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SUMMARY

Recent epidemiological studies have shown that long-term exposure to air pollution is

positively associated with mild cognitive impairment (MCI). Although interest in pollution

monitoring is proliferating, self-tracking personal pollution exposure is little explored. In

this thesis, I adopt a human-centered computing approach to explore the design space

of personal pollution tracking wearables. This work makes three contributions to human-

computer interaction: 1) design guidelines for rapid-prototyping low-cost, sub-optimal per-

sonal pollution tracking wearables and a physical prototype that measures PM2.5 and am-

bient noise which are the pollutants that epidemiological studies have demonstrated their

association to MCI, 2) exploration of different calibration techniques to improve the ac-

curacy of low-cost PM2.5 sensors, and 3) a characterization of how human interference,

our day-to-day activities, significantly affect the operation of personal pollution tracking

wearables. In sum, this thesis informs design guidelines about how to physically prototype

personal pollution tracking wearables and where to wear them—beyond citizen-science ef-

forts of data collection—rather toward monitoring personal long-term pollution exposures

to mitigate the environmental risk factors for many illnesses such as early dementia.

ix



CHAPTER 1

INTRODUCTION

Recent epidemiological studies have shown that prolonged exposure to some air pollu-

tants is positively associated with mild cognitive impairment (MCI). In spite of the fact that

Ubiquitous computing is a common-place now and in spite of the increase in the interest

in pollution monitoring, personal pollution exposure is little explored. This thesis resem-

bles an effort towards a more user-friendly ubiquitous personal pollution exposure using

wearable technology.

In this work, we created a low-cost pollution exposure measurement wearable for older

adults in particular, and for the public in general. The wearable measures the twp pol-

lutants that are proven to be related to mild cognitive impairment in older adults: PM2.5

and noise. This study informs a basic calibration algorithm to improve the accuracy of

low-cost PM2.5 sensors. Using the wearable, we also studied the effects of different hu-

man interference factors on PM2.5 due to day-to-day activities and the proximity to the

human body. The results inform design guidelines for where to wear the devices and open

the door for creating personal pollution monitoring wearables that make an account for

the humanly generated particulate matter as opposed to the industrial particulate matter.

The wearable allows users to monitor their personal environmental exposures, be aware

of potential pollution exposures when planning day-to-day activities, and take day-to-day

actions to combat the environmental risk factors for the early onset of dementia.

1
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1 .1 Thesis Overview

In Chapter 1 we introduce the thesis work. We also talk about the motivation behind

this work and we give a short background study on the aspects of the thesis work. Fi-

nally, we discuss the theoretical framework of this thesis work. Chapter 2 is describing

and discussing the personal pollution exposure monitoring prototype we built. The pro-

totype technical components, as well as human-centered decisions, were discussed exten-

sively in the chapter. Chapter 3 explores the calibration of the prototype using a high-cost

high-precision PM2.5. In Chapter 4, human interference with low-cost personal pollution

exposure monitoring tools is explored. Chapter 5 concludes the thesis.

1 .2 Motivation

Recent epidemiological studies marked air pollution and noise as the two pollutants

associated with Mild Cognitive Impairment (MCI) in older adults. [4–6] MCI is an intermedi-

ate stage between normal age-related cognitive decline and early dementia, e.g., amnestic

type of MCI (aMCI) is an early onset of Alzheimer disease, and non-amnestic MCI (naMCI)

is the early onset of vascular and other forms of dementia. [7,8] The cognitive decline is ad-

versely affected by the prolonged exposure to PM2.5 and noise. The biological reasons for

these associations are not fully known yet. By 2020, it is expected that 42.7-48.1 million

people will be suffering from Dementia. [9] With the increase of the number of people hav-

ing Dementia, the urgency for early diagnosis of mild cognitive impairment (MCI) and for

monitoring the environmental risk factors (ERF) for MCI in real-time is expanding. Early
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diagnosis of MCI and for monitoring the ERF for MCI in real-time play a critical role in

controlling and delaying the onset of Dementia.

Epidemiology studies investigate the health effect of pollution at a population level,

using data from few fixed monitoring stations such as EPA monitoring stations [10] and the

Array of Things in Chicago [11] and assuming static population distributions. [12]

There are several challenges when it comes to personal pollution monitoring exposure.

First, low-cost wearable environmental sensors are suboptimal and pose high sensitivity

towards the human body, clothing, and, everyday activity. [13] Second, pollution concentra-

tions measurements from fixed pollution monitoring sites lack spatial and temporal resolu-

tion in spite of being equipped with high-cost gold standard sensors. Finally, although out-

door pollution monitoring is becoming more of a commonplace, and smart home bundles

includes pollution monitoring devices. Indoor air quality monitoring is becoming prevalent,

ways to manage long-term environmental exposures and adopt healthy lifestyle changes

are mainly limited to large-size expensive equipment and wearables intended for the use of

scientists and quantified-selfers. These tools are not designed for the use of the intended

at-risk population, who need and benefit from these tools the most.

Monitoring exposure to PM2.5 and noise pollution and using that data to combat the risk

of pollution exposure is promising for the at-risk population and their caregivers, but, it

forms challenges. [14–16] With that in mind, the goal of this thesis work is to study the effect

of human interference on low-cost PM2.5 sensors in order to inform the design and devel-

opment a personal pollution monitoring wearable that can estimate PM2.5 concentrations
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and ambient noise to help people, particularly the elderly, to monitor personal pollution

exposures ( PM2.5 and noise). This will give the elderly the opportunity to benefit from the

latest ubiquitous computing technologies to monitor their exposures to pollutants in order

to combat MCI risk factors. This wearable will help the elderly to adjust their day-to-day

schedule and activities in order to avoid the risks of long-term exposure to these pollutants

and therefore keep their cognitive functions healthy by lowering the chance of suffering of

MCI.

1 .3 Background

Particulate Matter (PM) is the body of particles, solid and liquid, suspended in the at-

mosphere. These particles differ in shape, size, and source. PM is classified into three

size classes: coarse with a diameter ranging from 10.0µm to 2.5µm, fine with a diameter

ranging from 2.5µm to 0.1µm, and, ultra-fine which is smaller than 0.1µm. Based on sizes,

PM is defined as one of three types of PM; PM10, PM2.5, and, PM0.1. Different size of

particulate matter are produced from different sources and have varying chemical compo-

nents. PM10 is mainly coal dust and fly ash. PM2.5 are produced from smoking tobacco

and some metal fumes. Diesel engines produce PM1.0. Other manufacturing and industrial

procedures produce PM of different sizes as well. Figure 1 shows the classifications of

particulate matter.
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Figure 1: Classification of Particulate Matter based on size and source. (From [3])

1 .3.1 Humans and Particulate Matter

Environmental studies have identified sources of PM in different microenvironments,

such as indoor and outdoor. The outdoor PM has two general sources. First is natu-

ral sources such as natural chemical interactions, for example, decomposition of organic

compounds, and volcanic eruptions. The other contributor to outdoor PM is anthropogenic

emissions such as traffic emissions, industrial emissions, and emissions from power plants.

Anthropogenic emissions are responsible for a majority of the harmful outdoor PM as the

natural sources contribute to the natural environmental cycle to maintain it at equilib-

rium. [17,18]

Indoor PM is composed, generally, of two main sources. First, indoor generated PM

such as PM generated by activities such as cleaning [19,20], frying and cooking fumes [21,22],



6

fireplaces [23], tobacco smoke [24,25], candles [26], spraying products [26], results of chemi-

cal interactions of organic components indoors due to heat or other triggers, and, -one

important source- PM generated from human body and clothing, bioaerosol emissions of

breath [27], and, physical activity.

The PM emitted from the human body and clothing contributes to the human’s personal

cloud. [28] The personal cloud is defined as the difference between the PM measurement of

a personal pollution exposure monitoring tool, that is near the human body or attached to

it, and the PM value read by a standard area-level or population-level pollution monitoring

station at a certain geo-spatial point at a certain point or period of time. [29]

A study conducted in a sealed chamber to asses the emissions of the clothed human

body on the personal cloud has found that human activity increases the PM emission rates.

Also, the study found that among different textiles, cotton has the highest PM emission

rate. [30] The second source of indoor PM is the outdoor particulate matter that reaches

the indoor microenvironment by several means, such as opening windows and doors and

penetrating through building cracks, or, outdoor PM travels indoor by human activities.

The indoor-generated PM is the most significant contributor to indoor PM. [29,31] People

spend a vast majority of their time indoors, thus, they are mostly exposed to indoor PM. [32]

Environmental scientist are exerting efforts to identify and classify sources of PM based

on toxicity and the adverse health risk of exposure. [33] The chemical composition of PM in-

creases toxicity by reacting with the atoms of the human body. The presence of PM in

certain size and shape pose a threat of toxicity as well. Different sources of PM produce
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mixtures of particles with different chemical composition as well as different physical fea-

tures. It is believed that the whole mixture plays a role in the exposure’s health effect. [33]

Studies have shown that PM from traffic emissions is more harmful than coal-fired power

plants emissions and other secondary carbon sources. [34,35]

1 .3.2 Personal Pollution Exposure

Personal pollution exposure, from a quantitative point of view, is defined as the total

number of pollution particles measured by a personal pollution monitoring tool within a

person’s breathing area. Personal pollution exposure should not be impacted by the PM in

the person’s exhaled breath. [29] In other words, personal pollution exposure is the amount

of PM inhaled at a given instant or a period of time in a certain location or a set of locations

trailing the person’s movement. Personal pollution exposure assessment is a process in

which magnitude, frequency, and duration of exposure to a pollutant or a set of pollutants

is measured. [36]

Assessing personal pollution exposure is becoming more and more important since it

is a crucial health indicator, especially in urban and industrial areas where pollution is

a serious concern. Facing complications from human interaction with the surrounding

environment is inevitable when assessing personal pollution exposure, therefore, it is chal-

lenging. Wearable, portable, environmental sensors are a compromise between cost and

optimality. [13] These sensors are usually sensitive to interference by everyday activities of

the user, such as human skin emissions or textile emissions. [13]
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Ubiquitous computing has radically changed the way people track their activities and

behaviors. [37] People are gaining access to data about their own activities, behaviors, feel-

ings, and health indicators in orders of magnitude richer than any previously available.

This is because of the leap in sensing technology, device miniaturization, and data analysis

approaches. Market analysis forecasts a dramatic increase in the smart wearable market

share; it is expected to double from 2018 to 2022. [38]

In spite of the fact that epidemiology gives vigorous pieces of evidence that long-term

pollution exposure has adverse health, ubiquitous computing has limited progresses to-

wards robust personal pollution exposure tracking systems that can be used openly by the

public. Complex interactions between the human body, clothing, and, belongings and the

surrounding environment makes assessing personal pollution exposure perplexing. [12,15]

That is a reason behind the gap between self-monitoring tools for pollution exposure and

these tools for monitoring other health indicators. [39]

Indoor air quality (IAQ) monitoring is one of the technologies available for the public for

monitoring pollution exposure in indoor microenvironments. IAQs are increasingly becom-

ing prevalent (e.g., Dylos DC1100, Foobot, uHoo, [40]). These tools provide household-level

pollutant data, such as volatile organic compounds (e.g., CO, NO2, O3) and PM2.5. De-

spite that IAQ monitors are portable, they are designed to sit at a fixed indoor location

(e.g., placed in the living room [40]) and thus, do not offer, at a the fundamental level, mon-

itoring of personal pollution exposure across different situations of human exposure. No
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personal pollution exposure monitoring wearable that monitors exposures in real-time and

everywhere, is currently available for the public on the market.

Other current solutions for personal pollution exposure monitoring are designed for the

use of scientists and quantified-selfers. [39] Moreover, tracking personal pollution exposure

in real-time and keeping traces of time-activity-exposure patterns offers a considerable

promise for people, particularly, the at-risk community such as older adults, people with

asthma, and people living or working in areas marked as polluted. [14–16] Thus, this thesis

is an effort towards setting design guidelines for self-tracking personal pollution exposure,

in order to reduce the gap separating personal pollution exposure monitoring and other

personal activity and behavioural monitoring and to give the at-risk community a tool to

monitor their personal pollution exposure as a step to combat environmental risk factors

for health problems.

Traditional approaches to track pollution exposure that build upon pollution concen-

tration values measured by fixed pollution monitoring stations lack spatial and tempo-

ral resolution. For instance, there are four fixed governmental pollution monitoring sites

in Chicago, with a 1-in-few days pollution concentrations reading schedule. [12] Currently,

with the availability of affordable pollution monitoring sensors and low-cost computing,

tracking personal pollution exposure with higher spatial and temporal resolution is be-

coming more prevalent. Table I shows a comparison between recent works on personal

pollution exposure monitoring tools and how do they compare to my thesis project.
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TABLE I: Comparison of portable air and/or noise pollution sensing devices. Personal ex-
posure monitoring refers to individuals, not a room or enclosed space (I = indoor, O =
outdoor).
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In this work, we measure two types of pollutants: PM2.5 and noise. But, we focus our

studies on PM2.5. Noise is a commonplace for scientists in computing as well as other

disciplines related to acoustics. Noise and microphones have been extensively studied; mi-

crophone calibration have been done for stand alone microphones as well as smartphone

microphones. [50,51] Microphones are used for human activity recognition [52,53], incorpo-

rated in smart home applications [54], development of acoustic localization technology that

is used to locate the source of a sound in 3 dimensions both in air and underwater [55–58],

and in passive Human-Robot interaction [59]. Thus, we focus on exploring human interac-

tion with low-cost PM2.5 sensors.



CHAPTER 2

PERSONAL POLLUTION EXPOSURE MONITORING PROTOTYPE

Ubiquitous computing is becoming more and more prevalent and wearable technologies

are becoming a part of people’s everyday life. People use wearables to monitor their

daily activities and feelings. Monitoring activities and habits helps in understanding these

behaviours and, as a result, adjust them for a healthier life style.

2 .1 Motivation

Recent epidemiological studies have shown that mild cognitive impairment (MCI) is

associated positively with the long-term exposure of older adults to PM2.5 and noise. MCI

is a precursor to a disease that has no cure yet: Dementia.

Available solutions to monitor environmental pollution as a health risk factor do not

target the at-risk. Instead, these solutions are either designed for the use of scientists

and quantified-selfers, or, they are designed to stay at a fixed location. Thus, comes the

decision to design a wearable for personal pollution exposure.

We created a wearable prototype to measure personal pollution exposure. The pro-

totype measures pollutants associated with mild cognitive impairment; PM2.5 and noise.

The prototype is a wearable worn most comfortably as a handheld and is used throughout

this study to inform design decisions for iterating towards a human-centered wearable de-

12
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vice. The wearable prototype works side by side with a smartphone running Android. The

prototype is shown in figure 2.

Figure 2: The wearable

2 .2 The System

Several studies have shown a positive association between household income and pol-

lution exposure. A recent study of the Natural Resources Defense Council (NDRC) has

shown a map of Chicago that associates income with pollution levels. The map is built

using data from EPA. The pollution levels were shown to be higher in the south and west
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sides of Chicago, the areas where there is a lower socioeconomic status. [60] With that in

mind, the decision to create a low-cost personal pollution exposure tool came in order

to give the population with lower socioeconomic status to have at hand a personal pollu-

tion exposure tool. Moreover, market statistics show that the primary reason people turn

away from a wearable gadget is the cost. [61] With having access to such a tool, health

risk factors, in general, and the MCI risk factor, particularly, will be manageable. Having

cost efficiency in mind as one of the main goals, we built the prototype using off-the-shelf

low-cost components. As an estimation, the cost for building the prototype is 80 USD.

2 .2.1 Mechanism

The wearable reads current local PM2.5 values using a low-cost PM2.5 sensor. If WiFi is

available, the wearable sends the timestampped data over WiFi to a cloud-based database

dedicated for this project hosted on Amazon Web Services (AWS) [62] using the DynamoDB

engine [63] which is a NoSQL online database service.

If WiFi is not available, the wearable connects to a smartphone using Bluetooth. The

smartphone, running a dedicated application, sends the data to the AWS database using

GSM Network or any available internet connection. If neither WiFi nor Bluetooth is avail-

able, the wearable saves the data locally until a connection is available. Later, when a

connection is available, the online database is synchronized with the local database.

The smartphone application collects the current noise level using its built-in micro-

phone. Also, the smartphone application captures contextual data in order to provide an

understanding of the context of which the pollution exposure instant happened. Next, the
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data is processed on the phone to display an estimation of the user’s personal pollution

exposure.

2 .2.2 Hardware

Since cost efficiency is one of the goals of this project, as an effort to enable people

with lower socioeconomic status to monitor pollution since it is a health concern, we built

the wearable using off-the-shelf low-cost components.

System on Chip. The computing power of the wearable comes from a Raspberry Pi 3b+

shown in figure 3 connected to the sensor near a smartphone.
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Figure 3: Raspberry Pi 3b+

Raspberry Pi is a low-cost small-sized hackable System on Chip (SoC) with adequate

computing power. It was originated as an education-friendly computer board in 2012.

Raspberry Pi is widely used in the Internet of Things (IoT) applications. [64] Raspberry Pi
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runs an operating system of choice by installing it on a microSD card. The microSD card

operates as the hard disk of the system. The Raspberry Pi 3b+ uses the microSD external

memory to run and save the data. There are two famous operating systems modified for

Raspberry Pi. Windows 10 Internet of Things (IoT) is a lightweight version of Windows 10

developed for board computers. [65] The other operating system is Rasbian. Rasbian is a

light-weight version of Linux Debian created for Raspberry Pi. In this project, Raspberry

Pi ran Rasbian installed on a 16 GB microSD card.

Raspberry Pi then acts like a normal computer and requires input devices to be con-

nected using USB or any of the available ports e.g. keyboard. The board of a Raspberry

Pi is similar to a card-sized motherboard with fundamental system components such as

computing and graphics processing units and memory. In addition to that, the board has

a set of components to communicate with different types of peripherals for input and out-

put. Raspberry Pi 3b+ is powered by a Broadcom BCM2837B0, Cortex-A53 64-bit SoC @

1.4 GHz processor. The processor can be overclocked for more computing power. [66] But,

within the scope of my application, there is no need for overclocking.

The Raspberry Pi 3b+ was chosen because it offers built communication facilities. The

Pi allows for WiFi and Bluetooth communications with built-in WiFi and Bluetooth modules.

This eliminates the need to attach a WiFi or a Bluetooth module to the board. As a result,

the system has a minimal thickness. This is important because minimizing thickness is one

important aspect of wearables design because it adds safety and comfort both physically

and perceptually. [67]
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The sensor. The Pi is interfaced using its serial UART to a low-cost PM2.5 sensor Plantower

PMS7003. [68] At an early stage, we interfaced the Pi to a low-cost PM2.5 sensor Plantower

PMS5003. In a later stage, we upgraded the sensor to Plantower PMS7003. The latter

improves upon the last by that PMS7003 is approximately half of the size of the PMS5003

which makes the sensor more portable and more adequate to be a part of a wearable as it

does not contribute to the thickness of the system.

The sensor reads 3 size categories of particulate matter (PM). These are the particulate

matter with a diameter less than or equal to 1.0µm. The smallest diameter for particulate

matter which the sensor is capable of measuring is the particulate matter with diameter

0.3µm as per the manufacturer’s evaluations. [68] The second category of which the sensor

measures is the particulate matter with a diameter larger than 1.0µm and less than or

equal to 2.5µm. The last category is the particulate matter with a diameter up to 10.0µm.

The sensor uses a laser scattering principle to measure PM. Laser scattering is a

method for characterizing micro-particles. A laser beam is released across a chamber

where atmospheric air can enter. Particles then radiate the laser beam causing it to scat-

ter to a certain degree based on its size. The degrees of scattering and the number of

scattering events happening at a point of time is then transmitted to the Pi as numbers of

PM1.0, PM2.5, and, PM10.

Powering. The wearable is powered using a 4000 mAh lithium-ion battery as a recharge-

able power bank. [69] The power bank is approximately the size of the Raspberry Pi board.

The power bank takes approximately 4 hours to charge completely and runs the Pi for
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an approximation of 6 hours per charge. The device has boost converters that provide

5 V(DC) up to 1A via a USB A port. The 1A output is key for powering Raspberry Pi to

avoid under-powering. Under-power is when the device is getting a current smaller than

what its default. Long intervals of under-power might cause damage to the device’s power

supply. When a Raspberry Pi is underpowered it shows a small lightning strike shape on

the top-right corner of the screen.

2 .2.3 Software

The Raspberry Pi used to build the wearable runs Rasbian. The latest version of Ras-

bian was installed on the microSD card and all the local data and codes are stored there.

The codes running the wearable were written in Python. The codes use threading because

it gives it robustness. When the Pi is connected to the power source, an interfacing script

runs initiating two threads. The first thread handles communications as follows:

• The thread checks if WiFi is available

• If WiFi is available, the thread reads the earliest entry in the database that was not

written to the database and it writes it to the database. Then, it marks it as read and

it checks again for WiFi availability and loops as long as WiFi is available.

• If WiFi is not available, the thread tries connecting to an available smartphone run-

ning the application. If the connection is successful, the thread reads the earliest

entry in the database that was not written to the database and it writes it to the

database. Then, it marks it as read and it checks again for WiFi availability, then

Bluetooth connection availability. The thread loops on that.
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• If neither of the connections is available, the threads keeps checking for connections

every 5 seconds.

The second thread handles reading data from the sensor and writing it to the local database.

Having this in a separate thread ensures that no data is missed and reading data is not af-

fected by the availability of a connection.

The computing capabilities of the Pi handles the two threads without any interruptions

or slowing down. Also, it does not heat up the Processor of the Pi. As a result, the pi does

not require a heat sink and runs without excessive or disturbing heating in room temper-

ature as well as hot temperature as we have tested by running pilots in summer weather

as well as winter weather. This holds as long as the wearable is not wrapped in an isolat-

ing and non-breathable packaging. This protects the device and gives it longevity. Also,

increases the wearability by increasing comfort as it remains at an adequate temperature.

2 .3 Smartphone Application

As a part of the system, we created a smartphone application for Android devices. The

application works hand-in-hand with the wearable to obtain an inclusive personal pollution

exposure estimation. The other pollutant that is associated with MCI that the wearable

system measures is the noise. Noise is obtained by sampling sound levels periodically. The

noise is measured by the smartphone’s application using the smartphone’s microphone.

The application is developed in Java using Android Studio.
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The application has a simple interface showing current PM2.5 values (If connected to

wearable) and noise levels. Part of the application was built in collaboration with my

colleague Ja Eun Yu as a part of the myCityMeter project. [70]

2 .3.1 Contextual Data Collection

Contextual resolution is an important factor when trying to understand personal pollu-

tion exposure. Time and location, for example, are critical in order to make sense of the

pollution data for a better understanding of an exposure event. Weather also affects the

pollution levels, for example, wind changes the concentration of PM. Thus, the collection

of contextual data alongside pollution data was essential to create a full understanding of

personal pollution exposure. Contextual data was collected using the smartphone’s built-in

sensors and data from weather stations.

The smartphone application timestamps the data and geotags it using fine GPS data.

The smartphone’s WiFi and GSM signal levels and the screen’s brightness are collected

from the smartphone’s system. The built-in light sensor collects the luminosity value.

Using Google and Yahoo! weather APIs, weather information such as outdoor temperature,

humidity, dew point, weather condition, and wind speed. We also collected an estimation

of ambient temperature using battery temperature. Studies could model a formula for

estimating ambient temperature based on the smartphone’s battery temperature. [71] The

formula is as follows:

tambient = 2.085 + 0.874tbattery − 0.0004v
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Where tambient is the estimated ambient temperature in degree Celsius at a certain time

instant, tbattery is the smartphone’s battery temperature in degree Celsius at the time in-

stant, and v is the battery’s voltage at that same time instant. It is worth mentioning that

the ambient temperature collected using this method is not always the actual instant tem-

perature since might be affected by a lot of factors that might isolate the device from the

surroundings or affect the temperature of the device.

Finally, we needed to manually tag the microenvironment as one of four, outdoor, semi-

outdoor, indoor, deep indoor, and the setting, for example, cooking, or in the library, of

which the current exposure is happening in for calibration purposes. To do that, we modi-

fied the application to manually type a setting and choose a microenvironment. The edited

application interface is shown in the figure 4.
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Figure 4: Application’s Interface for Contextual Data
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2 .4 Ontology

Personal pollution monitoring systems are built with a set of sensors that provide sensor

data streams for pollution as well as context-related data. This data is and will be produced

in high volumes given that the data streams are being produced by each user for a set of

sensors over lengthy time periods. This torrent of data will be problematic if it was not

managed systematically and formally. Gigabytes of raw sensor data are meaningless if this

data was not semantically organized. The organization will allow the data to be leveraged

well. It will ease the access and operation on this data as well as communicating and

visualizing the data as needed. Personal pollution data convey valuable knowledge for

users, thus, it must be handled carefully.

Given that an ontology is a formal way to describe the concepts and relationships that

can exist for an agent or a community of agents [72], an ontology is an approach to formally

and semantically represent the personal pollution exposure of a person. Using semantic

web allows for the formality and systematizing needed for the previously mentioned data.

The work towards pollution in the Semantic Web is oriented towards sensors and sensor

readings.

Sensor Web Enablement (SWE) [73] is a suite of specifications related to sensors by Open

Geospatial Consortium. Sensor Web Enablement enables sensors to be accessible and con-

trollable by the Web. Raw sensors data is by nature opaque, so, metadata is critical in

managing sensor data. According to SWE, a semantically rich sensor network provides

three types of metadata: Spatial metadata, Temporal metadata, and, Thematic metadata.
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Every sensing system has unique domain-specific information. The Sensor Web Enable-

ment framework supports simple spatial and temporal concepts. [73]

Semantic Sensor Web (SSW) [74] is a framework that works towards giving situational

awareness for sensor observations by improving upon standard sensor languages of the

SWE. SSW gives sensor data more contextual meaning to help the user understand the

situation of which the sensor was operating in. SSW connects SWE XML-based metadata

standards to the Semantic Web.

Several ongoing initiatives to build relevant ontologies

• Sensor Standards Harmonization by the National Institute of Standards and Technol-

ogy (NIST)

• W3C Geospatial Incubator Group Ontology

• OGC’s Geographic Markup Language Ontology

• OWLTime for temporal-based Ontologies [75]

• W3C Semantic Sensor Network [76]

• Domain-specific ontologies provide semantic descriptions of thematic entities: Indoor

Environment Quality Ontology [77]

Semantic Sensor Network [76] is an OWL 2 ontology to describe sensors and observa-

tions. Semantic Sensor Network Describes capabilities, measurement processes, observa-

tions and deployments of sensors. The ontology offers an inclusive view of a sensor. The
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ontology can describe: Sensors, Accuracy of sensors, Observations, Deployment, Meth-

ods of sensing, Concepts for operating, and Ranges. Semantic Sensor Network introduces

Stimulus-Sensor-Observation pattern. The Semantic Sensor Network ontology has four

perspectives: Observation perspective, Sensor perspective, System perspective, and, Fea-

ture and property perspective.

The available semantic works extensively describe sensors and sensor event. But, these

works have minimal consideration for sensor context, which is a core component to mea-

suring personal pollution exposure. Current ontologies focus on the sensor rather than

the exposure. The ontologies focus on sensors, per single sensor. These ontologies exten-

sively describe sensors, but not the exposure. These ontologies lack accurate contextual

resolution. Here comes the need for formalizing the data to provide ease of access by

communicating pollution data with a high contextual resolution. To achieve that, we cre-

ated an ontology to leverage the ability to systematically access user data to improve the

application’s algorithms. The ontology aims to facilitate blending data from different users

and sources about the same location to give more accurate pollution exposure estimation

at a certain location or time.

2 .4.1 Personal Pollution Exposure Ontology

An ontology was designed in OWL using Protege 5.5.0 build beta-3. The ontology de-

scribes personal pollution exposure events. Core requirement for the ontology is that an

exposure instance is expressed in an extensive form. The knowledge for the design of the

ontology was acquired by collecting information from already existing sensing ontologies
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such as Semantic Sensor Network. [76] Also, prior knowledge gained by working on other

related projects was employed in the ontology design.

The core class is Exposure_Object has two subclasses Pollutants and Exposure_Context.

Pollutants class currently looks at two pollutants: PM2.5 measured by µ/m3 and Noise mea-

sured by dB(A) which is a transformation of dB to suit the human ear. Exposure_Context

describes the location where an exposure happened. Also, it describes the microenviron-

ment. A microenvironment is the local environment of an event and can be classified into

four microenvironments: outdoor, semi-outdoor, indoor, deep-indoor. Also, the context de-

scribes the timestamp at which the exposure instant happened as well as the weather at

that point since weather plays a critical role in the pollution levels at a certain point.

External ontologies were used. First, the SSN was used since it extensively describes

sensors. Second, OWL Time was used to represent temporal events in an exposure object’s

context. Third, an RDF Vocabulary: WGS84 Geo Positioning was used to describe the

exposure context’s location. [78] Finally, a weather ontology by the Smart Energy-Aware

Systems was used to describe the weather as a part of an exposure context. [79]

2 .4.2 API

In order to make use of the ontology, an API to communicate and query the data is

necessary. Thus, we designed and partially prototyped an API for the data collected in

this project using Java. The API gets the raw sensor data in a CSV format from AWS’s

database. The API, then, process the data and produces OWL individuals using OWLAPI [80]

and attaches these individuals to the Ontology.
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2 .5 Conclusion

In this thesis, we present an effort towards creating low-cost personal pollution ex-

posure wearables. We created a wearable prototype to measure PM2.5 and noise as the

two pollutants positively associated with early-stage dementia as demonstrated in recent

epidemiology studies.

In this chapter we extensively discuss how we created the wearable using off-the-shelf

system-on-chip Raspberry Pi 3b+ and a low-cost PM2.5 sensor. Also, we explore an Android

application we created to inform pollution levels and to measure noise and collect contex-

tual data. Finally, we discuss the creation of an ontology to describe personal pollution

exposure in an extensive way supported by contextual variables. The prototype was used

throughout the thesis work to collect data and conduct interaction studies with the human

body.



CHAPTER 3

LOW-COST PM2.5 SENSORS CALIBRATION

Scientists and engineers are developing new sensing and measurement technologies

every day. New breakthroughs in sensing technology are breaking size and cost limits for

sensing in a way that makes access to these tools within the reach of a vast majority of

people; from students to amateurs to researchers and even business professionals. Thus,

these sensors are being used in an ample set of applications.

But, these sensors and measurement tools vary in accuracy due to a set of reasons.

Some low-cost sensors are built using low-cost materials and technology which leads to

the sensor’s sub-optimality. Another factor that affects measurement accuracy is that the

accuracy is reduced with use in time. Sensor parts may differ in shape or functionality due

to being exposed to sunlight, heat, rain, and other natural conditions that might affect the

sensor’s performance.

Also, some unexpected accidents might affect a sensor’s measurement accuracy such

as falling to the ground and bumping into objects. The sensor measures faulty data when

such a condition applies. Thus, to make use of the sensor, a correction to the data is

needed. Calibration is a measurement rectification technology. Calibration is defined as

the correction of a measurement of a certain tool by evaluating the tool’s measurements

against ground truth data gathered by a gold standard measurement tool.

29
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3 .1 Motivation

In this thesis, we are using a low-cost PM2.5 sensor as a part of the creation of a low-

cost personal pollution monitoring wearable. Since the sensor we are using is a low-cost

PM2.5 sensor with sub-optimality as the main concern, conducting a calibration study is

an important step toward the creation of the wearable. In this chapter, we discuss our

calibration study and our results.

3 .2 Tools

For the calibration study, we used the SidePak™AM510 Personal Aerosol Monitor as

a reference for ground truth PM2.5 concentrations. The calibrated sensor represented by

the prototype we developed and discussed in chapter 2 was the sensor to be calibrated.

3 .2.1 SidePak™

The SidePak™AM510 Personal Aerosol Monitor is a laser photometer that measure

personal pollution exposure in real-time. SidePak is used as a pollution monitoring tool

for measuring pollution concentration in different types of settings and microenviron-

ments. [81–86]

SidePak is a portable device that can be worn on a belt or attached to clothing using a

clip fixed on the back of the device. It has a tube that is attached to a sampling pump that

facilitates the monitoring of pollution concentrations in the personal cloud. Although it is

considered quiet when compared to other pollution monitoring tool, the pump noise is con-

siderable, our noise meter shows a noise average of 70 dBA (That is the noise of a vacuum
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cleaner at an approximately 10 ft distance [87]) comparing to an average of approximately

40 dBA (Quiet living room noise [87]) when it is turned off.

SidePak requires approximately 3.5 hours to recharge and runs for approximately 7

hours. It has internal memory with an approximate size < 100 MB (The manual [88] and

the specifications sheet [89] don’t mention the memory size, the estimation is based on our

experiments). SidePak is with a moderate weight of approximately a pound and it has

dimensions of 4.2 x 3.7 x 2.8 inches (10.6 x 9.2 x 7.0 cm). It is worth mentioning that the

SidePak costs a few thousands of US dollars.

In a procedure of laser scattering, when SidePak is on, the pump regularly conveys air

samples from the surrounding atmosphere to an optical chamber inside the device passing

through a filter that removes all particles with diameters larger than 2.5 µm. There are

multiple filters with multiple sizes for measuring the concentration of different sizes of PM.

The particles with the intended size or less make their way to the optical chamber where

a ray of laser is shot and a set of lenses captures the scattered rays in a process to count

the number of particles per size. SidePak has a frequency up to 1 reading per second and

can function in pollution concentrations reaching a limit of 20,000 µg/m3.

The SidePak we used in our experiments is calibrated by the manufacturer (TSI). The

calibration report mentions that in the calibration process, the device is adjusted in accord

with standard ISO 12103-1, A1 test dust (Arizona Test Dust). This indicates that SidePak

when measuring PM2.5 concentrations will assume that the physical properties of the mea-
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sured particulate matter are similar to that of the Arizona Test Dust. SidePak is used as

the ground truth for our low-cost PM2.5 sensor and it is shown in figure 5.

Figure 5: SidePak™AM510 Personal Aerosol Monitor

3 .2.2 Low-cost PM2.5 Sensor

The low-cost PM2.5 sensor that was calibrated is the Plantower PMS7003. It is a low-

cost off-the-shelf PM2.5 sensor. The sensor is deployed in the prototype developed as a
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part of this project. The sensor measures PM2.5 concentrations using the laser scattering

method. Please refer to 2.1.2 (Chapter 2) for further descriptions and details.

3 .3 Conceptualization

Independent Variables:

Pollutants. Our pollutants are PM1, PM2.5, PM10, and noise measured in dBA.

Type of sensing device. We used two types of sensing devices: SidePak as a high-

cost high-precision pollution monitoring device and Plantower PMS7003 as low-cost low-

precision PM2.5 sensor.

Contextual Features. Contextual features are the sets of data collected by the smart-

phone application. These are timestamps, geotags represented by longitude and latitude,

WiFi and GSM signal levels, screen’s brightness and luminosity value, weather information

such as outdoor temperature, humidity, dew point, weather condition, and wind speed, am-

bient temperature inferred from the battery temperature, microenvironment, and, setting.

Dependent Variable: Value (distribution).

3 .4 Data Collection

SidePak and the prototype were used to collect data for this study. The tube opening

of the SidePak where the pump draws air samples from was attached to the prototype.

Figure 6 shows a picture during one of the data collection trips.
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Figure 6: Data Collection for Calibration

For this study, we collected data for an approximation of 20 hours with a read rate of

1 read/second for both SidePak and our prototype. The data collection was done over a

period of 4 weeks in different locations near Chicago and UIC campus as well as in Chicago

suburbs in different times of the day. We collected data in settings of high particulate

matter concentrations such as a kitchen when cooking, and low concentration such as

in a computing lab. Also, we collected data in different weather conditions with varying

humidity and temperatures in stationary and during movement (walking and in a car).

The data collection was done in four different microenvironments: deep indoor which

resembles a room with no windows or doors that lead to straight to outdoor, indoor which

is a room or an indoor space that has windows and/or doors leading outdoors, semi-outdoor

which is a microenvironment that is outdoor but has significant walls or roofs or buildings,
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and, outdoor which is an open outdoor area. Figure 7 shows a side of data collection in an

outdoor microenvironment.

Figure 7: Outdoor Data collection

The smartphone collected contextual data while SidePak and the wearable collected

particulate matter data. We collected contextual data to examine the effect of different

factors that might affect the PM2.5 concentration. Also, we collected PM10 and PM1.0 using

our sensor as it collects all three values of PM2.5 at the same time instance. Studies have
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shown a strong correlation between each two consecutive sizes. [90] Thus, we believe that

this data can improve our calibration model.

We created python scripts to aggregate the data from SidePak and from our prototype

and smartphone application data based on timestamp matching. The data was then saved

to a CSV file and it was analyzed using R. The final data set had 70558 observations of 22

variables. Table II shows a summary of the collected PM2.5 concentrations collected using

SidePak.

Min. Max. Median Mean
Value in µg/m3 0.00 794.00 10.00 15.92

TABLE II: SidePak PM2.5 values overview

Table III shows an overview of the PM2.5 concentrations collected using our wearable.

Comparing to table II, difference in means of measurements stresses the need for calibra-

tion.

Min. Max. Median Mean
Value in µg/m3 0.000 100.000 5.000 9.417

TABLE III: Wearable PM2.5 values overview
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Although in this work we are not focusing on calibrating microphones for noise data,

we collected noise data as a contextual variable in order to test if noise level can be a

feature for predicting actual PM2.5 concentrations. A summary of noise data is shown in

table IV.

Min. Max. Median Mean
Value in dBA -25.86 92.13 60.51 62.23

TABLE IV: Noise values overview

Finally, we show in table V the distribution of our observations against microenviron-

ments. A majority of the data was collected in indoor and deep indoor microenvironments.

We report testing the effect of microenvironment on calibration.

Experiment Deep indoor Indoor Semi-outdoor Outdoor
Number of observations 42437 18309 4142 5670

TABLE V: Data by Microenvironment
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3 .5 Data Analysis

In this quantitative study for exploring low-cost PM2.5 sensors and adapting them for

creating low-cost personal pollution exposure monitoring wearables, we were interested

in calibrating suboptimal low-cost PM2.5 sensors. We collected a data set using SidePak

as a ground truth reference and our prototype as the area of study for calibrating the

sensor. The data collected from the both SidePak and the low-cost PM2.5 sensor did not

follow a normal distribution. Statistical analysis using Wilcoxon rank sum test did show a

significant difference between the means of PM2.5 values from the SidePak and the means

of PM2.5 values from the low-cost PM2.5 sensor with a p-value <0.0001.

Figure 8 shows the PM2.5 data in the data set plotted as a time series. Figure 8 shows

trends in the data affecting all measuring devices. PM25 is 2.5 value measured by our

wearable, PM10 is PM1 measured by our wearable as well, also, PM100 is the concentra-

tion of PM10 as measured by our wearable. PM25_sp is PM2.5 concentration measured by

SidePak.

Trends in concentrations of PM2.5 are perceived in a noticeably similar fashion by both

SidePak and our wearable. But, differences still need to be tackled in order to get optimal

sensing.
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Figure 8: Calibration data plot

In this analysis, we are exploring different paths to create a model to predict PM2.5

concentrations from the low-cost PM2.5 sensor’s readings supported by contextual data.

We use the data we collected using SidePak to infer the model. We kickoff this analysis by

creating and testing a linear regression model. Next, we explore a set of machine learning

algorithms: nïve bayes, random forest, and, support vector machine (SVM).

In order to reduce the noise in the data, we classified the PM2.5 values into 6 categories

based on the Air Quality Index (AQI) reference provided by the EPA. EPA has published a
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reference for air quality index and the associated PM2.5 values. This reference categorizes

pollution concentrations based on the anticipated health concern of exposure over a 24-

hour period to pollution with the given concentrations. [1,2] Table VI shows the PM2.5 values

and their corresponding pollution levels and the anticipated health effect.

PM2.5 concen-
tration range in
µg/m3

Air Pollution
Level

Health Implications

0.0 - 12.0 Good Pollution has no or little risk

12.1 - 35.4 Moderate Acceptable pollution with a moderate health con-
cern

35.5 - 55.4 Unhealthy for
Sensitive Groups

Children, older adults, and people with health con-
cerns such as respiratory health concern are at
risk.

55.5 - 150.4 Unhealthy Might affect the health of the general public. Poses
a serious health issues for sensitive groups.

150.5 - 250.4 Very Unhealthy Health Warning and the general public is more
likely to be affected.

250.5 and up Hazardous Health Alert. Serious heath threat for everyone.

TABLE VI: PM2.5 Index: health effects of PM2.5 concentrations according to EPA Air Quality
Index, adapted from [1,2]

The classified SidePak PM2.5 observations are distributed as shown in table VII. We

notice that a majority of the observations fall in group 1, 2, and 3. This indicates that
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a majority of our data is with low PM2.5 concentrations. We report the effect of PM2.5

concentrations on our calibration models below.

Group 1 2 3 4 5 6
Number of observations 39742 22575 5053 3029 136 23

TABLE VII: Data distribution per EPA’s health-effect-based grouping of SidePak readings

3 .6 Calibration Model

Low-cost PM2.5 sensors have shown to be sub-optimal by deviation in readings from the

high-cost high-precision pollution monitoring tool we used, the SidePak. Thus, we collected

data in order to create a model that infers actual PM2.5 concentration levels from patterns

and knowledge held in the data.

3 .6.1 Linear Regression

We start our analysis with creating a linear regression model to predict the concentra-

tions. As a beginning, we calculated 5-minute time series means in order to reduce the

noise and improve the regression. We calculated Kendall rank correlation between the

means of the low-cost sensor’s PM2.5 and PM2.5 measured using SidePak and it was equal

0.864 which indicates the existence of such relationship. Figure 9 is a plot of the relation-

ship between the two variables at hand: Low-cost sensor PM2.5 means and SidePak PM2.5

means.
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Figure 9: Low-cost sensor and SidePak PM2.5 Means Relationship

Next we divided the means data set into training (160 observations) and testing(69

observation) sets. The training data was used to create a linear regression model to predict

actual PM2.5 concentrations. The model was then tested using the test data set. The model

shows a weak correlation between the predicted and the actual values with a correlation
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coefficient of -0.019. This indicates that the relationship between them is weak. The root

mean square error is 25.820 which is high value indicating that the model does not perform

very well.

The raw sensor readings, as is, had a lot of noise, so, we labeled the data according to

EPA’s grouping per health effect shown previously in table VI. We created a set of classifica-

tion models by training machine learning algorithms on the labeled data using R. We tried

creating models based our data with a variety of classifiers and using different subsets of

our contextual variables, we chose 3 classifiers to compare, Naïve Bayesian classification,

Support Vector Machine (SVM) with a radial basis function (RBF) kernel, and, Random

Forest Classification.

Table VIII shows a summary of our classifiers when trained and tested on all of our

observation (or a random subset for a Naïve Bayes classifier). We report in the table the

train and test data sets sizes and the set of features we used to train each model, and,

finally, the accuracy of each model. As the table implies, our best classifier is a Naïve

Bayes with an accuracy of 71.1% (fairly good) and PM2.5, PM1.0, PM10.0 as our feature

set. We examined all of our features, and we chose the best model for each classification

method shown.

In order to better understand the nature of our data, we created a set of classifiers

based on subsets of data that were divided based on two criteria: PM2.5 concentrations

and the microenvironment of which the observation was captured in. We decided on those
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Classifier Train Size Test Size Features Accuracy

Naïve Bayes 28386 42172 PM2.5, PM1, PM10 71.1%
Naïve Bayes (on
a sample of the
data)

6420 9580 PM2.5, PM1, PM10 luminos-
ity, noise level, microenvi-
ronment, and, GSM signal
strength

67.8%

Random Forest 28431 42127 PM2.5 61.8%
Support Vector
Machine

28431 28431 PM2.5, PM1, PM10 luminos-
ity, noise level, microenvi-
ronment, and, GSM signal
strength

42.0%

TABLE VIII: Comparison of Classification models built using the complete calibration data
set

two criteria because there was less effect of other features on the classification. Table IX

shows our PM2.5 concentration based classification.

As table IX shows, we divided our data to two sets. First, set of data where concen-

tration of PM2.5 measured by SidePak was less than or equal to 55.4 µg/m3 (data that

belonged to group 1, 2, and, 3 in the health-effect-based classification). The other set was

the complement of the first set with observation with SidePak reading greater than 55.4

µg/m3 (belonging to group 4, 5, and, 6).

We trained 3 models on each set using the naïve Bayes, Random Forest, and Support

Vector Machine classifiers. We report in the table train and test data sizes, feature set for

each model, and, accuracy of the model. Models trained on larger PM2.5 concentrations

outperformed with higher accuracy. This indicates that calibration is more accurate at

situations where concentrations of PM2.5 are higher. It is worth mentioning that Random
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Forest classifier performed the best and incorporating the feature set improved the model

as opposed to the model built using the full data set.
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TABLE IX: Comparison of Classification models built by training by PM2.5 concentrations
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Our other intra-group models were across microenvironments. We divided our 4 mi-

croenvironments (deep indoor, indoor, semi-outdoor, and, outdoor) to 2 general groups

(Out and In) based on high-level similarity. We report our division in the table X.

Group Microenvironments Similarity
Out Outdoor, Semi-outdoor Not inside a closed area with 4 walls and a roof
In Indoor, Deep indoor In an area surrounded by walls and a roof

TABLE X: Microenvironment Groups

After dividing the data into two sets using the subsetting concept shown before, we

trained and tested classifiers using each sub-group. We report a summary of the results

in table XII. For each sub-group, the table shows the sizes of the train and test data for

each classifier, as well as, features we used to train the classifier and the accuracy of that

classifier. Our results show that calibration of indoor and deep indoor data outperformed

calibration in outdoor and semi-outdoor setting. The model built using naïve Bayes classi-

fication for indoor and deep indoor data outperformed all the other models significantly.

Next, we discuss each of our models and show confusion matrices for each classifier.
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TABLE XI: Comparison of Classification models built by training by microenvironment
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3 .6.2 Naïve Bayes

Naïve Bayes classification is a probabilistic classification that adapts the Bayesian al-

gorithm for conditional probabilities assuming independence. We created multiple models

using the naïve Bayes classification method on the whole data set as well as for different

subsets. For each model, we divided our data set randomly to train data and test data at

a 2:3 ratio. We trained our model using the data for training with the following variables:

SidePak PM2.5 labels as the classifications, PM2.5, PM1, and PM10 values from our proto-

type. For one model, we incorporated, in addition to the previous, noise values in dBA,

microenvironments, GSM signal strength, and, luminosity values. Models trained with PM

data only outperformed models using feature set or feature subsets, thus, we chose to re-

port the models with PM data as features. We used the model to classify test data. Train

data consists of 28386 observations and test data consists of 42172 observations. The

model had an accuracy of 71.1%. We show the confusion matrix in figure 10.
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Figure 10: Naïve Bayes confusion matrix for calibration (complete data set)

In figure 10, the X-axis represents the Actual values of measured PM2.5 for the test data

represented by the health-based group it belongs to. The Y-axis shows the predicted group.

In other words, what the model classified a certain data point. The color intensity indicates

the percentage of the actual x group that was predicted as y group. So, the columns sum
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to 1 as for 100% of the actual x group. This idea applies to all confusion matrices shown in

the thesis.

That said, what we are looking for in a confusion matrix is high color intensity when x

= y. In this model, the accuracy was 71.1%. The model performed best at classifying group

1, 2, and, 5. The model classifies group 2 as group 1 and group 4 as group 3, this can be

due to the proximity between these two sets of groups. The model is offset with classifying

group 6 as it mostly classifies it as group 1. This could be because of the low number of

observations in group 6 as per table VIII.

As to better understand the effect of feature set on naïve Bayes classification. We

show the best model we created that classified the data with PM concentrations as well as

noise values in dBA, microenvironments, GSM signal strength, and, luminosity values as

features. The model was trained on a data set with 6420 observations and tested on a test

data set of size 9580 observations. The model has an accuracy of 67.8%. Figure 11 shows

the confusion matrix for this model.
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Figure 11: Confusion matrix of the naïve Bayes classifier built using a set of features on a

random subset of the data

As the confusion matrix shows, the model is best at predicting group 1, 3, and, 5. For

group 3, the model predicted a majority of the data as group 1 and 2 in a similar fashion

to that of the previous model. Similarly, the model predicts majority of group 4 as group 4

and 3. The noticeable difference here is that this model predicts the majority of group 6 as
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group 3 which is closer in value to the actual group. Thus, adding features improved the

prediction of the high-value groups and reduced the accuracy of predicting the low-value

groups.

We divided our data set to two groups; in and out as explained in table XI. We created

two naïve Bayes models for "in" and "out" data to observe the effect of general microenvi-

ronments on classification. We created general microenvironment groups because classi-

fying per microenvironment did show the exact pattern we observed when classified per

group, so, we grouped as an effort to generalize the results. The "in" model, our train data

had 24429 observations and the test data had 36317 observations. We used the PM data as

feature set: PM2.5, PM1, and, PM10 concentrations. The accuracy of our model when used

to predict test data was 82.9%. Figure 12 shows the confusion matrix for "in" calibration

model.
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Figure 12: Confusion matrix for "in" calibration model using naïve Bayes

The confusion matrix shows that the model correctly predicted a majority of group 1, 2,

4, and, 5. In a pattern similar to the model of the complete data set, this model classified

most of the group 6 data points as group 1. This model classifies a majority group 3 as

group 4 as opposing to classifying as the lower group in the complete data set model.
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Next, we created a model using the "out" data set. We divided the set to a train set of

size 3966 observations and a test set of size 5846 observations. The features used to train

the model are PM concentrations: PM2.5, PM1, and, PM10. The model had an accuracy

of 65.5% and with a performance lagging behind the model built to classify indoor data.

Figure 13 shows the confusion matrix for the "out" model.

Figure 13: Confusion matrix for naïve Bayes "out" model
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The confusion matrix in figure 13 shows clearly the low accuracy of the model. The

model does not classify any data point to group 1, group 5, or, group 6 correctly. The

model is best as classifying group 2 and group 3. This can be understood as due to the

generally larger concentrations of PM in the two outdoor microenvironments. Similar to

the model built using the large feature set, the model classifies group 6 as group 3. The

model classifies groups 4 and 5 as groups 3 and 4.

Other than subsetting the data per general microenvironment groups, we subsetted the

data per PM2.5 concentrations. We divided the data to two sets: with PM2.5 concentration

<= 55.4 µg/m3 and with PM2.5 concentration > 55.4 µg/m3. We created a model for each

set.

We first created a model with PM2.5 concentration <= 55.4 µg/m3. The model was

trained using a train set of size 27091 observation and we tested it on a test set of size

40279. The test yielded and accuracy of 58.7%. Which indicates that the naïve Bayes

classification is worse when classifying smaller concentrations of PM2.5. Figure 14 shows

the confusion matrix for this model. The confusion matrix shows that the model classified

all the data as group 1.



57

Figure 14: Naïve Bayes classification’s confusion matrix for lower PM2.5 concentrations

model

Finally, we classify the larger concentrations data set. We divided the set to train and

test at a 2:3 ratio with the train set of size 1249 and a test set of size 1939. We used PM2.5,

PM1, and, PM10 as features. When testing the model using the test data set, it resulted

and accuracy of 91.7%. Thus, naïve Bayes classification performs best at higher PM2.5

concentrations. Figure 15 shows the confusion matrix of the model.
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Figure 15: Confusion matrix of naïve Bayes classifier using data of higher PM2.5 concen-

trations

The confusion matrix shows that the model classifies most of the group 4 and group

5 data correctly. The model classifies quarter of group 6 as group 4. This pattern of

classifying group 6 to lower groups was seen on all models, but, this model is the best at

classifying group 6.

Naïve Bayes classifiers show clearly the effect of changing contextual features on the

classification. The classifiers perform fairly good for our calibration data.
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3 .6.3 Random Forest Classification

Our second model is a random forest classifier. A random forest classifier is built using

a set of decision trees, which are trees used to make decisions, where nodes are classes

and branches are decision results. Random Forest classification follows the method of

ensemble learning where it combines a set of sub-classifiers (Decision trees) for improved

classification.

We used the calibration data we collected to train and test a random forest classifier.

We obtained the train and test set by randomly dividing the data set to train and test

at a 2:3 ratio (28431 observations for training and 42127 observation for testing). The

features which we used for training the model are the labeled SidePak PM2.5 data as the

classification and the PM2.5 data collected by our sensing model. We tested the random

forest classifier model on the test data and it yielded an accuracy of 61.8%. Figure 16

shows the confusion matrix for our classifier.
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Figure 16: Random Forest classification confusion matrix for calibration

From the confusion matrix shown in figure 16, the classifier is classifying most of the

data group 1 and group 2. The test data appear to not have any group 6 data points. The

classifier is not reliable.
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We used Random Forest classification to classify "in" and "out" data subsets. We use

PM concentrations, noise values in dBA, microenvironments, GSM signal strength, and,

luminosity values as features.

For the "in" model, we divided the data to train and test sets. Train set has 24429

observations and test has 36317 observations. The model has an accuracy of 53.2% with

the confusion matrix shown in figure 17.

Figure 17: Random Forest classification of "in" data
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From the confusion matrix, the model classifies most of group 1 and 2 as group 1 and

most of group 4 and 5 as group 2. Also, the model has a pattern of classifying most group

3 as groups 4 and 5 and most of group 6 as group 4. The confusion matrix shows that the

model is faulty.

Next, we create a model to classify "out" data using random forest. The "out" model

uses the same feature set as the "in" model. Also, the "out" data set was divided into a

train set of 3957 observations and 5855 observations for the test set. The model has an

accuracy of 36.9%. Figure 18 shows the confusion matrix for "out" data.
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Figure 18: Random Forest Classifier for "out" data

As clear in the confusion matrix, the "out" classifier has a tendency to classify data to

groups that represent higher PM2.5 concentrations. This can be interpreted as the effect

of having higher values of PM2.5 concentrations.

We divided our data based on PM2.5 concentrations to two groups with the value 55.4

µg/m3 as the critical value inclusive of the lower concentration group. Then we used
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PM concentrations, noise values in dBA, microenvironments, GSM signal strength, and,

luminosity values as features to train two models. The first model classifies lower PM2.5

concentration. This model was trained using a set of 27091 observations and tested using

a set of 40279 observations. The model has an accuracy of 55.8%. Figure 19 shows the

confusion matrix for the model.

Figure 19: Confusion matrix for Random Forest classifier of lower PM2.5 concentration

data
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The confusion matrix shows that the model is biased towards group 1. Thus, random

forest is not a good classifier for lower PM2.5 concentration.

The second model is trained using 1292 observations at high PM2.5 concentrations

using the same feature set used for the previous model. This model was tested on 1896

observations and yielded an accuracy of 92.6%. Figure 20 shows the confusion matrix of

the model’s prediction of test data.

Figure 20: Random Forest classifier’s confusion matrix for high PM2.5 concentration data
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Similar to the prediction of the low concentration model, the model is biased towards

group 4. According to table VIII, the high accuracy of the model is due to the majority of

the data being in group 4.

We notice that Random Forest classifiers are less affected by contextual features and

more affected by the number of observations per group in the training data.

3 .6.4 Support Vector Machine (SVM) with RBF kernel

Our last model is a support vector machine classifier with a radial function as a kernel.

SVM functions by creating hyperplanes that separate data classes and the prediction of

new data depends on where does the data point fall in the space containing these hyper-

planes. Since the data is complicated and could not be separated linearly, we used the

kernel method to transform the space using a radial function. The RBF kernel function is:

K(x, y) = exp(−γ
p∑

j=1

(xij − yij)
2)

Our SVM model was trained using the same train set that we used for the other models

which is obtained by randomly dividing the data set to train and test at a 1:1 ratio since

the model performed the best at this ratio. The features which we used for training the

model are PM1, PM2.5, PM10 data that was collected using the sensor in our prototype,

in addition to noise values, luminosity values, microenvironments, and GSM signal levels.

These properties apply to all the models we built using SVM classification.
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Our first model is built using a random sample of the data set divided into train set and

test set of size 28431. We tested the SVM model on the test data and it yielded an accuracy

of 42%. We show the confusion matrix in figure 21.

Figure 21: SVM with RBF kernel confusion matrix for calibration
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Similar to random forest classification, SVM has predicts most of the data as group 1

and 2. The cause of this is the distribution of the data.

We used SVM to classify the microenvironment subsetted data. First, we created a

model using the "in" data set. The train and test data sets had 24429 observations and we

used the same feature set as the previous SVM models. The accuracy of this model was

50.4%. Figure 22 shows the confusion matrix for this model.

Figure 22: Confusion matrix for SVM with RBF kernel "in" model



69

The confusion matrix is similar to the confusion matrix of the previous model. Thus,

subsetting did not affect the classification.

The second model classified the "out" data in a manner similar to that of the "in" data

classifier. The model was created and tested with train and test data sets of size 3957

observations. The model yielded an accuracy of 35.6%. Figure 23 shows the confusion

matrix for this model.

Figure 23: SVM with RBF kernel "out" classifier’s confusion matrix
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In this confusion matrix, the classifier classifies mainly to group 2, 3, and, 4. This is a

result of having higher values of PM2.5 in "out" microenvironments, thus, the bias shifted

to a higher concentration.

Finally, we divided our data based on PM2.5 values to two groups: values less than or

equal to 55.4 µg/m3 and larger than 55.4 µg/m3. Using the same feature set, we created

two classification models using SVM with RBF kernel.

The first model of lower PM2.5 concentrations was trained and tested using 27091 ob-

servations for each. We used the same feature set used for previous SVM models. The

model yielded an accuracy of 45%. Figure 24 shows the confusion matrix of the model’s

predictions.
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Figure 24: Confusion matrix for lower PM2.5 concentration classification using SVM with

RBF kernel

The confusion matrix, similar to previous, is biased towards group 1, then group 2.

Lastly, we created a model using data that has PM2.5 concentrations higher than 55.4

µg/m3. The model was built using train and test data set each with a size of 1292 observa-

tions. The model has an accuracy of 91.6%. Figure 25 shows the confusion matrix of the

model.
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Figure 25: Confusion matrix for SVM with RBF kernel classifier for data with higher PM2.5

concentration

In spite of the high accuracy of the model, it is faulty and predicts mostly as group 4.

We notice that different features do not affect the SVM model. It is affected mostly by the

number of observations per group.

3 .7 Findings

This thesis is an effort towards creating a low-cost wearable for personal pollution

exposure monitoring for the public in general and for the at-risk communities particularly.

We firstly created a prototype using low-cost PM2.5 sensor and powering it using a low-
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cost computing chip. Next, we explored the performance of the low-cost PM2.5 sensor as

opposing to high-cost high-accuracy pollution monitoring tool: SidePak.

Our studies have shown significance between the readings of the low-cost sensors

and SidePak when running side-by-side measuring the same actual PM2.5 concentrations.

Based on that, we studied creating a model to calibrate low-cost PM2.5 sensors.

We examined different algorithms with different sets of features by subsetting our vari-

ables. We started the analysis by creating a linear regression model for the means of

5-minute time series of the data at hand. The model performed poorly. Thus, relying on

trade-offs between efficiency and accuracy, we chose 3 classification models to compare

and discuss.

Starting with the SVM model, with the accuracy of the model we think that it is not

functional to calibrate the sensor’s readings. Also, our SVM models show that it is mostly

affected by the number of observations per group. The models perform best using a large

set of features, yet, it does not show effect when trained on data subsetted using these

features. We think that collecting more data with an equal distribution amongst groups

can improve the model as future work.

Next, the random forest model performed the best with no features, only the low-cost

sensor’s PM2.5 readings and the labeled SidePak PM2.5 data when trained on the full data

set. The model performs poorly despite that recent works in calibration uses random

forest. [91] Our confusion matrices have shown that, similarly to our SVM classifiers, the

classification using random forest is unreliable and its prediction biased towards the group
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with the larger number of observations. Moreover, prediction using our random forest

model takes significantly more time comparing to the other models.

Finally, our naïve Bayes model performed at a fairly good accuracy of 71.1% when it

was trained on the full data set. The classifier performance drops when incorporating set

of features. But, when training the classifier of data sets subsetted based on features, the

classifier showed higher sensitivity to these features. This allowed us to understand that

classification is better at higher PM2.5 concentrations and it is better at indoor and deep

indoor environments. With this model performing fairly good but not satisfactory, we plan

on building on this model to improve our system. Prolonged data collection across different

ranges of contextual data, for example, different seasons and locations, might improve this

model for future work.



CHAPTER 4

HUMAN INTERFERENCE WITH LOW-COST PM2.5 SENSORS

When assessing personal pollution monitoring, physical characteristics of the PM2.5

measured in a human’s personal cloud vary per source. Some studies have shown variation

in toxicity of PM2.5 based on its source. [33–35] Measuring PM2.5 near the human body is

prone to PM2.5 resulting from the body’s emission, such as skin and hair emissions [13]

as well as bio-aerosol emissions of breath. [27] Also, clothing and textile contribute to the

PM2.5 in the personal cloud. Studies have shown that human body emissions increase with

the increase of physical activity. [30]

4 .1 Motivation

Studying human interference with low-cost PM2.5 sensors informs design guidelines for

a personal pollution exposure monitoring wearable, particularly, where to wear the sensor

so that the measured PM2.5 is least interfered with. Moreover, studying the patterns of

different human interference situations can help in predicting the situation or the activity

the user is currently taking in order to infer more accurate personal pollution exposure

monitoring.

We studied different situations of human interference with low-cost PM2.5 sensors us-

ing the prototype we created and supported with ground truth measurements using Side-

Pak. [88] We explored human interference using the two tools in an exploratory pilot study

75
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of which results, in addition to wearability and comfort, we made our decisions for our

human interference experiments.

4 .2 Conceptualization

Independent Variables:

Pollutants. Our pollutants are PM1, PM2.5, PM10, and noise measured in dBA

Type of the sensing device. We used two types of sensing devices: SidePak as a high-

cost high-precision pollution monitoring device and Plantower PMS7003, deployed in our

wearable, as low-cost low-precision PM2.5 sensor.

Distances. We measured human-interference-induced disturbance using two sensors.

One of the sensors is a reference sensor that was set at a fixed distance from the ex-

periment. We chose 2 fixed distances for reference in our experiments, first is 30 cm (11.8

inches) and the second is 100 cm (39.3 inches). In our pilot study, we noticed that for some

human interference situations, the effect of that situation on the PM2.5 concentration dif-

fers within the range of 30 cm and the range of 100 cm. Thus, we chose 30 cm, and, 100

cm as our distances.

Human Interference. We measure changes in PM2.5 at a set of human-interference con-

ditions inferred by the set of preliminary experiments in our pilot study we conducted in

the lab. These are:

• Control: Which is an experiment where no interference happens as the sensors are

on a clean flat surface. We did the control experiments using SidePak as well as

our prototype. Control experiment serves as a baseline with no human interference
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in our analysis. So, whenever we talk about the baseline we indicate that it is this

control experiment.

• Skin: We examined a set of skin experiments: first, we measured PM2.5 near bare skin

with no touching or interference, second, we measured the effect of touching skin,

next, we measured scratching skin, also, we measured near skin wearing bracelets,

and finally, we measured sweaty skin with no interference. In the skin experiments,

the sensor was worn like a wristwatch with no interference with the outfit. The

experiment was conducted while typing on a laptop or reading a book as a lightweight

activity. We measured skin experiments using SidePak as well as our prototype.

• Breath: We inspected the effect of breath on PM2.5 values in the personal cloud. We

conducted a set of experiments to explore 4 breath and breath-like situations: nor-

mal breathing, yawning, coughing, and, laughing. We measured breath experiments

using SidePak as well as our prototype. Breath experiments were conducted with the

sensor clipped on a collar and while doing lightweight activities such as typing on a

laptop.

• Hair: We explored hair emissions and their effect on PM2.5 concentrations. We stud-

ied two situations: touching and playing with hair and heat styling. These experi-

ments were done with medium length hair. Hair experiments were conducted with

the sensor clipped on a collar.

• Toiletries: As studies have shown that spraying products affect the concentration of

PM [26], we studied the use of toiletries as a part of people’s day-to-day life to exam-
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ine the effect on personal pollution exposure. We conducted experiments where the

experimenter was spraying perfume, facial spray, hair spray, and using loose-powder

makeup. For this set of experiments, the experimenter wore sensor by clipping it to

the collar. SidePak was used to measure PM2.5 as well as our prototype.

• Textile: Textile emissions also affect the amount of PM2.5 in the personal cloud. We

examined 6 types of textile: Cotton, Leather, Silk, Synthetic fabrics, Wool, and, Fur.

For this set of experiments, the experimenter wore sensor by clipping it on shirt

pocket (or attaching it to the approximate location when no pocket existed). The ex-

perimenter was doing lightweight activity during these experiments. Also, we tested

the existence of static electricity in the clothing items during the experiments using

an off-the-shelf multi-meter by grounding it using a metal surface.

Contextual Features. Contextual features are the sets of data collected by the smart-

phone application. these are timestamps, geotags represented by longitude and latitude,

WiFi and GSM signal levels, screen’s brightness and luminosity value, weather information

such as outdoor temperature, humidity, dew point, weather condition, and wind speed,

ambient temperature inferred from the battery temperature, microenvironment, setting.

Dependent Variable: Value (distribution)

4 .3 Data Collection

We conducted the experiments explained in the previous section in 3 settings: Lab,

Home, and Library. Each experiment was repeated 3 times at each distance. Most of the

experiments lasted for 15 minutes except for the experiments that will not hold for 15
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minutes. These experiments are skin scratching, skin touching, cough, laugh, yawn, both

of the hair experiments, and all of the toiletries experiment. SidePak was used with some

of the experiments as discussed previously.

For the human interference experiments, two replicas of the prototype were needed.

One prototype will serve as the experimental prototype and it is worn or attached as pre-

viously described. The other sensor is used as a reference sensor where it was measuring

the ground condition by being set on a clean surface. The reference sensor was measur-

ing at two distances; 30 cm and 100 cm, as discussed earlier. Figure 26 shows our two

prototype replicas.

Figure 26: Prototype Replicas for Human interference
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Data was collected over a period of 6 weeks. Data collected from both sensors and

contextual data from the smartphone app was matched based on timestamp using a python

script we wrote for this mission. After matching the dates and removing data lines that

contained null values, we had 65468 data lines. Each line represents the values for 1

second with a total of around 18 hours of data. Experiments were manually labeled. Table

XII below shows the number of observations for each experiment in our data set.

bracelet breath control cotton skin no interference fur

5260 5111 5904 6085 6907 6200

hair spray hair touch laugh leather powder makeup silk

684 3443 818 6138 753 1776

skin sweat skin touch synthetic wool spray perfume yawn

5016 1464 2799 4230 651 336

face spray hair heat style skin scratch cough

557 596 534 206

TABLE XII: Experiments data overview
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4 .4 Data Analysis

PM2.5 data collected by both PM2.5 sensors as well as SidePak does not follow a normal

distribution, thus, we analyzed the data using non-parametric statistical tests. Also, since

the data was collected as separate time series (experiments), we compared means in parts

of our analysis.

4 .4.1 Low-cost PM2.5 sensors in Control Experiment

We measured significance between the two low-cost PM2.5 sensors in the two replicas

of our prototype using Wilcoxon rank sum test. The raw data we compared was the data

collected in the baseline experiment. The result yielded a p-value = 0.058 and we cal-

culated the effect size r = -0.045. This indicates that no significance worth considering

between the two copies of sensors used for our experiments. Variance for the reference

sensor data = 399.042, and variance for the experiment sensor data = 398.506. Median of

the reference sensor data = 5, and that for the experiment sensor = 6. Finally, the mean

for reference sensor is = 12.561 and for the experiment sensor is = 13.082.

Also, we labeled sensor’s data using the EPA health-based PM2.5 groups. We measured

significance between the two groups of labels using Wilcoxon rank sum test. The test

resulted a p-value = 0.142 with an effect size r = -0.019. The result confirms that the two

copies of sensors perform similarly.

4 .4.2 Data Analysis per Experiment

We analyzed the human interference data experiment-wise for both low-cost sensors

and SidePak. We explored the differences between baseline data that was collected as
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a control experiment by having the sensor sitting on a surface with no interference. Ex-

periment data that was collected by originating a human interference situation by the

experimenter. Our analysis is demonstrated below.

4 .4.2.1 Measuring Human Interference Using SidePak

As a part of our experiments, we were interested in seeing how SidePak will perceive

different human interference situations as opposed to our low-cost PM2.5 sensors. Thus, we

used SidePak to measure PM2.5 for some of our human interference experiments. We kick

off this analysis with table XIII showing the significance of the SidePak baseline experiment

over the other experiments of which SidePak was used in. We compared means for each

experiment (means for an experiment’s 1-second time series measurements). The means

of SidePak PM2.5 data does not follow a normal distribution. Thus, the comparison was

done using the Kruskal-Wallis test and Wilxocon rank sum test with Benjamini-Hochberg

p-value adjustment for pairwise comparisons as a post hoc. We also report effect size (r)

for each comparison.

The significance test shows a significance between the baseline experiment and all

other experiments except for the skin with no interference, skin scratching, and, skin

touching. For these experiments, the experimenter had the SidePak tube was attached

near the low-cost sensor as a wrist band. The reason that the test does not show sig-

nificance for these experiment in our opinion is that the skin experiments produced a

short-time spike in the PM2.5 concentration near the sensor. Calculating the mean, the

short-term spike effect will be with a small effect. Thus, the test did not show a signif-
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Experiment P-value Effect Size (r)

bracelet 0.026 -1.055
breath 0.026 -0.906
cough 0.018 -0.963

face spray 0.018 -0.963
hair spray 0.018 -0.892

laugh 0.026 -0.993
powder makeup 0.018 -0.629

skin no interference ns -0.690
skin scratch ns -0.906
skin sweat 0.043 -0.993
skin touch ns -1.321

spray perfume 0.018 -0.892
yawn 0.018 -0.892

TABLE XIII: Significance between Control experiment and the rest of the experiments us-
ing SidePak

icance of means comparing to other experiments such as spray experiments where the

effect of the interference lasts for a longer while. Other than that, SidePak could identify

the human interference in the different experiments.

4 .4.2.2 Measuring Human Interference Using low-cost PM2.5 sensors

Similar to the analysis of SidePak data, we conducted an analysis comparing the base-

line data measured by the low-cost PM2.5 sensors and the experiment’s data measured by

the same sensors at different times. The analysis was using the Kruskal-Wallis test and

Wilxocon rank sum test with Benjamini-Hochberg p-value adjustment for pairwise com-

parisons as a post hoc. We also report effect size (r) for each comparison. SidePak was

used for a partial set of experiments, our prototype was used to collect data for all of the



84

experiments. Table XIV below shows a comparison between the experiment means of our

prototype in the baseline experiment and the rest of the experiments.

As the analysis results suggest, data from experiments differ to data from baseline

experiment data except for 3 experiments. First, similar to SidePak, the wearable mea-

surements have no significance between baseline and skin touching experiment. Also, the

test shows no significance between baseline and skin scratching experiment. The reason

behind that, similarly to SidePak data analysis, is an effect of the way PM2.5 concentration

level responds to the skin experiments in short spikes.

Also, the wearable did not detect any difference for the silk experiment. The silk ex-

periment is a part of the textile experiment group and was not tested using SidePak. In

this experiment, the experimenter is wearing a silk garment with the sensor attached to

the shirt pocket or clipped to its approximate location and doing only lightweight activities

such as reading a book. The reason to this is that the silk, in its nature, has an emission

rate that is negligible when using the low-cost PM2.5 sensor. Overall, the wearable did

detect human interference.
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Experiment P-value Effect Size (r)

bracelet 0.010 -1.159

breath 0.008 -1.077

cotton 0.008 -1.077

cough 0.008 -1.077

face spray 0.008 -1.077

fur 0.008 -1.077

hair heat style 0.0367 -1.206

hair spray 0.008 -0.997

hair touch 0.0485 -0.746

laugh 0.010 -1.159

leather 0.0167 -1.197

powder makeup 0.008 -1.077

silk ns -1.218

skin no interference 0.010 -1.159

skin scratch 0.010 -1.159

skin sweat ns -0.276

skin touch ns -1.218

spray perfume 0.008 -0.997

wool 0.010 -1.159

yawn 0.008 -0.997

TABLE XIV: Low-cost PM2.5 sensor significance of experiments over control experiment
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4 .4.2.3 Measuring the effect of Human interference at different distances

As a part of our experiments, we used to replicas of our prototype. One prototype

copy served as an experiment sensor that was measuring PM2.5 at the created human

interference situation. The other copy was used as a reference measuring the PM2.5 con-

centrations away from the interference. For each of the experiments, we repeated the

experiment when the distance between the reference and the experimental prototype was

30 cm and when the distance between them was 100 cm. In this section, we present the

significance observed between the data read by the experiment sensor and the data read

by the reference sensor at each of the two distances for all the experiments. The signifi-

cance was tested for each distance and for each experiment using Wilxocon rank sum test.

Also, we calculated effect size r. We report our the distance-based analysis results in table

XV.

In this analysis, we compared the two replicas of our prototype together at different

distances. Since one of our sensors is deployed as the experiment measurement tool and

the other is used as a reference to obtain a sub-optimal -but with the same level of sub-

optimality to the experiment sensor.

The analysis results suggest that for bracelet, skin scratch, and skin sweat both or the

sensor readings did not differ for both distances. For breath, skin with no interference,

and, yawn experiments there was a difference between reference senor and experiment

sensor at 30 cm and no difference when the distance was 100 cm. For the wool, silk, fur

experiment, there was no difference at 30 cm, but, there was a significant difference at
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Distance @30 cm @100 cm

Experiment P-value Effect Size (r) P-value Effect Size (r)

bracelet ns r = -0.009 ns r = -0.026

breath 0.020 r = -0.032 ns r = -0.012

cotton <0.0001 r = -0.100 <0.0001 r = -0.160

cough ns r = -0.058 0.001 r = -0.224

face spray < 0.0001 r = -0.501 <0.0001 r = -0.397

fur ns r = -0.024 <0.0001 r = -0.254

hair heat style <0.0001 r = -0.532 <0.0001 r = -0.654

hair spray <0.0001 r = -0.303 <0.0001 r = -0.386

hair touch <0.0001 r = -0.512 <0.0001 r = -0.076

laugh 0.039 r = -0.072 <0.0001 r = -0.272

leather <0.0001 r = -0.164 <0.0001 r = -0.433

powder makeup ns r = -0.028 <0.0001 r = -0.237

silk ns r = -0.030 <0.0001 r = -0.457

skin no interference <0.0001 r = -0.047 ns r = -0.009

skin scratch ns r = -0.055 ns r = -0.027

skin sweat ns r = -0.023 ns r = -0.013

skin touch <0.0001 r = -0.578 <0.0001 r = -0.547

spray perfume <0.0001 r = -0.344 <0.0001 r = -0.259

synthetic < 0.0001 r = -0.370 < 0.0001 r = -0.094

wool ns r = -0.007 <0.0001 r = -0.187

yawn <0.0001 r = -0.295 ns r= -0.097

TABLE XV: Human Interference Effects on Different Distances
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100 cm. These all are textile experiments which means that the emissions of these textile

can be sensed from a radius of 30 cm. Also, cough and powder experiments can be sensed

from a distance of 30 cm. The rest of the experiments were significantly different from

reference at 30 cm and at 100 cm.

4 .4.3 Data Analysis per Experiment group

Our experiments fall into more general experiment categories based on experiment

similarity. We sorted our experiments to groups as shown in table XVI. We labeled the data

by experiment group. Some analysis was done on the group level and experiment-group

labeling can be used to improve classification by human interference type.

Group Experiments

Control Control
Breath Breath Cough Laugh Yawn
Textile Cotton Fur Leather Wool Synthetic Silk
Skin Skin no inter-

ference
Skin scratch Skin sweat Skin touch Bracelet

Hair Hair heat style Hair touch
Toiletries Face spray Hair spray Powder makeup Spray perfume

TABLE XVI: Classifying Experiments per Experiment Group

4 .4.3.1 Significance of Experiment Groups in SidePak

As a part of our analysis for the effect of human interference on the concentrations of

PM2.5 in the personal cloud, we analyzed the relationship between baseline experiment and
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the experiment groups of which SidePak was used in. The groups measured using SidePak

are breath, skin, and, toiletries. The analysis was done using the group comparison testing

of experiment means via Kruskal-Wallis test and Wilxocon rank sum test with Benjamini-

Hochberg p-value adjustment for pairwise comparisons as a post hoc. Also, we report the

effect size (r). Table XVII shows the results of the group-wise comparison with the baseline

experiment in SidePak .

Experiment P-value Effect size (r)

Breath 0.008 -0.545
Skin 0.021 -0.493

Toiletries 0.006 -0.541

TABLE XVII: Comparison of Experiment Groups over Control in SidePak

The group comparison with baseline for the data collected by SidePak shows a differ-

ence between the data for all of the experiment groups. However, the difference between

each group and the baseline varies. This is interpreted as that SidePak is able to detect

human interference at the general level.

4 .4.3.2 Significance of Experiment Groups in Low-cost PM2.5 Sensors

Similar to the group-based analysis for SidePak data, we analyzed the relationship be-

tween baseline experiment and all of the experiment groups’ data that was collected using

the replicas of our prototype. The analysis was using Kruskal-Wallis test and Wilxocon rank
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sum test with Benjamini-Hochberg p-value adjustment for pairwise comparisons as a post

hoc. Also, we report the effect size (r). The comparison in this analysis is between the

baseline control group and all the other groups. The analysis results are shown in table

XVIII.

Experiment P-value Effect Size (r)

Breath 0.006 -0.567
Hair ns -0.396
Skin 0.008 -0.568

Textile 0.005 -0.565
Toiletries 0.004 -0.564

TABLE XVIII: Significance of Experiment Groups over Control in Low-cost PM2.5 Sensors

The group-wise comparison of wearable’s measurements of the experiments was signif-

icant to the baseline for all of the groups except the hair group. Hair experiments were not

performed using SidePak. Similarly to skin experiments, hair experiments did affect the

concentrations of PM2.5 in the surrounding region in a short spike fashion. Thus, compar-

ing the means did not show a difference. For the other experiments as whole, the low-cost

PM2.5 sensor could detect the existence of the interference.

4 .4.4 Findings

In the process of designing a low-cost personal pollution monitoring tool, we incor-

porate the use of a PM2.5 sensor. But, the readings of the PM2.5 sensor are affected by
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emissions from the human body and clothing. Emissions from the human body differ to

that from the exhaust of a diesel engine, thus, recognizing and pointing out PM2.5 result-

ing from human interference is needed to design a wearable with low interference and to

further study the difference of the health effect between the different sources of PM2.5.

With that, we conducted a study to explore different human interference situations and

their effect on low-cost PM2.5 sensors. In addition to that, we studied some of the human

interference situations using high-cost high-accuracy PM2.5 monitoring tool: SidePak.

We conducted a set of baseline control experiments to explore human interference.

We quantify our human interference experiments into 6 main groups. First, is a control

experiment without any human interference as the baseline experiment. Second, breath

experiments studying normal breathing, coughing, yawning and laughing. Third, we con-

ducted experiments to study skin emissions by measuring PM2.5 concentration near skin

with no interference, touching, scratching, and near sweaty skin. Next, we explored hair

emissions by measuring PM2.5 concentration while touching hair and while heat styling.

Moreover, we studied the change in PM2.5 concentrations during the use of toiletries;

face spray, hair spray, perfume, and loose-powder makeup. Finally, we studied the emis-

sions of different textile while doing lightweight exercise in normal settings. The textile

we explored were cotton, fur, leather, wool, synthetic fabrics, and, silk. In the textile ex-

periments, we were interested in seeing if there is any effect of static electricity on the

concentrations of PM2.5 near the textiles. We measured static electricity using a multi-
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meter in fabrics during the textile experiments and we found no static electricity during

our experiments.

Our data analysis shows, using both SidePak and the low-cost PM2.5 sensor that there

is a difference between baseline experiments and a large set of our human interference

experiments. Next, results have shown the variability of significance probabilities and

their corresponding effect sizes.

For each of the human interference situations, we deployed two copies of the low-cost

PM2.5 sensor. One copy measured the human interference while the other was used as a

reference to measure the change that happened due to the human interference situation.

We repeated experiments with the reference sensor sitting at two different distances from

the human interference. The distances were 30 cm and 1 m. Our analysis has shown

that low-cost PM2.5 sensor could capture changes of PM2.5 concentrations due to different

human interference situations. Finally, the analysis has shown different effects (and no

effect for some cases) of human interference on the reference sensor at different distances.

Using our data as a piece of basic evidence for design decisions, the data shows that

the toiletries emissions have the highest effect on the wearable and SidePak. Thus, the

designer should minimize the possibility of having the sensor interact with toiletries. Next,

breath emissions then skin emissions where the highest, thus, the designer should be

careful when designing for the head area and for when being around exposed skin. Also,

textile had an effect on the PM2.5 concentrations and it is, for most cases, reaching a 30

cm distance. A good suggestion is to wear the sensor on the sleeve.
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Further explorations of other human interference situations such as belongings or

shoes might be needed for a more evident inferring of a where to wear design decision.

Moreover, for our future work, we are planning on collecting more data to build a model to

detect and classify human interference. This model can help in understanding the health

effects of different types of PM2.5 generated by different sources in a more exploratory

approach.



CHAPTER 5

CONCLUSION

Epidemiological studies suggest that prolonged exposure to pollutants have adversarial

health threats. Some studies have shown a positive association between exposure to PM2.5

and noise and mild cognitive impairment as a precursor to dementia.

Recent works in ubiquitous computing for personal monitoring focus more on tracking

eating, exercise, and sleep habits and feelings. Little work is being done towards moni-

toring personal pollution exposure, particularly for the at-risk communities. Most of the

available pollution monitoring tools are designed for scientists and quantified-selfers or

they are designed to be at a fixed location, e.g home air quality meters to be fixed in the

living room. In this thesis, we presented our effort towards a more user-oriented personal

pollution exposure monitoring, especially for the at-risk communities.

We created a low-cost PM2.5 and noise monitoring prototype using low-cost Plantower

PMS7003 PM2.5 sensor and facilitating the at-hand microphone of the smartphone to serve

as a noise monitoring tool at hand. We studied the low-cost PM2.5 sensor and we tackled the

low-accuracy problem by creating a fair calibration model using naïve Bayes classification.

The emissions from the human body and clothing affect the concentrations of PM2.5

in the personal cloud of the person at hand. We explored different situations of human

interference and their effects on low-cost PM2.5 sensors as well as high-cost high-precision

sensors. Our studies have shown significant changes due to some of the human inter-

94
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ference situations we studied. With our current results we recommend, for designing a

sensor with little human interference, to keep a distance from bare skin areas and the

human head.

Contributions to HCI. This thesis contributes to Human-Computer Interaction (HCI)

by exploring the effect of human physical interaction with low-cost PM2.5 sensors. We

identify a set of somatic human interference situations and textile emissions. We studied

how these situations can affect the sensors as design guidelines for personal pollution

monitoring wearables. This knowledge lead the design decisions for personal pollution

exposure monitoring wearables. Our framework can be used to study different types of

PM2.5 sensors (for example sensors that don’t use laser scattering). Also, our framework

can guide studies to explore sensors that measure other types of pollutants.

Future Work. For future work, we are planning to collect more data in wider set

of contexts to improve the sensor calibration model. Also, we will fabricate a smaller

circuit board to replace the Raspberry Pi board in order to reduce the size and the weight

of the wearable towards better wearablitiy and improved use experience. The wearable

fabrication will be using human-in-the-loop design approach. For human interference, we

are planning to improve our design guidelines be experimenting for more where-to-wear

candidates as an effort towards offering a variety of choices for designing low-cost personal

pollution monitoring wearables. Finally, we want to create a human interference detection

and classifying model to distinguish different human interference situation and make an
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account for them in order to help understand the effect of different types of particulate

matter on the human health, particularly, the health of the at-risk.
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