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SUMMARY

Consideration is given to coupled systems


ut + ux − uxxt + P (u, v)x = 0,

vt + vx − vxxt +Q(u, v)x = 0,

of two evolution equations of generalized BBM-type, posed for x ∈ R and t ≥ 0 and with u and

v real-valued functions of (x, t); the subscripts connote partial differentiation and P and Q are

homogeneous polynomials in the variables u and v.

A study of the initial-value problems in which u(x, t) and v(x, t) are specified at t = 0, viz .

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R,

is undertake to analyze and determine conditions on the case of quadratic homogeneous polyno-

mials P and Q under which these initial-value problems are globally well-posed in the L2-based

Sobolev spaces Hs(R) ×Hs(R) for s ≥ 0. The case of cubic homogeneous polynomials P and

Q is also investigated.

ix



CHAPTER 1

INTRODUCTION

The focus of this study is systems of non-linear dispersive wave equations and the

fundamental properties of their solutions. These systems arise in water wave theory, climate

modeling and other situations where wave propagation is important.

The particular system of partial differential equations we are investigating is a coupled

system of two evolution equations of generalized BBM-type. It has the form


ut + ux − uxxt + P (u, v)x = 0,

vt + vx − vxxt +Q(u, v)x = 0,

(1.1)

posed for x ∈ R and t ≥ 0 and with u and v real-valued functions of (x, t) where subscripts

connote partial differentiation. We consider the initial-value problem (IVP henceforth) where

the wave profile and the velocity are specified at a starting time taken to be 0, viz .

u0(x) = u(x, 0) = φ(x), v0(x) = v(x, 0) = ψ(x), x ∈ R. (1.2)

For the time being, P and Q are arbitrary homogeneous quadratic polynomials,

P (u, v) = Au2 +Buv + Cv2,

1
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Q(u, v) = Du2 + Euv + Fv2,

with coeficients A,B,C,D,E, F ∈ R. Later, cubic polynomials will also be considered.

The IVP (1.1) - (1.2) is a natural generalization of the IVP for the BBM-equation or

regularized long-wave (RLW) equation,

ηt + ηx + ηηx − ηxxt = 0, η(x, 0) = f(x), (1.3)

The latter was originally proposed as an alternative to the Korteweg-deVries (KdV) equation

ηt + ηx + ηηx + ηxxx = 0 (1.4)

by Peregrine (1964, 1967) and Benjamin et al . (1972). It models unidirectional propagation of

small amplitude, long wavelength water waves. This equation is written in non-dimensional,

laboratory coordinates, with x denoting the direction of propagation and t being proportional

to elapsed time. As written, it serves as a model for waves propagating in the direction of

increasing values of x. The initial condition (IC) represents a snapshot of a disturbance already

generated, without necessarily inquiring as to how the motion was initiated. The solution η of
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either (1.3) or (1.4) provides a prediction of the wave profile at future time. The model subsists

on the small amplitude, long wavelength assumptions,

α =
a

h0
<< 1 and β =

h0
λ
<< 1,

where a is a typical amplitude, α a typical wavelength and h0 is the undisturbed depth of

the fluid, assumed to be constant. Consequently, the initial data f can be taken in the form

f(x) = αF (βx), where F is independent of α and β, thereby enforcing the small amplitude,

long wavelength presumption.

The IVP (1.3) has a distinguished history on both analytical and experimental sides. The global

well-posedness in Hs(R) for any s ≥ 0 for the BBM IVP was shown in [1]. Comparisons with

laboratory experiments may be found in [2].

The generalized BBM equation has the form

ut + ux + g(u)x + Lut = 0 (1.5)

where L is a Fourier-multiplier operator related to the linearized dispersion relation and g is

a smooth, real-valued function of a real variable. Local and global well-posedness results for

generalized BBM-type equations were presented in an initial form in [3]. The results of local

and global well-posedness for the gBBM-equations in weaker Lp-based spaces for appropriate

values of p were put forward in [4].
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To model two-way propagation of waves in physical systems where nonlinear and disper-

sive effects are equally important, systems of partial differential equations (PDEs) have been

used. The theories developed are local as well as global and use various techniques.

In the case of well-posedness for a system of equations with coupled nonlinearities, Bona,

Cohen and Wang [5] improved the global existence results obtained previously by Ash, Cohen

and Wang [6] for a system of two KdV equations coupled with quadratic nonlinearities. They

provided conditions on the coeficients of the quadratic nonlinear terms so that the IVP is glob-

ally well-posed in the L2-based Sobolev classes Hs(R)×Hs(R) for any s > −3/4.

The purpose of the present work is to analyze and determine conditions under which

the initial-value problem (1.1) - (1.2) is globally well-posed in the L2-based Sobolev spaces

Hs(R) × Hs(R) for s ≥ 0. This is accomplished by first converting the IVP into a system

of integral equations. This step does not depend upon the degree of the polynomials P and

Q. This conversion is carried out in the first part of Chapter 2, right after Notation is fixed.

In the rest of Chapter 2 and through Chapter 5, the focus is on the case when P and Q

are homogeneous quadratic polynomials. Conservation Laws are determined in the second

part of Chapter 2. These will be used later to derive the a priori bounds that lead to global

well-posedness. Following the idea in [3], local well-posedness can be assured by applying the

contraction-mapping principle in the spaces Hk(R) × Hk(R) for k ≥ 1. Chapter 3 is devoted

to local well-posedness, initially deduced for the L∞ × L∞ case and then for Hk(R) ×Hk(R)

for k ≥ 1. Chapter 4 is concerned with the L2 × L2 case, using an approach inspired from the
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work of Bona & Tzvetkov [1]. The result obtained thus far is extended to Hs × Hs for any

s ≥ 0 by applying nonlinear interpolation theory in Chapter 5. Attention is then turned to the

case when the two polynomials that comprise the nonlinearity of the model are cubic. Similar

to the quadratic case, the system is locally well posed in L2-based spaces. Conditions on the

coefficients of the polynomials P and Q are also determined so that the invariants to be used

for global well-posedness exist.



CHAPTER 2

PRELIMINARIES

2.1 Notation

The notational conventions and function-space designations used in this paper are set

out here. For 1 ≤ p < ∞, Lp = Lp(R) connotes the pth-power Lebesque-integrable functions

with the usual modification for the case p = ∞. The norm of a function f ∈ Lr with 1 ≤

r ≤ ∞ is written ‖f‖r while the Lr × Lr-norm of a pair (f, g) of such functions is written

‖(f, g)‖Lr×Lr
= ‖f‖r + ‖g‖r . In general, if X and Y are Banach spaces, then their Cartesian

product X×Y is a Banach space with a product norm defined by ‖(f, g)‖X×Y = ‖f‖X +‖g‖Y .

The Sobolev class Hs = Hs(R) for s ≥ 0 is the class of measurable functions f whose Fourier

transform f̂(ξ) is a measurable function, square integrable with respect to the measure (1 +

|ξ|)2sdξ, where

f̂(ξ) =

∫ ∞
−∞

f(x)e−ixξdx.

We will usually use simply Hs rather than Hs(R) unless emphasis on the domain of definition

of the functions is needed. The norm in Hs ×Hs is denoted ‖·‖Hs×Hs . Similarly, for s ≥ 0 an

integer and p ≥ 1, the space

W s
p (R) =

{
f, f ′, ..., f (s) ∈ Lp :

∫ ∞
−∞

(
|f(x)|p + |f (s)(x)|p

)
dx <∞

}

6
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is a Banach space endowed with the norm

‖f‖W s
p

=

[ ∫ ∞
−∞

(
|f(x)|p + |f (s)(x)|p

)
dx

] 1
p

.

If X is any Banach space and T > 0 given, C(0, T ;X) is the class of continuous maps from

[0, T ] into X with its usual norm

‖u‖C(0,T ;X) = sup
t∈[0,T ]

‖u(t)‖X .

The subspace C1(0, T ;X) of the elements of C(0, T ;X) for which the limit

u′(t) = lim
h→0

u(t+ h)− u(t)

h

exists in C(0, T ;X), is also a Banach space with the obvious norm. For k ∈ N the spaces

Ck(0, T ;X) are defined inductively and by analogy. For convenience and when there couldn’t

be any confusion created, ∫ ∞
−∞

f(x) is replaced by

∫
f.

2.2 Integral Equation

The analysis begins with local well-posedness in a reasonably broad set of functional

classes. To accomplish this, the given system is converted to an equivalent system of integral

equations. This is independent of the form and degree of the polynomials P and Q.



8

Let U denote the vector

U =

 u

v


of dependent variables, U0 the vector

U0 =

 u0

v0


of initial data and M the vector of non-linearities

M(U) =

 P (u, v)

Q(u, v)

 .

Then the system can be written as

Ut + Ux − Uxxt = −Mx,

with

U(x, 0) = U0(x).

Rearranging this equation leads to

Ut − Uxxt = −Ux −Mx,
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or

(I − ∂2x)Ut = −∂x(U +M).

Inverting the operator (I − ∂2x) subject to boundness at ±∞ leads to

Ut(x, t) = −(I − ∂2x)−1∂x
[
U(x, t) +M(U(x, t))

]
. (2.1)

For now, assume that U is bounded or at least is not growing exponentially fast as x → ±∞.

Under that assumption, after integrating by parts, we obtain the system

Ut(x, t) =

∫ ∞
−∞

K(x− y)
[
U(y, t) +M(U(y, t))

]
dy, (2.2)

where the kernel K is applied to the vector U componentwise and

K(x) =
1

2
sgn(x)e−|x|.

Integrating the relation above with respect to t leads to the integral equation

U(x, t) = U0(x) +

∫ t

0

∫ ∞
−∞

K(x− y)
[
U(y, s) +M

(
U(y, s)

)]
dyds. (2.3)

If we look at this integral formula as

U = AU (2.4)
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where the operator A is defined by

AU(x, t) := U0 +

∫ t

0

∫ ∞
−∞

K(x− y)
[
U(y, s) +M(U(y, s))

]
dyds, (2.5)

the problem of finding a solution to the integral equation becomes a fixed-point problem for

A. A solution can be inferred to exist by showing that A is a contraction and then applying

the Contraction Mapping Theorem. This is the strategy for establishing local well posedness

pursued in Chapter 3.

2.3 Hamiltonian Structure and Conservation Laws

As we will see, local well-posedness theory doesn’t depend on assumptions about the

coefficients of P and Q. To move to global in time well-posedness, we need a priori estimates

for the solution. To prepare for that, observe that the system has a Hamiltonian structure

which sometimes turns out to be helpful in estimating the growth of the spacial norms of the

solution as functions of time. Assume that we have in hand a solution (u, v) of the system

which is not growing exponentially for x → ±∞. That such solutions exist, at least locally in

time, is a consequence of the theory in Chapter 3.
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2.3.1 Energy invariant

Consider the following quadratic functional:

Ω(u, v) :=

∫ (
au2 + buv + cv2 + du2x + euxvx + fv2x

)
dx,

where a, b, c, d, e, f are real numbers to be determined. A formal calculation where integration

by parts is used with the assumption that (u, v) is the solution of the system and u and v and

their derivatives do not make any contribution at x = ±∞, leads to the formulas

d

dt
Ω =

∫ (
2auut + butv + buvt + 2cvvt + 2duxtux + euxtvx + euxvxt + 2fvxvxt

)
dx

=

∫ (
2auut + butv + buvt + 2cvvt − 2duxxtu− euxxtv − euvxxt − 2fvvxxt

)
dx

=2

∫
u
(
aut − duxxt

)
dx+

∫
v
(
but − euxxt

)
dx+

+

∫
u
(
bvt − euvxxt

)
dx+ 2

∫
v
(
cvt − fvxxt

)
dx

=2

∫ (
a− d

)
uutdx− 2d

∫
uPxdx+

∫ (
b− e

)
vutdx− e

∫
vPxdx+

+

∫ (
b− e

)
uvtdx− e

∫
uQxdx+ 2

∫ (
c− f

)
vvtdx− 2f

∫
vQxdx.

To simplify things a bit assume a = d, b = e and c = f . By expanding Px and Qx, the terms

in the sum above may be written in the form
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d

dt
Ω =− 2a

∫ (
2Au2ux +Buvux +Bu2vx + 2Cuvvx

)
dx

− b
∫ (

2Auvux +Buvvx +Bv2ux + 2Cv2vx

)
dx

− b
∫ (

2Du2ux + Eu2vx + Euvux + 2Fuvvx

)
dx

− 2c

∫ (
2Duvux + Ev2ux + Euvvx + 2Fv2vx

)
dx

=

∫ (
− 4Aa− 2Db

)
u2uxdx+

∫ (
2Cb− 4Fc

)
v2vxdx

−
∫ [(

2Ba+ Eb+ 2Ab+ 4Dc
)
uvux +

(
2Ba+ Eb

)
u2vx

]
dx

−
∫ [(

Bb+ 2Ec+ 4Ca+ 2Fb
)
uvvx +

(
Bb+ 2Ec

)
v2ux

]
dx

The first two terms of the sum above are integrals which have integrands that are x-derivatives.

Thus, for smooth solutions going to 0 at ±∞, they vanish without further assumptions. The

last two integrals in the sum would vanish without futher assumptions on (u, v) if and only if

2Ba+ Eb = 2Ab+ 4Dc,

Bb+ 2Ec = 4Ca+ 2Fb. (2.6)
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Thus a, b and c must solve the two equations

2Ba+
(
E − 2A

)
b− 4Dc = 0,

4Ca+
(

2F −B
)
b− 2Ec = 0,

(2.7)

for it to be the case that the time derivative above is zero. This pair of equations always has a

non-trivial solution.

For such values of a, b and c, Ω is an invariant of the temporal evolution of smooth

solutions of the given system. Furthermore one can easily see by calculation that

∂

∂u

(
bP + 2cQ

)
= 2
(
Ab+ 2Dc

)
u+

(
Bb+ 2Ec

)
v,

∂

∂v

(
2aP + bQ

)
=
(

2Ba+ Eb
)
u+ 2

(
2Ca+ Fb

)
v.

Therefore, according to (2.7),

∂

∂u

(
bP + 2cQ

)
(u, v) =

∂

∂v

(
2aP + bQ

)
(u, v).

It follows that there is a cubic polynomial R(u, v) such that

∂R

∂u
= 2aP + bQ and

∂R

∂v
= bP + 2cQ. (2.8)
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2.3.2 Second Conservation Law

For the same a, b and c, we search for a second Conservation Law. To calculate the time

derivative of the functional ∫ ∞
−∞

(
au2 + buv + cv2

)
dx,

integration by parts and the assumption that (u, v) is a solution of the system which, along

with their first few derivatives, do not have any contribution at x = ±∞. Using the relations

∫
ut(u− uxt + P ) = 0,∫

ut(v − vxt +Q) + vt(u− ux + P ) = 0,∫
vt(v − vxt +Q) = 0,



15

it follows that

d

dt

∫ ∞
−∞

(
au2 + buv + cv2

)
dx =

∫ (
2auut + butv + buvt + 2cvvt

)
dx =

=2a

∫
uutdx+ b

∫ (
utv + uvt

)
dx+ 2c

∫
vvtdx

=2a

∫ [
ut(u− uxt + P )

]
dx+ 2a

∫
utuxtdx− 2a

∫
utPdx

+ b

∫
ut
(
v − vxt +Q

)
dx+ b

∫
utvxtdx− b

∫
utQdx

+ b

∫
vt
(
u− uxt + P

)
dx+ b

∫
vtuxtdx− b

∫
vtPdx

+ 2c

∫ [
vt
(
v − vxt +Q

)]
dx+ 2c

∫
vtvxtdx− 2c

∫
vtQdx

=−
∫ [(

2aP + bQ
)
ut +

(
bP + 2cQ

)
vt

]
dx+ b

∫
d

dx
(utvt)dx

=−
∫ (

∂R

∂u
ut +

∂R

∂v
vt

)
dx

=− d

dt

∫
Rdx.

Consequently, we find that

d

dt

∫ ∞
−∞

(
au2 + buv + cv2 +R(u, v)

)
dx = 0.

Therefore if the functional Φ(u, v) is defined by

Φ(u, v) :=

∫ ∞
−∞

(
au2 + buv + cv2 +R(u, v)

)
dx, (2.9)
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then Φ(u, v) is also an invariant of the temporal evolution of smooth solutions of our system

and it serves as a Hamiltonian for the given system as long as 4ac− b2 is not 0.

Both these conserved quantities Ω and Φ are going to be used further for obtaining a

priori bounds on solutions of the system when the quadratic form q defined by

q(u, v) = au2 + buv + cv2, (2.10)

vanishes only at origin which is the case exactly when its discriminant is negative. Of course,

neither a nor c can be 0 if the discriminant is negative. Without loss of generality, assume both

a and c are positive.

2.4 Positive Definite Condition on the Coefficients

Referring back to the system (2.6), the coefficient matrix is

N =

2B E − 2A −4D

4C 2F −B −2E

 .

When rank(N) = 2, then a, b, c are given by


a

b

c

 =


E(E − 2A) + 2D(B − 2F )

−2BE + 8CD

B(B − 2F ) + 2C(E − 2A)

 ,
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up to a non-zero scalar multiple.

By calculation, it easily follows that for these values, if

4ac =BE(E − 2A)(B − 2F ) + 2CE(E − 2A)2 + 2BD(B − 2F )2

+ 4CD(E − 2A)(B − 2F )

=(BE + 4CD)(E − 2A)(B − 2F ) + 2CE(E − 2A)2 + 2BD(B − 2F )2

>(BE − 4CD)2 = b2; (2.11)

then the quadratic form q defined in (2.10) is positive definite.

The case rank(N) = 1 has three subcases, the complete analysis dependents on the

quantity of (E − 2A)2 + 8BD or (2F − B)2 + 8CE. If the bigger one is strictly positive, the

system (1.1) can be decoupled, the positive definite condition holds true. If the bigger quantity

is equal to 0 then both are equal to zero and the method used is not applicable. A different

method would show that the global well-posedness holds true. If smallest one of the quantities

is negative, the result is not true anymore. The system can be written as a single complex

BBM-equation instead of two equations. Numerical methods show that the system’s solution

blows up in finite time. The details will be pursued later as a companion result of this thesis

and omitted here. However, as a remark, a few particular examples of the coefficient choices

are presented.
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In the case that B = C = D = E = 0 and A,F 6= 0 then both quantities (E−2A)2+8BD

and (2F − B)2 + 8CE are strictly positive, the initial system is decoupled and by choosing

a = c = 1 and b = 0, one obtains a time invariant Ω under the flow generated by the (1.1).

In the case that A = 1
2 , B = C = D = F = 0, and E = 1 then both quantities

(E − 2A)2 + 8BD and (2F −B)2 + 8CE are equal to zero. The system looks as follows


ut + ux − uxxt + uux = 0,

vt + vx − vxxt + (uv)x = 0,

(2.12)

The local and global well-posedness results hold true.

In the case that A = 1
2 , B = D = F = 0, C = −1

2 and E = 1 then (E− 2A)2 + 8BD and

(2F −B)2 + 8CE are equal to zero. The system looks as follows


ut + ux − uxxt + uux − vvx = 0,

vt + vx − vxxt + (uv)x = 0,

(2.13)

or equivalently, as a complex-BBM equation

(u+ iv)t + (u+ iv)x − (u+ iv)xxt + (u+ iv)(u+ iv)x = 0. (2.14)

This equation is not globally well-posed, based on numerical calculations.

With a, b and c determined, the next step is to find the coefficients of the cubic polynomial

R(u, v) := αu3 + βu2v + γuv2 + δv3,
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appearing in the second conservation law. A calculation yields

α =
1

3
(2aA+ bD), β = bA+ 2cD,

γ = 2aC + bF, δ =
1

3
(bC + 2cF ). (2.15)

Because of (2.6), β and γ may also be written as

β = aB +
1

2
bE, γ =

1

2
bB + cE.



CHAPTER 3

WELL-POSEDNESS IN INTEGER ORDER SOBOLEV SPACES

3.1 Local Well Posedness

Local well-posedness is proved via the Contraction Mapping Principle.

3.1.1 Local Well-Posedness in L∞ × L∞

Consider the space

XT := L∞
(
R× [0, T ]

)
× L∞

(
R× [0, T ]

)
(3.1)

with its usual norm,

∥∥∥U − Ũ∥∥∥
XT

:= sup
x∈R,t∈[0,T ]

|u(x, t)− ũ(x, t)|+ sup
x∈R,t∈[0,T ]

|v(x, t)− ṽ(x, t)|, (3.2)

where

U =

u
v

 and Ũ =

ũ
ṽ

 .

20
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(XT , ‖.‖XT
) is a Banach space. To establish local existence via the Contraction Mapping

Principle, the domain for the operator A will be restricted to the closed subset

BR(0) := {U ∈ XT : ‖U‖XT
≤ R},

where R > 0 and T > 0 will be determined presently.

Consider U, Ũ ∈ BR(0), and look for an estimate of
∥∥∥AU −AŨ

∥∥∥
XT

. The aim is to

choose specific values of R and T so that A is a contraction on BR(0). Using the definition of

the operator A, one calculates thusly for U = (u, v) and Ũ = (ũ, ṽ)

∥∥∥AU −AŨ
∥∥∥
XT

= sup
x∈R

∣∣∣∣ ∫ T

0

∫ ∞
−∞

K(x− y)
[
u(y, t) + P (u, v)− ũ(y, t)− P (ũ.ũ)

]
dyds

∣∣∣∣
+ sup
x∈R

∣∣∣∣ ∫ T

0

∫ ∞
−∞

K(x− y)
[
v(y, t) +Q(u, v)− ṽ(y, t)−Q(ũ.ũ)

]
dyds

∣∣∣∣
≤ sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣∣K(x− y)
∣∣∣∣∣∣(u− ũ)

(
1 +A(u+ ũ) +Bv

)
+ (v − ṽ)

(
C(v + ṽ) +Bũ

)∣∣∣dyds
+ sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣∣K(x− y)
∣∣∣∣∣∣(u− ũ)

(
D(u+ ũ) + Eṽ

)
+ (v − ṽ)

(
1 + F (v + ṽ) + Eu

)∣∣∣dyds
≤ sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣K(x− y)
∣∣[|u− ũ|(1 + |A|(|u|+ |ũ|) + |B||v|

)
+ |v − ṽ|

(
|C|(|v|+ |ṽ|) + |B||ũ|

)]
dyds

+ sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣K(x− y)
∣∣[|u− ũ|(|D|(|u|+ |ũ|) + |E||ṽ|

)
+ |v − ṽ|

(
1 + |F |(|v|+ |ṽ|) + |E||u|

)]
dyds. (3.3)
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Furthermore, as U, Ũ ∈ BR(0), it follows that the inequality can be continued, viz .

∥∥∥AU −AŨ
∥∥∥
XT

≤ c1R sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣∣K(x− y)
∣∣∣[|u− ũ|+ |v − ṽ|] dyds

+ c2R sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣∣K(x− y)
∣∣∣[|u− ũ|+ |v − ṽ|] dyds

≤
∥∥∥U − Ũ∥∥∥

XT

CR sup
x,t

∫ t

0

∫ ∞
−∞
|K|dyds

≤
∥∥∥U − Ũ∥∥∥

XT

CR T, (3.4)

where c1R, c
2
R and CR are constantsonly dependant on R. The choices of R and T are to be made

such that A maps BR(0) into itself and so that A is a contraction on BR(0). In particular, one

would need to have

CR T < 1.

Choose T and R so that

CR T =
1

2
,

for example. For any U ∈ BR(0), we need ‖AU‖XT
≤ R. Since

‖AU‖XT
= ‖AU − 0‖XT

≤ ‖AU −A0‖XT
+ ‖A0− 0‖XT

≤ 1

2
‖U − 0‖XT

+ ‖U0‖∞ ≤
1

2
R+ ‖U0‖∞ ≤ R, (3.5)
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which is satisfied by choosing R = 2 ‖U0‖∞. Then, the choice

T =
1

2 CR
,

allows us to apply the Contraction Mapping Theorem to the integral equation (2.3). The result

is existence of a unique U ∈ XT that is solution of the given system.

3.1.2 Local Existence in Other Spaces

Lemma 1. Suppose that Z is a space embedded in L∞ such that, for any u, v ∈ Z, there exist

global constants C1 and C2 satisfying

(i) ‖uv‖Z ≤ C1 ‖u‖Z ‖v‖Z and (ii)

∥∥∥∥∫ ∞
−∞

K(x− y)u(y)dy

∥∥∥∥
Z

≤ C2 ‖u‖Z . (3.6)

Then there is a unique local solution for the initial-value problem for (1.1) in the space C
(
0, T ;Z×

Z
)
.

Proof. The space C
(
0, T ;Z × Z

)
carries the norm

∥∥∥U − Ũ∥∥∥
C(0,T ;Z×Z)

:= sup
t∈[0,T ]

‖u(·, t)− ũ(·, t)‖Z + sup
t∈[0,T ]

‖v(·, t)− ṽ(·, t)‖Z , (3.7)

where U = (u, v) and Ũ = (ũ, ṽ).

Let ZT := C(0, T ;Z). Then for the easiness of notation, the C(0, T ;Z × Z)-norm and

the Z × Z-norm of a vector U will respectively be denoted by ‖U‖ZT
and ‖U‖Z henceforth.
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The collection C
(
0, T ;Z×Z

)
is a Banach space of course. Restrict the operator A defined

in (2.5) to

BR,Z(0) := {U ∈ C(0, T ;Z × Z) : ‖U‖ZT
≤ R}.

Consider U, Ũ ∈ BR,Z(0), and look for an estimate of
∥∥∥U − Ũ∥∥∥

ZT

. The aim is to choose

specific values of R and T so that A is a contraction on BR,Z(0). Notice that

∥∥∥AU −AŨ
∥∥∥
ZT

= sup
t∈[0,T ]

∥∥∥∥∫ t

0

∫ ∞
−∞

K(x− y)

[
u(y, s) + P (u, v)− ũ(y, s)− P (ũ.ũ)

]
dyds

∥∥∥∥
Z

+ sup
t∈[0,T ]

∥∥∥∥∫ t

0

∫ ∞
−∞

K(x− y)

[
v(y, s) +Q(u, v)− ṽ(y, s)−Q(ũ.ũ)

]
dyds

∥∥∥∥
Z

≤ sup
t∈[0,T ]

∫ t

0

∥∥∥∥K ∗ [(u− ũ)(1 +A(u+ ũ) +Bv) + (v − ṽ)(C(v + ṽ) +Bũ)

]∥∥∥∥
Z

ds

+ sup
t∈[0,T ]

∫ t

0

∥∥∥∥K ∗ [(u− ũ)(D(u+ ũ) + Eṽ) + (v − ṽ)(1 + F (v + ṽ) + Eu)

]∥∥∥∥
Z

ds

≤ T

∥∥∥∥∫ ∞
−∞

K(x− y)
[
(u− ũ)(1 +A(u+ ũ) +Bv) + (v − ṽ)(C(v + ṽ) +Bũ)

]
dy

∥∥∥∥
ZT

+ T

∥∥∥∥∫ ∞
−∞

K(x− y)||
[
(u− ũ)(D(u+ ũ) + Eṽ) + (v − ṽ)(1 + F (v + ṽ) + Eu)

]
dy

∥∥∥∥
ZT

.
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Applying (ii) from (3.6), the triangle inequality and (3.6) part (i) yields

∥∥∥AU −AŨ
∥∥∥
ZT

≤ TC2

[ ∥∥∥(u− ũ)
(

1 +A(u+ ũ) +Bv
)

+ (v − ṽ)
(
C(v + ṽ) +Bũ

)∥∥∥
ZT

+
∥∥∥(u− ũ)

(
D(u+ ũ) + Eṽ

)
+ (v − ṽ)

(
1 + F (v + ṽ) + Eu

)∥∥∥
ZT

]
≤ TC2

[
‖u− ũ‖ZT

+
∥∥∥(u− ũ)

(
A(u+ ũ) +Bv

)∥∥∥
ZT

+
∥∥∥(v − ṽ)

(
C(v + ṽ) +Bũ

)∥∥∥
ZT

+
∥∥∥(u− ũ)

(
D(u+ ũ) + Eṽ

)∥∥∥
ZT

+ ‖v − ṽ‖ZT
+
∥∥∥(v − ṽ)

(
F (v + ṽ) + Eu

)∥∥∥
ZT

]
≤ TC2

[
‖u− ũ‖ZT

+ C1 ‖u− ũ‖ZT
‖A(u+ ũ) +Bv‖ZT

+ C1 ‖v − ṽ‖ZT
‖C(v + ṽ) +Bũ)‖ZT

+ C1 ‖u− ũ‖ZT
‖D(u+ ũ) + Eṽ‖ZT

+ ‖v − ṽ‖ZT
+ C1 ‖v − ṽ‖ZT

‖F (v + ṽ) + Eu)‖ZT

]
≤ TC2

[
‖u− ũ‖ZT

+ C1 ‖u− ũ‖ZT

(
|A|(‖u‖ZT

+ |A| ‖ũ‖ZT
+ |B| ‖v‖ZT

)
+ C1 ‖v − ṽ‖ZT

(
|C|(‖v‖ZT

+ |C| ‖ṽ‖ZT
+ |B| ‖ũ‖ZT

)
+ C1 ‖u− ũ‖ZT

(
|D|(‖u‖ZT

+ |D| ‖ũ‖ZT
+ |E| ‖ṽ‖ZT

)
+ ‖v − ṽ‖ZT

+ C1 ‖v − ṽ‖ZT

(
|F | ‖v‖ZT

+ |F | ‖ṽ‖ZT
+ |E| ‖u‖ZT

)]
. (3.8)

As U, Ũ ∈ BR,Z(0), this can be further bounded, viz.

∥∥∥AU −AŨ
∥∥∥
ZT

≤ TC2

[
‖u− ũ‖ZT

(
1 + C1R(2|A|+ |B|+ 2|D|+ |E|)

)
+ ‖v − ṽ‖ZT

(
1 + C1R(2|C|+ |B|+ 2|F |+ |E|)

)]
≤ TC2

[
1 + CR

](
‖u− ũ‖ZT

+ ‖v − ṽ‖ZT

)
= TC2

[
1 + CR

] ∥∥∥U − Ũ∥∥∥
ZT

.
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Let R = 2 ‖U0‖Z and demand that

TC2

(
1 + CR

)
=

1

2
.

Then A is contractive on BR,Z(0) and for any U ∈ BR(0),

‖AU‖ZT
≤ R.

based on the same argument as in (3.5). Therefore, the Contraction Mapping Theorem can be

applied to the integral equation (2.3) and the result is a unique U that is solution of the given

system.

This Lemma provides the local well-posedness on H1 , H2 and in general in Hs, for s > 1
2

as they are Banach algebras which satisfy both (i) and (ii) in (3.6).

3.2 Smoothness and Regularity

Consider U0, V0 ∈ L∞(R) as initial data, fix T > 0, XT defined as in (3.1) and let

U, V ∈ XT be the corresponding solutions of the initial-value problem (1.1) - (1.2). To check

the continuous dependence of solutions on the initial data, start locally. The overall conclusion

follows from iteration of the argument below:

U = AU0U = U0 +

∫ t

0

∫ ∞
−∞

K(x− y)

(
U(y, s) +M

)
dyds,
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and

V = AV0V = V0 +

∫ t

0

∫ ∞
−∞

K(x− y)

(
V (y, s) +M

)
dyds.

Using the fact that A is a contraction in XT , at least for small T ,

‖U − V ‖XT
= ‖AU0U −AV0V ‖XT

≤ ‖AU0U −AU0V ‖XT
+ ‖AU0V −AV0V ‖XT

≤ θ ‖U − V ‖XT
+ ‖U0 − V0‖∞ ,

where 0 < θ < 1. Therefore,

‖U − V ‖XT
≤ 1

1− θ
‖U0 − V0‖∞

and the mapping of the initial data U0 to the solution U is seen to be locally Lipschitz continu-

ous. Moreover, as the initial-value problem (1.1) - (1.2) was solved locally thus far by converting

it into a system of integral equations and applying a Picard iteration type of approach, there is

automatically strong regularity results for the flow map. The argument for smoothness of the

flow map has been presented in several contexts before (see, e.g. Bona, Sun and Zhang [7] or

Bona and Tzvetkov [1]).

Notice that if U0 ∈ Cb(R)× Cb(R), the solution determined via the last proposition lies

in C([0, T ]× R)× C([0, T ]× R).
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Let U be a continuous bounded solution of the initial-value problem (1.1) - (1.2). Since

U solves the system of integral equations it follows immediately that U is differentiable with

respect to t and that

Ut(x, t) =

∫ ∞
−∞

K(x− y)
[
U(y, t) +M

(
U(y, t)

)]
dy,

or, what is the same,

Ut(x, t) = −(I − ∂2x)−1∂x

[
U(x, t) +M

(
U(x, t)

)]
.

Clearly Ut is a C1-function in both x and t and therefore

Utt(x, t) =

∫ ∞
−∞

K(x− y)
[
Ut(y, t) +Mt

]
dy.

The latter is also a C1-function in x and t. By induction, one can conclude that U is a C∞-

function in t and ∂kt U is a C1-function in x for any k ≥ 1.

Considering the spatial regularity, start with the fixed point U = AU of the system (2.3)

written as

U(x, t) = U0 +

∫ t

0
K ∗

[
U(y, s) +M

]
ds (3.9)
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and initial data U0 that lies in C1
b (R) × C1

b (R). This is an important assumption which will

influence the conclusion drawn at the end of this paragraph. Then U is also a C1 function and

direct calculation yields

∂x

[
K ∗ (U +M)

]
=
(
U +M

)
− 1

2

∫ ∞
−∞

e−|x−y|
[
U(y, t) +M

]
dy. (3.10)

Moreover, as U +M is C1, (3.10) can be differentiated with respect to x to obtain

∂2x

[
K ∗

(
U +M

)]
=
(
U +M

)
x

+
1

2

∫ ∞
−∞

sgn(x− y)e−|x−y|
[
U(y, t) +M

]
dy

=
(
U +M

)
x

+
[
K ∗ (U +M)

]
.

Therefore,

(1− ∂2x)
[
K ∗ (U +M)

]
= −(U +M)x,

so U will always have one derivative and the convolution on the RHS makes it even smoother.

Consequently, by substituting the result above in (3.9), we find that

(1− ∂2x)Ut = (U +M)x.

Thus U is a solution of the initial system (1.1) and it has reasonable regularity.

However, it is easily shown that U can not have more spacial regularity than the initial

data U0. Assume that for some t > 0, U(·, t) is a Ck-function in x while U0(·, t) is a Ck−1 \Ck-
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function in x. Then (U + M) is a Ck-function in x and the result after convolution with K,

would be a Ck+1-function in x. Integrating this function with respect to t, would still preserve

the Ck+1 property. Therefore from (3.9) it follows that U0(·, t) is a Ck-function in x, contrary

to the assumption made. 2

Furthermore, the smoothing associated with the temporal derivative for U ∈ Hk × Hk

is approached just as in the L∞ case, to conclude that Ut is spatially smoother and it lies in

C(0,∞;Hk+1×Hk+1). As for the spatial regularity, the system solution has at most the same

regularity as the initial data.

3.3 A priori Estimates and Global Well Posedness for Smooth Solutions

As seen in the previous sections, local well-posedness theory doesn’t depend on assump-

tions about the coefficients of P and Q. To move to global in time well-posedness, a priori

estimates for the solution are needed. These will be derived below assuming that u and v are

smooth solutions of the system which are not growing exponentially for x→ ±∞ and assuming

the condition for the quadratic form q to be positive definite is satisfied by its coefficients (see

section 2.4).

In this case, the integrand of the Ω is positive definite too. Consequently, there is a λ > 0

such that

∫ ∞
−∞

[
u2(x, t) + v2(x, t) + u2x(x, t) + v2x(x, t)

]
dx ≤ λΩ(u, v) = λΩ(u0, v0) = M1. (3.11)
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3.3.1 H1- Bounds

Assume now that the initial condition (u0, v0) is in H1×H1 and let (u, v) be the solution

pair of our system corresponding to this data. By definition,

∥∥(u, v)∥∥2
H1×H1 =

∫ ∞
−∞

(
u2 + v2 + u2x + v2x

)
dx.

Hence, the relation (3.11) can also be written as

‖(u, v)‖2H1×H1 ≤M1, (3.12)

so the H1 ×H1- norm of (u, v) is also uniformly bounded independently of t.

Therefore the local well-posedness result obtained in section 3.1.2 can be extended to

conclude the existence of globally defined solution that lies in C(0, T ;H1 ×H1) for any T > 0.

The solution is unique and depends continuously on the initial data in H1 ×H1.

3.3.2 Differential Form of the Gronwall Lemma

This well-known result will be used going forward ([8], page 708).

Lemma 2. (i) Let η(·) be a nonnegative, absolutely continuous function on [0, T ] which satisfies

for a.e. t the differential inequality

η′(t) ≤ φ(t) η(t) + ψ(t), (3.13)



32

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t) ≤ e
∫ t
0 φ(s) ds

(
η(0) +

∫ t

0
ψ(s) ds

)
(3.14)

for all 0 ≤ t ≤ T .

3.3.3 H2 - Bounds

Consider again the solution (u, v) of the system (1.1), whose first few partial derivatives

lie in L2 × L2. To estimate the growth of the H2 ×H2-norm of a solution U = (u, v), consider

the following calculation:

d

dt

∫ (
u2x + v2x + u2xx + v2xx

)
dx = 2

∫
(uxuxt + vxvxt + uxxuxxt + vxxvxxt)dx

= 2

∫ (
− utuxx + uxxuxxt − vtvxx + vxxvxxt

)
dx

= 2

∫ (
uxx(uxxt − ut) + vxx(vxxt − vt)

)
dx

=

∫ (
uxx(ux + Px) + vxx(vx +Qx)

)
dx

= 2

∫ (
uxxPx + vxxQx

)
dx

=

∫ (
2Auuxuxx +Bvuxuxx +Buvxuxx + 2Cvvxuxx+

+ 2Duuxvxx + Euvxvxx + Evuxvxx + 2Fvvxvxx

)
dx. (3.15)

The integrand on the RHS is a polynomial whose general monomial term is of the form rsxwxx

where r, s, w are either u or v. To obtain a bound on the H2×H2 norm of the solution, let M1
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be the previously derived time-independent bound in H1 × H1. Then, elementary estimates

imply that

∣∣∣∣∫ (rsxwxx)dx

∣∣∣∣ ≤ ‖r‖∞ ‖sx‖2 ‖wxx‖2 ≤ ‖r‖1/22 ‖rx‖1/22 ‖sx‖2 ‖wxx‖2 ≤M2
1 ‖wxx‖2 . (3.16)

Let

N(t) =
[ ∫ (

u2x(x, t) + v2x(x, t) + u2xx(x, t) + v2xx(x, t)
)
dx
] 1

2

Applying the estimate (3.16) systematically to (3.15) yields

d

dt
N2(t) ≤ C1(‖uxx(·, t)‖2 + ‖vxx(·, t)‖2)

≤ C1N(t),

where C1 is a constant that depends on M1 and on the absolute values of the polynomial

coefficients, but is time-independent. Hence,

2N(t)
d

dt
N(t) ≤ C1N(t)

implies that

d

dt
N(t) ≤ C1

2
.

It follows that

N(t) ≤ N(0) +
1

2
C1 t, (3.17)
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for any t > 0.

The relation (3.17) together with (3.12) lead to

‖(u(·, t), v(·, t))‖2H1×H1 +N2(t) ≤M1 +
(
N(0) +

1

2
C1 t

)2

thus

‖(u(·, t), v(·, t))‖2H2×H2 ≤M1 +
(
N(0) +

1

2
C1 t

)2
.

Hence

‖(u(·, t), v(·, t))‖H2×H2 ≤ C2 + C3 t,

where C2, C3 > 0 are t-independent constants that depend on M1 and N(0), so on H2 ×H2-

norm of (u(·, 0), v(·, 0)).

Therefore the local well-posedness result in time obtained in section 3.1.2 can be ex-

tended to any time interval [0, T ]. It concludes the existence of globally defined solution in

C(0,∞;H2 × H2). The solution is unique and depends continuously on the initial data in

H2 ×H2.

3.3.4 Hk - Bounds

The a priori Hk × Hk bounds are determined inductively. The claim is that for any

positive integer k, the Hk × Hk norm of the solution is bounded on bounded time intervals.
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The cases k = 1 and k = 2 are in hand. Assuming now that for every j with 2 ≤ j ≤ k, there

is a positive constant

cj−1 = cj−1

(∥∥(u(·, 0), v(·, 0)
)∥∥
Hj−1×Hj−1 ;T

)

such that for any solution (u, v) of the system (1.1), the inequality

‖(u(·, t), v(·, t)‖Hj−1×Hj−1 ≤ cj−1 (3.18)

holds. Then there is a positive constant

ck = ck
(
‖(u(·, 0), v(·, 0))‖Hk×Hk ;T

)

such that for 0 ≤ t ≤ T

‖(u(·, t), v(·, t))‖Hk×Hk ≤ ck. (3.19)
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Proof. To begin with, integration by parts and (1.1) implies

1

2

d

dt

∫ [(
∂(k−1)x u

)2
+
(
∂(k)x u

)2]
dx =

∫ (
∂(k−1)x u ∂(k−1)x ut + ∂(k)x u ∂(k)x ut

)
dx

=

∫ (
∂(k−1)x u ∂(k−1)x ut − ∂(k−1)x u ∂(k+1)

x ut

)
dx

=

∫
∂(k−1)x u

(
∂(k−1)x ut − ∂(k−1)x uxxt

)
dx

= −
∫
∂(k−1)x u ∂(k−1)x

(
ux − Px

)
dx

= −
∫ (

∂(k−1)x u
)(

∂(k)x P
)
dx

=

∫ (
∂(k)x u

)(
∂(k−1)x P

)
dx,

1

2

d

dt

∫ [(
∂(k−1)x v

)2
+
(
∂(k)x v

)2]
dx =

∫ (
∂(k)x v

)(
∂(k−1)x Q

)
dx

The results above will be used in the following estimate

1

2

d

dt

∫ [(
∂(k−1)x u

)2
+
(
∂(k−1)x v

)2
+
(
∂(k)x u

)2
+
(
∂(k)x v

)2]
dx =

≤
∫ (

∂(k)x u
)(

∂(k−1)x P
)

+
(
∂(k)x v

)(
∂(k−1)x Q

)
dx. (3.20)
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The next step is to estimate the monomials that the polynomial above is made of. These have

the form

∫ ∣∣∣(∂(k)x w
)(

∂(j)x r
)(

∂(k−1−j)x s
)∣∣∣ dx ≤ ∥∥∥∂(k)x w

∥∥∥
2

∥∥∥∂(j)x r
∥∥∥
∞

∥∥∥∂(k−1−j)x s
∥∥∥
2

≤
∥∥∥∂(k)x w

∥∥∥
2

∥∥∥∂(j)x r
∥∥∥
H1
‖s‖Hk−1−j

≤
∥∥∥∂(k)x w

∥∥∥
2
‖r‖Hj ‖s‖Hk−1−j

≤
∥∥∥∂(k)x w

∥∥∥
2
‖r‖Hj ‖s‖Hk−1−j

≤ cjck−1−j
∥∥∥∂(k)x w

∥∥∥
2
, (3.21)

where r, s and w are either u or v. Thus,

1

2

d

dt

∫ [(
∂(k−1)x u

)2
+
(
∂(k−1)x v

)2
+
(
∂(k)x u

)2
+
(
∂(k)x v

)2]
dx

≤ c
(∥∥∥∂(k)x u

∥∥∥
2

+
∥∥∥∂(k)x v

∥∥∥
2

)
≤ c

(∫ [(
∂(k−1)x u

)2
+
(
∂(k−1)x v

)2
+
(
∂(k)x u

)2
+
(
∂(k)x v

)2]
dx

) 1
2

, (3.22)

where c is a constant. Solving the ordinary differential inequality yields

∥∥∥∂(k−1)x u
∥∥∥
2

+
∥∥∥∂(k−1)x v

∥∥∥
2

+
∥∥∥∂(k)x u

∥∥∥
2

+
∥∥∥∂(k)x v

∥∥∥
2
≤ c T.
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This together with (3.18) indicates the following:

‖(u(., t), v(., t))‖Hk×Hk ≤ ‖(u(., 0), v(., 0))‖Hk×Hk + cT. (3.23)

Therefore, there is a positive constant

ck = ck
(
‖(u(., 0), v(., 0))‖Hk×Hk ;T

)

such that

‖(u(., t), v(., t))‖Hk×Hk ≤ ck. (3.24)

This completes the induction.



CHAPTER 4

WELL-POSEDNESS IN L2 × L2

4.1 Local Existence

Consider the Banach space C
(
0, T ;L2(R)× L2(R)

)
with its usual norm

∥∥∥U − Ũ∥∥∥
C(0,T ;L2(R)×L2(R))

:= sup
t∈[0,T ]

‖u(·, t)− ũ(·, t)‖2 + sup
t∈[0,T ]

‖v(·, t)− ṽ(·, t)‖2 ,

where

U =

u
v

 and Ũ =

ũ
ṽ

 .

Let XT := C
(
0, T ;L2(R)

)
. For simplicity, C(0, T ;L2(R) × L2(R))-norm of a vector U

will be denoted by ‖U‖XT
.

To establish local existence via the Contraction Mapping Principle, the domain for the

operator A will be restricted to the closed subset

BR(0) := {U ∈ C
(
0, T ;L2(R)× L2(R)

)
: ‖U‖XT

≤ R},

where R > 0 and T > 0 will be determined. Consider U, Ũ ∈ BR(0), and look for an estimate

of
∥∥∥AU −AŨ

∥∥∥
XT

. The aim is to choose specific values of R and T so that A is a contraction
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on BR(0). Using the definition of the operator A, applying the triangle inequality and Holder’s

inequality one calculates that for U = (u, v) and Ũ = (ũ, ṽ),

∥∥∥AU −AŨ
∥∥∥
XT

= sup
t∈[0,T ]

∥∥∥∥∫ t

0
K ∗

[
u(x, t) + P (u, v)− ũ(x, t)− P (ũ, ṽ)

]
ds

∥∥∥∥
2

+ sup
t∈[0,T ]

∥∥∥∥∫ t

0
K ∗

[
v(x, t) +Q(u, v)− ṽ(x, t)−Q(ũ, ṽ)

]
ds

∥∥∥∥
2

≤ T ‖K ∗ (u− ũ)‖XT
+ T ‖K ∗ (v − ṽ)‖XT

+ T

∥∥∥∥K ∗ [(u− ũ)
(
A(u+ ũ) +Bv

)
+ (v − ṽ)

(
C(v + ṽ) +Bũ

)]∥∥∥∥
XT

+ T

∥∥∥∥K ∗ [(u− ũ)
(
D(u+ ũ) + Eṽ

)
+ (v − ṽ)

(
F (v + ṽ) + Eu

)]∥∥∥∥
XT

≤ 2T

[
‖u− ũ‖XT

(
1

2
+ (|A|+ |D|)(‖u‖XT

+ ‖ũ‖XT
) +B ‖v‖XT

+ |E| ‖ṽ‖XT

)
+ ‖v − ṽ‖XT

(
1

2
+ (|C|+ |F |)(‖v‖XT

+ ‖ṽ‖XT
) + |B| ‖ũ‖XT

+ |E| ‖u‖XT

)]
.

(4.1)

Using the fact that U, Ũ ∈ BR(0), the inequality becomes

∥∥∥AU −AŨ
∥∥∥
XT

≤ 2T

[
‖u− ũ‖XT

(
1

2
+ 2R(|A|+ |D|) + |B|R+ |E|R

)
+ ‖v − ṽ‖XT

(
1

2
+ 2R(|C|+ |F |) + |B|R+ |E|R

)]
≤ 2T

(
1

2
+R CR

)
‖U − V ‖XT

. (4.2)
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Let R = 2 ‖U0‖XT
and demand that

T

(
1

2
+R CR

)
=

1

4
.

Then A is contractive on BR(0) and for any U ∈ BR(0),

‖AU‖XT
≤ R, (4.3)

as in (3.5). Therefore, the Contraction Mapping Theorem can be applied to the integral equa-

tion (2.3) and the result is a unique U that is solution of the given system. Moreover, using the

same argument as in the previous chapter, the solution found above is seen to be continuously

dependent on the initial data.

4.2 Long Time Solutions for Small Initial Data

Now that the L2 × L2 local existence has been established, the next step is to look for

long time solutions when one starts off with L2-small initial data. One of the forms the system

(1.1) could be written in is

Ut(x, t) =

∫ ∞
−∞

K ∗
[
U +M

]
dx. (4.4)

If R denotes the operator

R = −(I − ∂2x)−1∂x, (4.5)
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then since R is a skew-adjoint operator,
∫
UR(U) = 0, Young’s inequality therefore implies

that

∫ ∞
−∞

UUtdx =

∫
U
[
R(U +M)

]
dx =

∫
U
(
K ∗M

)
dx =

≤ ‖U‖2 ‖K ∗M‖2 ≤ ‖U‖2 ‖K‖2 ‖M‖1 (4.6)

To continue the last estimate, the norm ‖M‖1 needs to be calculated and estimated in more

detail. Using the triangle and the Cauchy-Schwartz inequalities, it follows that

‖M‖1 =
∥∥Au2 +Buv + Cv2

∥∥
1

+
∥∥Du2 + Euv + Fv2

∥∥
1

≤
(
|A|+ |D|

)∥∥u2∥∥
1

+
(
|B|+ |E|

)
‖uv‖1 +

(
|C|+ |F |

)∥∥v2∥∥
1

≤
(
|A|+ |D|

)
‖u‖22 +

(
|B|+ |E|

)
‖u‖2 ‖v‖2 +

(
|C|+ |F |

)
‖v‖22

≤ c
(
‖u‖22 + ‖v‖22

)
≤ c ‖U‖22 .

Therefore,

∫ ∞
−∞

UUtdx ≤ ‖U‖2 ‖K‖2 c ‖U‖
2
2

≤ ‖U‖2 c̃ ‖U‖
2
2 = c̃ ‖U‖32 , (4.7)

where c and c̃ are constants.
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As U ∈ C(0, T ;L2) and Ut ∈ C(0, T ;H1) it follows that UUt ∈ C1(0, T ;L2) and

∫ ∞
−∞

UUt dx =
1

2

d

dt
‖U‖22 (4.8)

holds true.

The ordinary differential inequality

1

2

d

dt
‖U‖22 ≤ c̃ ‖U‖

3
2 ,

that follows from (4.7) and (4.8), implies that

d

dt
‖U‖2 ≤ c̃ ‖U‖

2
2 .

Solving the inequality, it follows that

− 1

‖U‖2
+

1

‖U0‖2
≤ c̃ T or ‖U(T )‖2 ≤

‖U0‖2
1− c̃ T ‖U0‖2

.

In conclusion, if the L2-norm is small to start with, then one can infer existence of an

L2-solution over a long time.

4.3 Global Well-Posedness in L2 × L2

Based on the results obtained in the two preceding sections, local well-posedness will be

extended to global well-posedness using a low-frequency/high-frequency decomposition method.
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Fix T > 0. If the initial data (u0, v0) is small enough in the L2×L2-norm, then the system (1.1)

is known to have a unique solution in C(0, T ;L2 × L2). Consider initial data of arbitrary size.

Split the initial data (u0, v0) ∈ L2 × L2 into two pieces, one “small” and the other “smooth”.

This is possible in the following manner:

u0 = u01 + u02 = (u0 − Φε ∗ u0) + Φε ∗ u0,

v0 = v01 + v02 = (v0 − Φε ∗ v0) + Φε ∗ v0,

where Φε is a standard mollifier. The important properties that are to be used here are

(i) Φε ∗ w0 and Φε ∗ vo are smooth in Hk,

(ii) Φε ∗ w0 → w0 in L2 when ε→ 0. (4.9)

Hence, by choosing ε > 0 small enough, we can insure that

u01 = (u0 − Φε ∗ u0) is small in L2-norm and u02 = Φε ∗ u0 is smooth,

v01 = (v0 − Φε ∗ v0) is small in L2-norm and v02 = Φε ∗ v0 is smooth. (4.10)

Applying the previous results to the system (1.1) with initial data (u01, v01), it is seen that

there is a unique solution (u, v) that lies in C([0, T ];L2 × L2).
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Consider now the initial-value problem



wt + wx − wxxt + P (w, z)x +
(

2Auw +Buz +Bvw + 2Cvz
)
x

= 0

zt + zx − zxxt +Q(w, z)x +
(

2Duw + Euz + Evw + 2Fvz
)
x

= 0

w0 = u02, z0 = v02

(4.11)

with the initial data (u02, v02) ∈ Hk×Hk. If this system has a solution (u′, v′) in C
(
[0, T ];Hk×

Hk
)

then (u+ u′, v + v′) will solve the initial system (1.1).

An a priori bound for (w, z) on H1 × H1-norm is necessary to extend the local existence for

(4.11) to the interval [0, T ]. To obtain an estimation of the H1×H1-norm, the following formal
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calculation comes to our rescue. The computation is easily justified by use of the continuous

dependence result and the time derivative makes sense as all the components are in C(0, T ;H1).

1

2

d

dt

∫ (
w2 + w2

x + z2 + z2x

)
dx =

∫ (
wwt + wxwxt + zzt + zxzxt

)
dx

=

∫ [
w(wt − wxxt) + z(zt − zxxt)

]
dx

=−
∫ [

w
(
wx + Px + (2Auw +Buz +Bvw + 2Cvz)x

)
+ z
(
zx +Qx + (2Duw + Euz + Evw + 2Fvz)x

)]
dx

=−
∫ [

B

2
(w2)xz + (C − E

2
)w(z2)x +Aux(w2) +B(uwz)x

+ (2D −B)uzxw + 2Duxwz +
B

2
vxw

2 + 2C(vwz)x + (E − 2C)vzwx

+D(w2)xz +
E

2
uxz

2 + Evxzw + Fvxz
2

]
dx

=−
∫ [(

Aux +
B

2
vx

)
w2 +

(E
2
ux + Fvx

)
z2 +

(B
2

+ C − E

2

)
w(z2)x

+D(w2)xz +
(

(2D −B)u+ (E − 2C)v
)
zwx +

(
2Dux + Evx

)
wz

]
dx. (4.12)

The integrand on the RHS is a polynomial whose monomial terms are of the form uxrs, vxrs,

r(s2)x, ursx or vrsx where r, s are either w or z. To obtain a bound in the H1 ×H1 norm of

the solution (w, z), the following estimates are used:

∣∣∣∣∫ urxsdx

∣∣∣∣ ≤ ∫ |urxs|dx ≤ ‖u‖2 ‖s‖∞ ‖rx‖2 ≤ ‖u‖2 c ‖s‖H1 ‖r‖H1 , (4.13)
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∣∣∣∣∫ (uxrs)dx

∣∣∣∣ =

∣∣∣∣∫ (urxs+ ursx)dx

∣∣∣∣ ≤ ∫ |urxs|dx+

∫
|ursx|dx

≤ ‖u‖2 (c ‖s‖H1 ‖r‖H1 + c̃ ‖r‖H1 ‖s‖H1)

≤ c ‖u‖2 ‖s‖H1 ‖r‖H1 (4.14)

and

∣∣∣∣∫ r(s2)xdx

∣∣∣∣ ≤ 2 ‖r‖2 ‖s‖∞ ‖sx‖2

≤ 2 ‖r‖H1 c ‖s‖H1 ‖s‖H1

≤ c ‖r‖H1 (‖s‖H1)2. (4.15)

Applying the just derived estimates to (4.12) yields

d

dt
‖(w, z)‖2H1×H1 ≤ c ‖(u, v)‖2

(
‖(w, z)‖H1×H1

)2

+ c̃

(
‖(w, z)‖H1×H1

)3

(4.16)

where the constants c and c̃ are independent of t ∈ [0, T ]. Consequently,

d

dt
‖(w, z)‖H1×H1 ≤ c1 ‖(w, z)‖H1×H1 + c̃

(
‖(w, z)‖H1×H1

)2

, (4.17)

from which it follows via a Gronwall-type argument that

‖(w, z)‖H1×H1 ≤
‖(u02, v02)‖H1×H1

1− c2 ec1T ‖(u02, v02)‖H1×H1

, (4.18)
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where the constants c1 and c2 are independent of t ∈ [0, T ]. Hence, local well-posedness on

[0, T ] is insured. 2



CHAPTER 5

INTERPOLATION AND WELL-POSEDNESS IN HS ×HS

To extend the results obtained for L2×L2 and the Hk×Hk spaces, k = 1, 2, · · · , nonlinear

interpolation theory will be used. The outcome will be global well-posedness in the L2-based

Hilbert spaces Hs ×Hs for all s ≥ 0.

Nonlinear interpolation of Banach spaces and their operators goes back to the work of

Peetre [9] and Peetre-Lions [10]. The following version of the theory will suffice for our purposes

(see [11]). More general results of this nature are available.

Theorem 1. Let r and s, with r > s be two non-negative real numbers. Suppose that for

some T > 0, the operator A is defined on both Hr ×Hr and Hs ×Hs and maps these spaces

continuously into C([0, T ];Hr ×Hr) and C([0, T ];Hs ×Hs), respectively. Suppose in addition

that A respects the inequalities

(i) ‖Af −Ag‖C([0,T ];Hs×Hs) ≤ c0(‖f‖Hs×Hs + ‖g‖Hs×Hs)‖f − g‖Hs×Hs

and

(ii) ‖Ah‖Hr×Hr ≤ c1(‖h‖Hs×Hs)‖h‖Hr×Hr ,

for some continuous functions c0 and c1.

Then, for any b ∈ [s, r], A maps Hb ×Hb continuously into C([0, T ];Hb ×Hb) and

‖Af‖C([0,T ];Hb×Hb) ≤ cb(‖f‖Hs×Hs)‖f‖Hb×Hb

49



50

where, for γ > 0, cb(γ) may be taken in the form

cb(γ) = 4c0(4γ)1−θc1(3γ)θ

with c0 and c1 as in (i) and (ii) and θ = b−s
r−s .

Starting with (u0, v0) in Hk × Hk with k integer, as initial data for the system (1.1),

denote by A the mapping that associates to (u0, v0) the pair (u, v) in C(0, T ;Hk × Hk) that

solves the system (1.1). So

A : Hk ×Hk → C
(
[0, T ];Hk ×Hk

)
,

for any k non-negative integer and for any T > 0. As seen in the previous chapter, the

Contraction Mapping Theorem, which was used to prove the local existence, also assures that

the mapping A is locally Lipschitz in Hk ×Hk. The latter result can be iterated to conclude

that for any T > 0, there is continuous function cTk such that

‖A(u0, v0)−A(ũ0, ṽ0)‖C([0,T ];Hk×Hk) (5.1)

≤ cTk
(
‖u0‖Hk + ‖v0‖Hk + ‖ũ0‖Hk + ‖ṽ0‖Hk

)
‖(u0 − ũ0, v0 − ṽ0)‖Hk×Hk .

Of course, it is probably the case that cTk grows with T , but T is fixed in the discussion.
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Start by considering A as a mapping of L2 × L2 into the space C([0, T ];L2 × L2) and of

H1 ×H1 into C([0, T ];H1 ×H1). Because of the inequalities (3.11) and (4.2), the conditions

(ii) and (i) in Theorem 1 are respectively satisfied and it is thereby concluded by applying the

Theorem 1 that for any fixed T > 0 and s with 0 < s < 1, s 6= 1
2 , A maps Hs×Hs continuously

into C([0, T ];Hs ×Hs) and respects the the inequality

‖A(u0, v0)‖C([0,T ];Hs×Hs) (5.2)

≤ cTs
(
‖u0‖L2 + ‖v0‖L2

)
‖(u0, v0)‖Hs×Hs ,

where cTs (y) = 4cT0 (4y)1−θcT1 (3y)θ and cT0 and cT1 are as in formulas (5.1) respectively for k = 0

and k = 1.

Re-interpolating between s = 0 and s = 3
4 , say, the same conclusion holds for s = 1

2 .

Iteratively, one can repeat these arguments for 1 < s < 2, 2 < s < 3 and so on. It follows that

the system (1.1) is globally well posed in all the L2-based Hilbert spaces Hs × Hs, s ≥ 0, as

long as the coefficients of the polynomials P and Q satisfy (2.6) and (2.11).



CHAPTER 6

CUBIC CASE

In this chapter, the polynomials P and Q appearing in the our system


ut + ux − uxxt + P (u, v)x = 0,

vt + vx − vxxt +Q(u, v)x = 0.

are taken to be homogeneous, cubic polynomials, viz .

Π(u, v) = A11u
3 +A12u

2v +A13uv
2 +A14v

3,

Ψ(u, v) = A21u
3 +A22u

2v +A23uv
2 +A24v

3, (6.1)

with all the coefficients Aij ∈ R, i = 1, 2, j = 1, 2, 3, 4. The analysis of the cubic case is a little

more involved than the quadratic one.

6.1 Invariants

Consider the quadratic functional

Ω(u, v) :=

∫ (
αu2 + βuv + γv2 + αu2x + βuxvx + γv2x

)
dx,
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where α, β, γ are real numbers to be determined. A formal calculation where integration by

parts is used freely and it is presumed both u and v vanish at x = ±∞, leads to the formula

d

dt
Ω = −2α

∫
uΠxdx− β

∫
vΠxdx− β

∫
uΨxdx− 2γ

∫
vΨxdx.

Writing Πx and Ψx out in detail yields

d

dt
Ω =

∫
(−6A11α− 3A12β)u3uxdx+

∫
(−3A14β − 6A24γ)v3vxdx

−
∫

[(4A12α+ 3A11β + 2A22β + 6A21γ)u2vux + (2A12α+A22β)u3vx]dx

−
∫

[(6A14α+ 2A13β + 3A24b+ 4A23γ)uv2vx + (A13β + 2A23γ)v3ux]dx

−
∫

(2A13α+ 2A12β +A23β + 4A22γ)uv2uxdx

−
∫

(4A13α+A12β + 2A23β + 2A22γ)u2vvxdx. (6.2)

The first two terms in the sum above are integrals which have integrands that are x-derivatives.

Thus, for smooth solutions going to 0 at ±∞, they vanish without further assumptions. The

last three integrals in the sum would vanish without further assumptions on (u, v) if and only

if
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2A12α+A22β = 3A11β + 6A21γ,

A13β + 2A23γ = 6A14α+ 3A24β,

2A13α+A23β = A12β + 2A22γ. (6.3)

Thus α, β and γ must solve the three equations



2A12α+ (A22 − 3A11)β − 6A21γ = 0,

6A14α+ (3A24 −A13)β − 2A23γ = 0,

2A13α+ (A23 −A12)β − 2A22γ = 0,

(6.4)

for it to be the case that the time derivative of Ω(u, v) is zero. This system of equations has a

non-trivial solution only if its determinant

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

2A12 A22 − 3A11 −6A21

6A14 3A24 −A13 −2A23

2A13 A23 −A12 −2A22

∣∣∣∣∣∣∣∣∣∣∣∣
(6.5)

is zero, which is to say,

−4

[
(A12A22 −A13A21)(3A24 −A13) + (A23 −A12)(9A21A14 −A12A23)

+ (3A11 −A22)(3A22A14 −A13A23)

]
= 0. (6.6)
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For example, one possibility to have ∆ = 0 is that



A12 = 3A14,

A22 − 3A11 = 3A24 −A13,

3A21 = A23.

(6.7)

In this case, the cubics that couple the original system’s unknowns u and v would have the

form

Π(u, v) = Ãu3 + 3B̃u2v + C̃uv2 + B̃v3,

Ψ(u, v) = D̃u3 +
[
3(Ã+ Ẽ)− C̃

]
u2v + 3D̃uv2 + Ẽv3,

where Ã, B̃, C̃, D̃, Ẽ are real numbers. With this choice of polynomial coefficients, the values

of α, β and γ from Ω are


α

β

γ

 =


(C̃ − 3Ẽ)(3Ã− C̃ + 3Ẽ)− 9D̃(B̃ − D̃)

−6B̃(C̃ − 3Ẽ) + 18ÃB̃ − 6C̃D̃

C̃(C̃ − 3Ẽ)− 9B̃(B̃ − D̃)

 ,

up to a scalar multiple.
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If α, β and γ are a non-trivial solution of (6.4), it follows immediately that

∂

∂u

(
βΠ + 2γΨ

)
=
(

3A11β + 6A21γ
)
u2 + 2(A12β + 2A22γ)uv +

(
A13β + 2A23γ

)
v2,

∂

∂v

(
2αΠ + βΨ

)
=
(

2A12α+A22β
)
u2 + 2

(
2A13α+A23β

)
uv +

(
6A14α+ 3A24β

)
v2,

whence,

∂

∂u

(
βΠ + 2γΨ

)
(u, v) =

∂

∂v

(
2αΠ + βΨ

)
(u, v).

In consequence, there is a quartic polynomial Θ(u, v) such that

∂Θ

∂u
= 2αΠ + βΨ and

∂Θ

∂v
= βΠ + 2γΨ. (6.8)

6.1.1 Second Conservation Law

In case there is a non-trivial solution (α, β, γ) of (6.4), a second Conservation Law is now

contemplated. Consider the time derivative of the functional

∫ ∞
−∞

(
αu2 + βuv + γv2

)
dx,

and following the same calculations as in Chapter 2 for the quadratic case to obtain

d

dt

∫ ∞
−∞

(
αu2 + βuv + γv2

)
dx = − d

dt

∫
Θ(u, v)dx. (6.9)
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If the functional Φ(u, v) is defined by

Φ(u, v) :=

∫ ∞
−∞

(
αu2 + βuv + γv2 + Θ(u, v)

)
dx, (6.10)

then Φ(u, v) is also an invariant of the temporal evolution of smooth solutions of our system.

It serves as a Hamiltonian for the given system as long as 4αγ − β2 is not 0.

Both these conserved quantities Ω and Φ will be used to obtain a priori bounds on

solutions of the system when the quadratic form ρ defined by

ρ(u, v) = αu2 + βuv + γv2, (6.11)

vanishes only at origin, thus when its discriminant is negative. The details however will be

pursued later as a companion result of this thesis and are omitted here.

6.2 Local Well Posedness

The key component to proving local well-posedness is once again the Contraction Map-

ping Principle.

6.2.1 Local Well-Posedness in L∞ and Cb

Consider again the Banach space

XT := L∞
(
R× [0, T ]

)
× L∞

(
R× [0, T ]

)
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endowed with its usual norm ( see 3.2). To establish local existence via the Contraction Mapping

principle, the domain of the operator A will be restricted to the usual closed ball

BR(0) := {U ∈ XT : ‖U‖XT
≤ R},

with R > 0 and T > 0 to be determined.

Consider U, Ũ ∈ BR(0), and look for an estimate of
∥∥∥AU −AŨ

∥∥∥
XT

. The aim is to

choose specific values of R and T so that A is a contraction on BR(0). As the calculations are

very similar as those appearing in the quadratic case presented in section 3.1.1, the details will

be omitted. Using the definition of the operator A, for U = (u, v) and Ũ = (ũ, ṽ) ;

∥∥∥AU −AŨ
∥∥∥
XT

= sup
x∈R

∣∣∣∣ ∫ T

0

∫ ∞
−∞

K(x− y)
[
u(y, s) + Π(u, v)− ũ(y, s)−Π(ũ.ũ)

]
dyds

∣∣∣∣
+ sup
x∈R

∣∣∣∣ ∫ T

0

∫ ∞
−∞

K(x− y)
[
v(y, s) + Ψ(u, v)− ṽ(y, s)−Ψ(ũ.ũ)

]
dyds

∣∣∣∣
≤ sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣K(x− y)
∣∣[|u− ũ|(A11(|u|2 + |u||ũ|+ |ũ|2) +A12|ṽ|(|u|+ |ũ|)

+A13|ṽ|2
)

+ |v − ṽ|
(
A12|u|2 +A13|u|(|v|+ |ṽ|) +A14(|v|2 + |v||ṽ|+ |ṽ|2)

)]
dyds

+ sup
x∈R

∫ T

0

∫ ∞
−∞

∣∣K(x− y)
∣∣[|v − ṽ|(A24(|v|2 + |v||ṽ|+ |ṽ|2) +A23|ũ|(|v|+ |ṽ|)

+A22|ũ|2
)

+ |u− ũ|
(
A23|v|2 +A22|v|(|u|+ |ũ|) +A21(|u|2 + |u||ũ|+ |ũ|2)

)]
dyds.

Furthermore, as U, Ũ ∈ BR(0), it follows that the inequality can be continued, viz .

∥∥∥AU −AŨ
∥∥∥
XT

≤
∥∥∥U − Ũ∥∥∥

XT

CR T, (6.12)
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where CR is a constant only dependent on R. The choices of R and T are to be made such that

A maps BR(0) into itself through and so that A is a contraction. In particular, one needs to

have

CRT < 1.

As before, fix the relation

CRT =
1

2
.

Then, as before, for any U ∈ BR(0), ‖AU‖XT
≤ R, provided R = 2 ‖U0‖∞.

This implies that

T =
1

2 CR
.

The Contraction Mapping Theorem applies with this values of R and T to the integral equation

(2.3). The result is existence of a unique U that is solution of the given system when Π and Ψ

are cubics.

6.2.2 Local Existence in Other Spaces

Lemma 1, repeated below for reader’s convenience, was stated and proved in paragraph

3.1.2 for the case when P and Q are quadratic polynomials and contains local well-posedness

results for spaces embedded in L∞. The proof for the cubic case is very similar thus we’ll omit

most of the calculations and only detail the results that are specific to the cubic polynomials.



60

Lemma 3. Suppose that Z is a space embedded in L∞ such that, for any u, v ∈ Z, there exist

global constants C1 and C2 satisfying

(i) ‖uv‖Z ≤ C1 ‖u‖Z ‖v‖Z and (ii)

∥∥∥∥∫ ∞
−∞

K(x− y)u(y)dy

∥∥∥∥
Z

≤ C2 ‖u‖Z .

Then there is a unique local solution for the initial-value problem for (1.1) in the space XT =

C
(
0, T ;Z × Z

)
.

Proof. Using the same Banach space ZT = C(0, T ;Z × Z) with the norm

∥∥∥U − Ũ∥∥∥
ZT

:= sup
t∈[0,T ]

‖u(·, t)− ũ(·, t)‖Z + sup
t∈[0,T ]

‖v(·, t)− ṽ(·, t)‖Z , (6.13)

where U = (u, v) and Ũ = (ũ, ṽ), restrict the operator A from (2.5) to

BR,Z(0) := {U ∈ ZT : ‖U‖ZT
≤ R}.

Consider U, Ũ ∈ BR,Z(0). The aim is to choose specific values of R and T so that A is a

contraction on BR,Z(0). To estimate
∥∥∥U − Ũ∥∥∥

ZT

apply (ii) from (3.6), the triangle inequality

and (3.6) part (i), and similarly with the L∞ case from the preceding section, yields

‖AU −AV ‖ZT
≤ TC1C2CR ‖U − V ‖ZT

.
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Choosing R = 2 ‖U0‖Z and T , for example, so that

T =
1

2C1C2
2CR

,

the Contraction Mapping Theorem can be applied to the integral equation (2.3) derived from

the initial system and the result is a unique U that is solution of the given system. Moreover,

this solution found above is seen to be continuously dependent on the initial data.

From the regularity perspective, the smoothing associated with the temporal derivative

is analogous with the L∞ case presented in the previous section, specifically for U ∈ Hk ×Hk,

Ut is spatially smoother and it lies in C(0,∞, ;Hk+1×Hk+1). As for the spatial regularity, the

system solution has at most the same regularity as the initial data.

This Lemma provides the local well-posedness on H1 , H2 and in general in Hk, for k ≥ 1.

6.2.3 Smoothness and Regularity

The argument presented in Chapter 3 is independent of the polynomial degree, therefore

the result applies to the cubic case as well. The strong regularity results for the flow map, the

temporal smoothing and the spacial regularity being at most as good as the initial data are

still valid.



CHAPTER 7

CONCLUSION

We have considered coupled systems


ut + ux − uxxt + P (u, v)x = 0,

vt + vx − vxxt +Q(u, v)x = 0,

(7.1)

of two evolution equations of generalized BBM-type, posed for x ∈ R and t ≥ 0 and with

specified initial data at t = 0, viz .

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R. (7.2)

These systems were shown to be locally well-posed in the L2-based Sobolev spaces Hs(R) ×

Hs(R) for s ≥ 0 when P and Q are homogeneous quadratic polynomials. Moreover, the solution

(u, v) depends continuously on the initial data (u0, v0). The spacial regularity of the solution

(u, v) is exactly as good as the initial data’s. However, there is some smoothing in the temporal

variable.

Furthermore, for those polynomial coefficients A,B, · · · , F such that the system


2Ba+

(
E − 2A

)
b− 4Dc = 0,

4Ca+
(

2F −B
)
b− 2Ec = 0

62
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has solutions a, b and c satisfying 4ac > b2, or, what is the same, the matrix

2a b

b 2c

 is

positive definite, then the well-posedeness is global in time.

Similar results are sketched for the homogeneous cubic polynomials.

In future work, we plan to consider the periodic initial-value problem and the more

practical case of non-homogeneous boundary conditions. We will also be interested in the

question of global well-posedness in case the nonlinearities are not homogeneous.
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