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SUMMARY 

 

Industry leaders must find ways to fulfill consumer demand and meet societal needs while 

reducing cost and environmental burdens. Incorporating Demand Response practices and 

programs into manufacturing production decision-making opens up many opportunities for 

manufacturers address economic, environmental, and societal concerns from the industrial sector, 

simultaneously. Much research on the implementation of electricity demand response for 

residential and commercial sectors has been reported in literature, however, research on demand 

response for manufacturers is less developed and impeded by complex production system 

dynamics. This leads to lost opportunities for economic and environmental sustainability by 

manufacturers. In this dissertation, demand response driven cost-effective joint energy and 

production operations decision making methodology for sustainable manufacturing systems is 

presented. More specifically, frameworks aiming to integrate sustainable manufacturing, 

production scheduling, and electricity demand response for manufacturers are presented from three 

lenses, i.e., the manufacturing production system-level, the plant-level, and the utility-level. In all, 

the frameworks presented provide manufacturers with analytical tools for implementing cost-

effective joint energy and production management towards sustainability and support the industrial 

sector’s immersion in the Smart Grid. 
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1 Introduction 
 
 

1.1 Motivation, Challenges, and Objectives 

As the reliance on manufactured products grows, the industrial sector’s role in the 

country’s security, the economy, and consumers’ everyday life increases. Meanwhile, to maintain 

a competitive advantage and satisfy the growing demand for manufactured products, matters of 

economic and environmental viability must be considered. Through sustainable manufacturing 

industry leaders can fulfill consumer demand and societal needs while reducing cost and 

environmental burdens. According to the U.S. Department of Commerce, Sustainable 

manufacturing is defined as “the creation of manufactured products that use processes that 

minimize negative environmental impacts; conserve energy and natural resources; are safe for 

employees and communities; and are economically sound” (Moldavska and Welo, 2017).  

Within manufacturing, energy costs account for a large portion of the  overall production 

costs; which in some industries is the largest share following that of raw materials (Ernst & Young-

EY, 2018).  The U.S. manufacturing sector’s onsite energy use and emissions are 14,064 TBtu and 

580 MMT of CO2, respectively (U.S. Department of Energy, 2010). Manufacturers can integrate 

sustainability considerations in production and maintenance planning with energy management 

and emission reduction activities to help reduce the manufacturers’ energy and carbon footprint.     

Among the major energy sources that manufacturers must consider, when seeking to 

promote sustainable manufacturing and implement energy aware production strategies, is 

electricity. The industrial sector alone consumes 27% of the total electricity in the U.S. and has a 

significant influence on the country’s growing electricity demand (U.S. Energy Information 

Administration, 2017). It is projected that by 2030 about $1.5-$2 trillion will be needed for new 

electricity generation capacities and transmission and distribution infrastructure to meet the 



2 
 

growing electricity demand (Chupka et al., 2008); this in turn will impact electricity end-users, 

energy providers, and manufacturers. Moreover, manufacturers not only have a significant impact 

on the need for excess generation capacities and transmission and distribution infrastructure, but 

also on the rising environmental concerns from the electricity generation sector. One kW of power 

demand during peak demand hours is expected to lead to 65 kWh of electricity consumption 

(Siddiqui et al., 2008). Meanwhile, one kWh of electricity generation may incur 1.52 pounds 

carbon dioxide (CO2) emissions (Environmental Protection Agency, 2014). 

Luckily, demand-side energy management programs, such as Demand Response (DR) and 

Energy Efficiency (EE) programs, have been introduced and provide valuable opportunities to 

address energy, environmental, and economic concerns for energy end-users and energy providers 

simultaneously. EE programs aim to reduce the overall electricity consumption over the entire 

planning horizon. Unfortunately, EE programs may not always be able to address peak demand 

concerns. In particular, DR programs bring benefits to both electricity suppliers and electricity 

consumers by promoting environmental and economic sustainability through peak load 

management. More specifically, DR is defined by the Federal Energy Regulatory Commission 

(FERC) as “the changes in electricity usage by end-use customers from their normal consumption 

patterns in response to the changes in the price of electricity over time or the incentive payments 

designed to induce lower electricity use at times of high wholesale market prices or when system 

reliability is jeopardized” (Federal Energy Regulatory Commission, 2013). DR can help reduce 

the need for peak power plants which are built to satisfy the increasing electricity demand yet are 

only utilized a few hundred hours a year and require large financial investments (Kintner-Meyer 

et al., 2007).   
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Figure 1 summarizes the different DR programs. The two main types of programs are price-

based programs and incentive programs. Price-based DR programs are such that the cost of 

electricity varies over time. These programs consist of Time-of-Use (TOU) rates, day-ahead hourly 

pricing, and real-time hourly pricing. Meanwhile, incentive-based DR programs are typically event 

driven. These programs consist of ancillary service programs, demand bidding/buyback, 

emergency programs, interruptible programs, and direct load control.  

 

 

 

Figure 1 Demand Response Programs (U.S. Department of Energy, 2006) 
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To avoid the need to build excess power plants that are only used for a few hours a year, 

energy end-users can use DR programs to guide their energy management practices and policies. 

Accordingly, DR has been gaining more attention in industry and academia.  However, the 

available research and technology is mainly geared toward building type loads (i.e. HVAC, 

lighting, and driers). Although such loads may be primary loads for commercial and residential 

electricity consumers, building type loads are minor for manufacturers where 87.8% of 

manufacturers total energy use is due to production related energy consumption (U.S. Department 

of Energy, 2010). Moreover, the majority of manufacturers’ total energy consumption is wasted 

due to inefficient production system scheduling and idle time (Chang et al., 2013). This translates 

into excess operational costs for manufacturing, higher costs for consumer products, avoidable 

emissions, and supply and demand balancing burdens on energy providers.  

Manufacturer adoption of DR programs alongside production scheduling decision making 

frameworks can address energy, environmental, and economic objectives from energy providers 

and end-users and stimulate sustainable manufacturing.  Unfortunately, cost effective joint energy 

and production operations decision making and end-user DR for manufacturers’ faces many 

challenges. To address the challenges and aid the technological readiness of manufacturers in 

implementing cost effective production and energy decision making and scheduling methodology 

for manufacturers is needed.  

Nevertheless, even for a single product serial production line (the simplest and most 

fundamental production line), modeling complexity and solvability challenges are present since 

most production scheduling problems are nonlinear combinatorics and recognized to be NP-Hard 

(Hemmecke et al., 2010 and Yuan & Ghanem, 2016).  Meanwhile, although maintenance and 

machine degradation dynamics have a significant impact on manufacturers’ ability to participate 
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in DR, further adding energy and maintenance costs and constraint functions will lead to more 

complexity in the model formulation, solvability, and solution robustness.  Hence, a system level 

decision making model for serial and/or dependent manufacturing processes within manufacturing 

production lines that can represent DR frameworks, energy demand, production dynamics, and 

maintenance requirements is needed.  

Additionally, electricity metering and billing are typical done at the plant level. Depending 

on the manufacturing industry, a system-level production and energy management approach may 

not be sufficient if there are other interrelated systems within the manufacturing plant that are 

energy intensive. In such cases, it is valuable to establish methodology that links system-level and 

plant-level energy consumption and demand. Typical electric loads in manufacturing facilities 

come from production equipment, lighting, HVAC (Heating, Ventilation, and Air Conditioning), 

material handling, etc. In particular, HVAC energy consumption is one of the largest electricity 

consumers following the production system. Moreover, it can be controlled and is directly 

impacted by the production line’s operational states. Integrating manufacturing production and 

HVAC scheduling can lead to added savings at the plant-level when implementing DR. To do this 

the manufacturing production line heat load considering convective and radiant heat from the 

production line must be modeled analytically. Meanwhile, the HVAC power demand must be 

represented as a function of the internal heat load from the production line.  

Finally, manufacturers have a large impact on the cost and environmental sustainability of 

power utilities due to their large electricity demand (contributing to peak power) and large natural 

gas usage (due to the increasing dependency of the electricity sector on gas-fired generation). To 

support the adoption of end-user DR by manufacturers and facilitate manufactures’ immersion in 

the SG, agile and utility aware manufacturing decision making methodology is needed in case of 
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DR program changes and to ensure that DR programs are in fact reaping economic and 

environmental sustainability benefits. Moreover, reactive manufacturing decision making is also 

necessary to help manufacturers overcome production disruptions hindering DR participation and 

aid manufacturers in leveraging event-based DR. Hence, integrated electricity and natural gas DR 

for manufacturers in the SG is needed. Moreover, real-time decision-making methodology for 

production scheduling problems must be established.  

 

1.2 Literature Review  

A literature review summarizing the research efforts related to cost effective joint energy 

and production operations decision making and end-user DR is presented. More specifically, the 

literature on joint maintenance and energy planning, plant level energy management, and SG 

oriented electricity and natural gas DR for manufacturers is discussed.  

1.2.1 System Level Production, Energy, and Maintenance Management  

Several research studies focusing on optimizing energy and environmental performance at 

the manufacturing processes have been conducted. For example, Winter et al. (2014) presents an 

approach to identify the process parameters that lead to Pareto-optimal solutions for advancing the 

eco-efficiency of grinding operations. Frigerio and Matta (2015) propose a framework for energy-

efficient control of machine tools with stochastic arrivals. Bhushan (2013) proposes a model for 

selecting optimum cutting conditions for machining, based on minimum energy requirements and 

maximum tool life. Moreover, Mouzon and Yildirim (2008) present a framework to minimize the 

total energy consumption and total tardiness on a single machine using a greedy randomized 

adaptive search meta-heuristic.  
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Meanwhile, studies optimizing manufacturing energy consumption performance and peak 

power demand reduction, at the system level, considering multiple manufacturing processes have 

also been conducted. For example in Sun and Li (2013), the authors propose a dynamic energy 

control model for energy efficiency improvement of manufacturing systems using Markov 

decision process. Meanwhile, in Fernandez et al. (2013) the authors present a “Just-For-Peak” 

buffer for power demand reduction of manufacturing systems. Sun et al. (2014) propose inventory 

control methodology for peak power demand reduction and study the tradeoff between production 

loss and energy savings were studied. Additionally, Chang et al. (2013) studies the energy saving 

opportunity for serial automotive production lines and uses a quantitative analysis for identifying 

the energy saving opportunity. More detailed review on the research on energy and resource 

efficiency for discrete manufacturing can be found in Duflou et al., 2012.  

While ample and promising, the aforementioned studies either focus on (1) the single 

process level and aim to identify the optimal process parameters within a manufacturing system 

so that the process energy consumption and/or carbon footprints can be minimized; or (2) solely 

on minimizing the energy related factors, such as energy consumption, energy cost, or power 

demand of the manufacturing system, while neglecting maintenance planning and machine 

degradation.  

Maintenance is a critical component to consider when assessing the energy consumption 

and cost efficiency of a production system.  Moreover, maintenance is essential to maintain and 

improve equipment reliability and production capability. Maintenance accounts for a substantial 

portion of the total operational cost and efficiency of the production system. Literature has 

illustrated that the maintenance cost for domestic plants had reached more than $600 billion in 

1981; meanwhile, this figure has doubled in the past decades (Mobley, 2011). Not surprisingly, 
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research on effective maintenance decision making has drawn wide attention from both industry 

and academia. Several research studies on maintenance policies (Frenk et al., 1997; and Wang and 

Pham, 1999), diagnostics and prognostics ( Dong and He, 2007; Wang et al., 2016; and He et al., 

2011), and reliability modeling for degrading manufacturing equipment (Coit, 1997; Wang et al., 

2012; and Ramírez-Márquez and Wei Jiang, 2006) can be found in literature. A more detailed 

review of the current research challenges and opportunities for these topics is summarized in 

(Jardine et. al, 2006; Wang, 2002; and Heng et al., 2009).  

While the above-mentioned studies consider maintenance costs and constraints, energy 

considerations alongside to maintenance decision making are rarely considered. Nonetheless, two 

papers focusing on the opportunity window for maintenance and energy management, reveal the 

feasibility of jointly modeling decision making regarding both maintenance and energy. The first 

paper (Chang et al., 2007) analyzes a deterministic opportunity window for maintenance 

implementation in manufacturing systems without influencing production throughput. Next, Sun 

and Li (2013) investigate the energy saving opportunity window in manufacturing systems 

considering stochastic production factors without influencing system throughput. These papers 

study the time duration quantification for the opportunity windows of the machines in the 

manufacturing production line, which can be shut down for the purpose of maintenance and energy 

saving, respectively. More recently, Yao et al. (2015 and 2016) presents a simulation-based method 

to investigate the feasibility of joint energy and maintenance decision making in manufacturing 

systems and explores the potential benefits of such joint decision making using heuristic methods. 

Accordingly, maintenance activities were rescheduled while considering energy cost. Various 

rescheduling policies were simulated and maintenance cost, energy consumption cost, and 

throughput were investigated and compared. The results illustrate that with the appropriate policy, 
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joint energy and maintenance decision making in manufacturing can lead energy cost reduction 

and productivity improvement. Nevertheless, simulation-based methods have several drawbacks 

such as lack of flexibility, time-consuming model construction, and intractability for real-time 

application (Chang and Ni, 2009).  

In all, the stated literature fails to consider research opportunities from an integrated 

planning and decision making perspective that comprehensively investigates system level energy 

profiles, production throughput, and machine degradation tradeoffs and constraints. This impedes 

joint energy, maintenance, and production management. Hence, an analytical method that can 

dually consider maintenance and energy costs and constraints as a function of production system 

dynamics is needed.   

1.2.2 Plant Level Energy Management  

Alongside to the production system, there may be other systems within the manufacturing 

plant that are influenced by the production system and are energy intensive. Plant-level 

manufacturing energy management is necessary since there may be other systems in the 

manufacturing plant that are influenced by the manufacturing system and will have an impact on 

the manufacturer’s power demand profile. Solely controlling the production line’s energy profile 

may not translate to direct changes in the manufacturing plant’s energy profile.  

Among the most common non-production related energy consumers within a 

manufacturing plant are building type loads. Detail on the different types of energy consumers and 

management practices for manufacturing plants can be found in Boyd et. al (2008). In this paper, 

the authors present a study on the ENERGY STAR® energy performance and benchmarking 

system for industrial manufacturing plants’ energy use. Furthermore, they discuss examples from 

specific industry sectors and energy management conditions. Meanwhile, in Feng et al. (2016a), 
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the authors study energy, economy, and environmental characteristics of manufacturing plants and 

propose a method for optimizing the manufacturing plants energy supply system. Correspondingly, 

Feng et al (2016b) analyze and identify the factors influencing the energy consumption breakdown 

of automotive manufacturing plants. Nguyen and Aiello (2013) present a survey on intelligent 

energy control for building HVAC, lighting, and plug loads based on user activities. Braun (1990) 

develop a thermal storage utilization method to reduce the power demand of buildings during peak 

periods.  Lastly, Ghislain and Mckane (2006) investigate the impact turning off unnecessary lights, 

fans, and motors, when production is off, or during peak periods alongside to HVAC system 

management in manufacturing plants.  

In particular, HVAC energy consumption is among the most significant building-type 

electricity end-use activities. A great number of studies on HVAC system energy management, 

towards sustainability, have been conducted to reduce the electricity consumption and power 

demand for buildings. For example, Wang et al. (2012) propose a hierarchical multiagent control 

system with an intelligent optimizer to minimize the power consumption while considering 

customer comfort. Similarly, Corno and Razzak (2012) develop an approach that can intelligently 

find the balance between user requirements and energy saving opportunities for smart buildings. 

They consider user intentions and automatic control of device states. Liang et al. (2012) propose 

an optimal thermostat control policy that considers the tradeoff between customer comfort and 

energy cost for DR in residential buildings (Liang et al., 2012).  Li et al. (2017) study effective 

power management modeling of aggregated HVAC loads with lazy state switching. Moreover, 

methodology for thermal storage utilization (Henze et al., 2004) and HVAC load prediction (Braun 

and Chaturvedi, 2002) can also be found in literature. In all, the aforementioned literature 

addresses HVAC energy, cost, and comfort objectives simultaneously. Unfortunately, while 
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valuable, these methods are not sufficient for manufacturing plants since HVAC heating and 

cooling loads may be influenced by manufacturing production dynamics and production 

equipment’s operating states.  

Recently, some initial investigations that integrate manufacturing production and HVAC 

system costs and energy management have been reported. For example, Liu et al. (2012) develop 

a simulation-based method for energy-efficient building design for manufacturing plants 

considering HVAC configurations and production characteristics. Moynihan et al. (2012) 

investigate the energy savings potential for a manufacturing facility by simulating the HVAC 

system and integrating it into the manufacturing plant’s facility design. Ball et al. (2012) propose 

a framework for manufacturing plant design considering both the production system and building. 

Niefer and Ashton (1997) conduct a review of building related energy use for manufacturers by 

investigating the characteristics of the HVAC system and estimating energy intensity and energy 

saving potentials. While these studies are geared toward HVAC energy management in 

manufacturing facilities, they focus on the design stage and aim to identify the desired size, 

appropriate capability, and expected energy load of the HVAC system. Meanwhile, they fail to 

consider the operational states and integrated control of the two systems simultaneously.   

In all, HVAC system management in manufacturing plants is typically performed 

independently from operating schedules of manufacturing production equipment. However, the 

production load is an internal heat load that must be considered in HVAC control strategies to 

achieve robust plant-level energy management; since the heat generated by the manufacturing 

production line may influence the HVAC load requirements.  Although a simulation-based method 

integrating the two systems has been reported (Brundage et al., 2013); there lacks an analytical 
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model that can help manufacturers implement electricity DR by integrating scheduling frameworks 

for two interrelated systems.  

1.2.3 Smart Grid Oriented Electricity and Natural Gas Demand Response for 

Manufacturers 

The electric grid is a complex network of transmission lines, substations, and transformers 

that deliver electricity from power generation facilities to electricity end-users. Meanwhile, the SG 

moves the energy industry toward a more reliable and efficient power grid that promotes economic 

and environmental health. The SG provides energy stakeholders with the information and tools 

needed to make choices about energy use at both the supply and demand side through smart 

metering technology and DR programs. Nevertheless, while DR programs do offer guidelines for 

energy management, they cannot address dispatch and implementation needed to leverage the 

necessary information to realize the benefits of the SG. One method to do this is through DR 

research from the perspective of the energy end-user.   

Many studies concentrating on DR from the perspective of energy end-users have been 

conducted. For example, in (Chai et al., 2014) the authors focus on end-user DR considering 

multiple utilities. They model residential energy users and utility companies using a two-level 

game. Through illustrative examples, they demonstrate that their proposed scheme is able to 

significantly reduce peak load and demand variation. In (Maharjan et al., 2016) the authors study 

DR for a large population regime. They introduce a hierarchical system model for decision making 

for multiple providers and customers, and establish a Stackelberg game between providers and 

end-users. The authors prove that there exists a unique number of providers that maximize profit 

and develop an iterative distribution algorithm.  Next, in (Hansen et al., 2015) an aggregator-based 

residential DR tactic for SG resource allocation is developed. The aggregator must set an optimal 

schedule for residential customer assets. The aggregator profit is optimized using a heuristic 
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framework, which shows that the aggregator can achieve a desirable change in the load profile 

when optimizing their profit. More examples on DR can be found in (Vardakas et al., 2015), a 

survey paper on DR programs in Smart Gird with an emphasis on different pricing methods and 

optimization algorithms.  

The aforementioned research focuses on residential and commercial electricity end-users 

rather than industrial energy users. More specifically, manufacturers have a large impact on the 

cost and environmental sustainability of power grid due to their large electricity demand 

(contributing to peak power) and large natural gas usage (due to the increasing dependency of the 

electricity sector on gas-fired generation). It is expected DR, for both electricity and natural gas, 

from large industrials can reap ancillary services at the transmission level (Cheng et. al, 2016 and 

Nistor, 2015). Some industrial sector specific DR driven production planning problems have been 

conducted (Bego et al., 2014; Sun et al., 2014; and Fernandez et al., 2013). Nevertheless, these 

papers either do not focus on the adaptability of such problems in the SG or consider a long term 

load scheduling approach defined by a set DR program. Hence, real-time and day to day input 

from the SG or changes in production are not considered. Also, these studies do not focus on the 

modeling complexity, problem solvability, and computational resources necessary for 

manufacturers to leverage the SG. Lastly, they fail to consider gas load management in the 

production and energy load scheduling models.    

Natural gas is similar to electricity in that it goes through complex and limited distribution 

infrastructure. Moreover, gas utilities face supply and demand balancing challenges similar to 

those of electricity. Some studies on integrated electricity and natural gas supply and demand 

management have been conducted. In Zhang et al. (2016) the authors propose an integrated day-

ahead scheduling model to dispatch hourly generation and load resources and deploy flexible 
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ramping for balancing intermittent renewable resources.  Illustrative examples show that real-time 

natural gas delivery can directly impact hourly dispatch, flexible ramp deployment, and power 

system operation cost. Also, demand side participation can mitigate the dependency of electricity 

on natural gas by providing a viable option for flexible ramp when the natural gas system is 

inhibited. Zhang et al. (2017) present a planning model that minimizes cost for transmission lines 

and natural gas pipelines from interconnecting energy hubs based off of probabilistic reliability 

criteria. The authors find that, in contrast to single energy infrastructure planning, dually planning 

gas and electricity infrastructure enables a synergetic strategy to design multiple energy networks 

for optimizing the supply economics and satisfying reliability criteria. Next, in Qadrdan et al.  

(2017) the authors investigate the benefits of end-user DR in combined electricity and gas 

networks in Europe. They find that significant reduction in the capacity of new gas-fired power 

plants can be achieved due to electricity peak shaving. In turn, this reduces the need for imported 

gas by 90 million cubic meters of natural gas per day and leads to an estimated £60 billion in cost 

savings over a 50 year period. Furthermore, the authors stress that availability and cost of gas are 

crucial factors in power system planning. Finally, Li et al. (2013) develop a multi-agent problem 

for determining the TOU pricing structure for natural gas end-user load response for industrial and 

commercial gas customers. They find that optimally setting peak and valley prices for natural gas 

brings benefits to both the gas operator and gas users.   

Inopportunely, these studies do not focus industrial end-users demand patterns as a function 

of production dynamics and constraints.  While much research is present on DR, the current state 

of literature is not sufficient to realize promising benefits for industrial users and energy suppliers 

due to the following. First, most of the literature is not geared toward industrial energy customer’s 

unique energy load dynamics. Current work is focused on residential and commercial type loads, 
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which cannot be used to describe manufacturing end-users. Modeling, solvability, and computation 

time are not considered in terms of SG needs for reactive decision making. Lastly, natural gas 

consuming manufacturing processes and their effect on supply/demand are not considered.    

 

1.3 Research Framework and Thesis Organization 

Based on the above motivation and literature review, the goal of this thesis is to provide 

manufacturers with a set of decision making tools for implementing cost effective production and 

energy management. Opportunities for sustainable manufacturing, from integrating DR programs 

and manufacturing production scheduling/operations decision making will be investigated, 

modeled, and optimized.  

The proposed methodology and research framework integrates sustainable manufacturing, 

production scheduling, and electricity DR for manufacturers from three lenses, i.e., the 

manufacturing production system-level, the plant-level, and the utility-level. At the manufacturing 

production system-level, a comprehensive system level decision making strategy that considers 

production, energy, and maintenance is developed and analyzed. Meanwhile, the importance of 

including machine degradation dynamics and maintenance is illustrated. Next, for the plant-level 

lens, the system level perspective is broadened to consider the HVAC system. The HVAC energy 

consumption and production line heat load are studied and modeled. Finally, for the utility driven 

lens, a model that considers SG issued time-based and event based electricity and natural gas DR 

is presented. Figure 2 shows a schematic of the research framework.  
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Figure 2 Research Framework 

 
 

In all, the three proposed models provide a comprehensive set of tools for cost effective 

and sustainable production operations decision making models.  This research will further advance 

the state of the art of research on joint energy and production decision making and provide 

manufacturers with analytical tools for implementing DR.  Accordingly, the thesis is organized as 

follows. In Section 2, a model for joint production, maintenance, and energy management is 

presented. In Section 3, a combined manufacturing and HVAC scheduling model is developed and 

the heat generated by the production line is formulated. Furthermore, an integrated production and 

DR model considering electricity and natural gas utilities is developed in Section 4. A brief note 

to practitioners is presented in Section 5. Finally, the conclusions are drawn and future research 

tasks are discussed in Section 6. 
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2 Joint Production, Maintenance, and Energy Management 
 
 

Parts of this chapter were previously published as: (1) “Sun, Zeyi, Fadwa Dababneh, and 

Lin Li. "Joint Energy, Maintenance, and Throughput Modeling for Sustainable Manufacturing 

Systems." IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018). DOI: 

10.1109/TSMC.2018.2799740.”. © 2018 IEEE. Reprinted, with permission, from [Sun, Zeyi, 

Fadwa Dababneh, and Lin Li. "Joint Energy, Maintenance, and Throughput Modeling for 

Sustainable Manufacturing Systems." IEEE Transactions on Systems, Man, and Cybernetics: 

Systems (2018). DOI: 10.1109/TSMC.2018.2799740.]; (2) “Dababneh, Fadwa, Lin Li, Rahul 

Shah, and Cliff Haefke. “Demand Response-Driven Production and Maintenance Decision-

Making for Cost-Effective Manufacturing." Journal of Manufacturing Science and 

Engineering 140, no. 6 (2018): 061008.” © 2018 ASME. Reprinted, with permission, from 

[Dababneh, Fadwa, Lin Li, Rahul Shah, and Cliff Haefke. "Demand Response-Driven Production 

and Maintenance Decision-Making for Cost-Effective Manufacturing." Journal of Manufacturing 

Science and Engineering 140, no. 6 (2018): 061008.]; and (3)“ Dababneh, Fadwa, Rahul Shah, 

Zeyi Sun, and Lin Li. "Framework and sensitivity analysis of joint energy and maintenance 

planning considering production throughput requirements." In ASME 2017 12th International 

Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th 

International Conference on Materials and Processing, pp. V003T04A062-V003T04A062. 

American Society of Mechanical Engineers, 2017.” © 2017 ASME. Reprinted, with permission, 

from [Dababneh, Fadwa, Rahul Shah, Zeyi Sun, and Lin Li. "Framework and sensitivity analysis 

of joint energy and maintenance planning considering production throughput requirements." 

In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated 
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with the JSME/ASME 2017 6th International Conference on Materials and Processing, pp. 

V003T04A062-V003T04A062. American Society of Mechanical Engineers, 2017.]. 

 

2.1 Objective and Overview 

In this chapter, system level decision making methodology for serial and/or dependent 

manufacturing processes within manufacturing production lines that can represent DR 

frameworks, energy, production dynamics, and maintenance requirements simultaneously is 

presented. Since machine degradation and production capability are expected to have a significant 

impact on manufacturers’ participation in DR, energy cost, and production throughput, they will 

be modeled analytically and the tradeoffs will be analyzed. Two models are presented. First a 

production scheduling model is formulated. Subsequently, an aggregate cost model is also 

presented. 

For the production scheduling model, energy control and maintenance implementation are 

simultaneously considered to address the concerns of energy consumption, intelligent 

maintenance, and throughput improvement. Particle swarm optimization, with a local optimal 

avoidable mechanism and a time varying inertial weight, is used to solve the cost minimization 

problem and find a near optimal solution for the production and maintenance schedules. A 

numerical case study is implemented and the results show that the cost per unit production can be 

reduced significantly compared to the existing benchmark strategies. Meanwhile, for the aggregate 

cost model, production, maintenance, and DR parameters are considered in the same function and 

a factor analysis is performed.   

The rest of this section is as follows. In Section 2.2 the joint energy, maintenance, and 

production scheduling problem is presented. Next, in Section 2.3 the aggregate cost model will is 
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derived. Meanwhile, Section 2.4 will present an illustrative case study and factor analysis. Lastly, 

Section 2.5 will conclude the chapter.  

 

2.2 Methodology  

 To promote joint energy, production, and maintenance planning a demand response driven 

production and maintenance methodology is developed. A scheduling model is proposed and 

includes short term energy saving decision making and longer term maintenance decision making 

in the same optimization problem.  Next, the aggregate cost model is derived from the proposed 

scheduling model and can be used to analyze the impact of various factors on the aggregate cost.  

 

2.2.1 Nomenclature  

 

Uppercase 

Bit: buffer contents in buffer i at the beginning of interval t 

Ci: maintenance cost of machine i per interval  

ExtraCrewC : cost of contracting one additional maintenance crew above MC per interval ($/crew) 

InventoryC : cost for storing one inventory unit ($/part) 

partC : cost per part produced ($/part) 

eR trievalC : the cost of retrieving one unit from an outside source ($/part) 

CE: total electricity cost 

CEM: total cost of extra maintenance crew resources ($) 

CI: total inventory cost ($) 

CR: total retrieved/outsourced products cost ($) 

CM: total maintenance cost 

CP: total benefit/cost of surpassing/falling short of the production target 

CPD: power demand cost considering both production and maintenance activities 
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CTt(r(ji)): cumulative operation time that machine i stays in degradation state ji with production 

efficiency r(ji) up to the beginning of interval t  

IS

itCU : cumulative inventory in the inventory space corresponding to buffer i during interval t 

(parts) 

itINV : amount of excess inventory incurred at buffer i during interval t (parts) 

L: duration of the interval 

L(s): location matrix for an individual particle at iteration s from PSO 

( )PBL s : particle’s best solution that has been identified up to the sth iteration using PSO 

LGB(s): global best solution that has been identified up to the sth iteration using PSO 

MC: number of maintenance crew resources 

MCEC: total maintenance electricity consumption cost 

MPi: power consumption due to the maintenance tasks for machine i 

MPDt: total power demand due to maintenance tasks during time interval t 

N: total number of machines in the production line 

Pi: rated power of machine i 

P*: total number of particles in the swarm, i.e., total population in PSO 

P* - p: number of particles following avoidance PSO, i.e., population 2 

PA: committed power limitation 

PCEC: production electricity consumption cost 

PD: power demand of the entire system 

PPDt: power demand from the machines due to production during time interval t 

PRi: production rate of machine i 

RECt: electricity consumption rate ($/kWh) for interval t 

InBS

itRET : number of units retrieved from an outside supplier (parts) 

IS
itRET : number of units retrieved from the inventory space (parts) 

RPD: power demand rate ($/kW)  

Si: maximum capacity of buffer i 

T: total number of time intervals in the planning horizon 

TA: target production throughput 

TD(r(ji)): duration of the operation time that machine i stays in degradation state ji before entering 

into next degradation state (j+1)i 
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TP: production throughput of the manufacturing system for the entire production horizon 

V(s): velocity matrix for an individual particle at iteration s from PSO  

Lowercase  

a: penalty rate due to production loss  

b: bonus rate due to additional production throughput  

c1 and c2: learning factors from PSO 

l(s): avoidance coefficient during iteration s from PSO 

p: number of particles following standard PSO, i.e., population 1 in PSO 

rit: production efficiency of machine i during interval t 

th

ir : threshold production capability of machine i at which maintenance task can be assigned (%) 

r(ji): production efficiency of machine i in degradation state ji  

wi: setup time of machine i after maintenance 

w1 and w2: random real numbers between zero and one 

Decision Variables 

xit: binary decision variable to denote the ON/OFF decision for machine i in interval t. 

yit: binary decision variable to represent the maintenance decision for machine i in interval t. 

Greek Letters  

α(s): inertial weight during iteration s for PSO 

αmax: maximum inertial weight value for PSO 

αmin: minimum inertial weight value for PSO 

Δri: difference in the production efficiency between each pair of adjacent degradation states for 

machine i 

δit: the percentage of time machine i is available to produce during interval t after considering setup 

time due to maintenance 

γ(s): avoidance rate during iteration s for PSO 

Indices 

i: index of machines 

ji: index of the degradation states of machine i 

m: index representing the particles in population 1 of  the PSO, mϵ{1,2,…,p} 

n: index representing the particles in population 2 of the PSO, nϵ{p+1,…,P*} 

o: index representing the particles in total population of the PSO, oϵ{1,2,…,P*} 

s: index of PSO iterations 
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smax: index of the final iteration in the PSO 

t: index of time intervals 

Sets 

OP: set of intervals that belong to on peak period  

 

 

2.2.2 Problem Formulation 

The problem is formulated according to the following. The manufacturer needs to 

determine a production schedule and maintenance plan under a TOU electricity DR program 

throughout the planning horizon considering energy cost, production throughput, and machine 

degradation. In the TOU electricity tariff program, the manufacturer is charged an electricity 

consumption rate ($/kWh) and power demand rate ($/kW/h). The electricity consumption rate 

varies over time depending on when peak demand hours occur. The power demand rate is applied 

to the maximum power demand (kW) of all the discretized intervals that occur during peak hours. 

Moreover, a maintenance cost is incurred each period that a maintenance task is scheduled 

($/interval). 

It is assumed that the manufacturing production line is a serial production line with N 

machines and N-1 buffers as shown in Figure 3. The production horizon is discretized into a set of 

intervals with a fixed duration L. All production and maintenance decisions are made at the 

beginning of each interval. Meanwhile, the degradation of the machines in the manufacturing 

system is described by the production efficiency, which is defined as the percentage of the actual 

production time (after deducting possible random failures due to degradations) per interval. 
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Figure 3 Serial Production Line 

 

 

The degradation of the machine is reflected by the drop in production efficiency. We 

assume that such an efficiency decrease is known and deterministic throughout the time horizon; 

and  follows the pattern shown in Figure 4. The machine’s production efficiency will degrade to 

lower state with a lower production efficiency after staying at its current production efficiency for 

a given duration (in interval units). The production efficiency of each degradation state and the 

duration that the machine will operate in each degradation state are assumed to be known and 

deterministic. While simplified, this degradation model is widely used in industry due to its ease 

of understanding, available data, and straightforward modeling. The simplified degradation pattern 

can be obtained from historical or empirical data. Such a model is mainly geared toward the plants 

lacking high automation capabilities that are needed for sampling reliability related signals or 

features for building advanced degradation models. 
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In addition, we assume that the duration of the machines’ random failures (or corrective 

maintenance) is relatively short compared to the duration of the slotted time interval. Moreover, 

we assume that corrective maintenance can restore the machine degradation state to the one before 

failure without influencing the production efficiency evolution of the machine. We also assume 

Δri, the difference in production efficiency between each pair of adjacent degradation states for 

machine i, is constant for machine i. Δri can be calculated by (2.1) 

(( 1) ) ( ), 2, ...,i i ir r j r j j J      (2.1) 

Moreover, for simplicity, we also assume that the production efficiency improvement that can be 

achieved by maintenance for machine i in one interval is the same as 
ir . The production 

efficiency of machine i during interval t, rit, can be calculated by (2.2).  

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

, ( ( )) ( ( )) and 0

, ( ( )) ( ( )) and 0

+ , 1

i t t i i i t

it i t i t i i i t

i t i i t

r if CT r j TD r j y

r r r if CT r j TD r j y

r r if y

 

 

 

  


   


 

 (2.2) 

In (2), TD(r(ji)) is the number of operating intervals machine i stays in degradation state ji before 

entering into the next degradation state (j+1)i. The term operation time refers to the time the 

machine is not shut down for energy saving or maintenance activities. Hence, an operation interval 

includes both working and repair periods due to random failures. The cumulative operation time 

that machine i stays in degradation state ji with a production efficiency of r(ji) up to the beginning 

of interval t, CTt(r(ji)), can be calculated by (2.3) 
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1 ( 1) 1 ( 1)

( 1)

( ( )) 1 , ( ( )) ( ( )) and 0
( ( ))

0, ( (( 1) )) ( (( 1) )) or 1

t i i t t i i i t

t i

t i i i t

CT r j x if CT r j TD r j y
CT r j

if CT r j TD r j y

   



   
 

   

 

 

(2.3) 

The initial conditions for rit and CTt(r(ji)) are shown in (2.4) and (2.5), respectively.  

1 (1 ),i ir r i   (2.4) 

1( (1 )) 0,iCT r i   (2.5) 

Let xit be the binary decision variable to denote the ON/OFF decision for machine i in 

interval t. It takes the value of one if machine i is on in interval t, and zero otherwise. Similarly, yit 

is the binary decision variable that represents the maintenance decision. It takes the value of one 

if machine i is scheduled for maintenance in interval t, and zero otherwise. Maintenance can only 

be conducted when machine i is shut down. Two different problems are formulated as follows. 

Problem 1 aims to minimize the total cost including maintenance and electricity billing cost under 

the constraint of production throughput. Problem 2 relaxes the production target constraint and 

integrates it into the objective function, i.e., the objective is to minimize the overall cost including 

electricity billing cost, maintenance cost, and penalty cost due to throughput loss. Based on the 

above description and assumptions, Problem 1 can be formulated by objective function (2.6) and 

constraints (2.7)-(2.13). 

,
min( )

it itx y
CM CE  (2.6) 

s.t. PD PA  (2.7) 

1

,
N

it

i

y MC t


   (2.8) 
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0 , 1, ..., 1,it iB S i N t      (2.9) 

=0, ,it ity x i t    (2.10) 

( ) (1 ), ,i it ir J r r i t     (2.11) 

( ) 0, ,th

it i itr r y i t      (2.12) 

TP TA  (2.13) 

Similarly, Problem 2 can be formulated by objective function (2.14) and constraints (2.7)-(2.12). 

,
min( + )

it itx y
CM CP CE  (2.14) 

s.t. PD PA  (2.7) 

1

,
N

it

i

y MC t


   (2.8) 

0 , 1, ..., 1,it iB S i N t      (2.9) 

=0, ,it ity x i t    (2.10) 

( ) (1 ), ,i it ir J r r i t     (2.11) 

( ) 0, ,th

it i itr r y i t      (2.12) 

In (2.6) and (2.14), the maintenance cost, CM, is formulated as shown in (2.15).  

1 1

(1 )
T N

it it i

t i

CM x y C
 

     (2.15) 

The throughput cost, CP, formulated in (2.16), is defined as the benefit/penalty of 

surpassing/falling short of the production target. It can take a negative value if the target production 

throughput is exceeded.  
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= max( , 0) max( , 0)CP a TA TP b TP TA      (2.16) 

The throughput throughout the planning horizon, TP, can be formulated by (2.17). 

1

(1 )
T

Nt Nt Nt N Nt

t

TP y x PR r L


        (2.17) 

Meanwhile, the general formulation for 
Nt , i.e., 

it , is shown in (2.18). 

( 1)

( 1)

1, if 0 and 0

=
1 , if 1and 0

i t it

it
i

i t it

y y

w
y y

L






 

     

 

 (2.18) 

In (2.18) it is assumed that setup is required for a machine after undergoing maintenance; 

meanwhile, when the machine resumes operation after being shut down for energy savings, the 

setup time is assumed to be negligible.   

Next, the electricity billing cost, CE, is shown in (2.19) and consists of the cost of electricity 

used by the machines for production, the cost of electricity consumption due to the maintenance 

tasks, and the cost due to the power demand.  

CE PCEC MCEC CPD    (2.19) 

PCEC, MCEC, and CPD can be formulated by (20)-(22), respectively. 

1

( )
T

t t

t

PCEC REC L PPD


    (2.20) 

1

( )
T

t t

t

MCEC REC L MPD


    (2.21) 

max( )t t
t

CPD RPD PPD MPD


  
OP

 (2.22) 

PPDt and MPDt can be calculated using (23) and (24) respectively.  
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1

N

t it i it

i

PPD x P 


    (2.23) 

1

N

t i it

i

MPD MP y


   (2.24) 

 Constraints (2.7)-(2.13) are explained as follows. Constraint (2.7) describes that the power 

demand, PD, during peak periods needs to be below the committed power demand, PA. PD can be 

calculated by 

max( )t t
t

PD PPD MPD


 
OP

 (2.25) 

Constraint (2.8) describes that the total number maintenance tasks that can be performed in one 

interval cannot be larger than the number of maintenance resources available, MC. We assume that 

one maintenance resource can only conduct the maintenance task for one machine during a given 

interval. Constraint (2.9) describes that the buffer contents for each buffer location should be 

maintained in the range of zero and respective capacities. Bit can be calculated by (2.26) 

( 1) ( 1) ( 1) ( 1) ( 1)( 1) ( 1)( 1) 1 ( 1)( 1)it i t i t i t i i t i t i t i i tB B x PR r L x PR r L                       (2.26) 

Constraint (2.9) and equation (2.26) are used to exclude the occurrence of “blockage” (when buffer 

stock reaches its capacity and the upstream machine cannot produce) and “starvation” (when buffer 

stock is zero and the downstream machine cannot produce). Here it is assumed that the machine 

will take the required amount of buffer contents in one batch from the upstream buffer at the 

beginning of each interval for the production of the entire interval. Meanwhile, the parts, after 

being processed by the machine, will be delivered to the downstream buffer, in one batch, at the 

end of the interval. Constraint (2.10) describes that the maintenance can only be implemented 

when machine i is shut down. Constraint (2.11) describes that the lower bound and upper bound 
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of the production efficiency of machine i cannot be exceeded. Constraint (2.12) describes that the 

maintenance task cannot be assigned if the production efficiency of the machine i has not reached 

a threshold value, th

ir .  Constraint (2.13) describes the production target, TA, needs to be satisfied 

in Problem 1. 

Finally, to solve the Problems 1 and 2, Particle Swarm Optimization (PSO) is used to obtain 

a near optimal solution for the production and maintenance schedules. In the PSO search 

procedure, the entire swarm is divided into two populations based on avoidance rate, γ(s), which 

can be calculated iteratively using (27). 

  max(0,1), if 0.75

1,

rand s s
s

otherwise


 
 


 (2.27) 

The number of particles that perform the standard PSO, i.e., population 1 are shown by

  *p round P s  . Meanwhile, the number of particles that perform local avoidable PSO, i.e., 

population 2, are shown by *P p . The velocities for the particles that belong to the two above 

populations are updated according to (2.28) and (2.29), respectively. 

1 1 2 2( 1) ( ) ( ) ( ( ) ( )) ( ( ) ( ))

                                    where {1,2,..., }                                    

mm m PB m GB mV s s V s c w L s L s c w L s L s

m p

     


 (2.28) 

1 2

*

( 1) ( ) ( ) ( ){ ( ( ) ( )) ( ( ) ( ))}

                                     where { 1,..., }

nn n PB n GB nV s s V s l s w L s L s w L s L s

n p P

     

 
 (2.29) 

α(s) is the time varying inertial weight at iteration s. It is bounded by the minimum (αmin) and 

maximum (αmax) values. In the first iteration, α(s) is at the specified maximum and then with each 

iteration it drops according to equation (2.30) so that in the last iteration, it will take the value of 

the specified minimum. When the inertial weight is high, the search for the optimal solution is 
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more global and spread out until the general region where the optimal solution lies is determined. 

Then, as the inertial weight decreases, more localized search to find the optimal solution is 

conducted. 

min( )  max
max

max

ss
s

 
 

 



  


 (2.30) 

l(s) in (2.29) is defined as the “avoidance coefficient” and calculated according to (2.31). 

max

( ) 2 1
s

l s
s

 
  

 
 (2.31) 

Additionally, the particles in the two populations update their positions using (2.32). 

*

( 1) ( ) ( 1)

where {1,2,..., }

o o oL s L s V s

o P

   


 (2.32) 

The initial velocity V(s=1) for each particle is randomly generated from the set {-1, 0, 1}. Since 

both V and L are updated using real numbers, further steps as shown in (2.33) and (2.34) are needed 

to make V and L be in set {-1, 0, 1} and {0, 1}, respectively. 

1, if ( 1) 0.5

( 1) 0, if 0.5 ( 1) 0.5

1, if ( 1) 0.5

V s

V s V s

V s

   


     
  

 (2.33) 

( ) ( 1), if 0 ( ) ( 1) 1

( 1) 0, if ( ) ( 1) 0

1, if ( ) ( 1) 1
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L s V s

     


    
   

 (2.34) 

The initialized energy control submatrix consists of all the elements with a value of one. 

Note that randomly drawing a number from the set {0, 1} to initiate the energy control submatrix 

may greatly decrease the number of feasible solutions due to constraint (2.9). Likewise, the 

initialized maintenance planning submatrix consists of all the elements with a value of zero.  Note 
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that it is necessary to use zero due to constraint (2.10), otherwise the number of feasible solutions 

will be dramatically reduced.  

The fitness function for individual particle is shown in (2.35) for Problem 1, with 

constraints (2.7)-(2.13) integrated as penalty terms. Similarly, for Problem 2, the fitness function 

is shown in (2.36), with constraints (2.7)-(2.12) integrated as penalty terms. 
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where A1,
 A2,

 … , and A9 are nine large real numbers.  

 

2.3 Aggregate Cost Model  

The cost per part model can provide manufacturers and decision makers with a tool for 

assessing the performance of the above formulated joint energy, production, and maintenance 

scheduling model in an aggregate manner and aid higher level production decision making such 
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as determining annual production levels, TOU contracts, maintenance costs, etc. It can also be used 

to evaluate the impact of any deviations or changes in system parameter values due to system 

changes, limited data, and inaccurate parameter estimation.   Accordingly, the aggregate cost 

model is derived from Problem 2 in Chapter 2.2.  

The cost per part is denoted by 
partC  and formulated in (2.37), where inventory and 

additional maintenance crew cost functions are incorporated in the aggregate cost model.   

( )
part

CM CE CP CI CR CEM
C

TP

    
  (2.37) 

CI, CR, and CEM are the inventory cost, retrieved/outsourced products cost, and the cost of extra 

maintenance crew resources, respectively. These cost functions are incorporated in the formulation 

for 
partC  to accommodate buffer or maintenance constraint violations; which are considered as 

non-strict constraints.     

The inventory cost, CI, adjusts for excess inventory holding requirements that exceed 

buffer maximum capacities. The retrieved/outsourced cost, CR, is the cost of outsourcing due to 

empty buffer conditions. The extra maintenance crew cost, CEM, accounts for the cost when extra 

maintenance crew resources, above the level of MC, are required.  Correspondingly, CI is shown 

by (38),  

1

1 1

N T
Inventory

it
i t

CI INV C

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   (2.38) 

where CInventory  is the cost of storing one inventory unit and INVit is the amount of excess inventory 

incurred at buffer i during interval t. INVit is given by (39). 
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Also, the cost of outsourced/retrieved parts due to buffer capacity shortage is given by (40), where 

CRetrieval is the cost of retrieving one unit from an outside source.  

1
Re

1 1

InBS

it

N T
trieval

i t

RETCR C


 

  (2.40) 

InBS

itRET  represents the number of units retrieved from an outside supplier. For CR, additional 

production units are needed whenever the contents of buffer i during interval t fall below zero. 

However, the case in which additional units needed can be supplied (at no cost) from the inventory 

space incurred prior to interval t also needs to be considered. Accordingly, IS

itCU  represents the 

cumulative inventory in the inventory space corresponding to buffer i during interval t and is 

shown in (2.41),  

( 1)

IS IS IS

it i t it itCU CU INV RET    (2.41) 

where IS

itRET is the number of units retrieved from the inventory space. When 0IS

itCU   the 

additional units needed are obtained from an outside supplier (outsourced). Thus, the number of 

units retrieved from the inventory space ( IS

itRET ) and the number of units outsourced when the in-

house inventory has depleted to zero ( InBS

itRET ), are shown in (42) and (43), respectively.  
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Because the buffer constraints have been incorporated in the aggregate cost model by 

considering inventory and outsourced product costs, itB  is permitted to assume negative values to 

represent buffer shortages. However, 0IS

it itBRET     and 0InBS

it itBRET     restrictions are 

emplaced. Finally, the cost of extra maintenance crew requirements is given in (2.44) and denoted 

by CEM, where ExtraCrewC  is the cost of contracting one additional maintenance crew resource 

above MC per interval. Since the production schedule does not consider system parameter value 

uncertainty, CI, CR, and CEM are necessary to achieve feasible production plans.  

1 1

max(0, )
T N

ExtraCrew
it

t i

CEM y MC C
 

     (2.44) 

  

2.3 Case Study, Results, and Analysis  

 In this section a case study to show the effectiveness of the proposed method is presented. 

First, the production scheduling case setup and PSO optimization procedure will be discussed. 

Next, the optimization results will be compared to baseline cases. Lastly, a factor analysis 

considering the aggregate cost model is presented.  

2.3.1 Production Scheduling Case Setup 

To illustrate the effectiveness of the proposed model, a numerical case study is 

implemented. We consider a manufacturing system that consists of five machines and four buffers. 

The parameters of each machine including the production rate, rated power, and setup time are 

shown in Table 1. The parameters of each buffer, including initial contents and buffer capacity, are 

shown in Table 2. The time horizon is an 8-hour shift (from 7:00 AM-3:00 PM) over the span of a 

5-day week, slotted into 160 15-minute intervals. The peak period is from 1:00 PM to 3:00 PM for 
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all days of the week. The TOU tariff program consists of both a demand charge and a consumption 

charge as summarized in Table 3. Finally, the production target for the week is 1400 parts.  

 

 

Table 1 Basic Machine Parameters for Chapter 2 

Machine 

Production 

Rate 

(parts/interval) 

Rated 

Power 

(kW) 

Setup 

Time 

(minutes) 

1 12.5 15 3 

2 12.5 17 2 

3 12.5 24 2.5 

4 12.5 17 4 

5 12.5 21 2 

 

 
 

Table 2 Basic Buffer Parameters for Chapter 2 

Buffer Initial Capacity 

1 70 160 

2 70 145 

3 50 140 

4 75 160 

 

 
 

Table 3 TOU Tariff Program for Chapter 2.3 

Time of Day 
Consumption Rate 

($/kWh) 
Demand Rate ($/kW) 

7:00AM-1:00PM 0.08274 0 

1:00PM-3:00PM 0.1679 18.8 

      

 

The maintenance related parameters are set as follows. Δri is 0.05. The maximum and 

minimum production efficiencies are 0.95 and 0.65, respectively. The cost and the power required 

to perform a maintenance activity are shown in Table 4. Moreover, the initial production 

efficiency/degradation states, as well as maximum time that each machine can stay in each 
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degradation state are shown in Table 5 (for simplicity, we assume that this time is equal for all of 

the degradation states of a machine). The number of maintenance crew resources, MC, is 2.  

 

Table 4 Maintenance Task Cost and Required Energy 

Machine 

Maintenance 

Cost per Interval 

($/interval) 

Power 

(kW) 

1 15 1.5 

2 25 2 

3 20 2 

4 18 1.5 

5 22 2 

 

 

Table 5 Machine Production Efficiency State Parameters 

Machine 
Initial Production 

Efficiency 

Maximum Intervals Machine Can 

Stay in Each Degradation State 

1 0.90 12 

2 0.85 8 

3 0.90 12 

4 0.90 10 

5 0.90 12 

 

 

This case study considers the following five scenarios as shown in Table 6. For Scenario I, 

there is no dynamic energy control action implemented (all xit are set to be one), while the 

maintenance is triggered by a threshold production efficiency. Next, Scenario II uses energy saving 

opportunities to implement maintenance. In other words, priority is given to energy saving actions 

while maintenance scheduling is secondary, i.e., all xit will be determined by minimizing the 

electricity billing cost and the maintenance will be scheduled for those machines in off intervals. 

When the production efficiency of a machine drops to a value lower than a threshold value, the 

machine can be scheduled for maintenance. Scenario III implements the energy and maintenance 
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control separately.  xit will be obtained by minimizing the electricity billing cost under the 

constraint of production target, and the maintenance is triggered at a threshold production 

efficiency. Scenario IV implements the proposed joint production, maintenance, and energy model 

based on Problem 1. Scenario V implements the joint production, maintenance, and energy model 

based on Problem 2.  

 

Table 6 Summary of Different Scenarios 

Scenario Description 

I 
No energy control, production efficiency triggered 

maintenance 

II 

Optimal energy control, maintenance will be confined 

to those off machines considering threshold production 

efficiency 

III 
Energy control and maintenance are implemented 

separately 

IV 
Joint energy, maintenance and throughput control using 

Problem 1 

V 
Joint energy, maintenance and throughput control using 

Problem 2 

 

 

In a more practical sense, Scenario I can be considered a baseline model that is adopted by 

most industrial practitioners to maintain equipment reliability and improve productivity. Scenario 

II can be considered a naïve joint model, which tries to utilize the energy saving opportunities for 

maintenance. The energy driven production scheduling strategies for DR in both Scenarios II and 

III have been widely studied by academia due to the increasing concerns of environmental 

protection and climate change. As for industrial practitioners, the significance of the energy driven 
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scheduling method has also been gradually recognized and many manufacturers, especially those 

who are charged by typical TOU electricity rates, have started to adopt such methods. It is expected 

that energy driven production scheduling will be widely used in the near future. Therefore, these 

two scenarios as well as Scenario I are used as the benchmark to demonstrate the benefits from 

adopting the proposed model reflected by Scenarios IV and V. 

For Scenarios I and III, the threshold production efficiency is 0.7 for all machines. Once 

the threshold value is reached, maintenance is triggered until the production efficiency is restored 

to 0.9. If more than two machines reach the threshold value of 0.7, the priority of maintenance will 

be determined randomly. For Scenario II, the threshold production efficiency is 0.7, which is 

applied to the machines that are shut down for energy saving; however, the production efficiency 

may not be restored to a production efficiency of 0.9 if the off intervals are not long enough. For 

both Scenarios IV and V, the maintenance threshold value, th

ir , is set to 0.75 for all machines. 

Finally, the bonus rate of producing one more part after reaching the target throughput is $3 and 

the penalty rate when falling one short of the target is $5.   

2.3.2 PSO Parameter Tuning 

  The problem was solved using the PSO method described in the previous section. The 

PSO swarm size used was 3000. The maximum iteration number, smax, was set to 500. The learning 

factors, c1 and c2, were equal to 2. The inertial weight parameters αmax and αmin are set to start at 

0.9 and end at 0.4, respectively.  These PSO parameters are determined through literature 

(Arasomwan and Adewumi, 2013) and parameter tuning. For example, the PSO results due to 

different inertia weight configurations and learning factors are illustrated in Table 7 and Table 8, 

respectively. Note that this is a minimization problem. Accordingly, it can be seen that the adopted 

strategies can outperform the standard PSO. 
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Table 7 PSO Results Due to Different Inertia Weight Configurations 

Inertia Weight ( ) PSO Population 

Type Value No split With split 

No Inertia Weight -- 2333.33 2319.994 

Constant Inertia 

Weight 

0.9 2307.172 2289.548 

0.7 2308.304 2303.533 

0.4 2310.572 2310.216 

Linearly Decreasing 

Inertia Weight 
0.9 to 0.4 2303.744 2254.613 

*Tested using population size of 1000 over 100 iterations 

 

 

Table 8 PSO Results Due to Different Learning Factors 

Learning Factors 

(c1 & c2) 

PSO Population 

No Split With Split 

2 2303.744 2254.613 

1.5 2302.866 2265.126 

1 2304.738 2273.570 

0.5 2310.237 2289.937 

0 2335.037 2309.797 

*Tested using population size of 1000 over 100 iterations 

**Linearly decreasing inertial weight 

 

 

2.3.3 Case Study Results  

After solving the problem, the production and maintenance schedules for Scenarios IV and 

V are obtained; and are compared to Scenarios I-III. The throughput for each scenario is obtained 

as shown in Table 9. It is evident that all five scenarios reach the target throughout. It is also noted 
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that the throughput obtained in Scenarios IV and V is lower than some other scenarios since the 

proposed model is cost driven. Also note that the model does not take into account any material 

costs or holding. The resulting electricity consumption and power demand from the production 

line and the maintenance action are calculated as shown in Table 10. 

 

Table 9 Production Throughput 

Scenario Throughput 

I 1526 

II 1405 

III 1418 

IV 1405 

V 1419 

 

 

Table 10 Electricity Consumption and Power Demand 

Scenario 

Production 

Electricity 

Consumption 

(kWh) 

Maintenance 

Electricity 

Consumption 

(kWh) 

Total 

Electricity 

Consumption 

(kWh) 

Power 

Demand 

(kW) 

I 3417.7 27.5 3445.2 94 

II 3462.7 14.5 3477.2 79 

III 3128.9 22.4 3151.3 79 

IV 3429.6 10.5 3440.1 79 

V 3439.3 10.9 3450.2 79 

      

The electricity consumption (kWh) from production for Scenarios IV and V (proposed 

formulations) is higher than Scenario I (no energy control is implemented). Once again, the reason 

is that the proposed problem is cost driven. When considering the TOU program shown in Table 

III, the marginal price per kWh, compared to the marginal price per kW, is almost negligible. 
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Meanwhile, the consumption for Scenario I is lower, while the power demand (kW) is much higher 

than all other scenarios. Moreover, when comparing Scenario III to Scenarios IV and V (proposed 

formulations), the consumption is less, while the power demand is the same. Again, the reason is 

that the objective of this model is cost driven. Although the overall energy consumption is less for 

Scenario III, the maintenance cost is twice as much as that of Scenarios IV and V (see Figure 5). 

This is because the frequency of the maintenance tasks is reduced. It illustrates that the proposed 

model can also make maintenance scheduling more efficient. 

Figure 5 summarizes the total cost and the non-energy related maintenance cost for each 

of the five scenarios. As expected, Scenarios I-III have a much higher total cost than Scenarios IV 

and V. This is due to the high non-energy related maintenance cost from Scenarios I-III. Thus, it 

shows that the combined model considering both Problems 1 and 2 is necessary and effective.   

 
 

 
Figure 5 Energy and Maintenance Cost Comparison 
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Next, due to the difference in throughput among the scenarios, the cost per unit product 

produced is calculated and compared as shown in Table 11. The reduction of cost per unit produced 

when using the proposed model compared to Scenarios I, II, and III is illustrated in Table 12. Both 

Scenarios IV and V have a much lower cost per part than Scenarios I-III. Furthermore, Scenario 

V (Problem 2) achieves the lowest unit cost among all five scenarios. Hence, the objective of 

reducing the overall cost due to throughput loss, maintenance, and energy is realized by the 

proposed model. Accordingly, Problem 2 (i.e. Scenario V) is used as the reference case for the rest 

of this analysis in Section 2.3.4. Note that this is also the problem used to derive the aggregate cost 

model.  

 

Table 11 Unit Cost per Part Produced 

Scenario Cost per Part ($) 

I 2.205 

II 1.770 

III 1.989 

IV 1.642 

V 1.599 

 

 

Table 12 Reduction of Unit Cost per Part Produced When Using Proposed Model 

Comparison between 

Scenarios 
Cost Reduction (%) 

IV vs I 25.53% 

IV vs II 7.23% 

IV vs III 17.45% 

V vs I 27.48% 

V vs II 9.66% 

V vs III 19.61% 
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2.3.4 Analysis and Discussion   

An analysis is conducted to investigate the relationship between cost, energy consumption, 

production throughput, and maintenance using the aggregate cost model derived from Problem 2.   

The effect of different factors and their interactions are examined using DOE. Several samples of 

production and maintenance schedules, for each factor/parameter level, are obtained to better study 

the overall behavior of the production system as opposed to the behavior of a specific production 

schedule. A 36-factorial design with 32 replications is built. In all, the total number of observations 

is 23,328. The factors and factor levels are shown in Table 13. A graphical representation of these 

samples generated using the PSO algorithm is shown in Figure 6.  

A simple 4-Step Monte Carlo sampling approach is adopted to obtain the replications 

(Sheehy and Martz, 2012):  

 Step 1 identifies the transfer equation; i.e. the DR driven production and maintenance 

scheduling model.   

 Step 2 requires the variable inputs to be defined. For the scope of this analysis, the 

machines’ “on/off” states and the maintenance schedule throughout the production horizon 

will be the input values that need to be generated.  

 Step 3 requires the dataset to be simulated in a randomized manner. The PSO method will 

be used to generate the dataset since it is an evolutionary algorithm that generates partially 

random samples (Zhong-Sheng et al., 2017).  

 Step 4 analyzes the samples, which will be done using DOE factorial analysis methodology.    
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Table 13 Factor Levels 
 Levels 

Factors 1 2 3 

Pi 0.8 1.15 1.5 

MPi 0.8 1.15 1.5 

PRi 40 55 70 

ri(t=0) 0.7 0.8 0.9 

Bi(t=0) 0 0.5 1 

MC 1 3 5 

 

 

 

 

 
Figure 6 Cpart for PSO Generated Samples 

 

After running the factorial analysis considering all factors and higher order interactions, 

MPi is found to be insignificant both in the linear model and in all higher order interactions. 

Additionally, all interactions higher than 2nd order interactions are not significant. Thus, MPi and 

all interactions over 2nd order are disregarded. Finally, the interaction plot and ANOVA output are 
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shown in Figure 7 and Table 14, respectively. Meanwhile, Figure 8 shows the normal probability 

plot and histogram of the residuals. 

 

 
Figure 7 Main Effects Plot 

 

Table 14 Reduced ANOVA Table 

Source DF Adj SS Adj MS F-Value P-Value 

Model 50 50275.6 1005.5 11715.25 0.000 

Linear 10 49721.6 4972.2 57930.87 0.000 

Pi 2 3082.7 1541.3 17958.08 0.000 

PRi 2 43156.9 21578.5 251411.70 0.000 

ri(t=0) 2 2313.9 1156.9 13479.61 0.000 

Bi(t=0) 2 1139.1 569.6 6636.13 0.000 

MC 2 29.0 14.5 168.82 0.000 

2-Way Interactions 40 553.9 13.8 161.35 0.000 

Pi*PRi 4 164.7 41.2 479.78 0.000 

Pi*ri(t=0) 4 6.8 1.7 19.86 0.000 

PRi*ri(t=0) 4 365.0 91.2 1063.12 0.000 

PRi*Bi(t=0) 4 13.8 3.5 40.30 0.000 

PRi*MC 4 1.5 0.4 4.51 0.001 

ri(t=0)*Bi(t=0) 4 1.0 0.3 3.03 0.016 

ri(t=0)*MC 4 1.0 0.2 2.90 0.020 

   R-sq R-sq(adj) R-sq(pred) 

   96.18% 96.17% 96.16% 
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Figure 8 Normal Probability Plot and Histogram of Residuals for ANOVA Analysis 

 

 

Next, assuming Pi, PRi, Bi(t=0), ri(t=0), and MC are all decision variables and the objective 

function is the aggregate cost per part function (minimize); the impact of the different system 

parameters can be further analyzed.  A Response Surface model, which accounts for all statistically 

significant first order factors and second order interactions, is adopted. The corresponding results 

are illustrated in Figure 9 and suggest that the best outcomes are observed at the maximum 

production rate and minimum rated power. Meanwhile, the maintenance crew resources, initial 

machine production efficiency, and initial buffer inventory level fell into the middle range. The 

reason the initial machine production efficiency is not recommended to be at the maximum level 

is because it reduces maintenance scheduling flexibility since maintenance actions cannot be 

implemented when the production efficiency level is higher than the threshold level. Furthermore, 

it could lead to too many machines needing maintenance resources at the same time. Thus, leading 

to less flexibility in maintenance scheduling. In all, 69% reduction in 
partC  is achieved with the 

rated power is at 80%, production rate is 70, initial machine production efficiency is 0.85, initial 

buffer content level is at 69%, and maintenance crew resources is 3.  
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Figure 9 Response Optimizer 

 

 

The savings due to parameter optimization for the aggregate cost model are compared to 

three baseline cased. The first baseline does not consider any dynamic energy control action (all 

machines are on unless the buffer constraints are violated), and the maintenance policy is set to be 

triggered by a threshold production capability level (Scenario I). The second baseline (Scenario II) 

implements an optimized production schedule such that all xit are obtained by minimizing the 

electricity billing cost while considering TOU demand response. Meanwhile, the maintenance 

schedule is determined considering a threshold production capability policy similar to Scenario I.  

Scenario III implements an optimized maintenance schedule such that all yit are obtained by 

minimizing the maintenance billing cost while TOU demand response driven decision making is 

not considered. Scenario IV represents the setup for the aggregate cost model derived from 

Problem 2. Note that the results for all four scenarios assume that the proposed system parameter 

changes are physically possible.   

The percent savings due to parameter optimization for each of the scenarios is shown in 

Table 15. Dual scheduling and system parameter optimization can achieve 39-62% in savings 

compared to the baseline cases; indicating that iteratively optimizing energy and maintenance 

production scheduling with parameter optimization can have significant benefits.  
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Table 15 Cpart after Parameter Optimization 

Scenario 

Cpart without 

parameter 

optimization ($) 

Cpart with 

parameter 

optimization ($) 

Percentage 

savings for Cpart 

I 2.40 1.4225 40.73 

II 1.77 1.5899 10.18 

III 1.88 1.2847 31.66 

IV 1.60 0.4869 69.57 

 

 

2. 4 Conclusion 

In this Chapter, methodology for joint energy, maintenance, and throughput scheduling for 

typical manufacturing systems with multiple machines and buffers is proposed to guide operational 

activities on shop floors toward sustainable manufacturing. Multiple criteria from the perspective 

of sustainability are modeled and unified in a single cost minimization objective. The problems, 

with and without the production throughput constraint, are formulated to identify the optimal joint 

production, energy, and maintenance schedules that minimize the operational cost. Alongside to 

the proposed scheduling model, an aggregate cost model is established and can be used to 

determine the actual system performance in case of discrepancies or desired changes in system 

parameter values.  

The proposed methodology can help determine the feasibility and promote flexible cost 

effective joint energy, production, and maintenance decision making. The results from the 

numerical case study illustrate the effectiveness with respect to the overall cost reduction when 

using the proposed joint model compared to the scenarios where energy and maintenance strategies 

are implemented separately. Moreover, the factor analysis indicates that there is a need to balance 
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production, maintenance, and electricity related factors simultaneously to ensure robust and 

attainable cost savings. While too few maintenance crew resources can lead to quickly degrading 

machine production efficiency and thus production loss; too many maintenance crew resources 

and maintenance activities can lead to unnecessary costs and production interruptions. This limits 

manufacturers’ flexibility needed to leverage TOU tariff structures and hinders costs savings.  In 

all, this research supports manufacturers in adopting demand-side energy management at the 

manufacturing system-level. .  
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3 HVAC Load Model in Manufacturing Facility Considering Manufacturing Operation for 

Peak Power Demand Reduction 
 
 

Parts of this chapter were previously published as: “Dababneh, F., Li, L. and Sun, Z., 2016. 

Peak power demand reduction for combined manufacturing and HVAC system considering heat 

transfer characteristics. International Journal of Production Economics, 177, pp.44-52. ”. © 2016 

Elsevier. Reprinted, with permission, from [Dababneh, F., Li, L. and Sun, Z., 2016. Peak power 

demand reduction for combined manufacturing and HVAC system considering heat transfer 

characteristics. International Journal of Production Economics, 177, pp.44-52.]  and “Dababneh, 

F., Atanasov, M., Sun, Z. and Li, L., 2015, June. Simulation-based electricity demand response for 

combined manufacturing and HVAC system towards sustainability. In ASME 2015 International 

Manufacturing Science and Engineering Conference (pp. V002T05A009-V002T05A009). 

American Society of Mechanical Engineers. ”. © 2015 ASME. Reprinted, with permission, from 

[Dababneh, F., Atanasov, M., Sun, Z. and Li, L., 2015, June. Simulation-based electricity demand 

response for combined manufacturing and HVAC system towards sustainability. In ASME 2015 

International Manufacturing Science and Engineering Conference (pp. V002T05A009-

V002T05A009). American Society of Mechanical Engineers. ]. 

 
 
 

3.1 Objective and Overview   

Within a typical industrial manufacturing plant, the two main energy consumers are the 

manufacturing system and the HVAC system. Together these two systems can lead to high power 

demand profiles for manufacturers. Opportunely, using intelligent scheduling methods the total 

power demand due to the manufacturing operation and HVAC system can be reduced. This in turn 

results in economic and environmental sustainability benefits for manufacturers.  Accordingly, a 
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method to reduce the power demand during peak periods using an HVAC work load model (which 

considers manufacturing heat sources) alongside to the manufacturing power demand model is 

proposed. The effect of the manufacturing operation on the indoor temperature and the HVAC 

working load is quantified by considering the heat transfer characteristics of the machines in the 

manufacturing system. A mathematical model is formulated using mixed integer nonlinear 

programming (MINLP) and solved using General Algebraic Modeling (GAMS). An optimal 

schedule for the manufacturing operation and control scheme for the HVAC temperature setpoints 

that can minimize the power demand during peak periods under the constraint of production 

throughput is identified. A numerical case study is used to illustrate the effectiveness of the 

proposed method.  

The rest of the chapter is organized as follows. In Section 3.2 a preliminary simulation 

based study is implemented. Section 3.3 introduces the analytical electricity DR scheduling model 

for the combined HVAC and manufacturing system. Section 3.4 introduces a numerical case study. 

Finally Section 3.5 concludes the section.  

 

3.2 Preliminary Simulation Based Method 

A simulation model is built to study potential for implementing production and HVAC 

demand-side energy management. The simulation is built in two stages. The first part of the 

simulation deals with modeling the manufacturing system in ProModel, a discrete event simulation 

package that allows for a user-friendly interface. It can be used for the design, assessment, and 

optimization for both service and manufacturing settings. The manufacturing system can be 

modeled using the actual layout information, e.g., the number of machines, buffers, downtimes, 

and much more. Furthermore, different variables denoting different system performance measures 
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such as system throughput, energy consumption, and power demand can be defined by the users 

to make it easy to track and record all interested measures. Electricity DR can also be integrated 

accordingly to the method in Cuyler et. al (2014) where the different peak and off peak periods 

and prices can be configured. Next, the second part of the simulation is performed in EnergyPlus, 

an energy analysis and thermal load simulation program developed by Department of Energy based 

on DOE-2 and BLAST (DOE, 2012). It considers size and geometry, construction materials, 

internal heat loads, HVAC systems, and the environmental temperature to represent the thermal 

behavior of the building dynamically.  

The obtained power consumption of the manufacturing system when electricity DR is 

implemented in ProModel can be used as internal heat source when integrated into the building 

model in EnergyPlus to establish a combined manufacturing and HVAC system simulation model. 

This internal heat source can be configured and adjusted in the combined simulation model to 

represent different production strategies, e.g., it can be set as zero for a 15-minute interval to 

simulate a production pause. With this combined simulation model, we will examine and compare 

three different DR policies for manufacturers as follows. The first policy (Policy I) is a baseline 

scenario where DR is not implemented for both the manufacturing system and HVAC system, i.e., 

the combined simulation is run without taking into account the DR event for both the HVAC and 

manufacturing systems. Hence, the energy and power consumption for the combined system can 

be obtained as a benchmark. The second policy (Policy II) considers the case when electricity DR 

is applied to the manufacturing system alone while allowing the HVAC to run at its standard 

demand. The third policy (Policy III) represents the case when both the HVAC and manufacturing 

systems are considered for DR.  
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The DR actions for the manufacturing system include ON and OFF decisions for the 

machines in the system to minimize the power demand during the DR event while maintaining the 

production throughput of the entire system. The optimal DR actions for the manufacturing system 

can be obtained using exhaustive search using the simulation model (Cuyler et. al, 2014). The 

control action for the HVAC includes ON and OFF actions while maintaining the indoor 

temperature in the desired range.  

Using the joint simulation model, the influence of the manufacturing operation on the 

indoor temperature evolution can be investigated. Two indoor temperature curves, one with the 

manufacturing operation and the other one without manufacturing operation, can be obtained and 

compared. The power consumption of the combined system can also be examined from the 

combined simulation model and compared with the power consumption from the two exclusive 

simulation models, i.e., the manufacturing system model in ProModel, and the building HVAC 

model without the manufacturing operation in EnergyPlus. 

The parameters of each machine including cycle time, mean time between failures 

(MTBF), mean time to repair (MTTR), and rated power are shown in Table 16. The parameters of 

each buffer including initial content level and buffer capacity are shown in Table 17. 

. 

Table 16 Basic Setting of Machines for Simulation Model 

Machine 
Cycle Time 

(min) 
MTBF (min) MTTR (min) 

Rated Work 

(kW) 

M1 0.5 100 4.95 21 

M2 0.5 45.6 11.7 14 

M3 0.5 98.8 15.97 20 

M4 0.5 217.5 27.28 16 

M5 0.5 109.4 18.37 13 
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Table 17 Basic Setting of Buffers for Simulation Model 

Buffer B1 B2 B3 B4 

Initial Buffer Contents 50 8 22 28 

Maximum Capacity of 

Buffer 
70 40 30 42 

 

 

The DR event is assumed to start at the 120th minute and end at the 150th minute of an 8-

hour shift from 9:00AM to 17:00PM (i.e., from 11:00AM to 11:30AM). The DR action for the 

manufacturing system is obtained based on the work by Cuyler et. al (2014) as shown in Table 18 

where 0 denotes shutdown and 1 denotes production. Meanwhile, each interval has a duration of 

15-minutes.  

Table 18 Demand Response Actions 

 M1 M2 M3 M4 M5 

1st Interval 

(11:00-11:15AM) 
0 1 0 0 0 

2nd Interval 

(11:16-11:30AM) 
0 0 1 1 0 

 

 

The building that is demonstrated in the EnergyPlus is a one story, one thermal zone 

building in Chicago, Illinois. The typical information of one summer day and one winter day are 

used for the sizing of the model. The floor area of the building is 20m by 20m and the height of 

the building is 10m. Different materials were used for the construction of the building to best 

replicate a practical real world setting. The walls consist of wood fiberglass and plasterboard; the 
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roof is also made of fiberglass and plasterboard; and the floor consists of heavy concrete. 

Meanwhile, the target indoor temperature is from 20 to 24 (degrees Celsius) when the DR event 

does not occur and 20 to 27 (degrees Celsius) during the DR event. The fraction radiant of the 

electric equipment of the manufacturing system is set as 0.3 and the convection coefficient is 0.7 

(Brundage et. al, 2013).  

In addition, the HVAC system used in EnergyPlus is an Ideal Loads Air System. It is the 

simplest HVAC system that can be simulated because it does not require the user to specify the 

different operating components, such as air loops and water loops, of the HVAC system. This 

choice is usually used when the focus is on building performance and does not require very much 

detail on the functionality of HVAC system components.  

Finally, to receive a report from EnergyPlus, objects, variables, and meters need to be 

specified. Objects represent the components in the target system. Variables report the value of any 

element of interest at different points in time. Meters are a special form of variables used to 

measure resource usage or generation in interval units (Siddiqui et al., 2008). Using the developed 

simulation model, three different DR policies are implemented as summarized in Table 19.  

 

Table 19 Summary of Different Demand Response Policies 

Policy HVAC Manufacturing System 

I Does not consider DR Does not consider DR 

II Does not consider DR Considers DR 

III Considers DR Considers DR 
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The results are optioned and the power demand during peak periods under three different 

policies and corresponding carbon dioxide (CO2) emission reduction for a winter day and summer 

day are summarized as shown in Table 20 and Table 21, respectively. Note that one kW reduction 

of power demand during peak periods translates to a 65 kWh reduction in electricity consumption 

(Siddiqui et al., 2008). Moreover, one kWh electricity generation may incur 1.52 pounds carbon 

dioxide (CO2) emission (Environmental Protection Agency, 2014).). The power of the combined 

system throughout the time horizon of the two design days under the three polices is illustrated in 

Figure 10. 

 

Table 20 Comparison of Three Demand Response Policies in Winter 

Policy 

Power 

Demand 

(kW) 

Power 

Demand 

Reduction (%) 

CO2 Emission 

Reduction (lb.) 

I 101 - - 

II 25.6 74.65 7450 

III 24.5 75.74 7558 

 

 
 

Table 21 Comparison of Three Demand Response Policies in Summer 

Policy 

Power 

Demand 

(kW) 

Power 

Demand 

Reduction 

(%) 

CO2 Emission 

Reduction (lb.) 

I 126.6 - - 

II 53.4 57.81 7232 

III 24.5 80.64 10087 
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Figure 10 Power demand curves 

 
 

It is evident from the results that HVAC system consideration alongside to DR driven 

production control for manufacturers can greatly improve the power consumption reduction of the 

combined system and also lead to more CO2 emission reduction. Furthermore, it is interesting to 

note that the power demand for the winter day in Policies II and III are very close. This is because 

in the winter the heat generation due to the machines’ being in an operating state can actually help 



59 
 

reduce the overall heating load required. This further suggests the importance of taking into 

account the relationship between the energy consumption from the production line and the HVAC 

system when designing facilities or studying building energy performance.  

In the second part of the case study, the goal is to examine how the manufacturing 

operation’s heat generation affects the room temperature on a summer day. Here the manufacturing 

operation is scheduled for 8 hours from 9:00AM to 5:00PM. The temperature curve for the building 

with and without the manufacturing operation when the HVAC system is completely shut down is 

shown in Figure 11. The purpose here is solely to illustrate the effects of the manufacturing 

operation on the room temperature and does not reflect the working conditions within the facility. 

 

 

Figure 11 Indoor Temperature Curves with/without Manufacturing System 
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It is evident that the heat load generated by the machines plays a significant role in increasing the 

room temperature within a manufacturing plant. As a result, the HVAC requirement of a building 

is highly influenced by the power consumed and heat dissipated from the manufacturing system.  

Next, the power consumption for the combined simulation model and two exclusive 

simulation models is compared. For the combined simulation model, the power consumption of 

the combined manufacturing and HVAC system, denoted as Ptotal, is recorded. For the  

manufacturing system model in ProModel and the building HVAC model without manufacturing 

operation in EnergyPlus, the power consumption for manufacturing system, denoted as PPL, and 

the power consumption of the HVAC system without manufacturing operations, denoted as PHVAC-

BL, are obtained. The results are illustrated in Table 22. 

 

Table 22 Power Consumption for Combined Model and Separated Models 

Period 
PHVAC-BL 

(kW) 
PPL (kW) 

PHVAC-BL + PPL 

(kW) 
Ptotal (kW) 

1 2.24 80.89 83.14 141.56 

2 2.11 70.90 73.01 126.83 

3 2.78 59.49 62.28 109.36 

4 3.17 72.70 75.87 133.40 

5 3.51 54.50 58.01 103.24 

6 3.81 51.20 55.01 97.94 

7 4.06 53.20 57.26 101.66 

8 4.26 76.69 80.96 142.65 
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It can be seen that the power consumption of the combined system is not equal to the sum of the 

power consumption from two separated models as shown in (3.1). It implies that the optimal results 

from separated models may not be effective in finding an optimal energy control strategy. 

Ptotal ≠ PHVAC-BL + PPL (3.1) 

A more appropriate formulation would be described in (3.2). 

Ptotal = PHVAC-BL + PHVAC-PL + PPL (3.2) 

 

(3.2) 

where PHVAC-PL is the additional power required for the HVAC to work due to a change in the room 

temperature resulting from the heat generated by the manufacturing machines. It implies the 

necessity of an analytical model for the combined manufacturing and HVAC system 

 

3.3 Methodology   

3.3.1 Nomenclature 

BUit: the buffer contents in buffer i at the beginning of interval t 

iC : the capacity of buffer i 

ci: the convection fraction of machine i 

Cp: the heat capacity (kWh/kgC) of the building 

CQ: the heat transferred from the manufacturing operation during interval j 

CQCj: the instantaneous convective heat transferred from the manufacturing operation in 

interval j 

CQRj: the radiant heat transferred from the manufacturing operation up to the current 

interval j 

CQ*: the required HVAC load during interval j 

EFFi: the production efficiency of machine i 

GQj: the heat generated due to manufacturing operation in interval j 

H: the duration of the time interval 

i: the index of the machines in the manufacturing system 

j: the index of the slotted time intervals 
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k: the index of the radiant time series 

M: total number of the time intervals in the planning horizon 

N: the total number of the machines in the manufacturing system 

OP: the set of intervals that belong to peak periods 

Pi: the rated power of machine i 

PRi: the production rate of machine i (unit per interval) 

Q: the heat that needs to be added or removed when taking into account all of heat 

sources influencing the indoor temperature except for the manufacturing operation 

during the interval j 

sk: the radiant time series coefficients  

TP: the production throughput of the manufacturing system throughout the planning 

horizon 

TP*: the production target of the planning horizon 

Tj: the forecasted temperature of the building (when HVAC is off) considering all heat 

sources except for the manufacturing operation 

Tmax: upper bound of acceptable indoor temperature 

Tmin: lower bound of acceptable indoor temperature  

V: the volume of the building (m3)  

wj: the coefficient of performance (COP) of the HVAC 

xij: binary decision variable to denote the ON/OFF decision for  machine in interval j 

yj: decision variable  for the HVAC temperature setpoint in interval j 

1

jZ : binary variable reflecting the heating state of the HVAC system 

2

jZ : binary variable reflecting the cooling state of the HVAC system 

α: conversion factor that converts a unit of temperature to the unit of heat in the building 

 : the density of air (kg/m3) 

jT : the temperature difference between Tj and the temperature setpoint        

 
i : the motor efficiency of machine i                   
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3.3.2 Problem Formulation  

Assume a serial production line with N machines and N-1 buffers. Let i be the index of the 

machines (i=1, …, N) and the buffers (i=1, …, N-1) in the system.  The production horizon is 

slotted into a set of intervals with the same duration H. Let  j=1, …, M be the index of the 

discretized intervals. These intervals can belong to either peak or off-peak periods. The 

manufacturer needs to identify an optimal schedule for the manufacturing system and HVAC 

system to minimize electricity demand during peak periods. For the production schedule the 

manufacturer must decide if the station will be turned on or off for energy savings. For the HVAC 

system the manufacturer must decide on a temperature setpoint schedule for the manufacturing 

plant.   

The HVAC system is modeled as a single object, and is such that its performance measure 

represent the aggregate performance across all system components. It has two mutually exclusive 

states, heating and cooling, for each given period.  The heating state is defined as the state during 

which the HVAC has to add heat into the room to maintain the temperature to be at or above the 

instated temperature setpoint. The required HVAC load is the amount of heat that needs to be added 

to the room to maintain the temperature. Conversely, the cooling state is when the HVAC system 

has to remove heat from the building to maintain the temperature to be below or at the temperature 

setpoint. The required HVAC load is defined as the amount of heat that must be removed from the 

building to maintain the temperature setpoints. The temperature setpoints at any time must be 

within the allowable temperature range. It is also assumed that the temperature has no effect on 

the productivity within the plant.   

Among the loads that must be considered for the HVAC system is the internal heat load 

from the manufacturing production system machines. The machines generate heat at a rate 

proportional to the motor inefficiency. Also, the heat transferred to the surroundings corresponds 
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to the convective and radiative split ratio of each machine. Meanwhile, conduction is assumed to 

be negligible. The convective portion of the heat generated is immediate transfer into the room is 

added to the surroundings as an instantaneous load (Hosni et al., 1999). Conversely, the radiative 

portion of the heat generated is absorbed by its surrounding surfaces in the manufacturing plant, 

which is eventually dissipated to the surrounding air over time (Hosni et al., 1999). The radiant 

time series approach in (Spitler et al., 1997) is adopted to model this delay in radiant heat 

dissipation by giving weights that dictate the percentage of the radiant heat that is absorbed by the 

room at each time-interval. This delay in heat transfer from the radiant fraction of the heat explains 

why the heat generated by the machines may not be equal to the cooling load required by the 

HVAC system when operating in the cooling state (Wilkins and Hosni, 2000). Figure 12 shows a 

brief illustration of the behavior of the convective and radiant heat transfer at each interval.  
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Accordingly, the optimization problem is formulated as follows. Let xij be the binary 

decision variable to denote the production schedule, which takes the value of one if machine i is 

scheduled to produce during interval j, and zero otherwise. Let jy  be the indoor temperature 

setpoint for the building for interval j. Let OP  be the set of the intervals that belong to the peak 

period. Let 
iP  be the rated power of machine i. The proposed method can be formulated with the 

objective function (3.3) and the constraints (3.4)-(3.7).  

,

*

min max
ij j

j j

ij i
x y j

i

CQ w
x P

H

   
   

   
   


OP

 

 

(3.3) 

1 2 1j jZ Z   (3.4) 

0 ij iBU C   (3.5) 

*TP TP  (3.6) 

min maxjT y T   (3.7) 

In (1), jw  is the coefficient of performance (COP) of the HVAC system. It is used to 

describe the efficiency of the HVAC system. It takes into account all factors influencing HVAC 

performance (i.e. outdoor temperature and the required HVAC load) and quantifies how much 

energy is needed by the HVAC system to add or remove one unit of heat. Meanwhile, *

jCQ  is the 

required HVAC load during interval j that can maintain the indoor temperature. 

*

jCQ , the required HVAC load during interval j that can maintain the indoor temperature, 

can be calculated by (3.8) 

* 1 2( ) ( )j j j j j j jCQ Z Q CQ Z CQ Q     (3.8) 
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where jCQ is the heat transferred from the manufacturing operation during interval j. 1

jZ and 2

jZ  

are the binary variables reflecting the heating or cooling state of the HVAC system, respectively. 

They take the value of one if the HVAC is in a heating or cooling state, respectively; and zero 

otherwise. jQ  represents the heat that needs to be added (when in the heating state) or removed 

(when in the cooling state) when taking into account all of heat sources influencing the indoor 

temperature except for the manufacturing operation during the interval j.  

jCQ can be calculated by taking into account the convective (
ic ) and radiative split (1 ic ) 

of each machine. Let jGQ  be the heat generated due to manufacturing operation in interval j, 

which can be calculated by (3.9). 

1

( (1 ))
N

j i ij i

i

GQ H Px 


   (3.9) 

where 
i  is the motor efficiency of machine i. Let CjCQ be the instantaneous convective heat 

transferred from the manufacturing operation in interval j. It can be formulated by (3.10) 

C j i jCQ c GQ   (3.10) 

The radiant heat transfer with a ratio of 1-
ic  is considered non-instantaneous with 

accumulative effects. Therefore, the radiant time series approach is applied to the radiant portion 

of the heat that is to be transferred into the room. The radiant heat fraction can be represented by 

the radiant time series ks , 1, ...,k j . It is obvious that 1 2 ... js s s . It represents the fact that 

the radiant heat gradually attenuates, and thus it will influence not only the present time interval 

but also the later ones. Let RjCQ  be the radiant heat transferred from the manufacturing operation 

up to the current interval j. It can be formulated as (3.11)  
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1

'

' 1 1

( (1 ) (1 ))
j N

Rj i k i ij i

k j j i

CQ H c s Px 
  

    (3.11) 

Therefore, jCQ  can be calculated by (3.12). 

j Cj RjCQ CQ CQ   (3.12) 

 

After introducing jCQ , 1

jZ and 2

jZ , and jQ . 1

jZ  and 2

jZ  can be formulated by (3.13) and (3.14), 

respectively.  

1
1, 0

0,

j

j j

j

CQ
if y T

Z

otherwise



  
    

   



 (3.13) 

2
1, 0

0,

j

j j

j

CQ
if T y

Z

otherwise



  
    

   



 (3.14) 

where   is a conversion factor that converts a unit of temperature to the unit of heat.   can be 

calculated by (3.15).  

pC V     (3.15) 

In (45) pC  is the specific heat capacity of air (kWh/kgC),   is the density of air (kg/m3), and V is 

the volume of the building (m3).  Tj is the forecasted temperature of the building (when the HVAC 

system is off) considering all heat sources except for the manufacturing operation, during interval 

j. Using jT , we can calculate the temperature difference between jT  and the temperature setpoint 

jy  using (3.16) 



69 
 

1 2( ) ( )j j j j j j jT Z y T Z T y      (3.16) 

 

Thus, jQ  in (6) can be calculated by (3.17). 

j jQ T   (3.17) 

The calculation of the power consumption for each interval in the objective function considering 

both manufacturing operation and HVAC working load can be briefly summarized as shown in 

Figure 13. 

Meanwhile, ijBU  represents the buffer contents in buffer i at the beginning of interval j; 

and can be calculated by (3.18). 

( 1) ( 1) ( 1)( 1) 1 1ij i j i j i i i j i iBU BU x PR EFF H x PR EFF H               

1, ..., 1; 1, ...,i N j M    

(3.18) 

where 
iPR  is the production rate of the machine i; and

iEFF   denotes the production efficiency of 

machine i. 

TP is the production throughput of the manufacturing system throughout the planning 

horizon and TP* is the production target for the planning horizon. TP can be calculated by (3.19).  

( )Nj N N

j

TP x PR EFF H     (3.19) 
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3.4 Case Study Results and Analysis 

To illustrate the effectiveness of the proposed electricity DR model for the combined 

manufacturing and HVAC system, a numerical case study is implemented. The case study 

considers the following three control scenarios.  The first scenario (Scenario I) is a baseline model 

that is used as the benchmark, i.e., no DR is considered. In the second scenario (Scenario II), the 

objective function is to minimize the power demand during peak hours solely due to the 

manufacturing operation, while the HVAC is controlled according to the allowable temperature 

range separately. Finally, the third scenario (Scenario III) utilizes the proposed combined 

manufacturing and HVAC model.   

Two different days, i.e., a summer day and a winter day, are considered in the study.  For 

the summer day, all three scenarios have the same allowable temperature setpoints such that the 

target indoor temperature must be from 20 to 25 degrees Celsius. Similarly, for the winter day the 

allowable temperature setpoints are such that the target indoor temperature has to be from 18 to 22 

degrees Celsius.  

Meanwhile, a manufacturing system that consists of five machines and four buffers, is 

considered. The parameters of each machine including production rate, rated power, production 

efficiency, and motor efficiency are shown in Table 23. The parameters of each buffer, including 

initial contents and buffer capacity, are shown in Table 24. The time horizon is an 8 hour shift 

(from 9:00a.m.-5:00p.m.) that is slotted into 32 15-minute intervals, where the peak periods begin 

at 12:00p.m. and last until the end of the shift (i.e., intervals 13 through 32). The production target 

for this shift is 320 parts. Referring to (Brundage et al., 2013) the radiant and convective fraction 

of the machines are 0.3 and 0.7 respectively.  
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Table 23 Basic Machine Setup for Chapter 3 

Machine 

Production 

Rate (per 

15min) 

Rated 

Power 

Production 

Efficiency 

Motor 

Efficiency 

M1 12.5 15 0.9 0.85 

M2 12.5 17 0.9 0.85 

M3 12.5 24 0.8 0.80 

M4 12.5 17 0.9 0.85 

M5 12.5 21 0.9 0.80 

 

 

Table 24 Basic Buffer Setup for Chapter 3 

Buffer B1 B2 B3 B4 

Initial Buffer Contents 70 70 50 75 

Maximum Capacity of Buffer 160 145 140 160 

 

The outdoor temperature profile for a winter day in January and a summer day in July for 

Chicago, Illinois is obtained from EnergyPlus. EnergyPlus is used to provide the temperature data 

based on specific parameters such as date, location, etc. It can also describe the thermal behavior 

of a building dynamically while considering building size, geometry, construction materials, 

internal heat loads, and environmental temperature. For the summer day, the outdoor temperature 

values range from a minimum 22 degrees Celsius to a maximum of is 33 degrees Celsius. Similarly, 

for the winter day, the outdoor temperature values range from a minimum -23 degrees Celsius to 

a maximum of is -15 degrees Celsius. 

The indoor temperature of the building considering everything but the manufacturing 

operation, Tj ,  is also obtained using EnergyPlus as shown in Figure 14.  The building considered 

in the case study is a one-story building with the floor area of 20m by 20m. The height of the 
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building is 10m. Different materials were used for the construction of the building to best replicate 

a practical real world setting and are as follows. The walls consist of wood fiberglass and 

plasterboard. The roof is also made of fiberglass and plasterboard. Meanwhile, the floor is 

constructed from heavy concrete.  

 

 
Figure 14 Indoor Temperature Considering Everything but Manufacturing Operation 

 
 

The radiant time series 
ks  coefficients from Bruning (2004) are adopted and shown in 

Figure 15. The COP of the HVAC system is assumed to have a nameplate value of 3.6 for an ideal 

HVAC system. In this case, the only factor affecting the COP that is considered is the outdoor 

temperature. The COP at each interval j, i.e., jw , is calculated by increasing the nameplate value 

by 2% for every degree Celsius change of outdoor temperature. For simplicity jw  is assumed to 

be the same for both the summer day and the winter day and is shown in Figure 16.  
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Figure 15 Radiant Time Series Coefficients 

 
 

 
Figure 16 HVAC Coefficient of Performance 
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The production schedule and HVAC setpoints are identified by solving the objective 

function (3.3) with constraints (3.4)-(3.7) using General Algebraic Modeling (GAMS). GAMS is 

an advanced optimization program which is integrated with a large variety of solvers towards 

complex and large-scale modeling applications (Rosenthal, 2004). The DICOPT solver is selected 

to solve the proposed combined manufacturing and HVAC scheduling problem. This problem is a 

mixed integer nonlinear programing (MINLP) problem with integer and binary variables, and 

linear and nonlinear continuous variables. The DICOPT algorithm solves the problem by dividing 

it into a series of nonlinear programming (NLP) and mixed integer programming (MIP) sub-

problems. The solvers CONOPT and LINDOGLOBAL are used to solve NLP and MIP sub-

problems, respectively.    The solved production schedule, buffer contents, and the HVAC 

temperature setpoints for Scenario III are shown in Figure 17, Figure 18, and Figure 19. It takes 

five and 16 minutes to solve the winter and summer cases, respectively using a desktop that has 

an AMD A8-6410 APU with AMD Radeon R5 Graphics 2.00GHz processor with 6GB memory. 

 

 
Figure 17 Production Schedule for Scenario III 
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Figure 18 Buffer Contents for Scenario III 

 
 
 

 
Figure 19 HVAC Temperature Setpoints for Scenario III 
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peak periods. It also illustrates that the maximum power consumption during peak periods can be 

reduced compared to Scenarios I and II, which demonstrates that the objective of this research, 

i.e., reduce the maximum power consumption during peak periods, can be effectively achieved. 

Note that there is significant difference in the summer and winter power profiles since the heat 

generated by the machines can actually be used to help heat the building.  

 
Figure 20 Summer and Winter Power Profile 
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Table 25 lists the power demand during peak periods and the “peak-to-average” ratio of 

the three scenarios. Meanwhile, Table 26 shows the power demand reduction percentages 

compared to the baseline scenarios.  

 

Table 25 Peak Power Demand and Peak-to-Average Ratio 

 Summer Winter 

 

Peak Power 

Demand  

(kW) 

Peak-to-

Average 

Ratio* 

Peak Power 

Demand  

(kW) 

Peak-to-

Average 

Ratio* 

Scenario I 145.9 1.8 135.4 2.2 

Scenario II 127 1.6 119.2 2 

Scenario III 89.9 0.8 94 1.7 

* The peak-to-average ratio is calculated by dividing the maximum power during peak hours by 

the average power throughout the entire production horizon. 

 

 

 

Table 26 Peak Power Demand Reduction Comparison 

 Power Demand Reduction in Peak Periods 

 Summer Winter 

Scenarios III vs I 38.4% 30.6% 

Scenarios III vs II 29.3% 21.1% 

  

 

It can be seen from Table 26 that the power demand during peak periods for the summer day under 

Scenario III is about 38% and 29% less than Scenarios I and II, respectively. Similarly, the power 

demand during peak periods for the winter day under Scenario III is about 30% and 21% less than 

Scenarios I and II, respectively.   

To examine the cost effectiveness of the proposed method, we also compare the cost 

reduction percentages of the three scenarios in Table 27 and Table 28. The proposed method during 
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the summer day, can achieve approximately 10% and 7% in cost reductions compared with 

Scenarios I and II, respectively. Correspondingly, during the winter day approximately 29% and 

21% in cost reductions can be achieved compared with Scenarios I and II, respectively. It is 

interesting to note that the winter day results in much greater cost savings then the summer day. 

This is most likely due to the advantage of the winter day’s ability to use the heat generated by the 

machines to reduce the HVAC heating load.  

 

Table 27 Electricity Billing Cost  
 Electricity Cost ($) 

 Summer Winter 

Scenario I 4878.9 4373.7 

Scenario II 4618.5 3952.9 

Scenario III 4387.5 3096.3 

 

Table 28 Electricity Billing Cost Reduction  
 Electricity Cost Reduction 

 Summer Winter 

Scenario III vs Scenario 

I 
10.0% 29.2% 

Scenario III vs Scenario 

II 
7.0% 21.2% 

Scenario II vs Scenario I 5.3% 9.6% 

  
 

3.5 Conclusion    

In this Chapter, an integrated production and HVAC system scheduling model is developed 

and aims to minimize the peak power demand for the manufacturing plant. A HVAC work load 

model, considering the heat generated by the manufacturing operation, is proposed. Meanwhile, 

the production line and HVAC power demand are formulated. The model is formulated as a mixed 

integer nonlinear programming (MINLP) problem. General Algebraic Modeling (GAMS) is used 
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to solve the problem and identify the schedule for the manufacturing system and determine the 

HVAC temperature setpoints that can minimize the power demand during peak periods. The case 

study shows that significant peak power demand reduction can be achieved compared to 

minimizing the power demand of the manufacturing system and HVAC system exclusively.   
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4 Integrated Electricity and Natural Gas Demand Response for Manufacturers in the 

Smart Grid 

  

  

Parts of this chapter were previously published as: “Dababneh, Fadwa, and Lin Li. 

"Integrated Electricity and Natural Gas Demand Response for Manufacturers in the Smart 

Grid." IEEE Transactions on Smart Grid (2018). DOI: 10.1109/TSG.2018.2850841.”. © 2018 

IEEE. Reprinted, with permission, from [Dababneh, Fadwa, and Lin Li. "Integrated Electricity and 

Natural Gas Demand Response for Manufacturers in the Smart Grid." IEEE Transactions on Smart 

Grid (2018). DOI: 10.1109/TSG.2018.2850841.].  

  
 

4.1 Objective and Overview  

The SG opens many opportunities for electricity suppliers and customers to maintain grid 

stability, reduce electricity cost, and promote environmentally sustainable operation. 

Unfortunately, these benefits cannot be fully realized from industrial energy customers due to 

inadequate manufacturing decision making methodology that can consider manufacturers and 

energy suppliers simultaneously through real-time electricity, gas, and production control.  Hence, 

in this chapter, a real-time electricity and natural gas driven production scheduling model for 

manufacturers is established. The model considers time-based and event-based electricity and gas 

DR. A Modified Simulated Annealing algorithm is proposed to solve the problem in reaction to 

real-time supply notifications so that the interaction between manufacturers and energy providers 

is promoted. Numerical case studies are implemented and illustrate that 66-68% in energy cost 

savings for the manufacturer can be achieved when using the proposed model compared to baseline 

scenarios. Meanwhile, the Modified Simulated Annealing algorithm outperforms various solution 

methods in solving the proposed problem.  
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The rest of the chapter is organized as follows. The proposed integrated EDR and GDR 

driven production scheduling model is presented in Section 4.2. The solution approach and real-

time scheduling procedure are discussed in Section 4.3. Section 4.4 shows illustrative and 

numerical cases for the proposed method. Lastly, Section 4.5 concludes the chapter. 

 

4.2 Integrated EDR and GDR Driven Production Scheduling Model 

An integrated EDR and GDR driven production scheduling model is developed. The 

scheduling problem aims to minimize the manufacturer’s production line energy cost while 

considering energy and production constraints. The global input parameters are the DR programs, 

production target, and planning horizon duration. The local station/buffer input parameters are the 

production rate, production efficiency, rated energy demand, initial buffer contents, etc.  

 

4.2.1 Nomenclature  
 

Model Indices 

i: index of the stations in the production line 

t: index of the intervals throughout the planning horizon 

Model Parameters 

CPi: specific heat capacity of the medium in the furnace 

ewi: setup time for station i 

GAevent: upper bound for gas demand during GDR event 

gi: gas steady state usage rate for station i 

gsit: startup gas requirement for station i during interval t 

H: length of the decision interval in hours 

Intit: integer part of Lit 

Lit: number of intervals station i performs setup as of interval t 

NRDR: gas incentive rate for GDR event ($/(MMBTU/hr)) 

PATOU: upper bound for power demand during TOU peak hours 
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PAevent: upper bound for power demand during EDR event  

PDt: power demand for the production line during interval t 

pi: motor startup power for station i 

PRi: production rate of station i 

psit: steady state power for station i during interval t 

RECt: electricity consumption rate during interval t ($/kWh)  

RDR: power demand incentive rate for the EDR event ($/kW) 

RGCt: natural gas usage rate ($/MMBTU) 

RPD: power demand rate ($/kW) 

rfit: maintenance indicator equal to one if station i is being repaired in interval t and zero otherwise.  

Si: buffer capacity corresponding to station i 

STi: required temperature for station i 

TA: target production yield for the entire planning horizon 

Vi: chamber volume of station i 

αi: heat from one-unit increase in temperature 

ρi: density of medium (i.e., air) in station i 

Model Variables   

Bit: buffer content level for station i during interval t 

DSit: percent of time station i is performing setup in interval t 

Fracit: fractional part of Lit 

GDt: gas demand for the production line during interval t 

TELE: total electric energy consumption 

TGAS: total natural gas consumption 

CEevent: incentive payment for participating in the EDR event 

CELE: total cost of electricity 

CETOU: cost of electricity under the electricity TOU program 

CGevent: incentive payment for GDR curtailment 

CGTOU: cost of gas under the natural gas TOU program 

CNG: total cost of natural gas 

TAi: minimum number of parts to be outputted by station i 

Tit: temperature at station i during interval t 

TP: total production throughput for the entire planning horizon 
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TPt: production throughput during interval t 

xit: binary decision variable denoting a station’s on/off state  

Simulated Annealing Variables  

APp: probability of accepting a positive transition in SA 

𝐻(𝑋, 𝑌): hamming distance between solution 𝑋 and solution 𝑌 

NX: neighborhood of solution X in SA 

p: positive transition in SA 

𝑝𝑒𝑛𝑇𝑃: target throughput penalty 

𝑝𝑒𝑛𝑃𝐷: peak power limit penalty  

𝑝𝑒𝑛𝐵𝑈𝑚𝑖𝑛: minimum buffer content penalty  

𝑝𝑒𝑛𝐵𝑈𝑚𝑎𝑥: maximum buffer capacity penalty 

q1- q4: binary penalizing indicators   

S: random set of positive transitions 

TPR: temperature parameter 

λf1- λf7: penalties in the fitness function 

χ: acceptance probability 

𝜀𝑇𝑃, 𝜀𝑃𝐷,  𝜀𝐵𝑈, 𝜀𝑃𝐸𝑁0:  number of elements randomly chosen from I×T matrix, corresponding to 

constraints violated 

 

 

4.2.2 Problem Formulation 

Consider the discrete serial, I station and I-1 buffer, production line as shown in Figure 21. 

The stations in the serial production line can consume either electricity or gas. The planning 

horizon is discretized into a set of fixed finite intervals with duration H. Let i, i=1, …, I, be the 

index of the stations and t, t=1, …, T, be the index of the intervals. xit denotes the state of station i 

during interval t, which equals one if station i is scheduled for production, and zero otherwise. 

   

 

Figure 21 I Station I-1 Buffer Serial Production Line 
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 Once parts are processed at a given station they will be stored in the downstream buffer. For a 

station to be able to process parts, the station needs to first take parts from its corresponding 

upstream buffer. Meanwhile, it is assumed that the first machine is never starved and the last 

machine is never blocked. Buffers are typically used in manufacturing settings to provide more 

robust and resilient production. Typically, in the case of station failures or required maintenance 

tasks, the buffers can help mitigate production loss and open up opportunities for energy and cost 

savings using intelligent scheduling methods. The production throughput, TP, and the buffer 

contents, Bit, can be calculated as follows.  

𝑇𝑃𝑡 = 𝐻 ∙ (1 − 𝐷𝑆𝐼𝑡) ∙ 𝑃𝑅𝐼 ∙ 𝜂𝐼 ∙ 𝑥𝐼𝑡  ∀𝑡 (4.1) 

𝑇𝑃 = ∑ 𝑇𝑃𝑡

𝑇

𝑡=1
 (4.2) 

𝐵𝑖𝑡 = 𝐵𝑖(𝑡−1) + 𝐻 ∙ (1 − 𝐷𝑆𝑖(𝑡−1)) ∙ 𝑃𝑅𝑖 ∙ 𝜂𝑖 ∙ 𝑥𝑖(𝑡−1) − 𝐻 ∙ (1 − 𝐷𝑆(𝑖+1)(𝑡−1)) ∙ 𝑃𝑅(𝑖+1)

∙ 𝜂(𝑖+1) ∙ 𝑥(𝑖+1)(𝑡−1)    ∀ 𝑖 & ∀𝑡 

(4.3) 

PRi and ηi are the production rate and efficiency of station i, respectively. DSit is the percentage of 

time station i is performing setup during interval t and is calculated in (4.4)-(4.8).  

𝐿𝑖𝑡 = [𝑒𝑤𝑖 ∙ 𝑥𝑖𝑡 ∙ (1 − 𝑥𝑖(𝑡−1))] ÷ (60 ∙ 𝐻) ∀ 𝑖 & ∀𝑡 (4.4) 

𝐼𝑛𝑡𝑖𝑡 = ⌊𝐿𝑖𝑡⌋    ∀ 𝑖 & ∀𝑡 (4.5) 

𝐹𝑟𝑎𝑐𝑖𝑡 = 𝐿𝑖𝑡 − 𝐼𝑛𝑡𝑖𝑡    ∀ 𝑖 & ∀𝑡 (4.6) 

𝐼𝑛𝑡𝑖𝑡 = ∑ 𝐷𝑆𝑖𝑡
𝑡=𝑡+𝐼𝑛𝑡𝑖𝑡−1
𝑡    ∀ 𝑖 & ∀𝑡   (4.7) 

𝐷𝑆𝑖(𝑡+𝐼𝑛𝑡𝑖𝑡) = 𝐹𝑟𝑎𝑐𝑖𝑡   ∀ 𝑖 & ∀𝑡   (4.8) 

Lit is the total time needed for setup for station i starting from interval t and is in interval units. ewi 

is the setup time, in minutes, for station i. Intit is the integer part of Lit, and is the number of whole 
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intervals starting from interval t that station i is in setup. Finally, Fracit is the fractional part of Lit, 

representing the setup time that will be incurred by station i during interval t+Intit.  

Next, event-based EDR and GDR programs are employed to encourage manufacturers to 

decrease their energy load for monetary incentives. Notifications of electricity and gas supply 

reduction events are assumed to be monitored in real-time. The manufacturer will be informed one 

decision interval before the event. All energy saving actions and utility notifications can only be 

made at the beginning of each interval. Event driven electricity and gas supply reduction events 

are denoted by drt and ngt, respectively. drt is equal to one if there is a notification that an EDR 

event will occur in interval t+1 and zero otherwise. Similarly, ngt is equal to one if a GDR event 

will occur in interval t+1 and zero otherwise. CEevent, the total incentive (negative cost) for 

partaking in the EDR event, is shown in (4.9). 

𝐶𝐸𝑒𝑣𝑒𝑛𝑡 = min [0, 𝑑𝑟𝑡 ∙ 𝑅𝐷𝑅 ∙ (𝑃𝐷𝑡+1 − 𝑃𝐴𝑒𝑣𝑒𝑛𝑡)] (4.9) 

RDR is the incentive rate ($/kW); PDt+1 is the power demand for the entire production line in 

interval t+1, and PAevent is the committed power limitation level during the event. CGevent , the 

incentive (negative cost) for GDR events, is shown in (4.10). 

𝐶𝐺𝑒𝑣𝑒𝑛𝑡 = min[0, 𝑛𝑔𝑡 ∙ 𝑁𝑅𝐷𝑅 ∙ (𝐺𝐷𝑡+1 − 𝐺𝐴𝑒𝑣𝑒𝑛𝑡)] (4.10) 

NRDR is the incentive rate ($/[MMBTU/hr]); GDt+1 is the gas flow (MMBTU/hr) for the entire 

production line during interval t+1, and GAevent is the committed gas usage limit.   

Moreover, both electricity and natural gas TOU programs are considered.  In the electricity 

TOU program, the manufacturer is charged an electricity consumption rate ($/kWh) and power 

demand rate ($/kW). The electricity consumption rate varies over time. During peak hours, a 

higher consumption rate and demand rate (to the maximum power demand of all the intervals in 

peak hours) are applied. The cost function is shown below.  
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𝐶𝐸𝑇𝑂𝑈 = ∑ (𝐻 ∙ 𝑅𝐸𝐶𝑡 ∙ 𝑃𝐷𝑡)
𝑇

𝑡=1
+ 𝑅𝑃𝐷 ∙ 𝑚𝑎𝑥

𝑡∈𝐸𝑂𝑃
𝑃𝐷𝑡 (4.11a) 

EOP is a subset of t denoting electricity peak hours. PDt is the manufacturer’s electricity demand 

during interval t; RECt is the electricity consumption rate during interval t ($/kWh); and RPD is 

the power demand rate ($/kW).  The “max” function in (4.11a) expresses the maximum power 

flow in peak hours which is a nonsmooth exogenous operator and leads to many computational 

challenges when solving the problem. Hence, the “softmax” function is used to approximate the 

“max” function (Bishop, 2006) as shown in the revised equation in (4.11b), where Se is a constant 

in the “softmax” approximation. 

𝐶𝐸𝑇𝑂𝑈 = ∑ (𝐻 ∙ 𝑅𝐸𝐶𝑡 ∙ 𝑃𝐷𝑡)
𝑇

𝑡=1
+ 𝑅𝑃𝐷 ∙ 𝑙𝑛 (∑ 𝑒𝑆𝑒∙𝑃𝐷𝑡

𝑡∈𝐸𝑂𝑃
) 𝑆𝑒⁄  (4.11b) 

Next, the gas TOU program is considered. The manufacturer is charged different usage rates 

corresponding to peak, valley, and flat rate hours ($/MMBTU). The cost function is shown below.   

𝐶𝐺𝑇𝑂𝑈 = ∑ (𝐻 ∙ 𝑅𝐺𝐶𝑡 ∙ 𝐺𝐷𝑡)
𝑇

𝑡=1
 (4.12) 

GDt is the manufacturer’s gas demand during interval t and RGCt is the gas usage rate ($/MMBTU) 

during interval t.   

Subsequently, it is necessary to model the energy demand and consumption. PDt, the total 

electric power demand for the production line during interval t and GDt, the total natural gas usage 

rate for the production line during interval t, are shown in (4.13) and (4.14), respectively. ES and 

NGS are subsets of i denoting stations that use electricity or natural gas, respectively.  

𝑃𝐷𝑡 = ∑ [(𝑝𝑠𝑖 ∙ 𝐷𝑆𝑖𝑡) + (𝑥𝑖𝑡 ∙ 𝑝𝑖 ∙ (1 − 𝐷𝑆𝑖𝑡)]  ∀𝑡
𝑖∈𝐸𝑆

 (4.13) 

𝐺𝐷𝑡 = ∑ [(𝑔𝑠𝑖𝑡 ∙ 𝐷𝑆𝑖𝑡) + (𝑥𝑖𝑡 ∙ 𝑔𝑖 ∙ (1 − 𝐷𝑆𝑖𝑡)]
𝑖∈𝑁𝐺𝑆

  ∀𝑡 (4.14) 

psi is the motor startup power for station i; pi is the steady state power; gsit is the gas startup usage 
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rate for station i during interval t; and gi is the gas steady state usage.  The total energy consumption 

functions are shown in (4.15) and (4.16).  

𝑇𝐸𝐿𝐸 = ∑ 𝐻 ∙ 𝑃𝐷𝑡
𝑡

 (4.15) 

𝑇𝐸𝐿𝐸 = ∑ 𝐻 ∙ 𝑃𝐷𝑡
𝑡

 (4.16) 

It is assumed that the startup power for electric equipment and motors is known and 

deterministic. However, if natural gas consuming stations require heating, the startup energy 

requirements for process heating will depend on the initial temperature before startup occurs. 

Several factors may influence this, such as ambient air conditions, volume, heat loss, etc. 

Assuming that natural gas consuming stations are producing heat, the station startup time is fixed, 

and the gas flow rate can be adjusted, 𝑔𝑠𝑖𝑡 can be calculated by (17). 

𝑔𝑠𝑖𝑡 = {
∫ 𝛼𝑖 ∙ 𝑜𝑖

𝑆𝑇𝑖

𝑇𝑖𝑡

∙ 𝑑𝑇𝑖𝑡, 𝑖𝑓 𝑇𝑖𝑡 < 𝑆𝑇𝑖 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     

∀ 𝑖 ∈ 𝑁𝐺𝑆 & ∀𝑡 

(4.17) 

oi (MMBtu/C) is the gas required to increase the temperature by one degree Celsius; STi is the 

station’s target temperature; Tit is the station’s actual temperature in interval t; and αi converts a 

unit temperature into heat. αi can be calculated by (4.18). 

𝛼𝑖 = 𝐶𝑃𝑖 ∙ 𝜌𝑖 ∙ 𝑉𝑖    ∀ 𝑖 ∈ 𝑁𝐺𝑆 (4.18) 

CPi is the specific heat capacity of the station; ρi is the density of air; and Vi is the volume. gsit 

provides a simple method for calculating the startup gas requirement for the station. Finally, an 

optimization problem is developed based on the production, energy, and DR cost models. The 

objective is to minimize the total cost of the energy purchased by the manufacturer under the DR 

programs described previously. Meanwhile, xit is the binary decision variable that defines the 
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production schedule. The manufacturer needs to determine a production schedule that considers 

energy costs and production throughput. Accordingly, the question can be formulated as a 

nonlinear combinatorics problem and is described by objective function (4.19) and constraints 

(4.20)–(4.23).   

min
𝑥𝑖𝑡

[𝐶𝐸𝐿𝐸 + 𝐶𝑁𝐺] (4.19) 

𝑇𝑃 ≥ 𝑇𝐴 (4.20) 

𝑃𝐷𝑡 ≤ 𝑃𝐴   ∀ 𝑡 ∈ 𝐸𝑂𝑃    (4.21) 

0 ≤ 𝐵𝑖𝑡 ≤ 𝑆𝑖     ∀ 𝑖 = (1,2, … , 𝐼 − 1) (4.22) 

𝑥𝑖𝑡 + 𝑟𝑓𝑖𝑡 ≤ 1   ∀ 𝑖 & ∀ 𝑡     (4.23) 

From (4.19), CELE and CNG are the total cost of electricity and natural gas and can be formulated 

by (4.24) and (4.25), respectively.  

𝐶𝐸𝐿𝐸 = 𝐶𝐸𝑒𝑣𝑒𝑛𝑡 + 𝐶𝐸𝑇𝑂𝑈 (4.24) 

𝐶𝑁𝐺 = 𝐶𝐺𝑒𝑣𝑒𝑛𝑡 + 𝐶𝐺𝑇𝑂𝑈 (4.25) 

Constraint (4.20) enforces that the target throughput level is met. Constraint (4.21) imposes that 

the power demand during peak periods is within the committed level during on-peak hours. 

Constraint (4.22) maintains the buffer contents to be within zero and the maximum buffer capacity. 

Finally, constraint (4.23) turns the stations off when repair is scheduled.   

Due to the exponentially growing search space as the number of machines or intervals 

increase (2I×T), constraints (4.26) and (4.27) are incorporated into the problem to tighten the search 

space. These constraints give a lower bound for the least number of intervals station i must be on 

throughout the production horizon to ensure production throughput.  
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∑ 𝑥𝑖𝑡 ≥
𝑇𝐴𝑖 − 𝐵𝑖(𝑡=1)

𝐻 ∙ 𝑃𝑅𝐼 ∙ 𝜂𝐼
  ∀𝑖 = (1,2, … , 𝐼 − 1)

𝑇

𝑡=1
 (4.26) 

∑ 𝑥𝐼𝑡 ≥
𝑇

𝑡=1
(𝑇𝐴 𝐻 ∙ 𝑃𝑅𝐼 ∙ 𝜂𝐼⁄ ) (2.27) 

  

4.3 Solution Approach and Real-Time Implementation Procedure   

The proposed problem is a nonlinear combinatorics problem with I×T variables and 2I×T 

possible solutions. As the number of stations and intervals increase, the nonlinear combinatorics 

problem increases exponentially.  For the proposed problem to be able to realize the benefits of 

DR events, a production schedule needs to be determined within a decision interval’s duration. 

Exact solution methods can guarantee the optimality of a solution; however, metaheuristics can 

provide “good” solutions (that lead to energy cost savings) in real-time.    

Hence, the fitness function in (4.28) is used to represent the problem. Constraints are 

mapped as penalties. 𝐶𝐸𝑇𝑂𝑈 + 𝐶𝐺𝑇𝑂𝑈  is used in place of 𝐶𝐸𝐿𝐸 + 𝐶𝑁𝐺 since  𝐶𝐸𝑒𝑣𝑒𝑛𝑡 and 𝐶𝐺𝑒𝑣𝑒𝑛𝑡 

are added iteratively as event notifications occur.  

𝐶𝐸𝑇𝑂𝑈 + 𝐶𝐺𝑇𝑂𝑈 + 𝜆𝑓1[min (𝑇𝑃 − 𝑇𝐴, 0)]2 + 𝜆𝑓2[min (𝑃𝐴 − max (𝑃𝐷𝑡∈𝐸𝑂𝑃),0)]2

+ 𝜆𝑓3 ∑ ∑ [min (𝑆𝑖 − 𝐵𝑖𝑡 , 0)]2 +
𝐼−1

𝑖=1

𝑇

𝑡=1
𝜆𝑓4 ∑ ∑ [min (𝐵𝑖𝑡, 0)]2

𝐼−1

𝑖=1

𝑇

𝑡=1

+ 𝜆𝑓5 ∑ ∑ (𝐼𝑛𝑡𝑖𝑡 ∙ 𝑥𝑖𝑡)
𝐼

𝑖=1
+

𝑇

𝑡=1
+ 𝜆𝑓6 ∑ ∑ (𝐼𝑛𝑡𝑖𝑡 ∙ 𝑟𝑓𝑖𝑡)

𝐼

𝑖=1
+

𝑇

𝑡=1

+ 𝜆𝑓7 ∑ ∑ (𝑥𝑖𝑡 ∙ 𝑟𝑓𝑖𝑡)
𝐼

𝑖=1

𝑇

𝑡=1
 

(4.28) 

 

4.3.1 Simulated Annealing  

Simulated Annealing (SA) is used to solve the proposed problem. SA is an efficient and 

powerful tool for finding near optimal solutions for large scale nonlinear problems. The algorithm 
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can accept a fraction of “bad” solutions, which allows it to escape local optimal regions in the 

neighborhood structure (Henderson  et al., 2003). The SA procedure starts with an initial solution 

X and moves to a new solution, Y, within the neighborhood, NX, if its objective function value is 

not greater than (minimization problem) the incumbent solution. If the objective function value is 

greater than the incumbent solution, the inferior solution may still be accepted with a probability 

of exp(-(f(Y) –f(X))/TPR). Swap, insertion, and reversion methods are typically used for defining 

the neighborhood of a solution (Shedden, 1990; and Jolai et al., 2012); however, they are not robust 

for problems with high dimensionality. Thus, the hamming distance (HD) is used and provides an 

efficient permutation method with robust exploration capability (Yao, 1992).  

 

Definition 1: The “Hamming” distance between two permutations X=[x1, x2, …, xn] and Y=[y1, 

y2, …, yn] is ε if there are exactly ε different elements between them. 

 

SA relies heavily on a temperature schedule; thus, a cooling schedule that balances global 

and local search needs to be determined.  Let m be the number of outer loop iterations that the 

temperature (TPRm) is reduced at, and v be the number of inner loop iterations. The temperature 

for the next outer loop TPRm+1, is obtained by 𝑇𝑃𝑅𝑚+1 = 𝛼 ∙ 𝑇𝑃𝑅𝑚 such that the current 

temperature is multiplied by a constant α and α ∊ (0,1).  

The ability of SA to escape the local minimum depends on the average probability of 

accepting “bad” moves, which depends on the temperature.  Determining a robust initial 

temperature requires a sample of positive transitions and estimating the acceptance probability, 

χ*(TPR) = χ0, that can reach TPR0.  A novel procedure is proposed to determine the initial 

temperature (TPR0) in (Ben-Ameur, 2004), where the acceptance ratio of increasing cost moves 

(χ) is set to a specified value χ0. 
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Definition 2: Positive transition p requires Emax>Emin, where Emax_p and Emin_p are energies 

(objective costs) at the states after transition max_p and min_p.  

 

Definition 3: Let, δp=Emax_p-Emin_p and 𝜒(𝑇𝑃𝑅) = ∑ 𝜋𝑚𝑖𝑛𝑝

1

|𝑁(𝑚𝑖𝑛𝑝)|𝑝 𝑒𝑥𝑝 (
−𝛿𝑝

𝑇𝑃𝑅
) ÷

∑ 𝜋𝑚𝑖𝑛𝑝

1

|𝑁(𝑚𝑖𝑛𝑝)|𝑝 ; 𝜋𝑚𝑖𝑛𝑝
/|𝑁(𝑚𝑖𝑛𝑝)| is the probability to generate a transition p when the energy 

states follow the stationary distribution, 𝜋𝑘 = |𝑁(𝑘)|exp (
−𝐸𝑘

𝑇𝑃𝑅
) ∑ |𝑁(𝑗)|exp (

−𝐸𝑗

𝑇𝑃𝑅
)𝑗⁄ , and N(.) is 

the set of neighbors for the state.   

 

 A modified estimation of the acceptance probability, based on a random set S of positive 

transitions, for computing the initial temperature, is proposed in (4.29); where APp = exp(-(Emax_p 

- Emin_p)/TPR) is the probability of accepting a positive transition.   

𝜒̂(𝑇𝑃𝑅) = ∑ 𝐴𝑃𝑝/‖𝑆‖
𝑝∈𝑆

 (4.29) 

  

4.3.2 Penalty Driven Hamming Distance Function    

The neighborhood function can leverage the problem structure to speed up and enhance the 

search. However, many studies assign a fixed neighborhood size at the beginning (Yao, 1992), 

limiting SA’s ability to search at different scales and stages. Since SA attempts to combine 

exploration of a space and exploitation of a sub-space into the same algorithm, the neighborhood 

size should be adjusted at different search stages relative to the current temperature for faster 

convergence.   Leveraging important problem specific features (i.e., station type and on/off-peak 

intervals) in the neighborhood definition and SA procedure can amplify these benefits.   
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Thus, a penalty guided HD function, directing the computational resources on the highest 

impact variables in the search, is proposed. The HD will target specific areas of the I×T matrix 

depending on the constraints being violated. The HD is scaled using the penalty incurred from λf1- 

λf7, while integrating constraint priorities with the objective function. Let penTP be the target 

throughput penalty; penPD be the penalty when the power during peak intervals exceeds the 

committed power limit; penalty penBUmin be the penalty when the buffer contents of a station fall 

below zero; and penBUmax be the penalty when buffer contents exceed the maximum capacity. 

These penalties are formulated as shown in (4.30)-(4.33). 

𝑝𝑒𝑛𝑇𝑃 = 𝜆𝑓1[min (𝑇𝑃 − 𝑇𝐴, 0)]2 (4.30) 

𝑝𝑒𝑛𝑃𝐷 = 𝜆𝑓2[min (𝑃𝐴 − max (𝑃𝐷𝑡∈𝐸𝑂𝑃),0)]2 (4.31) 

𝑝𝑒𝑛𝐵𝑈𝑚𝑖𝑛 = 𝜆𝑓4 ∑ ∑ [min (𝐵𝑖𝑡, 0)]2
𝐼−1

𝑖=1

𝑇

𝑡=1
 (4.32) 

𝑝𝑒𝑛𝐵𝑈𝑚𝑎𝑥 = 𝜆𝑓3 ∑ ∑ [min (𝑆𝑖 − 𝐵𝑖𝑡, 0)]2
𝐼−1

𝑖=1

𝑇

𝑡=1
 (4.33) 

Moreover, let q1, q2, q3 and q4 be binary penalizing indicators for the throughput constraint, peak 

power demand constraint, minimum buffer capacity constraint, and maximum buffer capacity 

constraint, respectively. These indicators take a value of one if the corresponding constraint is 

violated and zero otherwise as shown in equations (4.34)-(4.37). 

𝑞1 = {
1, 𝑖𝑓 𝑝𝑒𝑛𝑇𝑃 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.34) 

𝑞2 = {
1, 𝑖𝑓 𝑝𝑒𝑛𝑃𝐷 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.35) 

𝑞3 = {
1, 𝑖𝑓 𝑝𝑒𝑛𝐵𝑈𝑚𝑖𝑛 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.36) 
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𝑞4 = {
1, 𝑖𝑓 𝑝𝑒𝑛𝐵𝑈𝑚𝑎𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.37) 

For a combinatorial optimization problem with a large countable permutation space Ω, each 

𝑋 ∈ Ω can be denoted by an I×T matrix. The neighborhood 𝑁𝑋 of permutation X is  𝑑𝑋𝑌 distance 

away from X and is defined by equation (4.38).  

𝑁𝑋 = {𝑌|𝑌 ∈ Ω, 𝑑𝑋𝑌 = 𝐻(𝑋, 𝑌)} (4.38) 

where 𝑋 ∉ 𝑁𝑋 and 𝑋 ∈ 𝑁𝑌 if 𝑌 ∈ 𝑁𝑋. The HD between the current permutation,𝑋, and the next 

one, 𝑌, governs the neighborhood function. The HD is denoted by 𝐻(𝑋, 𝑌) and calculated in (4.39), 

which gives the total number of elements that need to be inverted in the current permutation, 𝑋, to 

obtain the new permutation, 𝑌, in the neighbourhood of 𝑋, 𝑁𝑋. 

𝐻(𝑋, 𝑌) = 𝑞1 ∙ 𝜀𝑇𝑃 + 𝑞2 ∙ 𝜀𝑃𝐷 + 𝑞3 ∙ 𝜀𝐵𝑈 + 𝑞4 ∙ 𝜀𝐵𝑈 + (1 − 𝑞1) ∙ (1 − 𝑞2) ∙ (1 − 𝑞3)

∙ (1 − 𝑞4) ∙ 𝜀𝑃𝐸𝑁0 

(4.39) 

where 𝜀𝑇𝑃, 𝜀𝑃𝐷, and 𝜀𝐵𝑈 correspond to the number of elements randomly chosen from specific 

areas of the I×T matrix depending on the constraint being violated. 𝜀𝑃𝐸𝑁0 denotes the number of 

elements randomly chosen from the I×T matrix when none of the constraints are violated. These 

elements, when inverted, result in a new permutation in the neighborhood of 𝑋. The procedure to 

calculate 𝐻(𝑋, 𝑌) is shown as follows. 

Step 1: SET the HD evolution, ε = [ ε1, ε2, …, εm], where ε1, ε2, …, εm  

             are the HD at temperature levels 1, 2, …, m, respectively 

Step 2: IF (𝑞1> 0)  

               SELECT randomly εTP = f(ε) number of elements from row    

               i=I of the matrix and  

               INVERT the elements. (for e.g. εTP = max(ε-λ1, λ2)) 

       ELSE IF (𝑞2> 0)  

               SELECT randomly εPD = f(ε) number of elements from rows  

               i ϵ ES−{𝐼} and columns t ϵ EOP of the IxT matrix and  

               INVERT the elements. (for e.g. εPD = ε+λ3) 
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             ELSE IF (𝑞3> 0) || (𝑞4> 0)  

               SELECT randomly εBU = f(ε) number of elements from rows    

               i=1, …, I-1 of the IxT matrix and  

               INVERT the elements. (for e.g. εBU = ε + λ4)  

       ELSE IF (𝑞1= 0) && (𝑞2= 0) && (𝑞3= 0) && (𝑞4= 0) 

               SELECT randomly εPEN0 = f(ε) number of elements from  

               rows i=1, …, I-1of IxT matrix and 

               INVERT the elements. (for e.g. εPEN0 =max(ε +λ5, λ6)) 

Step 3: COMPUTE 𝐻(𝑋, 𝑌)  

Step 4: END 

 

 

4.3.3 Modified Simulated Annealing (MSA) Algorithm 

The MSA algorithm using the penalty driven HD is formulated as follows. At a given 

iteration in the MSA procedure, the HD is used to create neighbors for the incumbent solution and 

a different HD is defined for each type of constraint. The iterations remain constant within a given 

temperature level and are updated when progressing to different levels. The HD will target specific 

regions in the incumbent solution’s decision matrix based on the violated constraint. If there are 

not any violated constraints, the HD targets the entire decision matrix of the incumbent solution.   

Let 𝑡𝑟𝑔𝑇𝑃 represent I×T matrix elements targeted during the neighborhood search using 

the penalty driven HD when the throughput constraint is violated, 𝑡𝑟𝑔𝑇𝑃 = {𝑖 = 𝐼, 𝑡 = 1, … , 𝑇} ; 

𝑡𝑟𝑔𝑃𝐷 represent the target elements when the power demand constraint is violated, 𝑡𝑟𝑔𝑃𝐷 =

{𝑖 ∈ 𝐸𝑆 − {𝐼}, 𝑡 ∈ 𝐸𝑂𝑃} ; 𝑡𝑟𝑔𝐵𝑈 represent the target elements when buffer constraints are violated, 

𝑡𝑟𝑔𝐵𝑈 = {𝑖 = 1, … , 𝐼, 𝑡 = 1, … , 𝑇}; and 𝑡𝑟𝑔𝑃𝐸𝑁0 represent the target elements when none of the 

constraints are violated, 𝑡𝑟𝑔𝑃𝐸𝑁0 = {𝑖 = 1, … , 𝐼 − 1, 𝑡 = 1, … , 𝑇}. The MSA algorithm is shown 

below.  
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Step 0:    GENERATE 𝑡𝑟𝑔𝑇𝑃, 𝑡𝑟𝑔𝑃𝐷, 𝑡𝑟𝑔𝐵𝑈, 𝑡𝑟𝑔𝑃𝐸𝑁0 

Step 1:    GENERATE an initial solution X = X0 using and    

                ASSIGN best solution X* = X0  

Step 2:    SELECT m, v = [v1, v2, …,vm] and number of neighbors  

                NS, and GENERATE an initial temperature TPR = TPR0  

Step 2.1: (a) FOR Iteration j such that j = 1:m 

           (b) FOR Iteration k such that k = 1:vj 

           (c) FOR Iteration l such that l = 1:NS 

                Randomly SELECT solution Yl based on current solution  

                X from the neighborhood NX specified by 𝐻(𝑋, 𝑌𝑙)  

Step 2.2: CHECK IF f(Yl) ≤ f(X)  

                THEN accept Yl as new solution; SET X = Yl  

                CHECK IF f(Yl) ≤ f(X*)  

                THEN accept Yl as best solution; SET X* = Yl; END IF 

                           ELSE accept Yl as new solution with probability                  

                           exp(-(f(Yl) - f(X))/TPRj); END IF 

Step 2.3: CHECK IF l = NS 

            THEN end LOOP of iteration l, UPDATE k = k+1 and  

            GOTO Step 2.1 (c); END IF          

Step 2.4: CHECK IF k = vj 

            THEN end LOOP of iteration k, calculate TPRj+1 = αTPRj 

            UPDATE j = j +1 and GOTO Step 2.1 (b); END IF 

Step 2.5: CHECK IF j = m 

           THEN end LOOP of iteration j; END IF 

Step 3:     SET σp = X*; END 

 

The MSA algorithm utilizes the dynamic neighborhood structure through the penalty 

driven HD, which can easily be adapted to any addition or relaxation of constraints. Figure 22 

shows an example of the matrix operations when the HD targets peak power periods due to a power 

limitation violation.   

 



97 
 

 
Figure 22 Hamming Distance Operations Due to Power Limitation Violation 

 
 

The MSA algorithm will converge to a near optimal solution in polynomial time if it is 

asserting and infeasible diminishing (Mendivil and Shonkwiler, 2010). The SA chain is asserting 

if there is some probability greater than zero of obtaining a feasible solution in the neighborhood 

NX of solution X. Next, the SA chain is infeasible diminishing if the probability of transition to an 

infeasible solution from the present solution decays to zero as the time steps approach infinity. For 

a combinatorial optimization problem with a large permutation space Ω, the MSA algorithm will 

start with an initial solution X0 and as the temperature changes, a sequence of solutions is 

constructed, where {𝑋0, 𝑋1, 𝑋2, … } ⊂ Ω. For each step in this chain, an 𝐻(𝑋, 𝑌) amount of change 

occurs to move from a solution X to a neighboring solution Y. If this change improves the fitness, 

the change is accepted, otherwise the change is rejected with a probability. Such a stochastic 

construction of Xs is defined as a Markov chain and forms the basis of the SA algorithm. Moreover, 

since the problem is a constrained optimization problem, a large penalty is assigned to treat the 

infeasible solutions as feasible. The penalty attenuates the fitness of infeasible solutions so that 

they will perform poor in comparison to any feasible solution. Hence, the HD will allow reaching 

a feasible solution from an infeasible one with some positive probability, thus assuring that the 

MSA algorithm will be asserting. Meanwhile, since the acceptance probability of positive 
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transition reduces to zero as the temperature levels fall, the MSA algorithm is also infeasible 

diminishing. Therefore, it may be concluded that the MSA algorithm will converge to a near 

optimal solution in a polynomial time. 

4.3.4 Real-Time Implementation Procedure 

Due to the need to process DR events from the SG or gas utility promptly, it is vital to 

solve the proposed problem in real-time. Once notifications for electricity or gas supply reduction 

events are received, a new production schedule needs to be computed before the next decision 

interval starts. This may be in as little as 15 or 30 minutes.    

At the beginning of the production horizon, the first production schedule, 𝜎𝑝
∗, is obtained 

under the TOU program. Next, as EDR and GDR events occur and feedback enters the 

optimization loop, the scheduling process is triggered and the procedure repeats until the end of 

the production horizon. Upon compilation, TA and T are reset. The real-time production scheduling 

strategy to implement this is shown as follows.  

Step 1:    FOR drt = 1 or ngt = 1; SET t* = t 

Step 2:    TA = TA - TPt, T = T - t 

Step 2.1: CHECK IF drt = 1 

                THEN IF 𝜎𝑝
∗(𝑖 ∈ 𝐸𝑆, 𝑡 + 1) = 0 STOP 

                ELSE IF 𝜎𝑝
∗(𝑖 ∈ 𝐸𝑆, 𝑡 + 1) ≠ 0 

                THEN 𝐶𝐸 = 𝐶𝐸 + [𝑑𝑟𝑡 ∙ 𝑅𝐷𝑅 ∙ (𝑃𝐷𝑡+1 − 𝑃𝐴𝐷𝑅)] 
Step 2.2: CHECK IF ngt = 1  

                THEN IF 𝜎𝑝
∗(𝑖 ∈ 𝑁𝐺𝑆, 𝑡 + 1) = 0 STOP 

                ELSE IF 𝜎𝑝
∗(𝑖 ∈ 𝑁𝐺𝑆, 𝑡 + 1) ≠ 0 

  THEN 𝐶𝐺 = 𝐶𝐺 + [𝑛𝑔𝑡 ∙ 𝑁𝑅𝐷𝑅 ∙ (𝐺𝐷𝑡+1 − 𝐺𝐴𝐷𝑅)] 
Step 3:     RECOMPILE Schedule 𝜎𝑝,𝑛𝑒𝑤

∗  

Step 4:     SET 𝜎𝑝
∗ = {

𝜎𝑝
∗, 𝑖𝑓 𝑡 ≤ 𝑡∗

𝜎𝑝,𝑛𝑒𝑤
∗ , 𝑖𝑓 𝑡 > 𝑡∗ 

Step 5:     STOP 
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4.4 Case Study  

An illustrative case to show the effectiveness of the proposed model is conducted and 

numerical experiments on the solution quality of the MSA algorithm are presented.   

4.4.1 Illustrative Case Study 

Consider a manufacturing system with 6 stations and 5 buffers. The planning horizon is 

from 7am-3pm (32 15-minute intervals per day). Table 29 shows the station parameters. Table 30 

shows the TOU tariffs. The production target is 8,100/month. 

 
 

 

Table 29 Parameter Values for Chapter 4 

Parameter Description Value 

station ES (1) /NGS (2) [1, 2, 1, 2, 1, 1] 

𝜂𝑖 station efficiency [0.8, 0.8, 0.8, 0.8, 0.8, 0.8] 

pi  rated power (kW) [150, 0, 240, 0, 210, 170] 

gi gas usage (MMBTU/hr) [0, 10, 0, 10, 0, 0]  

PRi production rate (parts/hr) [50, 50, 50, 50, 50, 50]  

BUi(t=0) 
initial buffer capacity 

(parts) 
[70, 70, 50, 75, 60] 

Si max buffer capacity (parts) [160, 145, 140, 160, 145]  

ewi station setup time (min) [3, 2, 2.5, 4, 2, 2.5]  

PA peak power limitation 56 kW 

PAevent 
DR event demand 

limitation 
40 kW 

 

 

Table 30 Electricity and Gas TOU Programs 

Natural Gas  

Peak 8am-12pm; 4-7pm 10.43 $/MMBTU 

Flat 6-8am; 12-4pm; 7-10pm 8.48 $/MMBTU 

Valley 10pm-6am 4.24 $/MMBTU 

Electricity 

Off-Peak 7am-1pm 0.08274 $/kWh 

On-Peak 1-3pm 0.1679 $/kWh & 18.8 $/kW 



100 
 

Three scenarios are considered. Scenario 1 does not enforce any DR programs using 

production scheduling. Stations are “on” unless buffer constraints are violated. Scenario 2 is a 

heuristic approach, during electricity peak hours stations are randomly turned off.  Buffer 

constraints are handled similar to Scenario 1 and GDR is not considered. Scenario 3 uses the 

integrated EDR and GDR driven production model.   

Accordingly, the gas and power profiles for the baseline cases and proposed method are 

simulated and shown in Figure 23. The corresponding monthly billing cost and energy 

consumption values are shown in Table 31. Scenario 3 leads to savings of about 68% and 66% 

compared to Scenarios 1 and 2, respectively. Meanwhile, the most significant savings come from 

natural gas cost reduction. This further illustrates the need to include GDR considerations in 

traditional EDR driven production scheduling problems. 

 

 
Figure 23 Energy Use Profiles 
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Table 31 Scenario Comparison under TOU Programs  

Production Line’s Energy Cost Profile   

Source/Type Scenario 1 Scenario 2 Scenario 3 

Monthly electric use (kWh) 5,160.00 4,883.63 2,680.50 

Peak power demand (kW) 770.00 620.00 170.00 

Monthly gas use (MMBTU) 139.92 132.00 40.13 

Electric consumption ($) 15,471.60 14,079.30 7,522.20 

Peak Power demand ($) 14,476.00 11,656.00 3,196.00 

Gas use ($) 39,765.60 39,765.60 11,314.50 

Total Cost ($) 69,713.20 65,500.90 22,032.70 

 

 

Next, assuming a gas curtailment event occurs in interval 8 and electricity curtailment 

event occurs in interval 28 in the same day, the final production schedule after applying the real-

time scheduling strategy is shown in Figure 24. If these events are to occur 10 times a year, the 

real-time scheduling strategy can lead to an added cost savings of $24,260/ year.  



102 
 

             

 

F
ig

u
re

 2
4
 F

lo
w

 C
h

a
rt

 o
f 

R
ea

l-
T

im
e 

P
ro

d
u

ct
io

n
 S

ch
ed

u
li

n
g

 

 

 

 



103 
 

Moreover, in Scenario 3 (i.e. proposed model), profit loss due to production is assumed to 

be zero since the production target constraint ensures that production goals are met. However, if 

manufacturers are willing to sacrifice production for potential cost savings, loss of production 

when participating in DR programs needs to be analyzed. Hence, the production throughput 

constraint is relaxed and integrated into the objective function cost as a throughput cost such that  

𝑇𝑃𝐶 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∙ max(𝑇𝐴 − 𝑇𝑃, 0) − 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 ∙ max (𝑇𝑃 − 𝑇𝐴, 0). Consequently, the penalty 

and benefit terms will dictate the tradeoff between production loss and cost savings. The cost and 

throughput for different unit benefit and unit penalty values are shown in Table 32. The best 

observed case is with a unit penalty of $50 and unit benefit of $20, which leads to a throughput of 

8,340 (higher than in Scenario 3) and 18.5% in cost savings compared to Scenario 3. The worst 

throughput case is with a penalty of $5 and benefit of $10, which achieves an additional 10.97% 

in cost savings compared to Scenario 3 but with a throughput of 6,000.  The worst cost case is with 

a penalty of $50 and benefit of $10, which leads to the throughput falling to 6,300 and a 29.08% 

cost increase compared to Scenario 3. Hence, for Scenario 3, the energy cost savings significantly 

outweigh the production cost. 

 

Table 32 Results after Relaxing Production Throughput Constraint 

(Penalty, 

Benefit) 
Cost Throughput Cost/Part 

(50, 20) $17,956.44 8,340 $2.15 

(200, 10) $21,045.78 8,400 $2.51 

(10, 200) $21,613.01 8,040 $2.69 

(100, 10) $22,726.88 7,740 $2.94 

(5, 10) $19,614.78 6,000 $3.27 

(50, 10) $28,439.43 6,300 $4.51 
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When the throughput target is relaxed, manufacturers and researchers must carefully set 

penalty and benefit terms. These parameters have a significant impact on the cost and throughput 

levels and are typically unknown or cannot be easily calculated.    

4.4.2 Operational Cost Benefits for Power Providers 

GDR is expected to benefit power providers due to the rise in gas-fired power generation. 

Hence, potential cost savings for power providers through manufacturer participation in GDR are 

estimated according to the following assumptions. Natural gas demand reduction in gas peak hours 

is allocated to be used for conventional gas generators in place of coal-fired generators. The heat 

rate for the gas plant is 12,000 Btu/kWh. The coal combustion turbine cost is assumed to be 

$95/kW and gas combustion turbines cost is $66/kW. The gas demand profile from Scenarios 1 

and 2 (GDR is not implemented) is compared to Scenario 3 (GDR is implemented), and the 

resulting “gas reduction” and “electricity from gas fired generation” daily profiles are shown in 

Table 33. The results suggest that over a 5-year period (with 261 working days per year), this 

individual manufacturer’s participation in GDR can lead to $207,146 in cost savings for power 

providers.  

 

Table 33 Gas Reduction and Electricity Generation Profiles  

Gas Reduction Profile 

(MMBTU/interval) 

[5.28, 0, 2.64, 5.28, 2.64, 5.28, 2.5343472, 2.64 

2.64, 2.5343472, 5.28, 2.5343472, 5.28, 2.64, 2.64 

2.64, 0, 2.64, 2.64, 2.64]  

Electricity from Gas Fired 

Generation (kWh/interval) 

[0.44, 0, 0.22, 0.44, 0.22, 0.44, 0.21, 0.22, 0.22, 0.21, 

0.44, 0.21, 0.44, 0.22, 0.22,0.22, 0, 0.22, 0.22, 0.22, 

0.44] 

  
 
 
 



105 
 

4.4.3 Evaluation of Alternate Solution Approaches 

The effectiveness of the MSA algorithm compared to BARON [43], SA, and PSO is 

studied. Production lines with 6, 12, 25, and 50 stations are considered. The results are shown in 

Table 34. The MSA algorithm obtains the best solution in the least time; SA beats PSO but is 

inferior to MSA; BARON, in theory, will obtain the global optimal solution if ran indefinitely. 

  

Table 34 Algorithm Performance for Solution Methods 

Method Stations  6  12  25 50  

MSA 

Cost ($) $22,033 $21,228 $17,267 $14,158 

time (sec) 114.12 204.28 274.56 428.39 

SA 

Cost ($) $24,161 $29,057 $28,052 $67,842 

time (sec) 900 900 900 900 

PSO 

Cost ($) $42,002 $42,318 $77,916 $116,782 

time (sec) 900 900 900 1,400 

BARON 

Cost ($) $23,392 $22,788 $13,814 $14,571 

time (sec) 3,600 36,000 36,000 36,000 

  

 

Moreover, to better investigate the convergence of the MSA algorithm compared to 

traditional SA, the cost for each inner loop iteration, for the first 1000 iterations, is plotted in Figure 

24. It can be seen that MSA algorithm moves towards the region with the global optimal solution 

faster than traditional SA. 
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Figure 25 Inner Loop Iteration Costs of MSA and SA 

 
 
 

 

4.5 Conclusion  

In this chapter, an electricity and gas DR driven production scheduling model for 

manufacturers is established. The model considers time-based and event-based DR. A MSA 

algorithm is proposed to solve the problem in response to real-time supply notifications to promote 

the interaction between manufacturers and energy providers. A case study is conducted and the 

simulated cases show that 66-68% in energy cost savings for the manufacturer can be achieved 

using the proposed integrated TOU DR model. Moreover, an added $24,260/year can be saved 

using the real-time scheduling strategy. Lastly, $207,146 in savings from power generation may 

be possible (over a 5 year period) solely from this single manufacturer’s participation in GDR.   
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5 Note to Practitioners  
 
 
 

Before implementing the proposed cost effective joint energy and production operations 

decision making methodology for sustainable manufacturing systems, the following four criteria 

must be satisfied to promote the feasibility of applying demand response in manufacturing.  

 The machines and/or manufacturing equipment need to be physically capable of being 

turned on and off or set to a lower rated power level.  For example, variable speed drives 

can be used to control production equipment’s’ operating states while avoiding high initial 

startup power requirements.  

 The production line needs to be flexible and provide opportunities in which production 

equipment can be manipulated without affecting the production system stability or leading 

to throughput loss. Such flexibility is observed with production lines that have inherent idle 

times and/or buffers.  

 Expected demand response incentive needs to be attainable and significant. An example of 

this would be a time-of-use program with a short on peak period and significant difference 

between on-peak and off-peak rates.  

 A method for controlling the production line (for example programmable control), to 

implement the proposed joint energy and production schedules, is necessary.  Several 

commercial products facilitating energy management on the multi-machine level have 

emerged in the market and can enable this. 
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6 Summary and Future Work 
 
 

Three joint energy and production planning models for manufacturers are presented (i.e. 

an integrated energy and maintenance production planning model, a combined manufacturing and 

HVAC system scheduling model, and demand response driven real-time decision making model 

considering natural gas and electricity).  The proposed models provide a comprehensive set of 

tools for cost efficient joint energy and production operations decision making toward 

economically and environmentally sustainable manufacturing.  This research will further advance 

the state of the art of research on sustainable manufacturing and end-user demand response; and 

provide manufacturers with analytical tools for implementing joint energy and throughput 

management for sustainable manufacturing systems. 

In the future, some research extensions that can be conducted are as follows. The joint 

production and HVAC model can be advanced to also include natural gas consuming components 

and costs. Additionally, joint production and energy decision making can be extended to include 

onsite energy generation and energy storage. Finally, the gap among energy end-users and 

suppliers can be bridged by integrating DR bidding and direct load control for manufacturers.   
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