

pattern with lower overall frequencies and simpler rigid body simulation. In terms of failure and 

fatigue analysis, safety precautions dictate using the highest and lowest calculated stress values, 

which were found using the ANCF analysis. Additionally, using a one-step, online process can 

eliminate further error accumulation and lead to a more efficient evaluation process. 

 It is important to note that while validation hasn’t been accomplished, the results obtained 

from the flexible-linked chain have been verified by comparing results obtained using fully 

parameterized ANCF beam elements with the elastic forces formulated using a general 

continuum mechanics approach and the elastic line approach (Hamed, 2015). 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

The second chapter of this thesis highlights some issues on the interpolation of rotations in the 

analysis of large deformation of bodies in flexible multibody system dynamics and presents 

results of the large rotation vector formulation. The focus of this chapter was on the geometry 

issues arising from the use of two interpolation meshes: the position mesh and the rotation mesh. 

These two meshes lead to different space curves that can differ by an arbitrary rigid body 

displacement and have different geometric properties. The examples demonstrate the known fact 

that the rotation mesh of the LRVF is inextensible and that the material points of a rotation-based 

position mesh occupy different positions from the material points of the position mesh. The 

consequences of the redundancy in the geometry definition can negatively affect the accuracy of 

the strain energy and the inertia of the bodies. These inconsistencies become more apparent in 

the case of larger deformations and are not circumvented by the inclusion of elastic forces or 

imposing kinematic constraints. This is mainly due to the fact that two different assumed 

displacement fields cannot, in general, be brought to the same configuration as previously 

illustrated. This chapter was concentrated on a fundamental issue related to the use of the large 

rotation vector formulation. It was not intended to provide a comparison of the LRVF with other 

formulations. Nonetheless, it is worth mentioning that several other approaches have been used 

in the large displacement analysis of structural systems. These formulations include the ANCF 

and methods based on B-spline representation.  
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 In the third chapter of this thesis, different MBS joint formulations are presented and 

compared using detailed tracked vehicle models. Four main joint formulations were discussed: 

the ideal joint formulation, the penalty method, the compliant discrete element joint formulation, 

and the compliant continuum-based joint formulation. The ideal joint formulation is developed to 

eliminate the relative displacement between the two bodies connected by the joint. This can be 

achieved by enforcing a set of joint algebraic equations using a constrained dynamics approach 

or by using the penalty method. The constrained dynamics approach eliminates degrees of 

freedom and ensures that the constraint equations are satisfied at the position, velocity, and 

acceleration levels. The penalty method, on the other hand, does not reduce the number of 

degrees of freedom and ensures that the constraint equations are satisfied at the position level 

only provided that a high stiffness coefficient is used. The compliant discrete element 

formulation, which allows for joint deformations, can be systematically applied using a standard 

MBS bushing element that allows for six degrees of freedom of relative motion. The compliant 

continuum-based approach can be used to develop new joints that capture deformation modes 

that are not captured by the compliant discrete element joint formulation. ANCF finite elements 

can be used to systematically develop new joints with distributed elasticity and linear 

connectivity conditions.               

 As discussed in the third chapter, it is important to choose the proper stiffness and 

damping coefficients when the penalty method and the bushing elements are used. Numerical 

results were presented in order to compare between different methods. The ideal joint 

formulation produces the desired joint kinematics and accurate joint forces. The  same  is  true  

with  the  penalty  force based joint  when  large  penalty stiffness coefficients are used. 

Penalty force based joint construction has been shown to be sensitive to the selection of penalty 
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stiffness with the higher stiffness coefficients leading to better overall results. However, higher 

penalty stiffness increases CPU time significantly due to higher frequencies. The penalty 

method and bushing element models each have much larger CPU times than the ideal 

constrained model due to these high stiffness coefficients. The results presented showed that the 

ANCF joint model leads to lower force predictions which can be attributed to the track link 

flexibility. 

 In the fourth chapter, two different formulations are described and used to examine the 

accuracy of the stress prediction when neglecting the effect of the elastic deformation on the 

rigid body motion in the case of complex tracked vehicle systems. The FFR formulation, which 

uses a mixed set of absolute reference and local deformation coordinates, was used to obtain 

simplified equations that are used to perform the rigid body analysis to determine the inertia and 

joint forces which are entered into a linear structural analysis problem to determine the strain and 

stresses. The results of this decoupled procedure were compared with the results obtained using a 

fully coupled analysis using ANCF finite elements. In the ANCF approach, no infinitesimal or 

finite rotations are used as nodal coordinates, meaning there are no restrictions on the amount of 

rotation or deformation within an element. Instead, element nodal coordinates are defined in the 

inertial frame and used with a global shape function covering a complete set of rigid body 

modes. 

 The results presented showed that both the simplified FFR formulation and ANCF can be 

used to predict the stresses of complex tracked vehicle models. Rigid and flexible simulations 

showed almost exact values in terms of tracked vehicle positions and velocities while axial strain 

results found using each formulation showed comparable trends, but different strain values. 

Differences in magnitude become more apparent as the simulation continues. This can be 
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attributed to differences between the formulations such as the online computations used in the 

ANCF versus a two-step process using the post-processing analysis. The two-step process 

includes the inherent error of decoupling the equations and using an integrator for each step 

when determining the deformation coordinates.  

 The ANCF and post-processing procedures were each shown to carry their own benefits. 

The ANCF showed a more conservative approximation of the axial strain values calculated with 

less efforts, while the post-processing procedure showed a more defined result pattern with lower 

overall frequencies and simpler rigid body simulation. In terms of failure and fatigue analysis, 

safety precautions dictate using the highest and lowest calculated stress values, which were 

found using the ANCF analysis. Additionally, using a one-step, online process can eliminate 

further error accumulation and lead to a more efficient evaluation process. 

 It is important to note that while validation hasn’t been accomplished on the tracked 

vehicle model, the results obtained from the flexible-linked chain have been verified by 

comparing results obtained using fully parameterized ANCF beam elements with the elastic 

forces formulated using a general continuum mechanics approach and the elastic line approach 

(Hamed, 2015). 
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APPENDIX 

 

For the three-dimensional beam element used in the post-processing procedure, the shape 

function matrix is defined as (Przemieniecki, 1968; Shabana, 2014) 
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in which 
ijijij lx /1 , 

ijijij lx /2 , ijijij lx /3  and ijl  is the length of element ij , and 
ijx1 , 

ijx2

, and ijx3
 are the spatial coordinates along the element axes. This matrix is essential in defining 

the mass matrix, as well as the element transformation matrices ij
C  and ij

C  which are defined 

as 
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where   ijij labc /111  ,   ijij labc /222  , and   ijij labc /333  ; the length of element ij  can 

be defined as      2

33

2

22

2

11 abababl ij  ;  321 ,, aaa  and  321 ,, bbb  are the 

locations of each node on element ij . Equation A.2 is valid for all cases except when 1c  and 3c  

are equal to zero, a case which occurs when the element 
ij

1X  axis coincides with the body 
i

2X  

axis, in which case ij
C  is given as 
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The matrices used in defining the vector of centrifugal and Coriolis forces can be defined as 
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where n is the total number of elements in body i. It is important to note that matrices 
i

1

~
S  and 

i

2

~
S  

are much smaller than 
i

0

~
I  and therefore are neglected in the calculation of quadratic velocity 

vector shown in Chapter 3. The stiffness matrix ij

ffK  of the element of uniform cross-sectional 

area is defined as (Przemieniecki, 1968) 
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where 
ij , 

ijl , and 
ija  are the mass density, length, and cross-sectional area of element ij , 

ijE  

and 
ijG  are, respectively, the elasticity and rigidity moduli, and 

ijI1 , 
ijI2 , and ijI3

 are the second 

moments of areas about the 
ij

1X , 
ij

2X , and ij

3X  element axes, respectively. This matrix can be 

defined in the body coordinate system using the transformation 
ijij

ff

Tijij

ff CKCK  . 
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